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Abstract: In this paper a micromorphic continuum is derived for the homogenization of 
masonry structures with interlocking blocks. This is done by constructing a continuum which 
maps exactly the kinematics of the corresponding discrete masonry structure and has the 
same internal and kinetic energy for any ‘virtual’ translational- and rotational-field. The 
obtained continuum is an anisotropic micromorphic continuum of second order. The enriched 
kinematics of micromorphic continua allows to model microelement systems undergoing 
both translations and rotations. The homogenization technique applied here excludes 
averaging and keeps all the necessary information of the discrete structure. Therefore, all the 
dispersion curves of the discrete system are reproduced in the continuum model. 
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1. Introduction 
Masonry wall structures are usually formed by regularly distributed bricks and mortar 
following a certain periodic building pattern, i.e. the brickwork. Typical example of 
brickwork is the ‘running-bond’ pattern presented in figure 1. Generally, when the masonry 
walls consist of blocks of the same height they are called ‘isodomi’2. In ancient times, the 
construction of such masonry was very expensive, considering the time and the technical 
difficulty for hewing hard stone blocks. Consequently, the construction of ‘isodomus’ 
brickwork is generally met only in luxurious buildings and temples, like Parthenon. However, 
from the structural point of view, the construction of masonry walls with building blocks of 
the same size, results to brickwork with limited or no interlocking. To face this, large tie-
stones and special metal elements were used to bond the masonry building blocks together 
and to assure their interlocking. Observing ancient masonry structures, one could claim that 
the interlocking of the building blocks was an essential characteristic and a desired feature. 
Take for instance the masonry wall depicted in figure 2Erreur ! Source du renvoi 
introuvable. from the civilization of Incas, the interlocking of the building blocks is 
apparent. 

Following the ‘Homogenization by Differential Expansions Technique’ (Pasternak and 
Mühlhaus, 2005) the deformation and the dynamic behavior of the running-bond masonry 
wall patterns was investigated in the frame of continuum theory (cf. Masiani et al., 1995; 
Sulem and Mühlhaus, 1997; Cerrolaza et al., 1999; Stefanou et al., 2008 among others). The 
Cosserat continuum (Cosserat, 1909; Vardoulakis and Sulem, 1995) provided the necessary 
background to develop an equivalent continuum that maps the kinematics and the energy of 
these discrete masonry structures. Here, a different pattern is investigated (Figure 3). The 
geometrical difference between this pattern and the running-bond pattern is that it is 
constituted by two different in size and height interacting blocks. The running-bond and 
stack-bond patterns are degenerated cases of the aforementioned diatomic pattern and can be 
obtained by appropriately adjusting the dimensions of the building blocks of the present 
diatomic pattern (Figure 6). However, the structural  difference and the practical importance 
of the diatomic pattern presented herein is the interlocking of the building blocks. Examining 
the diatomic texture of figure 3, we notice that no horizontal or vertical joints cut the masonry 
wall from side to side. This characteristic essentially contributes to the overall strength of the 
masonry structure under various loading situations. 

The homogenization procedure followed herein differs from the above mentioned for the 
monatomic running-bond configurations. The main reason is that the Cosserat continuum is 
not sufficient to capture the six independent degrees of freedom of the diatomic masonry 
pattern (Stefanou et al., 2008). As it is will be shown later in the paper, the appropriate 

                                                 

2 Latin, from the Greek word “ισόδοµος” ( ίσο + δόµος = equal + horizontal layer of building blocks) meaning 

built with blocks of equal height. 
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continuum that describes the dynamics of the structure is an anisotropic micromorphic 
continuum of second order. Generally, the enriched kinematics of micromorphic continua 
allows to model microelement systems undergoing both translations and rotations. The basic 
paper of Germain (1973) provides the theoretical background of higher order micromorphic 
continua. The present paper focuses on the use of higher order continuum theories for the 
homogenization of structural examples and emphasizes in the practical significance of the 
concepts and quantities that are introduced in generalized micromorphic continua. This is 
done by constructing a continuum which, for any ‘virtual’ translational- and rotational-field, 
maps exactly the kinematics of the corresponding lattice structure and has the same internal 
and kinetic energy. The domain of validity of the resulting micromorphic continuum is 
evaluated by comparing its dynamic response with the dynamic response of the lattice model. 
The dynamic response of a structure is characterized by its dispersion functions that relate the 
wave propagation frequency to the wavelength. Thus the dispersion functions of the 
homogenized continuum are compared with those of the discrete structure of blocks in order 
to assess the validity of the homogenization. Notice that if the homogenization procedure is 
inadequate, then the dispersion curves between the continuum and the discrete diverge, 
reflecting that the two systems have (a) different degrees of freedom, (b) different rigidities 
and (c) different inertial properties. 

 

Figure 1. Running-bond masonry building pattern. 

 

Running-bond 
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Figure 2. Interlocking blocks at masonry wall in Peru (I.Vardoulakis 2006). 

 

Figure 3. Interlocking masonry pattern studied herein. 

2. The discrete model 
The masonry wall is constituted by two types of blocks (Figure 4). The first one (No.1), 

which will be called ‘small block’, has dimensions × ×1 1a b d , while the second (No.2), i.e. 

the ‘large block’, has dimensions × ×2 2a b d , where d  is the thickness of the wall. Without 

any loss of generality, we assume: ≥2 1a a  and ≥2 1b b . The masses of the blocks are 

respectively 
1

m  and 
2

m .The arrangement of the building blocks is periodic in space and it 

follows the pattern presented in figure 5. In solid state physics terminology (Kittel, 1996), 
this pattern is called ‘lattice’ while the repeated cell is called “basis”: 

 structure lattice basis= +  (1) 

Interlocking wall 
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The basis or the “elementary cell”, as it is called here, must contain all the necessary 
information for the constitutive description of the periodic structure. It has to be mentioned 
though, that generally the elementary cell is not unique and that its choice affects the obtained 
homogenized continuum. For this rather well known point the reader can refer to the book of 
Novozhilov (1961).  

 

 

Figure 4. Elementary cell (basis) of the interlocking masonry wall and numbering of the 
blocks. Block No.1 has dimensions × ×1 1a b d and mass

1
m  while block No.2 has dimensions  

× ×2 2a b d and mass 
2

m .d  is the thickness of the blocks. 

 

 

Figure 5. Periodic arrangement of the elementary cells and nodes of the lattice. The dark 
region denotes the chosen primitive cell of the lattice defined by the primitive axes αi. 

The chosen elementary cell of the lattice (basis), depicted in figure 4, is associated with the 

primitive cell defined by the primitive axes iα  (Figure 5). Note that a primitive cell is a 

minimum volume cell that fills all space by suitable repetition and translation. The 
interlocking masonry wall structure is generated by repeating and translating the chosen basis 
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over the lattice points. Translation is the simplest among 17 possible ways for generating a 
two dimensional pattern (Ernst, 1983). The lattice translational vector is (Kittel, 1996): 

 ( ) = +1 2 1 2 2,n n n n
1

T α α  (2) 

where i
n  ( 1,2)i = are arbitrary integers and: 

 1 2

2 1

a b

a b

= +
= −

1 1 2

2 1 2

α e e

α e e
 (3) 

i
e  are the unit vectors of the Cartesian global system. 

Each node of the lattice is given two indices representing its position in space. Thus the 

coordinates of node ( ),I J are: 

 
( )
( )

( , )

1 1

( , )

2 2

I J

I J

X I J

X I J

= +

= +
1 2

1 2

α α e

α α e

 (4) 

The nodes of the lattice coincide with the centers of mass of the large blocks. The centers of 
mass of the small blocks are: 

 

1 1
( , )

2 2
1 1

1 1
( , )

2 2
2 2

1 1

2 2

1 1

2 2

I J

I J

X I J

X I J

+ +

+ +

    = + + +    
    

    = + + +    
    

1 2

1 2

α α e

α α e

 (5) 

The volume of the elementary cell is: 

 
2

1

i i

i

V a bd
=

=∑  (6) 

Depending on the sizes of the blocks, various types of interlocking masonry wall structures 
can emerge. Figure 6 shows clearly that the running-bond and stack-bond patterns are 
degenerated cases of the general pattern. 
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Figure 6. Various patterns and configurations for different dimensions of the two building 
blocks. Notice that the running-bond and the stack-bond patterns are degenerated cases of 
the general interlocking pattern. 

For the mechanical description of the structure we assume that the building blocks are rigid 
with deformable interfaces (soft-contacts). This assumption implies that the deformation is 
concentrated on the interfaces of the bricks and that it is small as compared to their 
dimensions. This assumption is verified especially in historical dry-masonry structures. Yet, 
even in the case of non dry-masonry structures, the rigidity of the interface (brick-mortar-
brick) is smaller than the mortar itself (Raffard, 2000). Generally, the assumption of rigid 
building blocks with deformable interfaces is adopted by many researchers in similar 
approaches (cf. Besdo, 1985; Masiani et al., 1995; Sulem and Mühlhaus, 1997; Cecchi and 
Sab, 2004; Cecchi et al., 2007; Cecchi and Milani, 2008). A further assumption for the 
numerical examples that will follow is that the horizontal and vertical joints of the brickwork 
have the same mechanical properties. The developed stresses βΣ  at the interfaces of the 
blocks are assumed to be linearly distributed over them and the constitutive law of the joints 
is assumed to be linear elastic. The assumption of linear stress distribution is justified in 
(Milani et al., 2006), where the authors show that linear stress distributions at the interfaces 
give satisfying results as compared to constant and quadratic stress distributions. 
Consequently, the interfaces between the blocks transfer both forces and torques (Figure 7). 
Under the above assumptions the interaction of the blocks can be approximated by linear 
normal, tangential and rotational springs. 

 

 

Figure 7. Normal stresses developed at interface Σ
β of the blocks and their equivalent forces 

and moments. 
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1
α

βΣ
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The aim of this paper is to discuss the appropriate continuum for interlocking structures. For 
simplicity it is here restricted to linear elastic interacting blocks. However it should be 
mentioned that masonry structures are generally characterized by strong non-linearities, and 
plastic behavior even at low levels of applied loading. The non-linear behavior of masonry is 
owed to the frictional behavior of the interfaces of the building blocks. Exceptions are some 
ancient masonry structures from the Classic and Hellenistic period, where the building blocks 
are tied together with special metal connectors (Bouras et al. 2002). The bonding of the 
building blocks through the aforementioned connectors extends the elastic domain of the 
deformations of the structure. As proposed for example by Sulem and Mühlhaus (1997), 
when an appropriate continuum is identified for representing a given structure, extension to 
non-linear behavior can be developed by considering the relevant failure mechanisms. A 
multi-mechanisms yield surface is then derived. Other examples based on limit analysis for 
the determination of the out-of-plane strength of masonry are proposed by Cecchi et al., 
(2007) and Cecchi and Milani (2008).  

Wall deformations involve translations and rotations of the masonry blocks. For in-plane 
deformations the involved degrees of freedom (dof’s) of each block are three. These are the 

translation parallel to 
1
e  and 

2
e axes and the rotation around 

3
e  axis. With ( )

1

b
U  and ( )

2

b
U  we 

denote the translation of the center mass of block b and with ( )

3

bΩ  the rotation. For 

infinitesimal rotations (small strains) the displacement of a point of a block b is: 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

3 3

b b b b b b

i j i ij j j
P R U R Cε= − Ω −  (7) 

where 
ijk

ε  is the Levi-Civita tensor, ( )b

i
C  the center of mass of the block b and ( )b

i
R  the position 

vector of the point of block b. With capital letters we refer to quantities expressed in the 
global coordinate system. In figure 8 the numbering of the interfaces of the elementary cell is 
shown. In particular the elementary cell interacts with the adjacent cells along ten interfaces 

1Σ - 10Σ   while the two blocks of the basis interact through the interface 0Σ . 

 

 

Figure 8. Numbering of interfaces Σβ of the elementary cell with its adjacent cells and 
examples of the position vectors ( ),b

j
R

β .  
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Let bA, bB be two blocks interacting through interface βΣ  and ( , ),A B
b b

i
F

β  (resp. ( , ),B A
b b

i
F

β ) 

and ( , ),A B
b b

i
M

β  (resp. ( , ),B A
b b

i
M

β ) the force and the moment exerted by block bB over bA (resp. bA 

over bB). Then a set of self-balanced forces and moments is developed in the lattice. This set 
is expressed as follows: 

 
( , ), ( , ),

( , ), ( , ),

3

A B A B

A B A B

b b b b

i ij j

b b b b

i

F U

M

β ββ

β ββ

= Κ ∆

= Λ ∆Ω
 (8) 

where ( ) ( )( , ), ( ) ( ), ( ) ( ),
A B A A B B
b b b b b b

i i j i j
U P R P R

β β β∆ = − , ( , ), ( ) ( )

3 3 3

A B A B
b b b bβ∆Ω = Ω − Ω , ( ),b

jR
β  the position vector of 

the center of the area of interface βΣ  , 

( )

1

2

1

2

0
,for 0,3,8

0

0
, for 1,7

0

0
, for 4,6,10

0

0
, for 2,5,9

0

n

V

s

n

V

s

ij

s

H

n

s

H

n

k
A

k

k
A

k

k
A

k

k
A

k

β

β

β

β

β

  
=  

 
  
 = 
  Κ = 

  = 
 

  
=  

 

,   

( )

( )

2

1

1

2

2 1

2

2

1

1

2

2 1

2

, for 0,3,8
12

,for 1,7
12

,for 4,6,10
12

, for 2,5,9
12

V n

V n

H n

H n

b
A k

b b
A k

a
A k

a a
A k

β

β

β

β

β


=


 −

=
Λ = 
 =



− =

, 

H
A  ( V

A ) is the area of the horizontal (vertical) interface, n
k  the normal- and sk  the shear- 

elastic stiffness of the interfaces with dimensions 
3

[F]

[L]
 and specifically: 1 1H

A a d= , 1 1V
A b d= , 

( )2 2 1HA a a d= − , ( )2 2 1VA b b d= − . 

For rigid blocks, the elastic energy is only stored at the interfaces. The internal energy of the 
structure is: 

 

10
( , ), ( , ), ( , ), ( , ),

1

( , ),0 ( , ),0 ( , ),0 ( , ),0

1 1 1

2 2 2

1 1

2 2

A B A B A B A B

A B A B A B A B

b b b b b b b b

i j i j

el

b b b b b b b b

i j i j

el

F U M

F U M

β β β β

β =

  = ∆ + ∆Ω  
  

 + ∆ + ∆Ω 
 

∑ ∑

∑

����

 (9) 

where V  is the volume of the elementary cell (cf. Eq.(6)), and 
el

∑ indicates the sums over all 

the elementary cells of the structure. 

The power density of internal forces of the elementary cell is given by: 

 ( )β β β β

β =

= ∆ + ∆Ω∑ ɺɺ
5

( , ), ( , ), ( , ), ( , ),

0

1 A B A B A B A B
b b b b b b b b

i j i j
F U M

V
�����  (10) 
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where dq
q

dt
=ɺ . 

The power of internal forces of the structure is thus: 

 
el

V=∑��� ����� �  (11) 

Similarly, the kinetic energy of the structure is: 

 
el

V=∑��� ����	 
  (12) 

and the kinetic energy density of the elementary cell is: 

 
2

( ) ( ) ( )2

3

1

1 1 1

2 2

b b b

b i i b

b

m U U
V =

 = + Ω 
 

∑ J ɺɺ ɺ
����
  (13) 

 

where b b b
m a b dρ=  and ( )2 21

12
b b b b

m b a= +J  and ρ  the density of the blocks. The inertia tensor 

b
J  is expressed at principal axes. 

The equations of motion for each individual block b of the masonry structure are: 

 

( )

1( )

1

( )

2( )

2

( )

3( )

3

b

bb

b

bb

b

bb

m U
U

m U
U

J

∂
=

∂
∂

=
∂
∂

= Ω
∂Ω

ɺɺ

ɺɺ

ɺɺ

���

���

���

�

�

�

 (14) 

We seek solutions to Eq.(14) of the form: 

 

( )

( )

i

i

i

i

2

2

2

2

( , ) (2)

( , ) (2)

3

1 11 1
( , ) 2 2(1)2 2

1 11 1
( , ) 2 2(1)2 2
3

I J tI J

i i

I J tI J

I J tI J

i i

I J tI J

U e

e

U e

e

ω

ω

ω

ω

+ −  

+ −  

     + + + −     + +
     

     + + + −     + +
     

=

Ω =

=

Ω =

1

1

1

1

κ α α

κ α α

κ α α

κ α α

U

W

U

W

 (15) 

where i 1= − , ( )1 2cos sinκ θ θ= +κ e e , κ  the wave number and θ  the direction of the 

propagating wave. 

The wavelength and the group velocity of the propagating waves are respectively: 
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2

c

πλ
κ

ω
κ

=

=
 (16) 

For convenience we introduce the following dimensionless quantities: 

 

4

3 4

1/3

ˆˆ ˆ ˆ ˆˆ , , , , , ,

ˆ ˆˆ ˆ ˆ, , , , , ,

1ˆ ˆ, ,

b b sn

b b n s

b b i

b b i

a b kd k
a b d k k

L L L g g gL

m J U g L
m J U d dt L

L L L L g

c c L V
L gL

ρ ρ ρ

τ κ κ ω ω
ρ ρ

λλ

= = = = = =

= = = = = =

= = =

���
���

�
�

 (17) 

In the numerical examples that follow the dimensions of the blocks are =1 250a mm , 

=1 125b mm , =2 500a mm , =2 250b mm  and = 1000d mm . The specific weight of the bricks is 
3

20kN m ,  the thickness of the joints 10mm , the Young’s Modulus of the mortar 4GPa  and 

the Poisson’s ratio 0.2 . Consequently, the dimensionless elastic normal and shear-stiffness of 

the interfaces are 7ˆ 2 10
n
k = ⋅  and 7ˆ 0.8 10

s
k = ⋅ . 

Because of the six degrees of freedom of the elementary cell, six dispersion functions of the 
structure are obtained and presented in figures 9 and 10. Each dispersion curve corresponds 
to a different oscillation mode, which activates different degrees of freedom of the blocks. 
For example for the above numerical parameters and for large wave lengths (κ →ˆ 0 ), 
oscillation modes 1 and 2 are characterized by the translation of both blocks (No.1&2), which 
dominates their rotation, while oscillation mode 3 is characterized by the rotation of the 
blocks (acoustic branches). For the higher frequency oscillation modes, 4 and 6, the 
translations of the blocks of the elementary cell are in 180° phase (opposite directions), while 
for oscillation mode 5 the rotations of the building blocks of the elementary cell are in 180° 
phase (optic branches). 
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Figure 9. Dispersion functions ( ˆˆ( )kω ) of propagating waves in direction e1. Six dispersion 
functions are derived because of the six degrees of freedom of the elementary cell. Each 
dispersion curve corresponds to a different oscillation mode (No. 1 to 6).  

  

Figure 10. Dispersion functions (ˆ(̂ )c λ ) of propagating waves in direction e1. Six dispersion 
functions are derived because of the six degrees of freedom of the elementary cell. Each 
dispersion curve corresponds to a different oscillation mode (No. 1 to 6). 
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3. The continuous model 
The enriched kinematics of generalized micromorphic continua makes them suitable for 
describing materials with microstructure. As opposed to the static regime (Salerno and de 
Felice, 2009), in the dynamic regime the richer the structure of the continuum model is, the 
more refined the homogenization (identification) scheme should be. Otherwise, the dispersion 
functions of the continuous approximation would not converge to the discrete ones, which 
would contradict the equivalence between the continuum and the discrete system. 

The homogenization procedure followed here is based on the construction of a continuum, 
which satisfies the two following criteria: 

a) The kinematics of the discrete system is identical to the kinematics of the continuum. 
b)  The power of the internal forces and the kinetic energy of the continuum are equal to 

the power of the internal forces and the kinetic energy of the discrete system for any 
virtual kinematic field. 

The main steps of the method proposed here are presented in figure 11. 

 

 

 

 

 

 

Figure 11. Main steps of the method for the derivation of a continuum describing the discrete 
structure. PDE means Partial Differential Equation and DOF Degree Of Freedom. 
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The formulation presented here follows Germain (1973), by identification of the elementary 
cell to the particle of the corresponding micromorphic continuum: 

  particle elementary cell≡  (18) 

Therefore, in the specific case of the in-plane deformation of the interlocking masonry wall, 
the particle ( )P M  should have six degrees of freedom (2 translational and 1 rotational for 

each block in 2D). Therefore, approaches through classical or micropolar continuum are 
inappropriate to capture the full dynamics of the discrete system. Assuming a system of 
particles and following Germain’s notation (1973), M  is the center of mass of the particle 

( )P M , M′  a point of ( )P M , C

i
V  the velocity of M , i

x′  the coordinates of M′  in a Cartesian 

frame parallel to the given frame iX  with M  its origin, 
i
V′  the velocity of M′  with respect to 

the given frame and iX  the coordinates of M  in the given frame (Figure 12). D  denotes the 

control volume. For a given particle, it is natural to look at the Taylor expansion of 
i
V′  with 

respect to 
j
x′ : 

 C

i i ij j ijk j k ijk j k
V V x x x x x xχ χ χ′ ′ ′ ′ ′ ′ ′= + + + +

ℓ ℓ
…  (19) 

ij
χ , 

ijk
χ  and 

ijk
χ
ℓ  are called micro-deformation rate tensors. Assuming that 

i
V ′  is continuous 

in i
x′ , the tensors 

ijk
χ  and 

ijk
χ
ℓ  are fully symmetric with respect to the indices , ,j k ℓ . 

 

Figure 12. Continuum with microstructure. 

The identification of the particle with the elementary cell (Eq.(18)) results in the following 
definitions that relate the velocities of the continuous with the velocities of the discrete 
model: 

M

M′

i
X

i
x′

iV
′

C

i
V

( )P M

D



 

15 

 

 

( )
( ) ( )

( )
( ) ( )

( , ) (2)

( , ) (2) (2)

3 1,2 2,1

1 1
( , )

(1)2 2

1 1
( , )

(1) (1)2 2
3 1,2 2,1

1

2

1

2

I J

i i

I J
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V V

+ +

+ +

′ ′

 ′ ′ ′ ′Ω − − 

′ ′

 ′ ′ ′ ′Ω − − 

r

r r

r

r r

ɺ ≜

ɺ ≜

ɺ ≜

ɺ ≜

 (20) 

where ( ) ( )
,

.
. ( 1,2)

i

i

i
x

∂
∂

= =
′

 and ( )b′r  the coordinates of the center mass of block ‘b’ in a 

Cartesian frame parallel to the given frame i
X  with M  its origin: 

 
1

2

2

1

µ
µ

′ =
′ = −
r Δ

r Δ

 (21) 

where 1 2

2 1

1

2

a a

b b

+ 
=  − 

Δ  and 1 2

1 2

1 2 1 2

,
m m

m m m m
µ µ= =

+ +
. 

It should be mentioned that the rotations of the blocks in Eqs.(20) are defined in the 
continuum through the Curl  of the vector field iV′ , i

V ′∇× . Additionally we define the 

following quantities: 

 
( ) ( )

( ) ( )

( , ) (2) (2)

, ,

1 1
( , )

(1) (1)2 2
, ,

1

2

1

2

I J

ij i j j i

I J

ij i j j i

V V

V V
+ +

 ′ ′ ′ ′Ε + 

 ′ ′ ′ ′Ε + 

r r

r r

ɺ ≜

ɺ ≜

 (22) 

( )b

ij
Εɺ  may be interpreted as a homogeneous deformation rate tensor of the blocks themselves in 

the elementary cell. Notice that this interpretation is not necessary for the particular case of 
the interlocking masonry wall considered here as we do not have additional dof’s describing 
the individual deformation of the blocks. However, such an interpretation is more systematic 
and allows to generalize the approach and to consider also deformable blocks. For rigid 
blocks it holds: 

  
( ) ( )

( ) ( )

(2) (2)

, ,

(1) (1)

, ,

1
0

2

1
0

2

i j j i

i j j i

V V

V V

 ′ ′ ′ ′+ = 

 ′ ′ ′ ′+ = 

r r

r r

 (23) 

Equations (20) and (22) map exactly the discrete dof’s to the continuum dof’s. Consequently, 
from the continuum point of view, the dislocations and the disclinations that appear at the 
interfaces of the blocks have no effect on the derived continuum. We focus here only on the 
centers of the blocks of the structure and, therefore, there is no implication of field 
discontinuities in the formulation of the equivalent continuum. Combining Eqs. (20) and (22) 
we obtain: 
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+ ∆ ∆ −
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 (24) 

together with the following linear constraints for the other higher order kinematical 
quantities: 
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( )

11
1111 2

1 1 2

22

2222 2

2 1 2

2
2 1 11 212 2

111 2

1 1 2 1

2 1 22 1 212

222

2 1 2 2
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112
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21 12
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µ µ

χχ
µ µ

µ µ χ χχ
µ µ

µ µ χ χχ
µ µ

χχ

χ χ

= −
∆

= −
∆
− ∆= +
∆ ∆
− ∆= −
∆ ∆

∆= −
∆

= −

 (25) 

where in the above equations ( )( , ) , )(I JC C C I J

i i m i
V V VX= = , ( )( , ) ( , )I J I J

mij ij ij
Xχ χ χ= = , 

( )( , ) ( , )I J I J

ijk ijk im jk
Xχ χ χ= = , ( )( ( , ), )I J I J

ijk ijk ijkm
Xχ χ χ= =

ℓ ℓ ℓ
. The remaining terms of Eq.(19) are zero. 

The presence of the 2nd order term 212χ  in Eq.(24) implies that a 2nd order micromorphic 

continuum will be needed to describe the microstructure. Alternatively, 3rd order terms ijkχ ℓ
 

of microdeformation measures could be kept as independent quantities. However, this would 
result in a 3rd order micromorphic continuum, which is not necessary in the present case of 
rigid building blocks. It is worth noticing, that if 1µ  or 2µ  vanish a Cosserat continuum 

would be sufficient to describe the microstructure. A Cosserat continuum or, in the general 
case, a micromorphic continuum would be derived independently of the presence of internal 
moments. The case in which 1µ  or 2µ are null represents a discrete masonry structure with 

voids (Figure 13).  
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Figure 13. Masonry wall with voids, which can be described by a Cosserat continuum. 

Equations (24) can be inverted to give: 
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 (26) 

where 
1 1 1 1

, ,
, ) , )2 ( (2 2 2

3 3 3,
I J I J

I J

i

I J

i i
UU U

+ + +   
   
   

+
= − = −∆ ∆Ω Ω Ωɺ ɺ ɺɺ ɺɺ  and 1 20, 0∆ ∆≠ ≠ . 

If blocks No.1 and No.2 are fixed together (through interface 0Σ ), i.e. if the elementary cell is 
behaving as a rigid block, then: 

 

( )

( )

,

2 3

,

2 1 3

3

1

0

I J

I J

U

U

∆ = −∆ Ω

∆ ∆ Ω

Ω

=

=∆

ɺɺ

ɺɺ

ɺ

 (27) 

In this case, introducing Eqs.(27) into Eqs.(26) we deduce that a Cosserat continuum would 
be again sufficient to describe the microstructure with the two blocks fixed. In particular, the 
following relationships would hold: 

Masonry wall with voids 
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U

V U  (28) 

Equations (20)-(26) refer to the kinematics of the elementary cell itself. At this point we need 
to pass from the microdeformation of the elementary cell to the macrodeformation of the 
assembly of the elementary cells. As the interaction of the elementary cell is limited to their 
first neighbors, a first order Taylor expansion from particle to particle of the velocities and 
microdeformation rate tensors is sufficient: 
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( )
( )

1 2

1 2

1 2

( , ) ( , ) ( , )

1 2 ,

( , ) ( , ) ( , )

1 2

( , ) ( , ) ( , )

1 2

,

,

,

C I n J n C I J C I J

i i j i j

I n J n I J I J

ij ij k ijk

I n J n I J I J

ijk ijk ijk

V V T n n U

T n n

T n n

χ χ

χ
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χ κ
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= + ℓ ℓ

ɺ

 (29) 

where ( ) ( )
,

.
. ( 1,2)

i

i

i
X

∂
∂

= = , ,ijk ij k
χκ = , and ,ijk ijk

χκ =
ℓ ℓ . 

A first order Taylor expansion of the kinematic fields (from particle to particle) seems 
suitable for most applications. Exceptions are the applications where the forces between the 
elementary cells (particles) are not limited to the first neighbor (Mindlin, 1965). In other 
words, when the elementary cell does not interact only with its adjacent elementary cell but 
further with the second, third, etc. neighbor cells, higher order derivatives of the velocities 
and micro-deformation rates are needed. Alternatively, the elementary cell (particle) could be 
enlarged to contain all the interacting neighbors, but the price for this would be a higher order 
micromorphic continuum. 

The power of internal forces for a Micromorphic continuum of 2nd order is given as follows 
(Germain, 1973): 

 ( ) ( ),

C

con ij i j ij ij ijk ijk ijk ijk ijk ijk
V s sτ κ κχ ν νχ= − + + +

ℓ ℓ
�  (30) 

with  

 τ σ +≜
ij ij ij

s  (31) 

where τ
ij
 is the stress tensor, ij

σ  is the intrinsic stress tensor (symmetric), 
ij
s  is the intrinsic 

microstress tensor, 
ijk

ν  is the intrinsic second microstress tensor and 
ijk
s , 

ijk
ν
ℓ  are higher order 

stress tensors. 
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Having defined and linked the kinematics of the discrete and of the continuum, we set for any 
virtual kinematic field C

i
V , 

ij
χ , 

ijk
χ , 

ijk
χ
ℓ , the power of the internal forces of the discrete 

system to be equal to the power of the internal forces of the continuum:  

 
con

≡ ����� �  (32) 

The same equality is set for the kinetic energy densities: 

 
con

≡ ����
 
  (33) 

By introducing Eqs. (24) into Eq.(10) and using Eqs.(30) and (32) we derive the constitutive 
equations of the continuous: 

 

,

,

,

con

ij C

i j

con con

ij ijk

ij ijk

con con

ijk ijk

ijk ijk

V

s s

τ

χ

ν ν
κ κ

χ

∂=
∂

∂ ∂
= − = −

∂ ∂
∂ ∂

= =
∂ ∂ℓ

ℓ

�

� �

� �

 (34) 

The tensors derived by Eqs.(34) are expressed as functions of the internal forces and 
moments of the elementary cell. For example: 

 

( ) ( )

( )

τ

µ µ

− + + + + −

∆= + + +

= ( , ), ( , ), ( , ), ( , ), ( , ), ( , ),

11

( , ),0 ( ,

1 2 3 3 4 52 1

1 1 1 1 1 1

31

11 1 1

),2 ( , ), ( ,

1 1

1 2

),4

6

A B A B A B A B A B A B

A B A B A B A B

b b b b b b b b b b b b

b b b b b b b b

a a
F F F F F F

V V

s F F F F
V

 (35) 

where A
b  and B

b  are blocks that belong to the elementary cell ( , )I J , and its neighbors, and 

interact through interface β . 

Through this formulation yield criteria can be set out in the continuum at the macrolevel by 
considering the internal forces and moments developed at the microlevel, i.e. at the interfaces 
of the microstructure. Various yielding mechanisms such as sliding, rocking and twisting can 
be considered and expressed in terms of internal forces and moments at the microlevel (e.g. 
Sulem and Mühlhaus, 1997). Failure criteria at the microlevel depend on the mechanical 
properties of the building blocks and their interfaces. These mechanical properties of the 
interfaces can be either specified according to existing interface models (Orduña and 
Lourenço, 2005; Milani et al. 2006) or determined experimentally on a per case basis. Thus, 
the plastic and, more generally, the non-linear macroscopic behavior of masonry can be 
considered and modeled accordingly by deriving the homogenized failure surfaces. Of 
course, this is not something new and has been successfully attempted in the past using the 
Differential Expansion homogenization technique for the in-plane deformation of the 
running-bond masonry pattern (Sulem and Mühlhaus, 1997). With the present 
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homogenization procedure the formulation of macroscopic failure criteria based on 
micromechanical considerations is straightforward, given the complexity of the derived 
continuum. Nevertheless, the development of failure criteria and yield surfaces is beyond the 
scope of the present paper, which focuses mainly on the construction of higher order continua 
to describe geometrically complex discrete systems.  

Notice that as the wall spans only in directions 
1
e  and 2

e  and only the in-plane degrees of 

freedom of the building blocks were taken into account, the derived continuum is two 
dimensional. Following a variational approach, the dynamic partial differential equations of 
the aforementioned 2nd order two dimensional micromorphic continuum developed here are: 

 

τ τ
τ τ

ν ν
ν ν

ρ
ρ
ρ
ρ
ρν

ν ρ
ν

ν

+
+

+

+ + = Γ
+ = Γ

+ = Γ
= Γ
= Γ

+ =

+
+ +

Γ+

11,1 12,2 1

21,1 22,2 2

111,1 112,2 11

121,1 122,2 12

221,1 222,2 22

2121,1 2122,

1

2

11

12

22

22 12212

f

f

s

s

s

s

 (36) 

where ρ  is the mass density of the continuum (ρ  is approximated by the mass density of the 

bricks of the wall structure, which is considered constant), 
i
f  are long range volumic forces, 

i.e. the self-weight of the bricks, and:  
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 (38) 

Assuming small deformations, the normal time derivative in Eqs.(38) is identical to the 
material derivative. Therefore, non-linearities are avoided. The inertia terms are derived by 
using Eqs.(33) and (13). Notice, that the microinertia terms  in Eqs.(37) consist only in time 
derivatives and do not contain spatial derivatives as in the case of restricted continua 
(Georgiadis and Velgaki, 2003). The boundary conditions are given by Eqs.(26), for the part 
of the boundary where the displacements and rotations of the bricks of the elementary cells 
are prescribed and by the following equation for the complementary part of the boundary 
where generalized tractions are imposed: 

 

212 212

i ij j

ij ijk k
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n
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τ
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ν

Τ =
Μ =
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 (39) 
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where i
n  is the unit vector of the boundary. 

The aforementioned generalized tractions are related to the forces and moments applied to the 
blocks of the microstructure as follows:  
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(40) 

where ,ex b

i
F  and ,ex b

M  are respectively the resultant force and moment of the forces exerted at 

the boundary of the block ‘b ’, transferred to the center of mass of the block. Obviously, a 
free boundary has zero generalized traction. Notice that for a discrete masonry with voids (1

µ  

or 2
µ  is zero) 212

0
ii

Μ = Μ =  and only Cosserat boundary conditions have to be specified. For 

instance, if the small blocks are replaced by voids ( 1
0µ = ) then the boundary conditions that 

have to be specified are: 

 
12
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i
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ex

i

ex

F
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Μ =
Μ = Μ =

 (41) 

 

4. Application for the case of a structure with linear elastic interfaces 
For linear elastic interfaces, as in the discrete description (Eqs.(8)), the constitutive law 
(Eqs.(34)) can be directly determined in function of the deformation measures of the 
continuum. The structure of the derived constitutive law equations is: 

 =� �  (41) 

where { }ν ντ ν ν=
11 22 12 212 11 22 12 212

, , , , , , , ,
i iij i i

s s s s� , { }χ χ χ χ κ κ κ κ=
, 11 22 12 21 11 2 2 22 2 1 21

, , , , , , , ,
i i ii i

C

j
V , � a 

matrix containing the constitutive relations and 1,2i = . The full form of Eqs.(41) is too long 

to be presented here. All the analytical calculations in the present paper have been performed 
with the symbolic language mathematical package Mathematica. The Mathematica files are 
available to the reader upon request. 

To evaluate the dispersion functions, we seek solutions of Eqs.(36) of the form: 
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Using the same parameters with Section 2 we calculate the six dispersion curves of the 
derived equivalent continuum (Figure 14, Figure 15). Each dispersion curve corresponds to a 
different oscillation mode, which activates different degrees of freedom of the blocks. Similar 
to the discrete model, for large wave lengths (κ →ˆ 0 ), the oscillation modes 1 and 2 are 
characterized by the translation of the blocks, while oscillation mode 3 is characterized by 
their rotations (acoustic branches). For the higher frequency oscillation modes 4, 5 and 6 the 
oscillations of the blocks of the elementary cell are in 180° phase (optic branches). 

Figure 16 and figure 18 show that the discrete and the continuum descriptions converge 
asymptotically as the wavelength increases. Actually, the relative error, as defined below and 

for the parameters considered in the present numerical example, is less than 5% for λ ≥ˆ 10  or 

10% for λ ≥ˆ 5 . 

 ( ) ( ) ( )
( )

6

%

1

ˆ ˆ
ˆ

ˆ

con dsc

m con

c m c m
e c

c m=

−
=∑  (43) 

Therefore, the continuum derived in the previous sections is a large wavelength 
approximation of the discrete system (Figure 17). This is acceptable in most civil engineering 
applications. The domain of validity of the continuous model may be enlarged to cover 
smaller wavelengths. This can be accomplished by choosing a larger elementary cell that 
contains more building blocks. However, this choice of larger elementary cells would result 
into a higher order micromorphic continuum which makes the continuum model more 
complex. 

The effect of the direction of the propagating waves on the relative error between the 
continuum and discrete descriptions is shown in figure 19. The fact that the error is not 
uniform for all directions of the propagating wave is related to the anisotropy of the structure. 
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Figure 14. Dispersion functions (ˆˆ( )kω ) of propagating waves in direction e1. Six dispersion 
functions are derived because of the six independent deformation measures of the equivalent 
continuum. Each dispersion curve corresponds to a different oscillation mode (No. 1 to 6). 

 

Figure 15. Dispersion functions (ˆ(̂ )c λ ) of propagating waves in direction e1. Six dispersion 
functions are derived because of the six independent deformation measures of the equivalent 
continuum. Each dispersion curve corresponds to a different oscillation mode (No. 1 to 6). 
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Figure 16. Comparison of the discrete (dashed lines) and continuum (solid lines) dispersion 
functions for propagating waves in direction e1. Continuum and discrete dispersion functions 
are identical for large wavelengths. 

  

Figure 17. Divergence for small wavelengths of the discrete (dashed lines) and continuum 
(solid lines) dispersion functions for propagating waves in direction e1. 
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Figure 18. Average relative error between the discrete and the continuum description for the 
six oscillation modes for propagating waves in direction e1. The discrete and the continuum 
descriptions converge for large wavelengths. 

  

Figure 19. Polar plot of the average relative error of the discrete and the continuum 
description for propagating waves at all directions . The error is not uniform in all 
directions, because of the anisotropy of the structure. 

The running-bond masonry pattern has been already studied in a previous paper and a 
Cosserat continuum was identified as an equivalent continuum for this discrete structure 
(Stefanou et al., 2008). Therefore, it is also interesting to compare these results with the 

present continuum in the limit case where 2
1 2

a
a =  and 1 0b = . In this case the running-bond 

ˆ 5λ =

ˆ 10λ =
ˆ 15λ =
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masonry pattern is geometrically retrieved (Figure 6). For deriving the discrete equations 
representing the running-bond from Eqs.(14) the stiffness coefficients of contacts Σ2, Σ4, Σ6 
and Σ10 have to be doubled. This is because the ‘big’ blocks interact through two springs with 
identical stiffness attached to the intermediate ‘small’ block of zero thickness (Figure 20). 

 

Figure 20. The limit case of the running-bond pattern: Replacement of the springs at contacts 
Σ

2, Σ4, Σ6 and Σ10 for deriving the discrete equations representing the running-bond masonry 
pattern. 

For the aforementioned dimensions of the blocks 1 0µ =  and 2 1µ = . As mentioned in  

section 3, setting 1 0µ =  degenerates the micromorphic continuum considered here in a 

Cosserat continuum. Thus, a Cosserat type continuum is retrieved for the case of running-
bond masonry. However, this does not imply that the two Cosserat continuum 
approximations are necessary identical, as the elementary cell, the kinematics and the 
constitutive law differ between them (cf. also (Salerno and de Felice, 2009). This is 
demonstrated in terms of the dispersion functions. Figure 21 and figure 22 clearly show that 
the Cosserat continuum approximation obtained in Stefanou et al. (2008) is better for small 
wavelengths than the degenerated one from the present micromorphic approach. This better 
convergence can be explained by the geometry of the elementary cells and by noticing that 
the centers of neighboring elementary cells in the previous approach are closer to each other, 
(Figure 23), which reduces the residual of the Taylor expansion of the deformation measures 

(Eqs.(29)). One would expect the same convergence between the two approaches for 1 2b b= , 

but this situation is not covered by the kinematics of the present micromorphic continuum as 

the condition 2 0∆ ≠  is violated (Eqs.(26)). If we wanted to allow the case  2 0∆ = , different 

kinematics should be derived from Eqs. (20) and (22). However, as explained above, the 

strategy was to eliminate the 3rd order terms ijkχ ℓ
 of the microdeformation measures and keep 

only terms of 2nd and lower order. In any case, the derived continua would be equivalent and 
only their convergence with the discrete model would have changed for small wavelengths. 
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Figure 21. Average relative error between the discrete and the continuum description for the 

three oscillation modes for: a) the present approach with 2
1 2

a
a =  and 1 0b =  ( 1 0µ =  - 

degenerated micromorphic resulting to Cosserat)  and b) for the approach presented 
previously in Stefanou et al. (2008). Both continuum approximations converge for large 
wavelengths. 

 

Figure 22. Polar plot of the average relative error between the discrete and the continuum 

description for propagating waves in all directions for: a) the present approach with 2
1 2

a
a =  

and 1 0b =  ( 1 0µ =  - degenerated micromorphic resulting to Cosserat)  and b) for the 

Previous approach 

Current approach 

Previous approach 

Current approach 



 

29 

 

approach presented previously in Stefanou et al.(2008). The error is not uniform in all 
directions, because of the anisotropy of the structure. 

 

 

Figure 23. Repetition of elementary cells in space for: a) the present approach with 2
1 2

a
a =  

and 1 0b =  ( 1 0µ =  - degenerated micromorphic resulting to Cosserat continuum) and b) for 

the approach presented previously in Stefanou et al.(2008). The elementary cells are more 
distant in the present case leading to slower convergence of the dispersion functions of the 
continuum to the ones of the discrete structure. 

5. Conclusions 
In the classical paper of Germain in (1973) “The method of virtual power in Continuum 
Mechanics. Part 2: Micromechanics” the author writes: 

“The theory [of the general micromorphic continuum…] is rich enough to fit various physical 
situations. The principal difficulty indeed is to discover the practical significance of some of 
the concepts which have been introduced, to design a method in order to exhibit their 
physical validity and to measure them in some specific physical situations.” 

In the present paper an attempt was made to assess the significance of some of the quantities 
involved in the general theory of micromorphic media developed by Germain. This attempt 
was made by modeling an interlocking masonry wall as a discrete and as a continuum 
medium. The continuous description engaged a two dimensional, anisotropic, 2nd order 
micromorphic continuum, as lower order continua (e.g. classical Boltzmann, Cosserat, 
second gradient) cannot represent the complex kinematics of the aforementioned blocky 
structure. The method that was applied for the continuous approximation has its roots in the 
Differential Expansion homogenization technique (Pasternak and Mühlhaus, 2005) and 
differs from the Direct Averaging (Aboudi, 1991) and Asymptotic Averaging 
homogenization techniques (Bakhvalov and Panasenko, 1984; Sanchez-Palencia and Zaoui, 
1987) in the sense that the latter are based on the averaging of the discrete quantities. In the 
present approach no averaging was made and consequently each dispersion curve of the 
discrete structure was approximated by the continuous model. Moreover, the approach 
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followed here avoids the ad-hoc omission of the higher order derivatives of the continuous 
fields for displacements and rotations that usually appear in other formulations (cf. also 
Bazant and Christensen, 1972; Eringen, 1999; Kumar and McDowell, 2004; Stefanou et al., 
2008). Moreover, it avoids the identification by direct comparison of the terms of the PDE’s 
of the continuum with the equations of the discrete system, after having replaced in the latter 
the discrete quotients by differential quotients based on Taylor expansions of some order 
(Eringen, 1999). Finally, the order of the Taylor expansion of the kinematic fields is not an a 
priori assumption of the method as it is in previous approaches. The necessary order of the 
Taylor expansion of the kinematic field of the continuum particle (Eq.(19)) is inferred by 
equating the degrees of freedom of the elementary cell of the discrete system with the 
equivalent measures of the particle itself (Eq.(20), (22)). Of course, the derived continuum is 
not unique and it depends on the initial choice of the elementary cell of the discrete structure. 
This is a rather well known issue (Novozhilov, 1961) and one should have in mind that the 
more blocks the elementary cell contains, the higher will be the order of the derived 
continuum. 

Generally speaking, the philosophy of the present homogenization approach is rather 
inductive than deductive. The reason is that we start from the discrete system and we 
gradually build the equivalent continuum, while in other approaches the starting point is a 
general continuum of some order, which under various simplifications and assumptions is 
matched with the discrete system. The drawbacks of the latter approaches are that (a) the 
initially assumed higher order continuum may not describe adequately the kinematics of the 
discrete system, (b) the homogenized continuum might be difficult to handle because of the 
numerous parameters it embodies, (c) the physical meaning of the additional boundary 
conditions might be unclear and (d) in some extreme cases of identification, it may not satisfy 
basic conditions related to the positive definiteness of the elastic energy density (Mindlin, 
1964).  

The validity of the procedure followed herein was investigated by juxtaposing the dispersion 
functions of the discrete and the continuum models3.  The results show that the continuum 
description is a large wavelength approximation of the discrete system. Nevertheless, the 
authors believe that the domain of validity of the continuous approximation can be extended 
to cover smaller wavelengths. This may be accomplished by enlarging the elementary cell to 
contain more blocks. The presence of more blocks in the elementary cell can cover high 
frequency oscillations between the blocks of the same cell, increasing, in this way, the 
accuracy of the continuum approximation in the dynamic regime when the wavelengths are 
small. The price for this better approximation is, of course, the additional complexity of the 
calculations as higher order continua are needed. However, in the majority of civil engineer 

                                                 

3 All the analytical calculations in the present paper have been performed with the symbolic language 

mathematical package Mathematica. The Mathematica files are available to the reader upon request to the 

corresponding author. 
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applications, large wavelength approximations are sufficient. In the present case the 
continuous model behaves well for wavelengths five times bigger than the characteristic 
length of the elementary cell. This means that the discrete and the continuous approximation 
share the same oscillation modes, have the same degrees of freedom, the same rigidity and 
the same inertia properties. 

The present general interlocking masonry pattern can be degenerated to the running-bond 
masonry pattern, which was studied in detail by the authors in a previous paper. In this case, 
the micromorphic continuum derived here reduces to a Cosserat continuum describing the 
running-bond discrete masonry structure. The comparison of the dispersion curves of the 
current and the previous approach shows that both Cosserat approaches are equivalent to the 
discrete structure for wavelengths five times bigger the length of the building blocks. 
However, the elementary cell considered previously converges faster than the present one. 
This finding, demonstrates clearly that the elementary cell influences the accuracy of the 
derived continuum. The reason for this is attributed to the Taylor expansion of the macro- and 
micro-deformation measures.  

Our analysis was limited in elasticity. However, the continuous model is general and can be 
expanded to cover non-linearities, as the expression of the various stress tensors in function 
of the internal forces and moments enable us to formulate yield surfaces and failure criteria 
based purely on micromechanical considerations. The flow rules are straightforward to derive 
as the kinematics of the continuum are directly matched to the kinematics of the discrete 
description. Therefore, the plastic and, more generally, the non-linear behavior of the 
interfaces of the blocks can be also considered and modeled accordingly. For practical 
structural applications a special Finite Element of 2nd order micromorphic continuum has to 
be programmed to account for the abovementioned non-linearities. However, the purpose of 
the present paper is to give the methodology of building a continuum that describes the 
presented general diatomic masonry wall pattern. The application to practical cases is the 
next step and will be presented in a future paper. 
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