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Asymptotic analysis of pollution filtration through thin random fissures between two porous media

Introduction

We consider a porous medium which is contaminated by some pollutant and which communicates with another porous and non-contaminated medium through vertical fissures of height h > 0, of random thinness of order ε > 0, and which are periodically disposed. Each of these porous media is given a ε-periodic structure. Instead of considering a Stokes problem in each of these porous media, we assume that the velocity of the fluid is governed by a Darcy law with periodic permeability matrix.

The purpose of this work is to determine the influence of the fissures on the transport of the contaminant into the non-contaminated medium, computing the global flux of pollutant which penetrates in this non-contaminated medium and the asymptotic velocity of the fluid which flows through the fissures.

Let Ω be a bounded, smooth and open subset of R 3 , with boundary Γ, such that

Ω + = Ω ∩ {x 3 > 0} = ∅, Ω - h = Ω ∩ {x 3 < -h} = ∅.
Let Σ × {0} = ∂Ω ∩ {x 3 = 0}. Σ is a bounded and smooth subset of R 2 . We define

           Γ + 0 = Σ × {0} , Γ - h = Σ × {-h} , Y h = {x ∈ Ω | (x 1 , x 2 ) ∈ Σ, -h < x 3 < 0} , Γ + = ∂Ω + \Γ + 0 , Γ -= ∂Ω - h \Γ - h . The domain Ω is thus equal to Ω + ∪ Γ + 0 ∪ Y h ∪ Γ - h ∪ Ω - h .
Let (Π, Υ, P ) be some probability space and (T (t)) t∈R be a group of transformations on (Π, Υ), that is satisfying

   T (0) = Id Π , T (t 1 + t 2 ) = T (t 1 ) • T (t 2 ) ∀t 1 , t 2 ∈ R, P (T -1 (t) A) = P (A) ∀A ∈ Υ, ∀t ∈ R,
where Id Π is the identity map on Π and the set {(t, ω) ∈ R × Π | T (t) ω ∈ A} is dt × dP measurable, for every A ∈ Υ. We suppose that T is ergodic (or metrically transitive), which means that every A ∈ Υ such that T (t) A = A, for every t ∈ R, has a probability P (A) equal to 0 or 1. We introduce some random processes q and r defined on R × Π and satisfying the following conditions:

1. q (t, ω) is a stationary random process, that is, for every positive integer n, every points t 1 , • • • , t n , every t in R, and every B ∈ B (R), one has P ({ω | q (t + t 1 , ω) , • • • , q (t + t n , ω) ∈ B}) = P ({ω | q (t 1 , T (t) ω) , • • • , q (t n , T (t) ω) ∈ B}) ,

where B (R) is the Borel σ-algebra on R. Since T preserves the measure P , the above equality implies that the joint distribution of {q (t 1 ) , • • • , q (t n )} is the same as the joint distribution of {q (t 1 + t) , • • • , q (t n + t)}, for every t in R.

2. The derivatives d m q dt m and d m r dt m exist for m = 1, 2, 3 and there exist non-random constants c 1 , c 2 and c 3 such that the following bounds hold true with probability 1

0 < c 1 ≤ q (t, ω) ≤ c 2 < 1 ; |r (t, ω)| ≤ 1 ; d m q dt m , d m r dt m ≤ c 3 , (1) 
Let (α i (ω)) i∈Z and (β i (ω)) i∈Z be sequences of random variables satisfying

|α i (ω)| ≤ c 4 ; |β i (ω)| ≤ c 4 , ∀i ∈ Z, (3) 
with probability 1, where c 4 is a non-random constant. We define, for every i, j ∈ Z, the fissure Y ε,ij (ω) as

Y ε,ij (ω) = x ∈ R 3 | εa - i -ε -θ x 3 < x 1 -iε < εa + i -ε -θ x 3 , εa - j -ε -θ x 3 < x 2 -jε < εa + j -ε -θ x 3 , x 3 ∈ ]-h, 0[ , with 0 < ε < 1, 0 < θ < 2/3 and a ± i (z) = r (z + β i (ω) , ω) ± q (z + α i (ω) , ω) /2. Let I ε (ω) = {(i, j) ∈ Z 2 | Y ε,ij (ω) ⊂ Y h }.
We also define the sets

         Γ + 0,ε,ij (ω) = ∂Y ε,ij (ω) ∩ Γ + 0 , Γ + 0,ε (ω) = ∪ (i,j)∈Iε(ω) Γ + 0,ε,ij (ω) , Γ - h,ε,ij (ω) = ∂Y ε,ij (ω) ∩ Γ - h , Γ - h,ε (ω) = ∪ (i,j)∈Iε(ω) Γ - h,ε,ij (ω) , Λ ε (ω) = ∂Y ε (ω) \ Γ + 0,ε ∪ Γ - h,ε (ω) Y ε (ω) = ∪ (i,j)∈Iε(ω)
Y ε,ij (ω) .

Let Z = ]-1/2, 1/2[ 3 be the unit cube of R 3 and assume that it can be decomposed as Z = Z 1 ∪ S ∪ Z 2 , where Z 1 and Z 2 are two disjoint, open and connected sets separated by the smooth surface S (Fig. 1). Figure 1: A 2D view of the periodic structure of the porous media.

We assume that Ω + and Ω - h are two ε-periodic porous media which communicate through the fissures Y ε,ij (ω). We set

               Ω +,ε f = Ω + ∩ ∪ k∈Z 3 (εZ 1 + kε) , Ω -,ε h,f = Ω - h ∩ ∪ k∈Z 3 (εZ 1 + kε) , Ω +,ε s = Ω + ∩ ∪ k∈Z 3 (εZ 2 + kε) , Ω -,ε h,s = Ω - h ∩ ∪ k∈Z 3 (εZ 2 + kε) , S + ε = Ω + ∩ ∪ k∈Z 3 (εS + kε) , S - ε = Ω - h ∩ ∪ k∈Z 3 (εS + kε) . (4) 
We suppose that Ω +,ε f (resp. Ω -,ε h,f ) is the portion of Ω + (resp. Ω - h ) consisting of the pores which are filled in with some fluid and Ω +,ε s (resp. Ω -,ε h,s ) is the portion of Ω + (resp. Ω - h ) consisting of the non-porous rocks. We suppose that

∂Ω +,ε f ∩ ∂Y ε (ω) = Γ + 0,ε (ω) , ∂Ω -,ε h,f ∩ ∂Y ε (ω) = Γ - h,ε (ω) .
We define the fluid part of the domain as

Ω ε f (ω) = Ω +,ε f ∪ Γ + 0,ε ∪ Y ε ∪ Γ - h,ε (ω) ∪ Ω -,ε h,f . Let f ∈ C (Ω + ), g + ∈ L 2 (Ω + ; R 3 ) and g -∈ L 2 Ω - h ; R 3 be functions satisfying supp (f ) ⊂ Ω + and f ≥ 0 in Ω + ; supp g + ⊂ Ω + ; supp g -⊂ Ω - h .
We consider in Ω ε f (ω) the reaction-diffusion problem with first-order reaction

     -D∆u ε + v ε • ∇u ε + Ru ε = f in Ω ε f (ω) , u ε = 0 on Γ + ∪ Γ -, ∂u ε ∂n = 0 on S + ε ∪ S - ε ∪ Λ ε (ω) , (5) 
where u ε is the concentration of the pollutant, D = D mol is the molecular diffusion coefficient, R is a nonnegative reaction coefficient, n is the unit outer normal and v ε is the velocity of the fluid, which is the solution of the Darcy-Stokes problems

                     µ + (K + ε ) -1 v ε,d -∇p ε,d = g + in Ω +,ε f , µ -(K - ε ) -1 v ε,d -∇p ε,d = g -in Ω -,ε h,f , div (v ε,d ) = 0 in Ω +,ε f ∪ Ω -,ε h,f , v ε,d • n = 0 on ∂Ω +,ε f ∪ ∂Ω -,ε h,f ∪ Γ, -µε 2 ∆v ε,s + ∇p ε,s = 0 in Y ε (ω) , div (v ε,s ) = 0 in Y ε (ω) , v ε,s = 0 on Λ ε (ω) , (6) 
with the following interface conditions

                 (v ε,s ) 3 = (v ε,d ) 3 on Γ + 0,ε (ω) ∪ Γ - h,ε (ω) , µε 2 ∂ (v ε,s ) 3 ∂x 3 | x 3 =0,-h = p ε,d -p ε,s on Γ + 0,ε (ω) ∪ Γ - h,ε (ω) , µε 2 ∂ (v ε,s ) τ ∂x 3 = -γ (K + ε ) -1/2 (v ε,s ) τ on Γ + 0,ε (ω) , µε 2 ∂ (v ε,s ) τ ∂x 3 = γ (K - ε ) -1/2 (v ε,s ) τ on Γ - h,ε (ω) , (7) 
where:

• v ε,d and p ε,d are respectively Darcy's velocity and pressure in Ω +,ε f and Ω -,ε h,f ,

• K + ε and K - ε are the absolute permeability matrices in Ω +,ε f and Ω -,ε h,f respectively, • v ε,s and p ε,s are respectively the velocity and the pressure of the Stokes flow in the fissures,

• µ + (resp. µ -, µ) is the viscosity coefficient in Ω +,ε f (resp. in Ω -,ε h,f , Y ε (ω)), • (v ε,s ) τ = (v ε,s ) 1 , (v ε,s ) 2 is the tangential velocity.
We suppose that the 3 × 3 matrices K + ε and K - ε are defined through the Z-periodic construction:

K + ε = K + (x/ε) and K - ε = K -(x/ε)
, where K + and K -are bounded, symmetric and positive definite, and that µ ± and µ are positive constants. In the above interface conditions, [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] 1 means the continuity of the mass flux through the interfaces Γ + 0,ε (ω) and Γ - h,ε (ω), [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] 2 represents the continuity of the normal stress through the corresponding interface, and the two last equalities of (7) represent the Beavers-Joseph-Saffman conditions on the tangential stress, with some nonnegative slippage coefficient γ (see [START_REF] Arbogast | Homogenization of Darcy-Stokes system modeling vuggy porous media[END_REF], [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF] and [START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF]).

We first describe the asymptotic behaviour of the solution v ε of ( 6)-( 7) using Γconvergence methods (see [START_REF] Attouch | Variational convergence for functions and operators[END_REF] and [START_REF] Maso | An introduction to Γ-convergence[END_REF], for the definition and the properties of this variational convergence). We prove that the asymptotic velocities v + 0,d (in Ω + ) and v - 0,d (in Ω - h ) and the asymptotic pressures p + 0 (in Ω + ) and p - 0 (in Ω - h ) are linked through the Darcy laws (25) in Ω + and Ω - h respectively. We also describe the asymptotic behaviour of the velocity v ε,s (see Corollary 10). We then describe the asymptotic behaviour of the solution u ε of (5) using the energy method. We prove that the flux of pollutant through Γ + 0 is given through (39) 3 , while the flux through Γ - h is given through (39) 5 . Homogenization theory introduced in the few past decades (see for instance [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] and [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF] and the references therein) gives powerful tools for the description of equivalent media which are heterogeneous at a microscopic level. The homogenization of transport problems of chemical products through porous media has been studied by many authors (see for example [START_REF] Hornung | Diffusion, convection, adsorption and reaction of chemicals in porous media[END_REF] and [START_REF] Mikelic | Homogenization of stationary flow of miscible fluids in domain with grained boundary[END_REF]). A model of random fissures has already been studied in [START_REF] Egorova | Asymptotic behavior of the solutions of the second boundary value problem in domains with random thin gaps, Teoriya Funktsii[END_REF] for a problem of radiophysics posed in

R + 2 ∪ ∪ j∈Z Q ε j (ω) ∪ R - 2,h , where Q ε j (ω) is the j-th fissure and R - 2,h = {x ∈ R 2 | x 2 < -h}, R + 2 = {x ∈ R 2 | x 2 > 0}.
We here adopt the shape of the fissures used in [START_REF] Egorova | Asymptotic behavior of the solutions of the second boundary value problem in domains with random thin gaps, Teoriya Funktsii[END_REF], that we extend to a 3D case, in order to model in a quite realistic way the constitution of the soil. The paper is organized as follows. In the following section, we introduce and study the appropriate local coordinates inside the fissures. In the third section, we study the convergence of the velocities. The fourth part is concerned with the asymptotic analysis of the contaminant transport problem. We first deal with the case where R = 0. We build the solutions of local problems in the neighborhood of the fissures in order to pass to the limit in the original problem and study their asymptotic properties. The fluxes across Γ + 0 and Γ - h given in this section are those obtained in (39) 3,4 , respectively, with R = 0. In the last part of this section, we also consider the case of a dispersive contaminant (R > 0) with random dispersion in the fissures (see Remark 17). We finally give the asymptotic behavior of the fully reaction-diffusion problem. We here again introduce the solutions of local problems.

Local coordinates in the fissures

In the fissure Y ε,ij (ω), (i, j) ∈ I ε (ω), we define, for a fixed event ω for which the conditions (1) and (3) are satisfied, ξ 1 = x 1 -iε, ξ 2 = x 2 -jε, z = -x 3 , and introduce the curvilinear coordinates t ∈ (0, h) and y 1 , y 2 ∈ (-ε/2, ε/2). Thus doing, the lateral boundary of the fissure coincides with the planes y 1 , y 2 = ±ε/2. These coordinates are described through

           Φ 1,ε (ξ 1 , ξ 2 , z, y 1 , y 2 , t) = ξ 1 -a + i ε -θ z ε 2 + y 1 -a - i ε -θ z ε 2 -y 1 = 0, Φ 2,ε (ξ 1 , ξ 2 , z, y 1 , y 2 , t) = ξ 2 -a + j ε -θ z ε 2 + y 2 -a - j ε -θ z ε 2 -y 2 = 0, Φ 3,ε (ξ 1 , ξ 2 , z, y 1 , y 2 , t) = z -ε θ ψ ε ξ 1 ε , ξ 2 ε , ε -θ t = 0. (8) 
Defining

ζ 1 = ξ 1 /ε, ζ 2 = ξ 2 /ε and τ = ε -θ t, the orthogonality conditions of the coordinates given through      ∂Φ 1,ε ∂ζ 1 ∂Φ 3,ε ∂ζ 1 + ∂Φ 1,ε ∂z ∂Φ 3,ε ∂z = 0, ∂Φ 2,ε ∂ζ 2 ∂Φ 3,ε ∂ζ 2 + ∂Φ 2,ε ∂z ∂Φ 3,ε ∂z = 0
and the condition ψ ε 0, 0, ε -θ t = τ imply the following Cauchy system

                             ∂ψ ε ∂ζ 1 = ε 2(1-θ)     a - i (ψ ε ) ′ ζ 1 -a + i (ψ ε ) a + i (ψ ε ) -a - i (ψ ε ) -a + i (ψ ε ) ′ ζ 1 -a - i (ψ ε ) a + i (ψ ε ) -a - i (ψ ε )     , ∂ψ ε ∂ζ 2 = ε 2(1-θ)      a - j (ψ ε ) ′ ζ 2 -a + j (ψ ε ) a + j (ψ ε ) -a - j (ψ ε ) -a + j (ψ ε ) ′ ζ 2 -a - j (ψ ε ) a + j (ψ ε ) -a - j (ψ ε )      , ψ ε 0, 0, ε -θ t = τ , (9) 
which has to be solved.

Lemma 1 1. The system [START_REF] Egorova | Asymptotic behavior of the solutions of the second boundary value problem in domains with random thin gaps, Teoriya Funktsii[END_REF] has a unique solution [START_REF] Acerbi | An extension theorem from connected sets and homogenization in general periodic domains[END_REF]. One deduces that, for every k ∈ N * and every

ψ ε (ζ 1 , ζ 2 , t) = τ + ψ 1 ε (ζ 1 , τ ) + ψ 2 ε (ζ 2 , τ ), with ψ 1 ε (0, τ ) = ψ 2 ε (0, τ ) = 0. 2. For every k ∈ N * , every ζ 1 , ζ 2 ∈ [-k, k], and every τ ∈ R, one has, when ε is close to 0          ψ ε (ζ 1 , ζ 2 , t) = τ + O ε 2(1-θ) , ∂ψ ε ∂τ = 1 + O ε 2(1-θ) , ∂ψ ε ∂ζ α , ∂ 2 ψ ε ∂τ 2 , ∂ 2 ψ ε ∂ζ α ∂τ = O ε 2(1-θ) α = 1, 2. Proof. 1. Observe that a + i (ψ ε )-a - i (ψ ε ) = q (ψ ε + α i (ω) , ω) ≥ c 1 > 0 and a ± i (ψ ε ) ′ ≤ c 3 , thanks to
ζ 1 , ζ 2 ∈ [-k, k], the functions (ζ 1 , ψ ε ) -→ a - i (ψ ε ) ′ ζ 1 -a + i (ψ ε ) a + i (ψ ε ) -a - i (ψ ε ) -a + i (ψ ε ) ′ ζ 1 -a - i (ψ ε ) a + i (ψ ε ) -a - i (ψ ε ) , (ζ 2 , ψ ε ) -→ a - j (ψ ε ) ′ ζ 2 -a + j (ψ ε ) a + j (ψ ε ) -a - j (ψ ε ) -a + j (ψ ε ) ′ ζ 2 -a - j (ψ ε ) a + j (ψ ε ) -a - j (ψ ε )
, are bounded and Lipschitz continuous with respect to (ζ 1 , ψ ε ) and (ζ 2 , ψ ε ) respectively. The Cauchy problem (9) thus has a unique solution ψ ε . The condition

ψ ε (0, 0, τ) = τ implies ψ ε (ζ 1 , ζ 2 , t) = τ + ψ 1 ε (ζ 1 , τ ) + ψ 2 ε (ζ 2 , τ ), with ψ 1 ε (0, τ ) = ψ 2 ε (0, τ ) = 0. 2.
Thanks to the preceding point and to the hypothesis (1), the quantities

ψ 1 ε , ψ 2 ε , ∂ 2 ψ ε ∂ 2 τ , ∂ψ ε ∂ζ α and ∂ 2 ψ ε ∂ζ α ∂τ are equal to some O ε 2(1-θ) , α = 1, 2. Lemma 2
The system (8) has a unique solution ξ1 (y 1, y 2 , t) , ξ2 (y 1, y 2 , t) , z (y 1 , y 2 , t) .

Proof. The Jacobian ∆ of the matrix

∂(Φ 1,ε ,Φ 2,ε ,Φ 3,ε ) ∂(ξ 1 ,ξ 2 ,z)
can be computed as

∆ = 1 + ∂ψ ε ∂ζ 1 a - i ′ ζ 1 -a + i a + i -a - i -a + i ′ ζ 1 -a - i a + i -a - i + ∂ψ ε ∂ζ 2 a - j ′ ζ 2 -a + j a + j -a - j -a + j ′ ζ 2 -a - j a + j -a - j .
Thanks to Lemma 1, one has ∆ = 1 + O ε 2(1-θ) , when ε is close to 0. One deduces, using the implicit function theorem, that the system (8) has a unique solution ξ1 , ξ2 , z .

Thanks to the implicit function theorem, one has

               ∂ ξ1 ∂y 1 = 1 ∆ a + i -a - i 1 - ∂ψ ε ∂ζ 2 Φ ε,j + ∂ψ ε ∂ζ 1 Φ ε,i , ∂ ξ1 ∂y 2 = 2 ∆ a + j -a - j ∂ψ ε ∂ζ 2 Φ ε,i , ∂ ξ1 ∂t = 2 ∆ ε (1-θ) ∂ψ ε ∂τ Φ ε,i , (10) 
where

Φ ε,i = a - i ′ ζ 1 -a + i a + i -a - i -a + i ′ ζ 1 -a - i a + i -a - i , Φ ε,j = a - j ′ ζ 2 -a + j a + j -a - j -a + j ′ ζ 2 -a - j a + j -a - j .
One also has

                             ∂ ξ2 ∂y 1 = 2 a + i -a - i ∆ ∂ψ ε ∂ζ 2 Φ ε,j , ∂ z ∂y 1 = 2 ∆ ε θ-1 ∂ψ ε ∂ζ 1 a + i -a - i , ∂ ξ2 ∂y 2 = a + j -a - j ∆    1 - ∂ψ ε ∂ζ 1 Φ ε,i + ∂ψ ε ∂ζ 2 Φ ε,j    , ∂ z ∂y 2 = 2 ∆ ε θ-1 ∂ψ ε ∂ζ 2 a + j -a - j , ∂ ξ2 ∂t = 2 ∆ ε 1-θ ∂ψ ε ∂τ Φ ε,j , ∂ z ∂t = 1 ∆ ∂ψ ε ∂τ    1 + ∂ψ ε ∂ζ 1 Φ ε,i + ∂ψ ε ∂ζ 2 Φ ε,j    . (11) 
Let (g ε,αβ ) α,β=1,2,3 be the metric tensor associated to the local basis defined through the vectors [START_REF] Gikhman | Introduction à la théorie des processus aléatoires[END_REF] and [START_REF] Hornung | Diffusion, convection, adsorption and reaction of chemicals in porous media[END_REF]. One has the following result.

Lemma 3

1. The metric tensor (g ε,αβ ) α,β=1,2,3 satisfies a symmetry property and the following behaviour

g ε,11 = (q i ) 2 ε -θ t + O ε 2(1-θ) , g ε,22 = (q j ) 2 ε -θ t + O ε 2(1-θ) , g ε,12 = O ε 2(1-θ) , g ε,23 = O ε 2(1-θ) , g ε,13 = O ε 2(1-θ) , g ε,33 = 1 + O ε 2(1-θ) ,
where

q i ε -θ t = q ε -θ t + α i (ω) , ω , ∀i ∈ Z.
2. The contravariant components g αβ ε α,β=1,2,3 of (g ε,αβ ) α,β=1,2,3 satisfy a symmetry property and

g 11 ε = 1 (q i ) 2 (ε -θ t) + O ε 2(1-θ) , g 23 ε = O ε 2(1-θ) , g 12 ε = O ε 2(1-θ) , g 13 ε = O ε 2(1-θ) , g 22 ε = 1 (q j ) 2 (ε -θ t) + O ε 2(1-θ) , g 33 ε = 1 + O ε 2(1-θ) .
Proof. Observing that

∂ ∂t q i ε -θ z - ∂ ∂t q i ε -θ t = O ε 2-3θ , q i ε -θ z -q i ε -θ t = O ε 2(1-θ) , det (g ε,αβ ) = (q i ) 2 ε -θ t (q j ) 2 ε -θ t + O ε 2(1-θ) ,
these formulas are direct consequences of ( 10)- [START_REF] Hornung | Diffusion, convection, adsorption and reaction of chemicals in porous media[END_REF].

One deduces from the preceding results that the gradient of a function u expressed in the local coordinates (y

1 , y 2 , t) inside the fissure Y ε,ij (ω) is of the form ∇u = Id + O ε 2(1-θ) 1 q i ∂u ∂y 1 , 1 q j ∂u ∂y 2 , ∂u ∂t , for some non-diagonal matrix O ε 2(1-θ) .
Hence, using the formula ∆u =

1 √ |g| ∂ α |g|g αβ ∂ β u , for α, β = 1, 2, 3, with |g| = |det (g αβ )|, one has ∆u = 1 (q i ) 2 ∂ 2 u ∂ (y 1 ) 2 + 1 (q j ) 2 ∂ 2 u ∂ (y 2 ) 2 + 1 q i q j ∂ ∂t q i q j ∂u ∂t 1 + O ε 2(1-θ) .
3 Study of the fluid flow

Existence of a weak solution and a priori estimates

We define the functional space

V ε = v ∈ L 2 Ω ε f (ω) ; R 3 | div (v) = 0 in Ω ε f (ω) , v | Yε(ω) ∈ H 1 (Y ε (ω) ; R 3 ) , v = 0 on Λ ε (ω) , v • n = 0 on ∂Ω +,ε f ∪ ∂Ω -,ε h,f ∪ Γ .
V ε is a complete space when endowed with the norm

v Vε = v 2 L 2 (Ω +,ε f ;R 3 ) + v 2 L 2 (Ω -,ε h,f ;R 3 ) + ∇v 2 L 2 (Yε(ω);R 9 ) 1/2
.

Multiplying ( 6) by Φ ∈ V ε , using Green's formula and the conditions [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], we obtain the following variational formulation

µ + Ω +,ε f (K + ε ) -1 v ε,d • Φdx + µ - Ω -,ε h,f (K - ε ) -1 v ε,d • Φdx + µε 2 Yε(ω) ∇v ε,s • ∇Φdx +γ Γ + 0,ε (K + ε ) -1/2 (v ε,s ) τ • (Φ) τ dx ′ + γ Γ - h,ε (K - ε ) -1/2 (v ε,s ) τ • (Φ) τ dx ′ = Ω +,ε f g + • Φdx + Ω -,ε h,f g -• Φdx, (12) 
where x ′ = (x 1 , x 2 ). Using standard arguments, we immediately deduce from this variational formulation that the system ( 6)-( 7) has a unique weak solution

(v ε , p ε ) ∈ V ε × L 2 (Ω ε (ω)) /R.
Lemma 4 There exists a non-random constant C independent of ε such that

Yε(ω) |v ε | 2 dx ≤ Cε 2 Yε(ω) |∇v ε | 2 dx, Ω ε f (ω) |v ε | 2 dx ≤ C, Γ + 0,ε |v ε | 2 dx ′ + Γ - h,ε |v ε | 2 dx ′ ≤ Cε 2 , ε 2 
Yε(ω) |∇v ε | 2 dx ≤ C.
Proof. Define the normalized fissure

Z ε,ij (ω) = (z 1 , z 2 , x 3 ) ∈ R 2 | a - i -ε -θ x 3 < z 1 < a + i -ε -θ x 3 , a - j -ε -θ x 3 < z 2 < a + j -ε -θ x 3 , x 3 ∈ (-h, 0) . (13) 
For every

ψ ∈ C 1 (Z ε,ij (ω)) such that ψ = 0 on the lateral boundary of Z ε,ij (ω), one has inside Z ε,ij (ω) (ψ (s, z 2 , x 3 )) 2 = s a - i ∂ψ ∂z 1 dz 1 2 ≤ q i -ε -θ x 3 a + i a - i ∂ψ ∂z 1 2 dz 1 .
Thanks to the hypothesis (1), one has the following Poincaré estimate

Z ε,ij (ω) ψ 2 dz 1 dz 2 ≤ C Z ε,ij (ω) |∇ψ| 2 dz 1 dz 2 .
Defining z 1 = (x 1 -εi) /ε and z 2 = (x 2 -εj) /ε, one gets the first estimate. We replace Φ by v ε in the variational formulation [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF]. Since the matrices K + ε and K - ε are bounded, symmetric and positive definite, we deduce, using the first part of this Lemma, that

Ω +,ε f |v ε,d | 2 dx + Ω -,ε h,f |v ε,d | 2 dx + µε 2 Yε(ω) |∇v ε,s | 2 dx + γ Γ + 0,ε (v ε,s ) τ 2 dx ′ +γ Γ - h,ε (v ε,s ) τ 2 dx ′ ≤ C Ω +,ε f g + • v ε,d dx + Ω -,ε h,f g -• v ε,d dx ,
hence, using Cauchy-Schwarz inequality

Ω ε f (ω) |v ε | 2 dx ≤ C Ω +,ε f |v ε | 2 dx 1/2 + C Ω -,ε h,f |v ε | 2 dx 1/2 ≤ C Ω ε f (ω) |v ε | 2 dx 1/2 and ε 2 Yε(ω) |∇v ε | 2 dx ≤ C Ω ε f (ω) |v ε | 2 dx 1/2
.

Using a trace theorem in the normalized fissure Z ε,ij (ω), we have

∂Z ε,ij (ω) ψ 2 dz 1 dz 2 ≤ C Z ε,ij (ω) |∇ψ| 2 dz 1 dz 2 ,
which ends the proof. We now deal with the pressure. We define the extension p ε,d of the pressure p ε,d in the solid parts of the porous media

p ε,d =    p ε,d in Ω +,ε f ∪ Ω -,ε h,f , 1 |Z 1 | Z 1 p ε,d (a ε z + a ε l) dz ∀z ∈ εZ 2 + lε ⊂ Ω + ∪ Ω - h , l ∈ Z 3 .
We define the zero mean-value pressures

               p + ε = p ε,d - 1 |Ω + | Ω + p ε,d dx in Ω + , p - ε = p ε,d - 1 Ω - h Ω - h p ε,d dx in Ω - h , p ε = p ε,s - 1 |Y ε,ij (ω)| Y ε,ij (ω) p ε,s dx in Y ε,ij (ω) , (i, j) ∈ I ε (ω) .
Lemma 5 There exists a non-random constant C independent of ε such that

Ω + |∇p + ε | 2 dx ≤ C, Ω - h |∇p - ε | 2 dx ≤ C, Yε(ω) (p ε ) 2 dx ≤ C, Ω + (p + ε ) 2 dx ≤ C, Ω - h (p - ε ) 2 dx ≤ C.
Proof. We multiply (6) 1,2 by ∇p ε and obtain

Ω +,ε f |∇p ε,d | 2 dx = - Ω +,ε f g + • ∇p ε,d dx + µ + Ω +,ε f (K + ε ) -1 v ε,d • ∇p ε,d dx, Ω -,ε h,f |∇p ε,d | 2 dx = - Ω -,ε h,f g -• ∇p ε,d dx + µ - Ω -,ε h,f (K - ε ) -1 v ε,d • ∇p ε,d dx.
The boundary conditions (6) 4 , the smoothness of g ± and Lemma 4 imply

Ω + ∇p + ε 2 dx ≤ C ; Ω - h ∇p - ε 2 dx ≤ C.
Using Poincaré-Wirtinger' inequality, we have

Ω + (p + ε ) 2 dx ≤ C (Ω + ) Ω + |∇p ε | 2 dx ≤ C, Ω - h (p - ε ) 2 dx ≤ C Ω - h Ω - h |∇p ε | 2 dx ≤ C.
In order to get estimates on p ε , we consider the problem

div z (Φ 0 ε ) = p ε (εz 1 , εz 2 , x 3 ) in Z ε,ij (ω) , Φ 0 ε = 0 on ∂Z ε,ij (ω) ,
where the fissure Z ε,ij (ω) is defined in [START_REF] Mikelic | Homogenization of stationary flow of miscible fluids in domain with grained boundary[END_REF]. This problem has a unique solution Φ 0 ε in the space (-∆) [START_REF] Temam | Navier-Stokes equations. Theory and numerical analysis[END_REF] for example), such that

-1 ∇w | w ∈ L 2 (Z ε,ij (ω)) (see
Z ε,ij (ω) ∇Φ 0 ε 2 dzdx 3 ≤ C Z ε,ij (ω) (p ε ) 2 dzdx 3 , (14) 
where, due to the hypothesis (1), the constant C is non-random and independent of ε.

Let us define

Φ ε (x) =   ε (Φ 0 ε ) 1 ((x 1 -iε) /ε, (x 2 -jε) /ε, x 3 ) ε (Φ 0 ε ) 2 ((x 1 -iε) /ε, (x 2 -jε) /ε, x 3 ) (Φ 0 ε ) 3 ((x 1 -iε) /ε, (x 2 -jε) /ε, x 3 )   . Then div (Φ ε ) (x) = div z (Φ 0 ε ) (x) = p ε (x) in Y ε,ij (ω) , Φ ε = 0 on ∂Y ε,ij (ω)
and, thanks to ( 14)

Yε(ω) |∇Φ ε | 2 dx ≤ Z ε,ij (ω) ∇Φ 0 ε 2 dzdx 3 ≤ C Z ε,ij (ω) (p ε ) 2 dzdx 3 = C ε 2 Yε(ω) (p ε (x)) 2 dx. (15) Multiplying (6) 5 by Φ ε in Y ε (ω), we get µε 2 Yε(ω) ∇v ε • ∇Φ ε dx - Yε(ω) (p ε (x)) 2 dx = 0.
Using the inequality (15), we have

Yε(ω) (p ε (x)) 2 dx ≤ C Yε(ω) (p ε (x)) 2 dx 1/2 ε 2 Yε(ω) |∇v ε | 2 dx 1/2 .
Thanks to Lemma 4, we derive the last estimate in Y ε (ω).

Convergence

Observe the following result.

Lemma 6

1. For every ϕ ∈ C 1 0 (Y h ), we have 

lim ε→0 (i,j)∈Iε(ω) Y ε,ij (ω) ϕ (x 1 , x 2 , x 3 ) dx = h q 2 Σ ϕ (x ′ , 0) dx ′ ,
w ε ϕdx = h q 2 (0) Σ w (x ′ , 0) ϕ (x ′ , 0) dx ′ , ∀ϕ ∈ C 0 R 3 , almost surely. Proof. 1. Define ξ i,ε (y) = εi -εr i ε -θ t -y 1 q i ε -θ t and ξ j,ε (y) = εj -εr j ε -θ t - y 1 q j ε -θ t where r i ε -θ t = r ε -θ t + β i (ω) , ω and q i ε -θ t = q ε -θ t + α i (ω) , ω .
According to the properties of the above-defined curvilinear coordinates, we have lim

ε→0 (i,j)∈Iε(ω) Y ε,ij (ω) ϕ (x 1 , x 2 , x 3 ) dx = lim ε→0 (i,j)∈Iε(ω) ε/2 -ε/2 ε/2 -ε/2 h 0 ϕ ξ i,ε (y) , ξ j,ε (y) , -t q i ε -θ t q j ε -θ t dydt = lim ε→0 (i,j)∈Iε(ω) ε 2 h 0 ϕ (εi, εj, -t) q 2 ε -θ t dt = lim ε→0 h ε -θ h ε -θ h 0 Σ ϕ x 1 , x 2 , -ε θ s dx 1 dx 2 q 2 (s) ds = h q 2 Σ ϕ (x ′ , 0) dx ′ ,
where we have used the ergodicity result (2).

2. The sequence of measures (ν ε ) ε , with ν ε = 1 Yε(ω) dx, 1 A being the characteristic function of the set A, thus converges in the weak sense of measures, when ε goes to 0, to the measure ν = h q 2 1 Σ (x ′ ) dx ′ . Using the hypothesis on (w ε ) ε , we deduce that the sequence of measures (v ε w ε ) ε has bounded variation. Up to some subsequence, the sequence (v ε w ε ) ε thus converges to some χ 0 in the weak sense of measures. For every ϕ ∈ C 0 (R 3 ), one has, thanks to Fenchel's inequality

R 3 (w ε ) 2 dν ε ≥ 2 R 3 w ε ϕdν ε - R 3 ϕ 2 dν ε .
Passing to the limit, we get

+∞ > lim inf ε→0 R 3 (w ε ) 2 dν ε ≥ 2 χ 0 , ϕ - R 2 ϕ 2 (x ′ , 0) dν. Thus sup χ 0 , ϕ | ϕ ∈ C 0 R 3 , R 2 ϕ 2 (x ′ , 0) dν ≤ 1 < +∞.
Using Riesz' representation theorem, we can identify χ 0 with wν, for some w ∈ L 2 (R 2 ).

Remark 7

1. From Lemma 4, using the above result, we deduce that, up to some subsequence

lim ε→0 Yε(ω) v ε • Φdx = h q 2 (0) Σ v f • Φdx ′ , ∀Φ ∈ C 0 Σ; R 3 ,
almost surely, and from Lemma 5, we deduce the existence of π 0 ∈ L 2 (Σ) such that, up to some subsequence

lim ε→0 Yε(ω) p ε ϕdx = Σ π 0 ϕdν = h q 2 Σ π 0 (x ′ ) ϕ (x ′ ) dx ′ , ∀ϕ ∈ C 0 (Σ) , almost surely, where x ′ = (x 1 , x 2 ).
In the rest of the paper, we will no more indicate this almost surely convergence where there is no doubt.

From Lemma 4 and the above computations, we deduce the existence of v

0 ∈ L 2 (Ω; R 3 )
such that, up to some subsequence

v ε | Ω +,ε f → ε→0 v 0 | Ω + =: v + 0,d w-L 2 (Ω + ; R 3 ) , v ε | Ω -,ε h,f → ε→0 v 0 | Ω - h =: v - 0,d w-L 2 Ω - h ; R 3 , lim ε→0 Yε(ω) v ε • Φdx = h q 2 Σ v 0 • Φdx ′ ∀Φ ∈ C 0 (Σ; R 3 ) .
3. We set v 0 | Σ =: v 0,f . For every ϕ ∈ C 1 0 (Σ), one has

0 = lim ε→0 (i,j)∈Iε(ω) Y ε,ij (ω) div (v ε ) ϕdx = -lim ε→0 (i,j)∈Iε(ω) Y ε,ij (ω) v ε • ∇ϕdx = -h q 2 Σ v 0,f • ∇ϕdx ′ = h q 2 Σ div (v 0,f ) ϕdx ′ ,
thanks to the estimates of Lemma 4. Thus div (v 0,f ) = 0 in Σ.

It is easily seen that

div v + 0,d = 0 in Ω + and div v - 0,d = 0 in Ω - h . For every ϕ ∈ C 1 (Ω + ), one has 0 = lim ε→0 Ω +,ε f div (v ε ) ϕdx = -lim ε→0 Ω +,ε f v ε • ∇ϕdx + lim ε→0 Γ + 0,ε (v ε ) 3 ϕdx ′ . Observe that lim ε→0 Γ + 0,ε (v ε ) 3 ϕdx ′ = q 2 (0) Σ (v 0,f ) 3 ϕdx ′ , whence v + 0,d 3 | Σ×{0} = q 2 (0) (v 0,f ) 3 .
In a similar way, but working in Ω -,ε h,f , instead of Ω +,ε f , we have v - 0,d 3 | Σ×{-h} = q 2 (0) (v 0,f ) 3 . 5. From Lemmas 5 and 6, we get, up to some subsequence

p + ε → ε→0 p + 0 s-L 2 (Ω + ) , p - ε → ε→0 p - 0 s-L 2 Ω - h , lim ε→0 Yε(ω) p ε ϕdx = h q 2 (0) Σ π 0 ϕdx ′ ∀ϕ ∈ C 0 (Σ) . (16) 
We now set

V 0 = v ∈ L 2 Ω + ∪ Ω - h ; R 3 | div (v) = 0 in Ω + ∪ Ω - h , v • n = 0 on Γ + ∪ Γ -, v 3 | Σ×{0} = q 2 (0) (v ,f ) 3 = v 3 | Σ×{-h} . Every function v ∈ V 0 can be extended in a function of L 2 (Y ε (ω) ; R 3 ) independent of x 3 in Y ε (ω).
We define the appropriate notion of convergence for the problem [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF].

Definition 8 A sequence (V ε ) ε , with V ε ∈ V ε for every ε, τ 0 -converges to some V ∈ V 0 if          V ε | Ω +,ε f ⇀ ε→0 V | Ω + =: V + d w-L 2 (Ω + ; R 3 ) , V ε | Ω -,ε h,f ⇀ ε→0 V | Ω - h =: V - d w-L 2 Ω - h ; R 3 , lim ε→0 Yε(ω) V ε • Φdx = h q 2 (0) Σ V f • Φdx ′ ∀Φ ∈ C 0 (Σ; R 3 ) , with V f := V | Σ .
We define the functional

F ε on L 2 Ω ε f (ω) ; R 3 through F ε (v) =                µ + Ω +,ε f (K + ε ) -1 v • vdx + µ - Ω -,ε h,f (K - ε ) -1 v • vdx + µε 2 Yε(ω) |∇v| 2 dx +γ Γ + 0,ε (K + ε ) -1/2 v τ • v τ dx ′ + γ Γ - h,ε (K - ε ) -1/2 v τ • v τ dx ′ if v ∈ V ε , +∞ otherwise.
In order to describe the asymptotic behaviour of this functional, we consider the Zperiodic solution Φ ± k of the local Darcy systems

   (K ± ) -1 Φ ± k -∇π ± k = e k in Z 1 , k = 1, 2, 3, div Φ ± k = 0 in Z 1 , Φ ± k • n = 0 on S,
where (e 1 , e 2 , e 3 ) is the canonical basis of R 3 . We then consider the Stokes system

   -∆η k + ∇ξ k = e k in Z ′ = (-1/2, 1/2) 2 , k = 1, 2, div (η k ) = 0 in Z ′ , η k = 0 on ∂Z ′ , (17) 
where (e 1 , e 2 ) is the canonical basis of R 2 , and the local scalar problem

-∆η 0 = 1 in Z ′ = (-1/2, 1/2) 2 , η 0 = 0 on ∂Z ′ . ( 18 
)
We define the 3×3 matrices K + , K -, the 2×2 matrix K f and the constant k

0 through                      K + ml = Z 1 (Φ + m ) l dz m, l = 1, 2, 3, K - ml = Z 1 (Φ - m ) l dz m, l = 1, 2, 3, (K f ) ml = Z ′ (η m ) l dz m, l = 1, 2, k 0 = Z ′ |∇η 0 | 2 dz = Z ′ η 0 dz. (19) 
One can prove that the matrices K ± and K f are symmetric and positive definite (see [START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF]). Our main result of this part reads as follows.

Theorem 9 Suppose that r is also a stationary random process. The sequence (F ε ) ε Γ-converges in the topology τ 0 to the functional F 0 defined through

F 0 (v) =                        µ + Ω + K + -1 v + d • v + d dx + µ - Ω - h K - -1 v - d • v - d dx +µ h q 2 q 2 Σ (K f ) -1 (v f ) τ • (v f ) τ dx ′ + µ h q 2 1/q 2 k 0 Σ (v f ) 3 2 dx ′ + q 2 γ Σ (K * + ) -1/2 + (K * -) -1/2 (v f ) τ • (v f ) τ dx ′ if v ∈ V 0 , +∞ otherwise,
where

K * ± = a + (0) a -(0) a + (0) a -(0) K ± (z 1 , z 2 , 0) dz 1 dz 2 . Proof.
For the definition and the properties of the Γ-convergence, we refer to [START_REF] Attouch | Variational convergence for functions and operators[END_REF] and [START_REF] Maso | An introduction to Γ-convergence[END_REF].

Upper Γ-limit. Choose any smooth v

∈ C 1 Ω + ∪ Ω - h ; R 3 ∩ V 0 . We define v | Ω + =: v + d , v | Ω - h =: v - d , v | Σ =: v f and build in Y ε,ij (ω)        v 0 ε,f τ = (K f ) -1 v f k (iε, jε, 0) h q 0 -h η ε,k,ij (x) dx 3 , v 0 ε,f 3 = (v f ) 3 (iε, jε, 0) hk 0 0 -h η ε,0,ij (x) dx 3 , (20) 
where

η ε,k,ij (x) = q i -ε -θ x 3 (η k ) 1 (z (x 1 , x 2 , x 3 )) q j -ε -θ x 3 (η k ) 2 (z (x 1 , x 2 , x 3 )) , η ε,0,ij (x) = η 0 (z (x 1 , x 2 , x 3 )) , with z (x 1 , x 2 , x 3 ) =     x 1 -iε -ε a - i -ε -θ x 3 + a + i -ε -θ x 3 /2 εq i (-ε -θ x 3 ) x 2 -jε -ε a - j -ε -θ x 3 + a + j -ε -θ x 3 /2 εq j (-ε -θ x 3 )     , q i (s) = q (s + α i (ω) , ω) , (21) 
η k being the solution of ( 17), η 0 the solution of ( 18) and K f and k 0 being defined in (19). We then define the test-function

v 0 ε through            v 0 ε = Φ + j x ε K + -1 v + d j in Ω +,ε f , v 0 ε = Φ - j x ε K - -1 v - d j in Ω -,ε h,f , v 0 ε = v 0 ε,f in Y ε (ω) . (22) 
One deduces from this construction that v 0

ε | Ω + ∈ L 2 Ω +,ε f ; R 3 , v 0 ε | Ω - h ∈ L 2 Ω -,ε h,f ; R 3 , v 0 ε | Yε(ω) ∈ H 1 (Y ε (ω) ; R 3 ), v 0 ε = 0 on Λ ε (ω), div (v 0 ε ) = 0 in Ω +,ε f ∪ Ω -,ε h,f , v 0 ε • n = 0 on ∂Ω ε f (ω) and div v 0 ε = (K f ) -1 v f k (iε, jε, 0) h q 0 -h div z η ε,k,ij (x) dx 3 = 0, in Y ε,ij (ω) . Therefore v 0 ε ∈ V ε . Moreover v 0 ε is independent of x 3 in each fissure Y ε,ij ( 
ω). Using the ergodic result (2) and making some computations, one easily proves that (v 0 ε ) ε τ 0converges to v.

We compute the limit lim ε→0 F ε (v 0 ε ). We have

lim ε→0 µε 2 Yε(ω) |∇v 0 ε | 2 dx = lim ε→0 µε 2 (i,j)∈Iε(ω) Y ε,ij (ω) |∇ (v 0 ε ) τ | 2 dx +lim ε→0 µε 2 (i,j)∈Iε(ω) Y ε,ij (ω) |∇ (v 0 ε ) 3 | 2 dx.
Using the expression (20) 1 , we have

lim ε→0 µε 2 (i,j)∈Iε(ω) Y ε,ij (ω) |∇ (v 0 ε ) τ | 2 dx = lim ε→0 µε 2 (i,j)∈Iε(ω) 1 h 2 q 2 × Y ε,ij (ω)     (K f ) -1 v f k (iε, jε, 0) 0 -h q i -ε -θ x 3 ∇ z η k (z (x 1 , x 2 , x 3 )) dx 3 × (K f ) -1 v f l (iε, jε, 0) 0 -h q i -ε -θ x 3 ∇ z η l (z (x 1 , x 2 , x 3 )) dx 3     .
We introduce the change of variables (z 1 , z 2 ) = z (x 1 , x 2 , x 3 ), where z (x 1 , x 2 , x 3 ) has been defined in (21) 1 , and get

lim ε→0 µε 2 (i,j)∈Iε(ω) Y ε,ij (ω) |∇ (v 0 ε ) τ | 2 dx = µlim ε→0 (i,j)∈Iε(ω) ε 2 q 2 0 -h Z ′ (K f ) -1 v f k (iε, jε, 0) (K f ) -1 v f l (iε, jε, 0) ×∇ z η k (z) • ∇ z η l (z) q i -ε -θ x 3 q j -ε -θ x 3 dzdx 3 .
Using the ergodicity result (2) and the definition (19) 1 of K f , the above limit is equal to

µ h q 2 q 2 Σ (K f ) -1 v f k (K f ) -1 v f l (x ′ ) dx ′ Z ′ ∇ z η k (z) • ∇ z η l (z) dz = µ h q 2 q 2 Σ (K f ) -1 (v f ) τ • (v f ) τ dx ′ , because v f is independent of x 3 in Y h . Using a similar argument, we have lim ε→0 µε 2 (i,j)∈Iε(ω) Y ε,ij (ω) ∇ v 0 ε 3 2 dx = µh q 2 1/q 2 k 0 Σ (v f ) 3 2 dx ′ .
On the other hand, observe that, for every ψ ∈ C 1 c (Ω; R 3 ) we have

lim ε→0 Ω +,ε f v 0 ε • ψdx = Ω + K + -1 v + d j Z 1 Φ + j (z) dz • ψdx = Ω + v + d • ψdx, lim ε→0 Γ + 0,ε K + ε (x) • ψ (x) dx = lim ε→0 (i,j)∈Iε(ω) ε 2 a + i (0) a - i (0) a + j (0) a - j (0) K + (y ′ , 0) dy ′ • ψ (iε, jε, 0) = Σ a + (0) a -(0) a + (0) a -(0) K + (z 1 , z 2 , 0) dz 1 dz 2 • ψ (x ′ , 0) dx ′ .
We thus obtain

lim ε→0     µ + Ω + (K + ε ) -1 v 0 ε • v 0 ε dx + µ - Ω - h (K - ε ) -1 v 0 ε • v 0 ε dx +γ Γ + 0,ε (K + ε ) -1/2 (v 0 ε ) τ • (v 0 ε ) τ dx ′ + γ Γ - h,ε (K - ε ) -1/2 (v 0 ε ) τ • (v 0 ε ) τ dx ′     = µ + Ω + K + -1 v + d • v + d dx + µ - Ω - h K - -1 v - d • v - d dx + q 2 γ Σ (K * + ) -1/2 + (K * -) -1/2 (v f ) τ • (v f ) τ dx ′ , whence lim ε→0 F ε (v 0 ε ) = F 0 (v).
For every v ∈ V 0 , there exists a sequence

(v m ) m ⊂ C 1 Ω + ∪ Ω - h ; R 3 ∩ V 0 such that v m → m→+∞ v, s-L 2 Ω + ∪ Ω - h ; R 3 . (23) 
Building the sequence (v m ) 0 ε ε associated to v m through (22), the sequence (v m ) 0 ε ε τ 0 -converges to v m , and using the above computations for smooth functions, we have:

lim ε→0 F ε (v m ) 0 ε = F 0 (v m ). Hence lim m→∞ lim ε→0 F ε (v m ) 0 ε = F 0 (v).
Using the diagonalization argument of [4, Corollary 1.18], there exists a sequence (v 0

ε ) ε , v 0 ε = v m(ε) 0 ε (m (ε) → ε→0 +∞), such that (v 0 ε ) ε τ 0 -converges to v, and lim sup ε→0 F ε (v 0 ε ) ≤ F 0 (v). Lower Γ-limit. Let (v 1
ε ) ε be a sequence such that v 1 ε ∈ V ε for every ε, and (v 1 ε ) ε τ 0 -converges to v. We write the subdifferential inequality

µε 2 Yε(ω) ∇v 1 ε 2 dx ≥ µε 2 Yε(ω) ∇ (v m ) 0 ε 2 dx + 2µε 2 Yε(ω) ∇ (v m ) 0 ε • ∇v 1 ε -∇ (v m ) 0 ε dx, (24) 
where (v m ) 0 ε ε is the sequence associated to v m through ( 22) and where the sequence (v m ) m satisfies the conditions (23). Observe that

Y ε,ij (ω) ∇ (v m ) 0 ε • ∇v 1 ε -∇ (v m ) 0 ε dx = - Y ε,ij (ω) ∆ (v m ) 0 ε • v 1 ε -(v m ) 0 ε dx, because v 1 ε -(v m ) 0 ε = 0 on ∂Y ε (ω) \ Γ + 0,ε ∪ Γ - h,ε (ω), and 
∂(vm) 0 ε ∂x 3 | x 3 =0 = ∂(vm) 0 ε ∂x 3 | x 3 =-h = 0.
Then, using the ergodicity result (2), we have

lim ε→0 2µε 2 Yε(ω) ∇ (v m ) 0 ε • ∇v 1 ε -∇ (v m ) 0 ε dx = -µ h q 2 1/q 2 q Σ Z ′ ∆ z η k (z) (K f ) -1 (v m ) τ k • (v -v m ) τ (x ′ ) dzdx ′ -µ h q 2 1/q 2 k 0 Σ Z ′ ∆ z η 0 (z) (v m ) 3 (v -v m ) 3 (x ′ ) dzdx ′ , whence lim m→∞ lim ε→0 2µε 2 
Yε(ω) ∇ (v m ) 0 ε • ∇v 1 ε -∇ (v m ) 0 ε dx = 0.
Recalling the inequality (24) and the computations built in the above case of smooth functions, we have

lim inf ε→0 µε 2 Yε(ω) |∇v 1 ε | 2 dx ≥ µ h q 2 q 2 Σ (K f ) -1 (v f ) τ • (v f ) τ dx ′ + µh q 2 k 0 1/q 2 Σ (v f ) 3 2 dx ′ .
Thus, computing in an easy way the lim inf of the other terms in F ε (v 1 ε ), we obtain:

lim inf ε F ε (v 1 ε ) ≥ F 0 (v).
Let us write the problem associated to the limit functional F 0 .

Corollary 10

The solution (v ε , p ε ) of the problem ( 6)-( 7) verifies the following properties: 16) 3 holds true.

• (v ε ) ε τ 0 -converges to v 0 ∈ V 0 , and set v 0 | Ω + = v + 0,d , v 0 | Ω - h = v - 0,d , v 0 | Σ = v 0,f . • (p + ε ) ε converges to p + 0 , s-L 2 (Ω + ), (p - ε ) ε converges to p - 0 , s-L 2 Ω - h and (
• v + 0,d , v - 0,d , v 0,f , p + 0 , p - 0 and π 0 are solutions of the following problems: i) in the regions Ω + and Ω - h , one has the Darcy laws

                     µ + K + -1 v + 0,d -∇p + 0 = g + in Ω + , div v + 0,d = 0 in Ω + , µ -K - -1 v - 0,d -∇p - 0 = g - in Ω - h , div v - 0,d = 0 in Ω - h , v + 0,d 3 | Σ×{0} = q 2 (v 0,f ) 3 on Σ × {0} , v - 0,d 3 | Σ×{-h} = q 2 (v 0,f ) 3 Σ × {-h} , (25) 
ii) on Σ, the velocity (v 0,f ) 3 is given through

(v 0,f ) 3 (x ′ ) = p + 0 (x ′ , 0) -p - 0 (x ′ , -h) k 0 µh q 2 (0) 1/q 2 (0) ( 26 
)
and the tangential velocity (v 0,f ) τ satisfies the modified Darcy law

       µ q 2 (K f ) -1 (v 0,f ) τ + γ h (K * + ) -1/2 + (K * -) -1/2 (v 0,f ) τ + ∇π 0 = 0 in Σ, div (v 0,f ) τ = 0 in Σ, (v 0,f ) τ • n = 0 on ∂Σ.
Proof. Thanks to the properties of the Γ-convergence, the sequence

(v ε ) ε τ 0 -converges to v 0 ∈ V 0 and lim ε→0 F ε (v ε ) = F 0 (v 0 )
, where v 0 is the minimizer of the problem inf

v∈V 0 F 0 (v) -2 Ω + g + • vdx -2 Ω - h g -• vdx .
For every V ∈ V 0 , we have the following identity

µ + Ω + K + -1 v 0,d • V dx + µ - Ω - h K - -1 v 0,d • V dx +µh q 2 q 2 Σ (K f ) -1 (v 0,f ) τ • V τ dx ′ + µh q 2 k 0 1/q 2 Σ (v 0,f ) 3 V 3 dx ′ + q 2 γ Σ (K * + ) -1/2 + (K * -) -1/2 (v 0,f ) τ • V τ dx ′ = Ω + g + • V dx + Ω - h g -• V dx.
We infer the existence of a pressure p + 0 (resp. p - 0 , π 0 ) in Ω + (resp. Ω - h , Σ) such that

Ω + ∇p + 0 • V dx + Ω - h ∇p - 0 • V dx + h Σ ∇π 0 • V τ dx ′ + µh q 2 1/q 2 k 0 Σ (v 0,f ) 3 V 3 dx ′ = 0, which implies, because V (resp. V τ ) is divergence-free in Ω + ∪ Ω - h (resp. Σ) Σ -p + 0 (x ′ , 0) -p - 0 (x ′ , -h) + µh q 2 1/q 2 k 0 (v 0,f ) 3 V 3 dx ′ + h ∂Σ π 0 n • V τ dσ.
This gives the result.

Study of the transport problem

Let us now consider the transport problem [START_REF] Bear | Modeling groundwater flow and pollution[END_REF]. In this section, we will describe the asymptotic behaviour of the solution u ε of ( 5), when ε goes to 0, distinguishing between the cases R = 0 and R = 0.

Existence of a weak solution and a priori estimates

We define the space

H 1 Γ + ∪Γ -Ω ε f (ω) = u ∈ H 1 Ω ε f (ω) | u = 0 on Γ + ∪ Γ -.

Lemma 11 1. The problem (5) has a unique weak solution

u ε ∈ H 1 Γ + ∪Γ -Ω ε f (ω) which is nonnegative in Ω ε f (ω).
2. There exists a non-random constant C which is independent of ε such that

Ω ε f (ω) (u ε ) 2 dx ≤ C ; Ω ε f (ω) |∇u ε | 2 dx ≤ C.

There exists a linear and bounded extension operator

P ε : H 1 Ω ε f (ω) → H 1 (Ω)
and two non-random positive constants C 1 and C 2 such that

P ε u ε = u ε in Ω ε f (ω) , Ω |P ε u ε | 2 dx ≤ C 1 Ω ε f (ω) |u ε | 2 dx, Ω |∇P ε u ε | 2 dx ≤ C 2 Ω ε f (ω) |∇u ε | 2 dx.
Proof. 1. Using the standard variational methods, one proves that the problem (5) has a unique solution u ε ∈ H 1 Γ + ∪Γ -Ω ε f (ω) . Multiplying ( 5) par (u ε ) -= min (0, u ε ) and using Green's formula, one has

D Ω ε f (ω) ∇ (u ε ) -2 dx + Ω ε f (ω) v ε • ∇ (u ε ) -(u ε ) -dx + R Ω ε f (ω) (u ε ) -2 dx = Ω +,ε f f (u ε ) -dx ≤ 0, because f is nonnegative. Because div (v ε ) = 0 in Ω ε f (ω) and v ε • n = 0 on ∂Ω ε f (ω), one has Ω ε f (ω) (v ε • ∇u ε ) u ε dx = - Ω ε f (ω) (v ε • ∇u ε ) u ε dx = 0. We deduce that Ω ε f (ω) ∇ (u ε ) -2 dx + R Ω ε f (ω) (u ε ) -2 dx ≤ 0, thus (u ε ) -= 0, in Ω ε f (ω), hence u ε is nonnegative in Ω ε f (ω). 2.
As already observed, we have

D Ω ε f (ω) |∇u ε | 2 dx + R Ω ε f (ω) (u ε ) 2 dx = Ω +,ε f f u ε dx.
For R = 0, one deduces from this equality, using Cauchy-Schwarz' inequality, that

Ω ε f (ω) (u ε ) 2 dx ≤ C and Ω ε f (ω) |∇u ε | 2 dx ≤ C.
In the case R = 0, one can prove, using [2, Lemma 3.4], that there exists a non-random constant C independent of ε such that

Ω ε f (ω) (u ε ) 2 dx ≤ C Ω ε f (ω) |∇u ε | 2 dx.
Thus, using the above equality, we get the desired estimates.

3. This is a particular case of the result given in [START_REF] Acerbi | An extension theorem from connected sets and homogenization in general periodic domains[END_REF]. We will still denote by u ε its extension P ε u ε to the whole Ω. From Lemmas 11 and 6, we deduce the existence of u

+ 0 ∈ H 1 Γ + (Ω + ) and u - 0 ∈ H 1 Γ -Ω - h , such that, up to some subsequence          u ε | Ω + ⇀ ε→0 u + 0 w-H 1 Γ + (Ω + ) , u ε | Ω - h ⇀ ε→0 u - 0 w-H 1 Γ -Ω - h , lim ε→0 Yε(ω) u ε ϕdx = h q 2 (0) Σ u + 0 (x ′ , 0) ϕ (x ′ ) dx ′ ∀ϕ ∈ C 0 (Σ) . (27) 
We intend to describe the problems satisfied by u + 0 and u - 0 , in their respective domains. We now define the notion of convergence associated to sequences satisfying the above convergences.

Definition 12 A sequence (U ε ) ε , with U ε ∈ H 1 Γ + ∪Γ -Ω ε f (ω) for every ε, τ 1 -converges to U, with U | Ω + =: U + ∈ H 1 Γ + (Ω + ) and U | Ω - h =: U -∈ H 1 Γ -Ω - h , if the convergences (27) are satisfied, replacing u ε by U ε .

The asymptotic behaviour in the case R = 0

In this subsection, we deal with the case R = 0. Using the boundary conditions (5) 2,3 , we consider the variational formulation of the problem ( 5)

∀u ∈ H 1 Γ + ∪Γ -Ω ε f (ω) : D Ω ε f (ω) ∇u ε • ∇udx + Ω ε f (ω) (v ε • ∇u ε ) udx = Ω +,ε f f udx,
where v ε is the velocity of the fluid flow, that is the solution of ( 6)- [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]. We consider the Z-periodic solution b j of the cell problem

∆b j = 0 in Z 1 j = 1, 2, 3, (∇b j + e j ) • n = 0 on S (28) 
and the problem

∆c m = 0 in Z ′ m = 1, 2, (∇c m + e m ) • n = 0 on ∂Z ′ .
We define the tensors D and

D * through        D ij = D |Z 1 | δ ij + Z 1 ∂b j ∂z i dz , D * ml = D δ ml + Z ′ ∂c l ∂z m dz ′ . Let χ ε + (resp. χ ε -) be the characteristic function of Ω +,ε f (ω) (resp. Ω -,ε h,f (ω) 
). We have the following result.

Lemma 13 One has, up to some subsequence:

1. χ ε + D∇u ε ⇀ ε→0 D∇u + 0 , in L 2 (Ω + ; R 3 )-weak, 2. χ ε -D∇u ε ⇀ ε→0 D∇u - 0 , in L 2 Ω - h ; R 3 -weak, 3. lim ε→0 Yε(ω) D∇ τ u ε • ϕdx = h q 2 (0) Σ D * ∇ τ u + 0 (x ′ , 0) • ϕdx ′ , ∀ϕ ∈ C ∞ c (Σ; R 2 ), where ∇ τ u + 0 = ∂u + 0 ∂x 1 , ∂u + 0 ∂x 2 . Proof. 1. Let ϕ ∈ C ∞ c (Ω + ), b ε j = εb j (x/ε). Multiplying (5) (for R = 0) by χ ε + b ε j ϕ, we get Ω + χ ε + D∇u ε • ϕ∇b ε j + b ε j ∇ϕ dx + Ω + χ ε + v ε • ∇u ε b ε j ϕdx = Ω + χ ε + f b ε j ϕdx,
from which we deduce that lim

ε→0 Ω + χ ε + D∇u ε ϕ • ∇b ε j dx = 0. ( 29 
)
Observe now that, through (28)

Ω + χ ε + D∇ (ϕu ε ) • ∇b ε j + e j dx = D Ω + χ ε + ∇b ε j + e j ϕ • ∇u ε dx +D Ω + χ ε + ∇b ε j + e j u ε • ∇ϕdx = 0.
Thus, taking into account (29), one has, up to some subsequence lim

ε→0 Ω + χ ε + Dϕ (e j • ∇u ε ) dx = -lim ε→0 D Ω + χ ε + ∇b ε j + e j u ε • ∇ϕdx = -D 3 i=1 |Z 1 | δ ij + Z 1 ∂b j ∂z i dz Ω + ∂ϕ ∂x i u + 0 dx = D 3 i=1 |Z 1 | δ ij + Z 1 ∂b j ∂z i dz Ω + ∂u + 0 ∂x i ϕdx.
2. In a similar way than above, we get, for every

ϕ ∈ C ∞ c Ω - h lim ε→0 Ω - h χ ε -Dϕ (e j • ∇u ε ) dx = D 3 i=1 Z 1 δ ij + Z 1 ∂b j ∂z i dz Ω - h ∂u - 0 ∂x i ϕdx.
3. We define the quantity c ε m , m = 1, 2, through

c ε m (x) = ε q (0) c m     x 1 -iε -ε a - i -ε -θ x 3 + a + i -ε -θ x 3 /2 εq i (-ε -θ x 3 ) x 2 -jε -ε a - j -ε -θ x 3 + a + j -ε -θ x 3 /2 εq j (-ε -θ x 3 )     ,
Then, using curvilinear coordinates, the ergodic result (2) and making some computations as before, we get the result.

Our main result in this subsection reads as follows.

Theorem 14 The sequence (u ε ) ε , where u ε is the solution of [START_REF] Bear | Modeling groundwater flow and pollution[END_REF], converges in the topology τ 1 to the solution u + 0 , u - 0 of the variational formulation

∀ (u + , u -) ∈ H 1 Γ + (Ω + ) × H 1 Γ -Ω - h : Ω + D∇u + 0 • ∇u + dx + Ω - h D∇u - 0 • ∇u -dx + Ω + v + 0,d • ∇u + 0 u + dx + Ω - h v - 0,d • ∇u - 0 u -dx +h q 2 (0) Σ D * ∇ τ u + 0 • ∇ τ u + dx ′ -h q 2 (0) Σ ((v 0 ) τ • ∇ τ u + ) u + 0 dx ′ + D h 1/q 2 Σ u + 0 (u --u + ) -u - 0 (u --u + ) exp p + 0 -p - 0 D q 2 1/q 2 k 0 µ dx ′ = |Z 1 | Ω + f u + dx, (30) 
where v + 0,d and v - 0,d are the limit velocities appearing in Remark 7 and p + 0 and p - 0 are the pressures appearing in Corollary 10.

Before starting the proof of Theorem 14, let us introduce the constant "vertical" velocity (v ε,ij ) 3 in the fissure Y ε,ij (ω), (i, j) ∈ I ε (ω), defined as

(v ε,ij ) 3 = p + 0,ε,ij -p - 0,ε,ij k 0 µh q 2 1/q 2 , (31) 
where p + 0,ε,ij = p + 0 (iε, jε, 0), p - 0,ε,ij = p - 0 (iε, jε, -h), p + 0 and p - 0 being the pressures defined in Corollary 10 (compare to (26)). Inside the fissure Y ε,ij (ω), for every (i, j) ∈ I ε (ω), we define, for every

u ∈ C 2 Ω satisfying u = 0 on Γ = Γ + ∪ Γ - ūε,ij (x 1 , x 2 , x 3 ) = u + (x 1 , x 2 , 0) + (u -(x 1 , x 2 , -h) -u + (x 1 , x 2 , 0)) 0 x 3 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt 0 -h 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt , (32) 
where q i (s) is defined in (21) 2 . We finally define the test-function u 0,ε through

u 0,ε (x) =    u + (x) in Ω + , ūε,ij (x) in Y ε,ij (ω) , ∀ (i, j) ∈ I ε (ω) , u -(x) in Ω - h . (33) 
The properties of this test-function are gathered in the following result.

Lemma 15

1. One has:

               -D ∂ ∂x 3 q i q j -ε -θ x 3 ∂ ūε,ij ∂x 3 (x) -(q i q j ) -ε -θ x 3 (v ε,ij ) 3 ∂ ūε,ij ∂x 3 (x) = 0 in Y ε,ij (ω) , ūε,ij (x 1 , x 2 , 0) = u + (x 1 , x 2 , 0) , on Γ + 0,ε,ij (ω) , ūε,ij (x 1 , x 2 , -h) = u -(x 1 , x 2 , -h) on Γ - h,ε,ij (ω) . ( 34 
) 2. For every ε > 0, u 0,ε ∈ H 1 Γ + ∪Γ -(Ω ε (ω)).
3. The sequence (u 0,ε ) ε τ 1 -converges to u.

Proof. 1. This is an immediate consequence of the definition (32) of ūε,ij . 2. This is an immediate consequence of the construction (33) of u 0,ε , in Ω + and in Ω - h , and through the "boundary conditions" (34) 2,3 satisfied by u 0,ε at the ends of the fissure Y ε,ij (ω).

3. From this construction, we deduce that (u 0,ε

| Ω + ) ε (resp. u 0,ε | Ω - h ε ) converges to u + (resp. u -) in H 1 (Ω + )-strong (resp. H 1 Ω - h -strong).
Moreover, for every ϕ ∈ C 0 (R 3 ), we define

A ε = Yε(ω) ϕ 0 x 3 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt 0 -h 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt dx.
One has

lim ε→0 A ε = lim ε→0 (i,j)∈Iε(ω) 1 0 -h 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt × 0 -h ϕ (εi, εj, x 3 )     0 x 3 1 q i (-ε -θ t) q j (-ε -θ t) × exp - t (v ε,ij ) 3 D dt     q 2 -ε -θ x 3 dx 3 and lim ε→0 A ε = lim ε→0 (i,j)∈Iε(ω) 1 0 -h 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt ×ε θ 0 -hε -θ ϕ εi, εj, ε θ ξ     0 ε θ ξ 1 q i (-ε -θ t) q j (-ε -θ t) × exp - t (v ε,ij ) 3 D dt     q 2 (ξ) dξ = 0. Thus lim ε→0 Yε(ω) ϕ u -(x 1 , x 2 , -h) -u + (x 1 , x 2 , 0) 0 -h 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt × 0 x 3 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dtdx = 0,
from which we deduce that lim ε→0 Yε(ω) ϕu 0,ε dx = h q 2 (0)

Σ u + (x ′ , 0) ϕ (x ′ , 0) dx ′ .
Thus the sequence (u 0,ε ) ε τ 1 -converges to u. Proof of Theorem 14. Thanks to the boundary conditions (6) 4,7 , we have

Ω ε f (ω) (v ε • ∇u ε ) u 0,ε dx = - Ω ε f (ω) (v ε • ∇u 0,ε ) u ε dx.
Using Lemma 15 and the "compensated compactness" result (see [START_REF] Murat | Compacité par compensation[END_REF]), we immediately deduce the following limits

lim ε→0 Ω + (v ε • ∇u ε ) u 0,ε dx = Ω + v + 0,d • ∇u + 0 u + dx, lim ε→0 Ω - h (v ε • ∇u ε ) u 0,ε dx = Ω - h v - 0,d • ∇u - 0 u -dx, u 0,ε being independent of ε in Ω + ∪ Ω - h . We then write D Yε(ω) ∇u ε • ∇u 0,ε dx - Yε(ω) (v ε • ∇u 0,ε ) u ε dx = D Yε(ω) ∇ τ u ε • ∇ τ u 0,ε dx - Yε(ω) ((v ε ) τ • ∇ τ u 0,ε ) u ε dx +D Yε(ω) ∂u ε ∂x 3 ∂u 0,ε ∂x 3 dx - Yε(ω) (v ε,s ) 3 ∂u 0,ε ∂x 3 u ε dx. A direct computation gives lim ε→0 D Yε(ω) ∂u ε ∂x 3 ∂u 0,ε ∂x 3 dx - Yε(ω) (v ε,s ) 3 ∂u 0,ε ∂x 3 u ε dx = lim ε→0 (i,j)∈Iε(ω) Y ε,ij (ω) D ∂u ε ∂x 3 ∂ ūε,ij ∂x 3 q i q j -(v ε,s ) 3 ∂ ūε,ij ∂x 3 u ε q i q j dx = lim ε→0           (i,j)∈Iε(ω) Y ε,ij (ω) -D ∂ ∂x 3 q i q j ∂ ūε,ij ∂x 3 -(v ε,s ) 3 q i q j ∂ ūε,ij ∂x 3 u ε dx -D (i,j)∈Iε(ω) Γ + 0,ε,ij (ω) ∂ ūε,ij ∂x 3 | x 3 =0 q i q j (0) u ε dx ′ +D (i,j)∈Iε(ω) Γ - h,ε,ij (ω) ∂ ūε,ij ∂x 3 | x 3 =-h q i q j -hε -θ u ε dx ′           . Hence lim ε→0 D Yε(ω) ∂u ε ∂x 3 ∂u 0,ε ∂x 3 dx - Yε(ω) (v ε,s ) 3 ∂u 0,ε ∂x 3 u ε dx = lim ε→0           (i,j)∈Iε(ω) Y ε,ij (ω) (v ε,ij ) 3 -(v ε,s ) 3 ∂ ūε,ij ∂x 3 q i q j u ε dx -D (i,j)∈Iε(ω) Γ + 0,ε,ij (ω) q i q j (0) ∂ ūε,ij ∂x 3 | x 3 =0 u + ε dx ′ -D (i,j)∈Iε(ω) Γ - h,ε,ij (ω) ∂ ūε,ij ∂x 3 | x 3 =-h q i q j -hε -θ u - ε dx ′           . Using (34) 1 , we have lim ε→0 D Yε(ω) ∂u ε ∂x 3 ∂u 0,ε ∂x 3 dx - Yε(ω) (v ε,s ) 3 ∂u 0,ε ∂x 3 u ε dx = Dlim ε→0 (i,j)∈Iε(ω) Γ + 0,ε,ij (ω) (u -(x ′ , -h) -u + (x ′ , 0)) 0 -h 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt u + ε (x ′ , -h) dx ′ -Dlim ε→0 (i,j)∈Iε(ω) Γ - h,ε,ij (ω) (u -(x ′ , -h) -u + (x ′ , 0)) exp h (v ε,ij ) 3 D 0 -h 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt u - ε (x ′ , 0) dx ′ .
Introducing the change of variables s = -ε -θ t, we get

0 -h 1 q i (-ε -θ t) q j (-ε -θ t) exp - t (v ε,ij ) 3 D dt = h ε -θ h ε -θ h 0 1 q i (s) q j (s) exp ε θ s (v ε,ij ) 3 D ds → ε→0 h 1/q 2 ,
using the ergodicity property (2). Thus, using the proof of Lemma 6, we get

lim ε→0 D Yε(ω) ∂u ε ∂x 3 ∂u 0,ε ∂x 3 dx - Yε(ω) (v ε,s ) 3 ∂u 0,ε ∂x 3 u ε dx = D h 1/q 2 Σ u + 0 (u --u + ) -u - 0 (u --u + ) exp p + 0 -p - 0 D q 2 1/q 2 k 0 µ dx ′ .
We now compute, using Lemma 13

lim ε→0 D Yε(ω) ∇ τ u ε • ∇ τ u 0,ε dx - Yε(ω) ((v ε ) τ • ∇ τ u 0,ε ) u ε dx = lim ε→0 Yε(ω) D * ∇ τ u ε • (∇ τ u) 0,ε dx - Yε(ω) (v ε ) τ • (∇ τ u) 0,ε u ε dx = h q 2 (0) Σ D * ∇ τ u + 0 • (∇ τ u + ) dx ′ -h q 2 (0) Σ ((v 0 ) τ • (∇ τ u + )) u + 0 dx ′ ,
which leads to the limit variational formulation (30). The problem associated to this limit variational formulation (30) is given in the following Corollary.

Corollary 16

The sequence (u ε ) ε , where u ε is the solution of ( 5), τ 1 -converges to the solution u 0 of the problem

                                       -div D∇u + 0 + v + 0,d • ∇u + 0 = |Z 1 | f in Ω + , -div D∇u - 0 + v - 0,d • ∇u - 0 = 0 in Ω - h , -D∇u + • e 3 -h q 2 (0) div τ D * ∇u + 0 +h q 2 (0) (v 0,f ) τ • ∇ τ u + 0 = D h 1/q 2 (0) u + 0 (., 0) -u - 0 (., -h) A on Γ + 0 , D * ∇ τ u + 0 • n τ = 0 on ∂Σ, D∇u - 0 • e 3 = -D h 1/q 2 (0) u + 0 (., 0) -u - 0 (., -h) A on Γ - h , u + 0 = 0 on Γ + , u - 0 = 0 on Γ -, (35) 
where A = exp

p + 0 -p - 0 D q 2 1/q 2 k 0 µ , u 0 | Ω + =: u + 0 and u 0 | Ω - h =: u - 0 .
Proof. This is an immediate consequence of the limit variational formulation (30).

Remark 17 Consider the case of a dispersive contaminant with a diffusion coefficient

D (x, ω) defined through D (x, ω) = D mol + D disp (x, ω) with D disp (x, ω) = D disp (x) in Ω + ∪ Ω - h , D disp x 1 , x 2 , -ε -θ x 3 + α ij (ω) , ω in Y ε,ij (ω) ,
where (α ij (ω)) i,j∈Z is a sequence of random variables such that |α ij (ω)| ≤ C, ∀i, j ∈ Z, with probability 1, C being some non-random constant. We suppose that D is continuous with respect to the variable x and, with probability 1, d 0 ≤ D (x, ω) ≤ d 1 , where d 0 and d 1 are positive and non-random constants. We suppose that D disp is a stationary random process.

Let u ∈ C 2 Ω be such that u = 0 on Γ. We build the modified test-function ūε,ij inside the fissure Y

ε,ij (ω) ūε,ij (x 1 , x 2 , x 3 ) = u + (x 1 , x 2 , 0) + (u -(x 1 , x 2 , -h) -u + (x 1 , x 2 , 0)) 0 x 3 exp -t (v ε,ij ) 3 q i (-ε -θ t) q j (-ε -θ t) D * (-ε -θ t) dt 0 -h exp -t (v ε,ij ) 3 q i (-ε -θ t) q j (-ε -θ t) D * (-ε -θ t) dt , where (D * ) (s) = (D mol + D disp (iε, jε, s + α ij (ω) , ω)).
Implementing this test-function in the above process, one gets at the limit a problem similar to (35), except that 1/q 2 (0) is now replaced by 1/D * (.) q 2 (0) , where 1/ (D * q 2 (0)) is the mathematical expectation of 1/ (q 2 (t) D * (., t)), with respect to the measure probability P , and b j is replaced by the Z-periodic solution b j of the problem div (D (x) (e j + ∇b j )) = 0 in Z 1 j = 1, 2, 3, (∇b j + e j ) • n = 0 on S, and c m by div (D (x, ω) (e m + ∇c m )) = 0 in Z ′ m = 1, 2, (∇c m + e m ) • n = 0 on ∂Z ′ .

4.3

The asymptotic behaviour in the case of a reactive contaminant (R > 0)

In this subsection, we consider the reaction-diffusion equation ( 5) with first-order reaction, that is with R > 0 (see for example [START_REF] Bear | Modeling groundwater flow and pollution[END_REF], [START_REF] Hornung | Diffusion, convection, adsorption and reaction of chemicals in porous media[END_REF]). We denote w ε,ij the solution of the differential equation

           -D ∂ ∂x 3
(q i q j ) -ε -θ x 3 ∂w ε,ij ∂x 3 (x 3 ) -(q i q j ) -ε -θ x 3 v ε,ij ∂w ε,ij ∂x 3 (x 3 ) +R (q i q j ) -ε -θ x 3 w ε,ij (x 3 ) = 0, w ε,ij (0) = 1, w ′ ε,ij (0) = 0 (36) and z ε,ij the solution of                -D ∂ ∂x 3 (q i q j ) -ε -θ x 3 ∂z ε,ij ∂x 3 (x 3 ) -(q i q j ) -ε -θ x 3 v ε,ij ∂z ε,ij ∂x 3 (x 3 ) +R (q i q j ) -ε -θ x 3 z ε,ij (x 3 ) = 0, z ε,ij (0) = 0, z ′ ε,ij (0) = 1 q i q j (0) , (37) where v ε,ij is the velocity defined in (31). We have the following estimates.

Proposition 18 There exist non-random positive constants C 0 and C 1 independent of ε and of i and j, such that: w ′ ε,ij (x 3 ) (q i q j ) -ε -θ x 3 exp

1. ∀ε > 0, ∀ (i, j) ∈ I ε (ω), ∀x 3 ∈ [-h, 0] : 1 ≤ w ε,ij (x 3 ) ≤ C 1 and -C -1 0 x 3 ≤ z ε,ij (x 3 ) ≤ C 1 .
x 3 v ε,ij D - R 1/q 2 (0)
sinh Rx 3 = 0, lim ε→0 z ′ ε,ij (x 3 ) (q i q j ) -ε -θ x 3 exp

x 3 v ε,ij D -cosh Rx 3 = 0,
where R = R q 2 (0) 1/q 2 (0) /D.

Proof. 1. Multiplying the equations ( 36) and (37) by exp (x 3 v ε,ij /D) and integrating by parts the first term of these equations, we obtain the Voltera type integral equations

                               w ε,ij (x 3 ) = R D x 3 0 (q i q j ) -ε -θ s exp s v ε,ij D w ε,ij (s) ×   x 3 s exp -ζ v ε,ij D (q i q j ) (-ε -θ ζ) dζ   ds + 1, z ε,ij (x 3 ) = R D x 3 0 (q i q j ) -ε -θ s exp s v ε,ij D z ε,ij (s) ×   x 3 s exp -ζ v ε,ij D (q i q j ) (-ε -θ ζ) dζ   ds + x 3 0 exp -ζ v ε,ij D (q i q j ) (-ε -θ ζ) dζ, (38) 
(which can be solved by the method of successive approximations). Taking into account the hypothesis (1), we obtain the first point of the Proposition. 2. Consider the integral equations      w ij (x 3 ) = R D q 2 (0) 1/q 2 (0)

x 3 0 (x 3 -s) w ij (s) ds + 1, z ij (x 3 ) = R D q 2 (0) 1/q 2 (0)

x 3 0 (x 3 -s) z ij (s) ds + x 3 1/q 2 (0) , whose solutions are w ij (x 3 ) = cosh Rx 3 and z ij (x 3 ) = 1/q 2 (0) sinh Rx 3 / R respectively. The differences w ε,ij -w ij and z ε,ij -z ij satisfy integral equations of Voltera type. Using the ergodic result (2), we prove the convergences Thus ∂u 0,ε ∂x 3 | x 3 =-h (q i q j ) hε -θ ∂u 0,ε ∂x 3 | x 3 =-h (q i q j ) hε -θ u - ε dσ

=   u + (x 1 , x 2 , 0) w ′ ε,ij (-h) + u -(x 1 , x 2 , -h) -u + (x 1 , x 2 , 0) w ε,ij (-h) z ε,ij (-h) z ′ ε,ij (-h)   (q i q j ) hε -θ ∼ ε→0            -u + (x 1 , x 2 , 0) exp (hv ε,ij /D) (q i q j ) (ε -θ h) R 1/q 2 (0) sinh Rh -R u -(x 1 , x 2 , -h) -u + (x 1 , x 2 , 0) cosh Rh 1/q 2 (0) sinh Rh × exp (hv ε,ij /D) (q i q j ) (ε -θ h) cosh Rh            (q i q j ) hε -θ = R 1/q 2 (0) exp (hv ε,ij /D)         -u + (x 1 , x 2 , 0) sinh Rh - u -(x 1 , x 2 , -h) -u + (x 1 , x 2 , 0) cosh Rh sinh Rh × cosh Rh         = R
= -1 1/q 2 (0) Σ R sinh Rh u -cosh Rh -u + exp p + 0 -p - 0 D 1/q 2 k 0 µ u - 0 dx ′ .

Figure 2 :

 2 Figure 2: The porous media and the fissures.

2 .

 2 ∀ (i, j) ∈ I ε (ω), ∀x 3 ∈ [-h, 0]                      lim ε→0 w ε,ij (x 3 )cosh Rx 3

lim ε→0 |w ε,ij (x 3 )

 3 -w ij (x 3 )| = lim ε→0 |z ε,ij (x 3 ) -z ij (x 3 )| = 0, uniformly with respect to x 3 ∈ [-h, 0].The last estimates for the derivatives follow from the derivation of the equations (38).

1/q 2

 2 (0) sinh Rh exp (hv ε,ij /D) ×   u + (x 1 , x 2 , 0) -(sinh) 2 Rh + (cosh) 2 Rh -u -(x 1 , x 2 , -h) cosh Rh 2 (0) sinh Rh exp (hv ε,ij /D) u + (x 1 , x 2 , 0) -u -(x 1 , x 2 , -h) cosh Rh , whence lim ε→0 (i,j)∈Iε(ω) Γ - h,ε,ij (ω)

  almost surely.2. Let (w ε ) ε be a sequence such that sup ε Yε(ω) (w ε ) 2 dx < +∞. There exists a subsequence, still denoted in the same way, such that

	lim ε→0 Yε(ω)

* This work has been supported by the Comité Mixte Franco-Marocain under the PHC MA/08/183.

Let u ∈ C 2 Ω be such that u = 0 on Γ + ∪ Γ -. We here define the test-function ūε,ij inside the fissure Y ε,ij (ω) through ūε,ij (x) = u + (x 1 , x 2 , 0) w ε,ij (x 3 ) + u -(x 1 , x 2 , -h) -u + (x 1 , x 2 , 0) w ε,ij (-h) z ε,ij (-h) z ε,ij (x 3 ) .

We finally define the test-function u 0,ε in the same way as (33). It is easily proved that the sequence (u 0,ε ) ε τ 1 -converges to u. On the other hand, we compute

We have the following result.

Lemma 19 One has:

Proof. Using the estimates of Proposition 18, we can replace, when ε is small enough,

Similarly, we get lim

which leads to the desired limit. Now, using the same methods as in the above subsection, we obtain the following Theorem.

Theorem 20 The sequence (u ε ) ε , where u ε is the solution of ( 5), τ 1 -converges to the solution u 0 of the problem