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Abstract: In this paper a micromorphic continuum is derivedthe homogenization of
masonry structures with interlocking blocks. Tligione by constructing a continuum which
maps exactly the kinematics of the correspondisgrdie masonry structure and has the
same internal and kinetic energy for any ‘virtuedinslational- and rotational-field. The
obtained continuum is an anisotropic micromorploictcyuum of second order. The enriched
kinematics of micromorphic continua allows to moadgtroelement systems undergoing
both translations and rotations. The homogenizdgohnique applied here excludes
averaging and keeps all the necessary informafitimeadiscrete structure. Therefore, all the
dispersion curves of the discrete system are rejoetlin the continuum model.
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1. Introduction

Masonry wall structures are usually formed by raguldistributed bricks and mortar
following a certain periodic building pattern, itbe brickwork. Typical example of
brickwork is the ‘running-bond’ pattern presentadigure 1. Generally, when the masonry
walls consist of blocks of the same height theycatted ‘isodomi®. In ancient times, the
construction of such masonry was very expensivesidering the time and the technical
difficulty for hewing hard stone blocks. Consequgrthe construction of ‘isodomus’
brickwork is generally met only in luxurious buihdjs and temples, like Parthenon. However,
from the structural point of view, the constructimimmasonry walls with building blocks of
the same size, results to brickwork with limitechorinterlocking. To face this, large tie-
stones and special metal elements were used tothemdasonry building blocks together
and to assure their interlocking. Observing anameasonry structures, one could claim that
the interlocking of the building blocks was an esise characteristic and a desired feature.
Take for instance the masonry wall depicted inrégZErreur ! Source du renvoi
introuvable. from the civilization of Incas, the interlocking the building blocks is
apparent.

Following the ‘Homogenization by Differential Expgions Technique’ (Pasternak and
Muhlhaus, 2005) the deformation and the dynami@bieh of the running-bond masonry
wall patterns was investigated in the frame of gantm theory (cf. Masiani et al., 1995;
Sulem and Muhlhaus, 1997; Cerrolaza et al., 1989a8ou et al., 2008 among others). The
Cosserat continuum (Cosserat, 1909; Vardoulakissaheim, 1995) provided the necessary
background to develop an equivalent continuumriegs the kinematics and the energy of
these discrete masonry structures. Here, a diff@attern is investigated (Figure 3). The
geometrical difference between this pattern anduhaing-bond pattern is that it is
constituted by two different in size and heighenatcting blocks. The running-bond and
stack-bond patterns are degenerated cases ofdteregntioned diatomic pattern and can be
obtained by appropriately adjusting the dimensiaittie building blocks of the present
diatomic pattern (Figure 6). However, the strudtultiéference and the practical importance
of the diatomic pattern presented herein is therliotking of the building blocks. Examining
the diatomic texture of figure 3, we notice thathwsizontal or vertical joints cut the masonry
wall from side to side. This characteristic ess#lyticontributes to the overall strength of the
masonry structure under various loading situations.

The homogenization procedure followed herein dsffieom the above mentioned for the
monatomic running-bond configurations. The mairsogais that the Cosserat continuum is
not sufficient to capture the six independent deg@ freedom of the diatomic masonry
pattern (Stefanou et al., 2008). As it is will @wn later in the paper, the appropriate

Z Latin, from the Greek wordiéddouoc” (ioo + déuoc = equal + horizontal layer of building blocks) miey

built with blocks of equal height.



continuum that describes the dynamics of the strads an anisotropic micromorphic
continuum of second order. Generally, the enridiedmatics of micromorphic continua
allows to model microelement systems undergoin) bainslations and rotations. The basic
paper of Germain (1973) provides the theoreticakbeound of higher order micromorphic
continua. The present paper focuses on the usigluérhorder continuum theories for the
homogenization of structural examples and emphsgizthe practical significance of the
concepts and quantities that are introduced inrgéined micromorphic continua. This is
done by constructing a continuum which, for anyttwal’ translational- and rotational-field,
maps exactly the kinematics of the corresponditigéastructure and has the same internal
and kinetic energy. The domain of validity of tleswulting micromorphic continuum is
evaluated by comparing its dynamic response wehdgmamic response of the lattice model.
The dynamic response of a structure is charactkehbyats dispersion functions that relate the
wave propagation frequency to the wavelength. Theslispersion functions of the
homogenized continuum are compared with thoseedlibcrete structure of blocks in order
to assess the validity of the homogenization. Notinat if the homogenization procedure is
inadequate, then the dispersion curves betweecotitequum and the discrete diverge,
reflecting that the two systems have (a) diffedadrees of freedom, (b) different rigidities
and (c) different inertial properties.

Running-bond

Figure 1. Running-bond masonry building pattern.



Figure 2. Interlocking blocks at masonry wall inrB€l.Vardoulakis 2006).

Interlocking wall

Figure 3. Interlocking masonry pattern studied here

2. Thediscrete model

The masonry wall is constituted by two types ofckk(Figure 4). The first one (No.1),
which will be called ‘small block’, has dimensionsxb, xd , while the second (No.2), i.e.
the ‘large block’, has dimensions xb, xd , whered is the thickness of the wall. Without
any loss of generality, we assume=a, andb, =2b,. The masses of the blocks are
respectivelym, and m,.The arrangement of the building blocks is periadispace and it

follows the pattern presented in figure 5. In salidte physics terminology (Kittel, 1996),
this pattern is called ‘lattice’ while the repeatal is called “basis”:

structure = lattice + basis (2)



The basis or the “elementary cell”, as it is calede, must contain all the necessary
information for the constitutive description of theriodic structure. It has to be mentioned
though, that generally the elementary cell is mogue and that its choice affects the obtained
homogenized continuum. For this rather well knowmpthe reader can refer to the book of
Novozhilov (1961).
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Figure 4. Elementary cell (basis) of the interlogkimasonry wall and numbering of the
blocks. Block No.1 has dimensioms<b, xd and mas#, while block No.2 has dimensions
a, Xb, xd and massn, .d is the thickness of the blocks.
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Figure 5. Periodic arrangement of the elementafysand nodes of the lattice. The dark
region denotes the chosen primitive cell of thedatdefined by the primitive axes

The chosen elementary cell of the lattice (badigpjcted in figure 4, is associated with the

primitive cell defined by the primitive axes (Figure 5). Note that a primitive cell is a

minimum volume cell that fills all space by suitaloépetition and translation. The
interlocking masonry wall structure is generateddyeating and translating the chosen basis
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over the lattice points. Translation is the simp&rong 17 possible ways for generating a
two dimensional pattern (Ernst, 1983). The lattremslational vector is (Kittel, 1996):

T(nllnz) =n1a1 +n2a2 (2)
wheren, (i=1,2)are arbitrary integers and:

al = alel + bZeZ

®3)

a, =a,e —be,
e, are the unit vectors of the Cartesian global syste

Each node of the lattice is given two indices repnding its position in space. Thus the
coordinates of nodg, J) are:

X =(la,+Ja,)e,

XM =(la, +Ja,)e,

(4)

The nodes of the lattice coincide with the centénsass of the large blocks. The centers of
mass of the small blocks are:

(/%,J%)_ 1 1
X, = I+E o, + J+E a, e

- ®)
(HE'HE) _ 1 1
X, = I+E o, + J+E a, e,
The volume of the elementary cell is:
2
V=>abd (6)
i=1

Depending on the sizes of the blocks, various tyésterlocking masonry wall structures
can emerge. Figure 6 shows clearly that the runborgl and stack-bond patterns are
degenerated cases of the general pattern.
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Figure 6. Various patterns and configurations faffefent dimensions of the two building
blocks. Notice that the running-bond and the stiacke patterns are degenerated cases of
the general interlocking pattern.

For the mechanical description of the structureasgume that the building blocks are rigid
with deformable interfaces (soft-contacts). Thisussption implies that the deformation is
concentrated on the interfaces of the bricks aatlithis small as compared to their
dimensions. This assumption is verified especiallistorical dry-masonry structures. Yet,
even in the case of non dry-masonry structures;idgfraiity of the interface (brick-mortar-
brick) is smaller than the mortar itself (Raffa®00). Generally, the assumption of rigid
building blocks with deformable interfaces is adapby many researchers in similar
approaches (cf. Besdo, 1985; Masiani et al., 199%m and Muhlhaus, 1997; Cecchi and
Sab, 2004; Cecchi et al., 2007; Cecchi and Mil2d@8). A further assumption for the
numerical examples that will follow is that the izontal and vertical joints of the brickwork
have the same mechanical properties. The devekipesbes” at the interfaces of the
blocks are assumed to be linearly distributed divem and the constitutive law of the joints
is assumed to be linear elastic. The assumptidinedr stress distribution is justified in
(Milani et al., 2006), where the authors show timegar stress distributions at the interfaces
give satisfying results as compared to constantgaradiratic stress distributions.
Consequently, the interfaces between the blocksfiea both forces and torques (Figure 7).
Under the above assumptions the interaction obkbeks can be approximated by linear
normal, tangential and rotational springs.

e
I
R

Figure 7. Normal stresses developed at interfgtef the blocks and their equivalent forces
and moments.




The aim of this paper is to discuss the appropdatginuum for interlocking structures. For
simplicity it is here restricted to linear elastiteracting blocks. However it should be
mentioned that masonry structures are generallsactexized by strong non-linearities, and
plastic behavior even at low levels of applied iogdThe non-linear behavior of masonry is
owed to the frictional behavior of the interfacésh® building blocks. Exceptions are some
ancient masonry structures from the Classic antkhistic period, where the building blocks
are tied together with special metal connectorsui(Bs et al. 2002). The bonding of the
building blocks through the aforementioned connescéxtends the elastic domain of the
deformations of the structure. As proposed for g¥arby Sulem and Mihlhaus (1997),
when an appropriate continuum is identified forresgnting a given structure, extension to
non-linear behavior can be developed by considghagelevant failure mechanisms. A
multi-mechanisms yield surface is then derived.eDdxamples based on limit analysis for
the determination of the out-of-plane strength esomry are proposed by Cecchi et al.,
(2007) and Cecchi and Milani (2008).

Wall deformations involve translations and rotasiah the masonry blocks. For in-plane
deformations the involved degrees of freedom (Jaffeach block are three. These are the
translation parallel t@, ande, axes and the rotation aroueg axis. Withu!” and U!” we

denote the translation of the center mass of bboakd with QY the rotation. For
infinitesimal rotations (small strains) the disgatent of a point of a blodkis:

PO (RY) = U ~ 5,00 (R® ~c*) (7)

i j i

where g, is the Levi-Civita tensor¢” the center of mass of the bldgland R the position

vector of the point of block. With capital letters we refer to quantities exgsed in the

global coordinate system. In figure 8 the numbeahthe interfaces of the elementary cell is
shown. In particular the elementary cell interadith the adjacent cells along ten interfaces
s'-3' while the two blocks of the basis interact thriotige interfaces® .

>° 3 3t
27 '\2(2)’6 50 R(l)j—b 53
28 Zl ZZ
29 210

Figure 8. Numbering of interface® of the elementary cell with its adjacent cells and
examples of the position vectar$” .



Letb®, b® be two blocks interacting through interfag@ and £°**# (resp.f*"*"#)

andv®"** (resp.m"®"*"#) the force and the moment exerted by blbElverb® (resp.b*
overb®). Then a set of self-balanced forces and momsndsyeloped in the lattice. This set

is expressed as follows:
(6*,6°).8 — 1 B (b*,6%),8
F =K/ AU

A B A B
Mi(b BB = \B AQ(sb %),

(8)

where AU®" 7 = p®" (R}‘.”A)"B ) -p®) (R}‘."B’ﬁ ) AQY P =¥ - Q¥ | R4 the position vector of

the center of the area of interfagé

a5 %) forp=0.3,8 b;
v1 ,Jor 5=0,5, A, Lk for £=0,3,8
0 k, vigy B
k, 0 b, —b,)
AVZ 0 K ,forﬂ:1,7 sz( 2 1) kn,forﬁ:1,7
(«2)= : , N = 12 ,
/ k, 0 _ a? :
A 0 K ,for £=4,6,10 AHIEkn,for,B—4,6,10
2
k0 - GRS for #=2,5,9
AHZ 0 kn ,fOfﬂ—2,5,9 H2 12 n’ 4

A, (A)) is the area of the horizontal (vertical) intedak, the normal- and, the shear-

elastic stiffness of the interfaces with dimensi# and specifically:A,, =a,d, A, =bd,
A, =(a,=a)d, A,=(b—b)d.

For rigid blocks, the elastic energy is only stoa¢dhe interfaces. The internal energy of the
structure is:

%SC :lz i lF,-(bA’bB)’ﬁAUJ(-bA’bB)’ﬁ+1M,-(bA'bB)’ﬂAQ(ij’bB)'ﬁ
25| =\ 2 2

9)

+Z(EF(bA,bB),OAU(_bA,bB),O +1MgbA,bB),oAQ(pA,bB),oj
T\2 ! 2 !

whereV is the volume of the elementary cell (cf. Eq.(@))d Z indicates the sums over all

el

the elementary cells of the structure.

The power density of internal forces of the eleragntell is given by:

1 E] A B (WA KB A B 2 A B
s =VZ(Ff(b SNV LY Vi TN ),/3) (10)
=)



whereg -99.

dt

The power of internal forces of the structure issth

Pdsc = z Vpcell (11)
el

Similarly, the kinetic energy of the structure is:

7(dsc = ZVISeII (12)
el
and the kinetic energy density of the elementallyixe

1&G(1 1 .
o=y 3 moror + 200 (13
b=1

wherem, = pa,b,d and}, =%mb (b +a2) and p the density of the blocks. The inertia tensor

J, is expressed at principal axes.

The equations of motion for each individual bldckf the masonry structure are:

a(l'{isc =m U(b)
(b) b=1
E

a%{dsC
U
oU,

Usc = Q(b)
(b) b=“3
Q!

=m,0;" (14)

We seek solutions to Eq.(14) of the form:

U‘/'J) — ’U»(Z)ei[K(/u1+ja2)_M]
qu) — w(z)ei[x(la1+1az)—at]
Ui(/+%,_/+1) _ ei{x[(ﬁ%)aﬁ(ﬁ%)az}m} (15)

ot oy [t

wherei =v/-1, « =k (cos e, +sinbe,), k the wave number and the direction of the
propagating wave.

The wavelength and the group velocity of the prapiag waves are respectively:

10



A==
K
16
” (16)
c=—
K
For convenience we introduce the following dimenkdes quantities
. ~ b, - . LA
a, :&’ b, =t d:g’ k, = k, , k. =— U, = (L{
L L L 09 ogl
=, gl =Y dr=\/§dt (17)
ok oL L L
/’1\211 c= iC, L=V
L gl

In the numerical examples that follow the dimensiofthe blocks are, =250mm,
b, =125mm, a, =500mm, b, =250mm and d =1000mm . The specific weight of the bricks is

20kN/m? , the thickness of the joint®mm , the Young’s Modulus of the mortaGra and
the Poisson’s rati®.2. Consequently, the dimensionless elastic norméishear-stiffness of
the interfaces aré =210’ andk, =0.810’ .

Because of the six degrees of freedom of the eleanenell, six dispersion functions of the
structure are obtained and presented in figurexlal8. Each dispersion curve corresponds
to a different oscillation mode, which activateBetent degrees of freedom of the blocks.
For example for the above numerical parameterd@rdrge wave lengths«(- 0),

oscillation modes 1 and 2 are characterized byrémslation of both blocks (No.1&2), which
dominates their rotation, while oscillation modes 8haracterized by the rotation of the
blocks (acoustic branches). For the higher frequescillation modes, 4 and 6, the
translations of the blocks of the elementary cedlia 180° phase (opposite directions), while
for oscillation mode 5 the rotations of the builglinlocks of the elementary cell are in 180°
phase (optic branches).

11
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Figure 9. Dispersion functionsi(k)) of propagating waves in direction. &ix dispersion
functions are derived because of the six degreégeflom of the elementary cell. Each
dispersion curve corresponds to a different ostdlamode (No. 1 to 6).
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3. The continuous model

The enriched kinematics of generalized micromorgbiatinua makes them suitable for
describing materials with microstructure. As oppbt®ethe static regime (Salerno and de
Felice, 2009), in the dynamic regime the richerdtracture of the continuum model is, the
more refined the homogenization (identificatioMeme should be. Otherwise, the dispersion
functions of the continuous approximation would converge to the discrete ones, which
would contradict the equivalence between the cantimand the discrete system.

The homogenization procedure followed here is baseithe construction of a continuum,
which satisfies the two following criteria:

a) The kinematics of the discrete system is identcadhe kinematics of the continuum.

b) The power of the internal forces and the kinetiergy of the continuum are equal to
the power of the internal forces and the kinetiergg of the discrete system for any
virtual kinematic field.

The main steps of the method proposed here aremessin figure 11.

Identification of the
DOF's, lattice and basis
of the discrete structL

— particle = elementary cell —l

\ 4

Caleulation of Identification of a
alcu continuous field

Poonr Ko OF the that maps all the
elementary cell of DOF'’s of the

the discrete
( pcon Epcell W

| ’L etk =k, J

\ 4

Derivation of the constitutive
equations, of the expression of
the (micro-) stresses, of the
governing PDE’s and boundar

conditions

Figure 11. Main steps of the method for the derorabf a continuum describing the discrete
structure. PDE means Partial Differential Equatiand DOF Degree Of Freedom.
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The formulation presented here follows Germain 8)9By identification of the elementary
cell to the particle of the corresponding micronacpcontinuum:

particle = elementary cell (18)

Therefore, in the specific case of the in-planedetion of the interlocking masonry wall,
the particler(m) should have six degrees of freedom (2 translaltiamme 1 rotational for
each block in 2D). Therefore, approaches througbsital or micropolar continuum are
inappropriate to capture the full dynamics of tieekte system. Assuming a system of
particles and following Germain’s notation (1978),is the center of mass of the particle

P(M), M' a point ofP(M), V¢ the velocity ofm, x| the coordinates of7' in a Cartesian

frame parallel to the given framé with M its origin, V' the velocity ofM’ with respect to
the given frame and’ the coordinates ot/ in the given frame (Figure 12p. denotes the

control volume. For a given particle, it is natu@look at the Taylor expansion @f with
respect tox;

(- C ] ror o
Vi_Vi +/\//7Xj+/\/kajxk+/\/,7kf,xjxkx/,+~" (19)

X;» Xy and y,, are called micro-deformation rate tensors. Assgrttiaty, is continuous

in x;, the tensorsy,, and y,,, are fully symmetric with respect to the indicgs, ¢ .

Figure 12. Continuum with microstructure.

The identification of the particle with the elemamytcell (Eg.(18)) results in the following
definitions that relate the velocities of the canbus with the velocities of the discrete
model:

14



910 Ay W1(2)
g 2 v (r®)

022 (1) v, ()]

1,1
U:I+E'J+E) a ny(rr(l) )

0 200 () 4, )]

(20)

where(.). :0;'—(',) (i=1,2) andr'® the coordinates of the center mass of bldck a
’ X

i

Cartesian frame parallel to the given fraxjewith M its origin:

11 - A
o (21)
"M

+a2
-b

1

1[a
wherea = —{bl

2

} andy, =— "2, p =
ml +m2

It should be mentioned that the rotations of tleekd in Egs.(20) are defined in the

continuum through theur! of the vector fielav/, OxV'. Additionally we define the

following quantities:

e 23 (), )

laely 9 (22)
E( 272 2 E|:V”J (r'(l)) + V"i (rl(l) ):I

Ul /s

E” may be interpreted as a homogeneous deformatienemsor of the blocks themselves in

the elementary cell. Notice that this interpretai® not necessary for the particular case of
the interlocking masonry wall considered here aslweot have additional dof's describing
the individual deformation of the blocks. Howevauch an interpretation is more systematic
and allows to generalize the approach and to censido deformable blocks. For rigid
blocks it holds:

) ()]0

L))o

Equations (20) and (22) map exactly the discrefes do the continuum dof's. Consequently,
from the continuum point of view, the dislocaticarsd the disclinations that appear at the
interfaces of the blocks have no effect on thevéericontinuum. We focus here only on the
centers of the blocks of the structure and, theegtthere is no implication of field
discontinuities in the formulation of the equivaleontinuum. Combining Egs. (20) and (22)
we obtain:

(23)
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A, (4 +314) Xy

U§"J) =V - 51 =D Xt = D Yoo 1y
2
, A, (1 +31) X
Uz(llf) =VZC - 1( ;y 2) - A4 ()(12 +A2’u1)(212)
2
Q) =~ ;=24 X, (24)
[l et A (B + 1) X 2
UE ? 2]:\/15"' 1( 1611,[2) — +0, Xl _A;)(zniuzz
1
[l et A, 1 (31, + 14, ) X
UZE ? zj:VZc_l_ : 2( 61'u 2) 22+A1y2(A2u2)(212—X12)
1
11
Q[HE'HE] =—x, +24
3 =X 2 Xo1a

together with the following linear constraints tbe other higher order kinematical
guantities:

X
Xun 3 Ai L,
X
Yo =TSN
_ (,uz —,ul))(n + XonD)
X 11— 2
20 1 1, A (25)
— (:uz _/’[1))(22 _ A Xy,
Xzzz -
21, 44, 4y 4,
Ax
X =7 ZAlm
Xn =X

where in the above equation§ =v< (x%")=v"", x, = x, (x4") = xi”,

1

Xoe =X (X9) = X870 X = X (X5) = Xl . The remaining terms of Eq.(19) are zero.

The presence of thé%order termy,,, in EQ.(24) implies that a"2order micromorphic
continuum will be needed to describe the microstmec Alternatively, 3 order termsy;,,
of microdeformation measures could be kept as iexépnt quantities. However, this would

result in a & order micromorphic continuum, which is not neceggathe present case of
rigid building blocks. It is worth noticing, thdt i, or 4, vanish a Cosserat continuum

would be sufficient to describe the microstruct#eCosserat continuum or, in the general
case, a micromorphic continuum would be derive@jpahdently of the presence of internal
moments. The case in whigh or g are null represents a discrete masonry structute wi
voids (Figure 13).
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Masonry wall with voids
Figure 13. Masonry wall with voids, which can bed&ed by a Cosserat continuum.
Equations (24) can be inverted to give:

1+2/4, ) AU, +A, 41 14,00,
1+24, ) AUZ _A1:u12:uzAQs

Ve =0 8 (1 - 1) Q) + 5

Ve =08 =, (1 - 1) Q87 +
3 . . .

X = %[mul +, (80, +20!”)

1
. . . 26
Xon =—3’§”2 200, -4, (80, +201") (20)
2
X = _lelj) _:ulAQa
1 .
Ao :EAQa

. . I+1,J+1 . . . I+1,J+1 .
Whel’eAU,:U,.[ 2 2]—U.‘"”, AQ3:Q( 2 2)—9‘3’"’ andA, 20, A Z0.

i 3

If blocks No.1 and No.2 are fixed together (throurglerfacez’), i.e. if the elementary cell is
behaving as a rigid block, then:

AU, = -0, 00
AU, =A,Q!) (27)
AQ,=0

In this case, introducing Eqgs.(27) into Egs.(26)deduce that a Cosserat continuum would
be again sufficient to describe the microstructuith the two blocks fixed. In particular, the
following relationships would hold:
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. (I+1,J+1

AR ! +4, 0
. (I+1,J+1

Vi =u 0, 2 + 4 0 (28)

X = _Q[H%,H%] _ _le,l)

3

X1 = X2 = Xo =0

Equations (20)-(26) refer to the kinematics of élementary cell itself. At this point we need
to pass from the microdeformation of the elementatito the macrodeformation of the
assembly of the elementary cells. As the interaatiothe elementary cell is limited to their
first neighbors, a first order Taylor expansiomirparticle to particle of the velocities and
microdeformation rate tensors is sufficient:

C(I+n,,J+n,) — \ ,C(1,)) YC(1,d)
Ve =y 4 (ny,n, ) U]
(1+ny,0+n,) — AI,J) (1,9)
Xi =X +Tk(f71,”2)K,-,-k (29)

(I+ny,J+n,) —

(1,9) (1,9)
)(ijk )(ijk + T/ (nv n, ) Kijkﬂ

o|.
where(.), =§ (i=1,2), Ky =X, @Nd K, = X0, -

i

A first order Taylor expansion of the kinematiddie (from particle to particle) seems
suitable for most applications. Exceptions aredglications where the forces between the
elementary cells (particles) are not limited to fin& neighbor (Mindlin, 1965). In other
words, when the elementary cell does not interalt with its adjacent elementary cell but
further with the second, third, etc. neighbor ¢éligher order derivatives of the velocities
and micro-deformation rates are needed. Alternigtiviee elementary cell (particle) could be
enlarged to contain all the interacting neighbbtg,the price for this would be a higher order
micromorphic continuum.

The power of internal forces for a Micromorphic inaum of 2° order is given as follows
(Germain, 1973):

Poon = TUV;C; - (Sij)(ij + Sijk/Yijk) + (ijkKijk VK, W) (30)
with
A
I, =0;ts; (31)

wherer; is the stress tensaw; is the intrinsic stress tensor (symmetric) is the intrinsic
microstress tensoy,, is the intrinsic second microstress tensor gpdv,,, are higher order
stress tensors.
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Having defined and linked the kinematics of thecdite and of the continuum, we set for any
virtual kinematic fieldv, x,, X, . Xy . the power of the internal forces of the discrete

system to be equal to the power of the internaderof the continuum:
pcon = pcel[ (32)
The same equality is set for the kinetic energysdes:

]Son = ]Sell (33)

By introducing Egs. (24) into Eq.(10) and using E28@) and (32) we derive the constitutive
eqguations of the continuous:

_ Pon
if av,f_;
= ., | sy =- ., (34)
ax; X
W, = O
ik — 1 Vike
0Ky 0Ky

The tensors derived by Eqs.(34) are expressedhatidas of the internal forces and
moments of the elementary cell. For example:

a A B A B A B a A B A B A B
I, =_2(_F1(b b8)1 +F1(b b5)2 +F1(b b ),3)+_1(F1(b b°),3 +F1(b an _Fl(b b ),5)
v v

(35)

A A B A B A B A B
s, 1 (F(b 6°),0 +F1(b 65),2 +F1(b 65),3 +F1(b b ),4)

Vi

wherep” andb® are blocks that belong to the elementary ¢gll, and its neighbors, and
interact through interfacg .

Through this formulation yield criteria can be sat in the continuum at the macrolevel by
considering the internal forces and moments deeel@ the microlevel, i.e. at the interfaces
of the microstructure. Various yielding mechanisush as sliding, rocking and twisting can
be considered and expressed in terms of internek$cand moments at the microlevel (e.g.
Sulem and Muhlhaus, 1997). Failure criteria atrtherolevel depend on the mechanical
properties of the building blocks and their inteda. These mechanical properties of the
interfaces can be either specified according teteyg interface model¢duna and

Lourengo, 2005; Milani et al. 2006) or determined expeniady on a per case basis. Thus,
the plastic and, more generally, the non-linearnssaopic behavior of masonry can be
considered and modeled accordingly by derivinghthimogenized failure surfaces. Of
course, this is not something new and has beerssitdly attempted in the past using the
Differential Expansion homogenization techniquetfa in-plane deformation of the
running-bond masonry pattern (Sulem and Muhlha®87)L With the present
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homogenization procedure the formulation of maapsxfailure criteria based on
micromechanical considerations is straightforwgnden the complexity of the derived
continuum. Nevertheless, the development of faitmiteria and yield surfaces is beyond the
scope of the present paper, which focuses mainth@wconstruction of higher order continua
to describe geometrically complex discrete systems.

Notice that as the wall spans only in directi@psand e, and only the in-plane degrees of
freedom of the building blocks were taken into asdpthe derived continuum is two
dimensional. Following a variational approach, dyeamic partial differential equations of
the aforementioned"2order two dimensional micromorphic continuum depeld here are:

T11,1 + le,z +f1 = prl
Ty, + Ty, +fz = prz
111,1 + Vi, *ts5, = pru

V121,1 + V122,2 +ts, = prlz
l/221,1 + szz,z *s,, = przz

Y (36)

V2121,1 + V2122,2 + 5212 = pr212

where p is the mass density of the continuug (s approximated by the mass density of the
bricks of the wall structure, which is consideredstant),f are long range volumic forces,
i.e. the self-weight of the bricks, and:
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1
rl =N +EA1 (luz _iul)yn _Agﬂlﬂzl/nz

1 1
rz =) +EA2 (/.12 _/'Il)yzz +gA1Az:u1:uzy212

=L -y +Ai(ﬂf+5ﬂ2ﬂf+4ﬂ§ﬂf+5u§ﬂ1+ﬂ£‘)y
11 6 1 2 1 1 36ﬂ1ﬂ2 11

1 1
+EA1AZV12 +EA1A§ (:u:l - luz)(:u:lz + 31”2/11 + /122)}/212

1 J, +J 1
M, :gAlAzyll +|:/'11/'12 (Ai +A§) + 1pV 2}1’12 _gAlAZVZZ

J J
+A2 |:2'ulp_§/ + 2/'12 p_i/ + ,ul,uz (/'11 - ;uz)(Ai + A;):| y212

1 DS\ M +5HLHE +BLL 15 +516 1 + 1y
rzzngz(/'Jz_/'Il)}/z+ 2( - : 136/.1:1,121 e 2)yzz

1 1
— oAb = DL (1 — 1) (12 +30014, + 1£) Vi

1
onz = ~HALLSVs + DD, 4 (1= 1) (12 +3008, +12) Dy,

J J
+A, {z,ulp—i/—z;zzp—i/ﬂuz (A§+A§)ﬂ1 (ﬂl‘ﬂz)}l’u 37)

1
0. (=) (1 + 304+ 15) B3y,

J J
+ [uzﬂl (a2 +a2)(42 +42) AL A W] Vo

Lo

ot

ox;

= 38

V=7 (38)
ax,

7

Assuming small deformations, the normal time déneain Eqs.(38) is identical to the
material derivative. Therefore, non-linearities aveided. The inertia terms are derived by
using Egs.(33) and (13). Notice, that the micrdiagerms in Eqs.(37) consist only in time
derivatives and do not contain spatial derivataes the case of restricted continua
(Georgiadis and Velgaki, 2003). The boundary coowlit are given by Egs.(26), for the part
of the boundary where the displacements and rotsid the bricks of the elementary cells
are prescribed and by the following equation fer ¢bmplementary part of the boundary
where generalized tractions are imposed:

T, =1;n,
M, =v,n, (39)
M 212 = VZlanf
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wheren, is the unit vector of the boundary.

The aforementioned generalized tractions are gblat¢éhe forces and moments applied to the
blocks of the microstructure as follows:

T,v - Fex,l +Fex,2

1 1

A' ex,1 2 ex,2 2
=— L F™N (2u + 1) —F (1+24, )
6/‘41/‘42 |: ( ' ) ’ ( 2) ' ] (40)

M . - _Mex,l _Mex,z + erx,ZAl'ul _Flex,ZAZ'ul _erx,lAllJz + F;x,lAzll2
M )12 - Az |:2ﬂ2Mex,1 _ZﬂlMEX'Z + /112 (erx,ZAl _Flex,ZAz ) + /122 (erx,lAl _Flex,lAZ):|

M

ii

where F** and M** are respectively the resultant force and momettiesforces exerted at

the boundary of the block°’, transferred to the center of mass of the bldkviously, a
free boundary has zero generalized traction. Ndfiaefor a discrete masonry with voids, (

or 4, is zero)M, =M,,, =0 and only Cosserat boundary conditions have tgpbeied. For
instance, if the small blocks are replaced by v@jds-0) then the boundary conditions that
have to be specified are:

T,- - Fiex,Z
My, =M™ (41)
M ii = M 212 =0

4. Application for the case of a structure with linear elastic interfaces

For linear elastic interfaces, as in the discregcdption (Eqgs.(8)), the constitutive law
(Egs.(34)) can be directly determined in functiénhe deformation measures of the
continuum. The structure of the derived constititaw equations is:

S=CX (41)

WhereS:{Tij'511'522'512'5212’V11I'V22i'V12i'V212i} 1 X:{Vii"/Yll’XZZ'/Y12'/Y212’Klli’KZZI"KIZI'KZIZI} ! Ca
matrix containing the constitutive relations anell, 2. The full form of Egs.(41) is too long

to be presented here. All the analytical calcutetim the present paper have been performed
with the symbolic language mathematical packagenbrattica. The Mathematica files are
available to the reader upon request.

To evaluate the dispersion functions, we seek isnisiof Egs.(36) of the form:

V.C = —ci VC ei(Kcos€x1+Ksin¢9xz—aI)
i

)(ij — _C(j Xij ei(Kcost1+Ksin9x2—at) (42)

X — _C(j X ei(Kcost1+Ksin9x2—at)
ijk ijk
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Using the same parameters with Section 2 we cdécthe six dispersion curves of the
derived equivalent continuum (Figure 14, Figure. Eg)ch dispersion curve corresponds to a
different oscillation mode, which activates diffetelegrees of freedom of the blocks. Similar
to the discrete model, for large wave lengtks(0), the oscillation modes 1 and 2 are
characterized by the translation of the blocks |evbscillation mode 3 is characterized by
their rotations (acoustic branches). For the higleguency oscillation modes 4, 5 and 6 the
oscillations of the blocks of the elementary cedl m 180° phase (optic branches).

Figure 16 and figure 18 show that the discretetaactontinuum descriptions converge
asymptotically as the wavelength increases. Agtudie relative error, as defined below and

for the parameters considered in the present nealexample, is less than 5% fde 10 or
10% for A >5.

o
o>

e, (6)= on (M) = e (m)| (43)

B m=1 6con (m) |

Therefore, the continuum derived in the previoudises is a large wavelength
approximation of the discrete system (Figure 1h)sTs acceptable in most civil engineering
applications. The domain of validity of the contims model may be enlarged to cover
smaller wavelengths. This can be accomplished bgsihg a larger elementary cell that
contains more building blocks. However, this chatéarger elementary cells would result
into a higher order micromorphic continuum whichkesthe continuum model more
complex.

The effect of the direction of the propagating wsawa the relative error between the
continuum and discrete descriptions is shown iarédl9. The fact that the error is not
uniform for all directions of the propagating waseelated to the anisotropy of the structure.
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Figure 14. Dispersion functionsi(k)) of propagating waves in direction.&ix dispersion
functions are derived because of the six indepdrisfiormation measures of the equivalent
continuum. Each dispersion curve corresponds tdfarént oscillation mode (No. 1 to 6).
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Figure 15. Dispersion function€(d)) of propagating waves in direction.e&ix dispersion
functions are derived because of the six indepdrisfiormation measures of the equivalent
continuum. Each dispersion curve corresponds tdfarént oscillation mode (No. 1 to 6).
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Figure 17. Divergence for small wavelengths ofdiserete (dashed lines) and continuum

(solid lines) dispersion functions for propagativgves in direction g
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Figure 18. Average relative error between the dé¢erand the continuum description for the
six oscillation modes for propagating waves in dii@n g. The discrete and the continuum
descriptions converge for large wavelengths.

r=2s(£)
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Figure 19. Polar plot of the average relative ermirthe discrete and the continuum
description for propagating waves at all directionBhe error is not uniform in all
directions, because of the anisotropy of the stmect

The running-bond masonry pattern has been alrdadiesl in a previous paper and a
Cosserat continuum was identified as an equivaentinuum for this discrete structure
(Stefanou et al., 2008). Therefore, it is alsorggéing to compare these results with the

present continuum in the limit case wheqe:% andb, =0. In this case the running-bond
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masonry pattern is geometrically retrieved (FigdxeFor deriving the discrete equations
representing the running-bond from Egs.(14) thiénsts coefficients of contacks, =*, =°
and='® have to be doubled. This is because the ‘big’ kanteract through two springs with
identical stiffness attached to the intermediatedl’ block of zero thickness (Figure 20).

(| (KKK ;‘

- 2k 2 :

b -0 ‘%k ‘
=

= s

w

w

Figure 20. The limit case of the running-bond pattd&keplacement of the springs at contacts
2%, 3% 3% and 2" for deriving the discrete equations representing tunning-bond masonry
pattern.

For the aforementioned dimensions of the blogks 0 and 1, =1. As mentioned in
section 3, setting4 =0 degenerates the micromorphic continuum consideeee in a

Cosserat continuum. Thus, a Cosserat type continsuetrieved for the case of running-
bond masonry. However, this does not imply thattiie Cosserat continuum
approximations are necessary identical, as theezi&ary cell, the kinematics and the
constitutive law differ between them (cf. also @ab and de Felice, 2009). This is
demonstrated in terms of the dispersion functiéigure 21 and figure 22 clearly show that
the Cosserat continuum approximation obtained éfia®bu et al. (2008) is better for small
wavelengths than the degenerated one from thergreseromorphic approach. This better
convergence can be explained by the geometry céléraentary cells and by noticing that
the centers of neighboring elementary cells inpileious approach are closer to each other,
(Figure 23), which reduces the residual of the dagkpansion of the deformation measures
(Egs.(29)). One would expect the same convergeetveden the two approaches for=1h,,

but this situation is not covered by the kinematitthe present micromorphic continuum as
the conditionA, # O is violated (Egs.(26)). If we wanted to allow dese A, =0, different

kinematics should be derived from Egs. (20) and.(B®wever, as explained above, the
strategy was to eliminate th& 8rder termsy;,, of the microdeformation measures and keep

only terms of 24 and lower order. In any case, the derived contwmoald be equivalent and
only their convergence with the discrete model widwdve changed for small wavelengths.
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Figure 21. Average relative error between the deserand the continuum description for the
three oscillation modes for: a) the present apptoadth a, :% andb =0 (4, =0 -
degenerated micromorphic resulting to Cosseratyl Bpfor the approach presented
previously in Stefanou et al. (2008). Both contmuapproximations converge for large
wavelengths.
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Figure 22. Polar plot of the average relative erfmetween the discrete and the continuum

description for propagating waves in all directiofug: a) the present approach witdy :%

andb, =0 (4 =0 - degenerated micromorphic resulting to Cosselatyl b) for the
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approach presented previously in Stefanou et @820The error is not uniform in all
directions, because of the anisotropy of the stmect

(1+1,J+1)
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ot | >ec]
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Figure 23. Repetition of elementary cells in spiea) the present approach witly =%

andb =0 (4 =0 - degenerated micromorphic resulting to Cossedattimuum) and b) for

the approach presented previously in Stefanou.@08). The elementary cells are more
distant in the present case leading to slower coysece of the dispersion functions of the
continuum to the ones of the discrete structure.

5. Conclusions
In the classical paper of Germain in (1973) “Thehod of virtual power in Continuum
Mechanics. Part 2: Micromechanics” the author \grite

“The theory [of the general micromorphic continuumis .fich enough to fit various physical
situations. The principal difficulty indeed is tscobver the practical significance of some of
the concepts which have been introduced, to desigethod in order to exhibit their
physical validity and to measure them in some $iggalysical situation$

In the present paper an attempt was made to atbsesignificance of some of the quantities
involved in the general theory of micromorphic ngedeveloped by Germain. This attempt
was made by modeling an interlocking masonry wakh aiscrete and as a continuum
medium. The continuous description engaged a twedsional, anisotropic"®order
micromorphic continuum, as lower order continug.(elassical Boltzmann, Cosserat,
second gradient) cannot represent the complex latiesof the aforementioned blocky
structure. The method that was applied for theinaotis approximation has its roots in the
Differential Expansion homogenization techniques{eanak and Mtuhlhaus, 2005) and
differs from the Direct Averaging (Aboudi, 1991)cdhAsymptotic Averaging
homogenization techniques (Bakhvalov and Panasd@83; Sanchez-Palencia and Zaoui,
1987) in the sense that the latter are based oavitraging of the discrete quantities. In the
present approach no averaging was made and comdége&ch dispersion curve of the
discrete structure was approximated by the contisunodel. Moreover, the approach
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followed here avoids the ad-hoc omission of thdargorder derivatives of the continuous
fields for displacements and rotations that usuatigear in other formulations (cf. also
Bazant and Christensen, 1972; Eringen, 1999; KiuandrMcDowell, 2004; Stefanou et al.,
2008). Moreover, it avoids the identification byedit comparison of the terms of the PDE’s
of the continuum with the equations of the discestetem, after having replaced in the latter
the discrete quotients by differential quotientsdzhon Taylor expansions of some order
(Eringen, 1999). Finally, the order of the Taylapansion of the kinematic fields is not an a
priori assumption of the method as it is in pregi@pproaches. The necessary order of the
Taylor expansion of the kinematic field of the donum patrticle (Eq.(19)) is inferred by
equating the degrees of freedom of the elementhptthe discrete system with the
equivalent measures of the particle itself (Eq.(222)). Of course, the derived continuum is
not unique and it depends on the initial choicéhefelementary cell of the discrete structure.
This is a rather well known issue (Novozhilov, 19&hd one should have in mind that the
more blocks the elementary cell contains, the highk be the order of the derived
continuum.

Generally speaking, the philosophy of the presemtdgenization approach is rather
inductive than deductive. The reason is that we &tam the discrete system and we
gradually build the equivalent continuum, whileoither approaches the starting point is a
general continuum of some order, which under vargmplifications and assumptions is
matched with the discrete system. The drawbackiseofatter approaches are that (a) the
initially assumed higher order continuum may nadalde adequately the kinematics of the
discrete system, (b) the homogenized continuum tligtdifficult to handle because of the
numerous parameters it embodies, (c) the physieahing of the additional boundary
conditions might be unclear and (d) in some extreases of identification, it may not satisfy
basic conditions related to the positive definitmnef the elastic energy density (Mindlin,
1964).

The validity of the procedure followed herein wasgdstigated by juxtaposing the dispersion
functions of the discrete and the continuum modeme results show that the continuum
description is a large wavelength approximatiothefdiscrete system. Nevertheless, the
authors believe that the domain of validity of tmmtinuous approximation can be extended
to cover smaller wavelengths. This may be accom@tisy enlarging the elementary cell to
contain more blocks. The presence of more blockkarelementary cell can cover high
frequency oscillations between the blocks of thaesaell, increasing, in this way, the
accuracy of the continuum approximation in the dyitaregime when the wavelengths are
small. The price for this better approximationascourse, the additional complexity of the
calculations as higher order continua are neededieder, in the majority of civil engineer

3 All the analytical calculations in the present @apave been performed with the symbolic language
mathematical package Mathematica. The Mathematesmdre available to the reader upon requesteo th

corresponding author.
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applications, large wavelength approximations afécsent. In the present case the
continuous model behaves well for wavelengths fiivees bigger than the characteristic
length of the elementary cell. This means thatdiserete and the continuous approximation
share the same oscillation modes, have the sanmeadegf freedom, the same rigidity and
the same inertia properties.

The present general interlocking masonry pattembeadegenerated to the running-bond
masonry pattern, which was studied in detail byah#ors in a previous paper. In this case,
the micromorphic continuum derived here reduces @osserat continuum describing the
running-bond discrete masonry structure. The corspaof the dispersion curves of the
current and the previous approach shows that bosis€at approaches are equivalent to the
discrete structure for wavelengths five times brgge length of the building blocks.
However, the elementary cell considered previouslyerges faster than the present one.
This finding, demonstrates clearly that the elermgntell influences the accuracy of the
derived continuum. The reason for this is attridutethe Taylor expansion of the macro- and
micro-deformation measures.

Our analysis was limited in elasticity. However tontinuous model is general and can be
expanded to cover non-linearities, as the expras#ithe various stress tensors in function
of the internal forces and moments enable us toditate yield surfaces and failure criteria
based purely on micromechanical considerations.flblnerules are straightforward to derive
as the kinematics of the continuum are directlyaned to the kinematics of the discrete
description. Therefore, the plastic and, more gaherthe non-linear behavior of the
interfaces of the blocks can be also consideredwardkled accordingly. For practical
structural applications a special Finite Elemen28forder micromorphic continuum has to
be programmed to account for the abovementionedinearities. However, the purpose of
the present paper is to give the methodology dfimg a continuum that describes the
presented general diatomic masonry wall pattere. apgplication to practical cases is the
next step and will be presented in a future paper.
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