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Abstract

This paper is devoted to prove the controllability to trajectories of a system of n one-dimensional
parabolic equations when the control is exerted on a part of the boundary by means of m controls.
We give a general Kalman condition (necessary and sufficient) and also present a construction and
sharp estimates of a biothorgonal family in L?(0,T;C) to {t/e "},
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1. Statement of the problem. Main results

This work is devoted to the study of the controllability properties of the following parabolic
system

Yt = Yoz + Ay in Q= (0,7) x (0,7),
y(0,-) = Bv, y(m,-)=0 on (0,7), (1)
y('v 0) =% in (077T)7

where T > 0 is given, A € L(C") and B € L(C™;C"™) are two given matrices and yo €
H~1(0,7;C") is the initial datum. In system (1), v € L?(0,T;C™) is a control function (to
be determined) which acts on the system by means of the Dirichlet boundary condition at point
z=0.

The aim of this work is to give a necessary and sufficient condition for the exact controllability to
trajectories of system (1). Let us remark that, for every v € L?(0,T;C™) and yo € H~1(0,7;C"),
system (1) possesses a unique solution (defined by transposition; see Section 2) which satisfies

y € L*(@Q;C") N CO([0,T); H (0,75 C™))

and depends continuously on the data v and yo, i.e., there exists a constant C = C(T') > 0 such
that
IyllL2(@sem) + lyllooo,rys-10,mcmy) < C (lyollar-1(0,mcm) + vl z20,750m)) -
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It will be said that system (1) is approximately controllable in H~1(0,7;C") at time T if for
every 4o, yq € H1(0,7;C") and for every ¢ > 0, there exists a control v € L?(0,T; C™) such that
the solution y to (1) satisfies

ly(,T) = yallg-1(0,7cn) S €

Also, it will be said that system (1) is exactly controllable to trajectories at time T if, for every
initial datum yo € H~1(0,7;C") and every trajectory § € L?(Q;C") n C°([0,T]; H~1(0,7;C"))
of system (1) (i.e., a solution to (1) associated to fixed v € L*(0,T;C™) and gp € H (0, m;C")),
there exists a control v € L?(0,T;C™) such that the corresponding solution y of (1) satisfies

y(aT) = g(vT) in Hﬁl(oaﬂ—;(cn)'

Thanks to the linear character of system (1), this last property is equivalent to the null control-
lability at time 7. That is, for every yo € H*(0,7;C") there exists a control v € L?(0,T;C™)
such that the solution y to (1) satisfies

y(-,T) =0in H(0,7;C™).

Tt is interesting to point out that we want to control the system (1), which has n equations,
by means of the control v, which has m components. Of course, the most interesting case is the
case in which the number of controls is less than the number of equations: m < n.

Nowadays, the controllability properties of system (1) are well known in the scalar case, i.e.,
in the case n = 1 (see for instance [11, 12, 28, 10, 24, 16, 15]). Thus, when n = 1 and B # 0,
system (1) are exactly controllable to trajectories, null controllable and approximately controllable
in H=1(0,7;C") at time T (see for instance [24, 16]). In fact, the boundary controllability results
for system (1) can be easily obtained from the corresponding distributed controllability results
and vice versa. As it is proved in [13, 14], the situation is quite different when n > 2. More details
will be given below.

On the other hand, controllability of linear ordinary differential systems is well-known. In
particular we have at our disposal the famous Kalman rank condition (see for example [22, Chapter
2, p. 35]), that is to say, if n,m € N with n,m > 1 and A € L(C") and B € L(C™;C"), then the
linear ordinary differential system Y’ = AY + Bu is controllable at time T' > 0 if and only if

rank [A| B] = rank [A" " 'B| A" ?B| --- | B] = n. (2)

In the framework of distributed controllability, an extension of this algebraic condition to a
class of coupled second order parabolic equations has been obtained in [5] and [4]. Let us describe
the Kalman condition and the result of controllability proved in [5]. Let R be a scalar second order
elliptic selfadjoint operator. Let us also consider the matrices D = diag(dy,ds,...,d,) € L(R™)
(where d; > 0 for every i : 1 <i<n), A€ L(R") and B € L (R™;R"). Let 2 be a bounded and
regular domain of R? and w CC Q a nonempty open subset. Denoting by L the operator given
by L := DR + A, the authors define the Kalman operator associated with (L, B) by the matrix
operator

K :=[L|B]: D(X) c L3 (Q)"™ — L*(Q)", with
D(X) := {u € L3 Q)" : Ku € L*(Q)"},

where

[L|B)=[L""'B|L"*B]|...|LB|B].
They prove that the following system
Oy = (DR+ A)y+ Bvl, in Qr = Q x (0,7),
y=0on Xpr =002 x (0,7), y(-,0) =yo(:) in Q,
is null controllable if and only if

Ker (X*) = {0}. (4)
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Let us point out that when D = I;, this last condition is equivalent to the algebraic Kalman
condition (2). In fact, in [4] the authors study this case and consider an operator L and coupling
matrices A and B which depend on t.

In [13, 14], the authors study the controllability properties of system (1) when n = 2 and m = 1.
They prove that, unlike of system (3) with D = I, the algebraic Kalman rank condition (2) is
not a sufficient condition for the null controllability of system (1). They also exhibit an additional
condition which is equivalent to the exact controllability to trajectories of system (1) (n = 2
and m = 1): Denote by p1 and po the eigenvalues of A*. Then, (1) is exactly controllable to
trajectories at any time T if and only if rank [A | B] = 2 and

p1 — pg # k* =12, Vk,1 € N with k # 1.

This work is an extension of both [5] and [14]. For n, m € N*, we give a suitable extension of the
finite-dimensional Kalman rank condition. We show that the exact controllability to trajectories
for system (1) is equivalent to this Kalman condition (see Theorem 1.1).

In the last ten years, the study of the controllability properties of coupled parabolic systems
has had an increasing interest (see for instance [30], [2] [8], [6], [3], [18], [20], [4], [5], [19], [23]
and [9]). In these papers, almost all the results have been established for 2 x 2 systems where the
distributed control is exerted on one equation (n = 2 and m = 1). The most general results in
this context seem to be those in [19], [4] and [5]. In [19], the authors study a cascade parabolic
system of n equations (n > 2) controlled with one single distributed control.

To our knowledge, the unique works that study the boundary controllability problem for general
coupled parabolic systems are [13] and [14]. It is also worth mentioning the paper [1] where a
boundary controllability result for a particular hyperbolic coupled system is proved.

In this work we will use the following notation: Given z € L(CN,CM), N,M > 1, 2* €
L(CM CN) stands for the conjugate transpose of z. If N = M =1, i.e., if 2 = a + bi € C, then
z* =% = a — bi is the complex conjugate of z.

Let us now precise our controllability result.

Tt is well known that the operator —0,, on (0, 7) with homogenous Dirichlet boundary condi-
tions admits a sequence of eigenvalues and normalized eigenfunctions given by

e = k2, dp(x) = \/zsinka:, k>1, ze€(0,m) (5)

which is a Hilbert basis of L*(0,7). Thus, if y € L?(0,7;C") there exists a unique sequence
{yk}x>1 C C" such that
y= § Yk Pk -

k>1

Let L: D(L) C L?(0,7;C") — L?(0,7; C") the unbounded linear operator defined by
L=130.+A, D(L)=H?*0,7;C") N H0,7m;C").
Its adjoint operator is given by
L* =140,, +A*, D(L*) = H*(0,7;C") N H (0, m;C").

Then for any y = >, yx¢r € D(L) = D(L*), we have

Ly=>Y [(=Mela+ A el e, L'y=> [(=Mpla+ A") ] o

E>1 k>1
In what follows, we set:
Lp=-XMIqg+AcL(C") and Lj = = eIy + A" € L(C"), VE>1. (6)

3



For k > 1, let us introduce the matrices

Li 0 0
B 0 Ly - 0

By=| : |es@mc™), Li=| | L | ekE@, (7)
B 0 0 Ly

and let us write the Kalman matrix associated with the pair (L, Bg):
Ki = [Lk | Bx] = [Br | Lk By | L3By | -+ | L7F 2By, | L5 71 By € L(C™k C™F).

The main result of this work is the following characterization of the exact controllability to tra-
jectories at time 7' of sytem (1):

Theorem 1.1. Let us fir A € L(C™) and B € L(C™;C"). Then, system (1) is ezactly controllable
to trajectories at any time T if and only if the pair (Ly, By) is controllable for all k > 1, i.e., if
and only if

rank X, = nk, Vk>1. (8)

Remark 1.1. 1. Actually, condition (8) only has to be checked for a frequency. In Corol-
lary 3.3, we will show that there exists a positive integer kg, only depending on A, such that
rank Ky, = nko if and only if rank Kj = nk for every k > 1.
2. Note that the algebraic Kalman condition, rank [A | B] = n, corresponds to k = 1 and then,
it is a necessary condition for the exact controllability to trajectories of system (1).
3. We will see that when B € C", i.e., when m = 1 (one control force), condition (8) is
equivalent to the algebraic Kalman condition, rank [A | B] = n and

i — g # e — N, Y(k, 1), (1,j) € Nx {1,2,...,p} with (k,7) # (L, 7),

where {1;}1<i<p C C is the set of distinct eigenvalues of A*. In this sense, Theorem 1.1
generalizes the results obtained in [13] and [14].

4. We will also see that if rank B = n (and therefore m > n), then the pair (A, B) fulfills
condition (8) and system (1) is exactly controllable to trajectories at time 7. This boundary
controllability result has been obtained in [14] in the N-dimensional case.

5. From Theorem 1.1 we can conclude that, unlike the scalar case, n = 1, the distributed con-
trollability property of parabolic systems in not equivalent to the boundary control property:
the Kalman rank condition is a necessary condition for the controllability of both systems but
is not a sufficient condition for the boundary controllability of system (1). This shows that
there is an important difference between the controllability properties for scalar parabolic
problems and coupled parabolic systems. [ ]

The sufficient part of Theorem 1.1 is proved through a moment problem. This method has
been successfully used to prove the boundary controllability problem for the scalar heat equation
(see [11]). Let us briefly remember this method in the case of the scalar heat equation.

Let us fix yo € H~1(0, 7). Then, there exists v € L?(0,7T) such that the solution to

Yt — Yza = 0 in Qv
y(07 ) =, y(ﬂ-7 ) =0 on (OvT)v
y(70) =%Yo in (Oaﬂ-)v

satisfies y(-,T) = 0 in (0, 7) if and only if v € L?(0,T) satisfies

T

—<Z/0767A’“T¢k>H71(o,w),H3(o,w) Z/ v(t)e T =09, 4,(0) dt, Yk > 1.
0
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In the previous equality Ay and ¢y are given in (5).
Using the Fourier decomposition of o, ¥o = Y~ Yo,k¢k, it will be sufficient to find a control

v € L?(0,T) such that
2 T
/ﬂ/—/ eIty dt = —e M Ty VE > 1.
T™Jo

This problem is called a moment problem.
Let us recall that a family {py}x>1 C L%(0,T) is biorthogonal to {e=**!};>1 if it satisfies

T
/ e My (t) = 0p, V(K1) k1> 1.
0

In [11] and [12], the authors solve the previous moment problem by proving the existence of a
biorthogonal family {py }r>1 to {e=**};>1 which satisfies the additional property: for every € > 0
there exists a constant C(e,T') > 0 such that

okl 220,y < Cl(e,T)e .

In fact, the control v is obtained as a linear combination of {py}r>1 and the previous bounds are
used to prove that this combination converges in L?(0,T).

In this paper we will follow the previous technique for proving the sufficient part of Theorem 1.1.
In the case considered here, we have two difficulties: first, the control v may act only on some
of the n equations of the system (in general m < n); second, the spectrum of the operator
L* = 0,145 + A* may be complex with eigenvalues of multiplicity greater than 1. This leads to a
moment problem associated to families as {t/e "}, ~q g<j<,—1 with 7 > 1 a positive integer.

In [14], the authors considered the case n = 2 and proved the existence of a suitable family
{qr, Gx : k > 1} biorthogonal to {e~**t, te=®t:k > 1}. We extend this result to any n > 1 and
to a large class of sequences {Aj}r>1 C C. To our knowledge, this construction produces a new
and interesting result by itself and it is our second main result.

Let us fix 7 > 1, a positive integer, and let us consider a sequence of complex numbers
A={Ar};~; CCL={AeC: R\ > 0}. Throughout this work we will use the notation:

erj(t) =tle ™ vt >0,

withk>1land j:0<5<n—1.
Given T € (0, 00], we define

2 .
A(A,n,T) = span e, k=1, 025 <n -1 79,

Let us recall that the family {¢ ; }r>1,0<j<n—1 C A(A, 7, T) is biorthogonal to {ex ; } x>1,0<j<n—1
if the equalities

T
(ek,ja Wl,i)LQ(O,T;C) = / tjeiAktsazk,i(t) dt = 6k‘,l6ij7 V(k,]), (lvl) : kal Z 17 0 S 17] S n—- 17 (9)
0
holds.
Our second main result is the following:

Theorem 1.2. Let us fix n > 1, a positive integer, and T € (0,00]. Assume that {Ay},~, is a
sequence of complex numbers such that, B

%AkZ(ﬂAkL ‘Ak—Al|2p|k’—l|, Vk,ZZL
S L <, (10)



for two positive constants § and p. Then, there exists a family {pr ;};~, 0<j<n—1 C A(An,T)
biorthogonal to {ey ;}, 0<j<n—1 such that, for every e > 0, there exists C(e,T) > 0 for which

H@k,jHLz(O,T;(C) < C(EaT>eE§RAk7 V(kvj) tk > 1? 0< .7 < n— 1. (11)

|

The plan of the paper is the following: In Section 2, we will address some preliminary results. In
Section 3 we will study the Kalman condition (8) in some interesting cases. Section 4 concerns one
of the main results, the construction and estimates of a biorthogonal family (proof of Theorem 1.2).
Section 5 is devoted to the proof of Theorem 1.1. Finally, in Section 6 we give some comments
and open problems.

2. Preliminary results

We devote this section to recalling some known results that will be used below.
We begin by recalling some results for system (1). First, we introduce the concept of solution
by transposition to system (1). To this end, let us consider the linear backward in time problem

—pt — Pee = A0 +g in Q,
©(0,:) =0, (m-)=0 1in (0,7), (12)
o(-,T)=0 in (0,1),

where g € L?(Q;C") is given. It is well known that, for every g € L?(Q;C"), this problem has a
unique strong solution

¢ € L*(0,T; H*(0,7;C™)) N C°([0, T]; H} (0, 7; C™)),
which depends continuously on g, i.e., there exists a constant C = C(T) > 0 such that

H<P|\L2(0,T;H2(o,7r£n)) + ||90||CO([O,T];H(}(O,‘n’;(C”)) < CHQHL2(Q;C")-
Thanks to the previous properties, we can introduce the following definition:

Definition 2.1. Let yo € H'(0,7;C") and v € L*(0,T;C™) be given. It will be said that
y € L?(Q;C™) is a solution by transposition to (1) if, for each g € L*(Q;C™), one has

T
/ / (y. g)cr dadi = (yo, o[-, 0)) + / (0(t) . B2 (0, ))cm dt,
Q 0

where @ is the solution to (12) associated to g and (-,-), (-,-)cn and (-,-)cm stands for, resp., the
usual duality pairing between H1(0,7;C") and H}(0,7;C") and the scalar products in C" and
c™. [ |

We can now establish the existence and uniqueness of solution to system (1). One has:

Proposition 2.2. Assume that yo € H-1(0,m;C") and v € L*(0,T;C™) are given. Then prob-
lem (1) admits a unique solution by transposition y that satisfies:

y € L*(Q;C")nCO([0,T); H1(0,mC")), g € L*(0,T; D(—A;CMY),

Yt — You = Ay in L*(0,T; D(=A;C")"),

y(-,0) =yo in H0,m;C") and

||yHL2(Q;C") =+ ”ytHLQ(O,T;D(fA;(Cn)’) <C (||Z/0||H71(o,7r;<c”) + ||UHL2(O,T;C7")) s

for a positive constant C = C(T). n



This result can be proved using standard arguments. Anyway, for a detailed proof of the result,
see for instance [14].

As it is well-known, the controllability properties of system (1) are equivalent to appropriate
properties of the following adjoint system:

—Pt = Paa + A*(,O n Q,
90(0’ ) =0, QD(W, ) =0 on (07T)a (13)
QO(aT) = ¥o in (Oa 7T)a

where ©° € H}(0,7;C"). Let us observe that, for every o € Hg (0, 7;C"), system (13) admits a
unique solution ¢ € L%(0,T; H?(0,7;C™)) N C°([0,T]; Hi(0,7;C™)) and, for a positive constant
C = C(T), one has
lellz2(0,7:m2(0,m:cn)) + l@llco (o, 11,1523 0,757y < Clloll ma 0,m0m)-
The solutions y to problem (1) and ¢ to the adjoint system (13) are related by means of the

following result

Proposition 2.3. Let yo € H 1(0,m;,C"), 9o € H}(0,m;C") and v € L*(0,T;C™) be given.
Let y and ¢ be, resp., the solution to (1) associated to yo and v and the solution to the adjoint
system (13) associated to wo. Then:

<y('»t)790(~,t)>—<yo,<p(~,0)>=/0 (v(s), B"¢x(0,8))cm ds vt €0, T]. (14)

This proposition is an easy consequence of Proposition 2.2 and the details are left to the reader.
As said above, the controllability properties of (1) can be characterized in terms of appropriate
properties of the solutions to (13). More precisely, we have:

Proposition 2.4. The following properties are equivalent:
1. There ewists a positive constant C such that, for any yo € H~1(0,7;C"), there ewists a
control v € L?(0,T;C™) such that
2 2
||UHL2(0,T;<Cm) < C||y0HH*1(O,7r;(C")

and the associated solution to (1) satisfies y(-,T) = 0 in H=1(0,m;C").
2. There exists a positive constant C such that, for any trajectory y € C°([0,T]; H=1(0,m;C"))
of (1) and any yo € H=1(0,7;C"), there exists a control v € L*(0,T;C™) such that

||U — 6”%2(0,71;(:7?1) < CH:‘/O - :/U\( ?O)”%I*I(O,W;C")

and the associated solution y to (1) satisfies y(-,T) = y(-,T) in H~1(0,7;C").
3. There exists a positive constant C' such that the observability inequality

T
oGOy 0meny < C [ 1B 0P (15)

holds for every wo € H(0,m;C"). In (15), ¢ is the solution to the adjoint system (13)
associated to pg.

Again, this result is well known and is a consequence of formula (14). For its proof, see for
instance [14].

Remark 2.1. It is also well known that the approximate controllability of (1) can be characterized
in terms of a property of the solutions to (13). More precisely, (1) is approximately controllable if
and only if the following unique continuation property holds:

“Let o € HJ(0,m;C™) be given and let ¢ be the associated adjoint state. Then, if
B*.(0,t) =0 on (0,T), one has ¢ =0 on Q.” [
7



3. The Kalman condition

We will devote this section to showing some properties related to the Kalman condition (8).
To be precise, we will give equivalent conditions to (8) in two important cases, m = 1 and m > n,
and will clarify Remark 1.1.

Throughout this work we will use the following notation:

Notation: Let us denote by {1 }1<i<p C C the set of distinct eigenvalues of A*. Forl:1 <[ <p,
we denote by n; the geometric multiplicity of y; and assume that we have

annl; ZSZSP

The sequence {v; will denote a basis of eigenvectors of A* associated to yy, i.e., a

7j}1Sj§nz
basis of the eigenspace associated to y;. To each eigenvector v; ; we associate its Jordan chain (of
dimension 7;;) and the corresponding set of generalized eigenvectors {v; ;}1<i<r, ; defined by:

{ Al = 4o, 1<i<ny,

o Thi o Tl
At = v
TLG
(so that v, ;) = vy,5).

We will first present an equivalent condition to the Kalman rank condition that will be used
later. To this end, let us consider A € L(CY) and B € L(CM,C") two matrices, (N and M are
positive integers). Let {0;}1<i<p C C be the set of distinct eigenvalues of A*. For [ :1 <1 < p,
we denote by m; the geometric multiplicity of ;. The sequence {w; ;}, <j<m will denote a basis
of eigenvectors of A* associated to 6, i.e., a basis of the eigenspace associated to 6;. With this
notation, one has:

Proposition 3.1. Under the previous notations for the pair (A, B), the following conditions are
equivalent:

1. rank [A | B] = rank [B|AB|A%2B| --- |AN-1B] = N.

2. rank [B*wy 1 | B*wi 2| -+ | B*wim,] = my, for every I, with 1 <1 < p.
Proof: We will deduce the proof from the Hautus test which is an equivalent condition to the

Kalman rank condition. Indeed, it is well known (for instance, see [31], page 15) that rank [A | B] =
N if and only if

rank ( A %fﬂd > =N, Vi:1<l<p. (16)

Let us assume that the Kalman rank condition holds and let us proof that the set
{B*wihi<jcm € RY

is linearly independent for every [ : 1 <1 < . To this end, let us suppose that for {a;}1<j<m, C C
one has

my
* p—
E Osz wy,; = 0.
j=1
In particular, w = Y %, a;w; ; € C™ is an eigenvector of A* associated to §; and is a solution to
p ) j=1%3%lj

the linear system
A — 9[]d -
( B* ) w = 0.

Using (16), we conclude w = E;’;’l ajw; =0, le, a; =0, for every j: 1 < j <my.
Let us now assume that the set {B*w; j}1<j<m, C CM is linearly independent for every [ : 1 <
I < p and let us proof that (A, B) fulfills condition (16). Thus, we consider w € CV a solution to
the previous linear system. In particular, B*w = 0 and w is an eigenvector of A* associated to
8



0;. As a consequence, w can be written as w = Z;”zll ajwy 4, with a; € C. Evidently, the equality

B*w = 0 implies a; = 0 for every j whence w = 0. This finalizes the proof. [ |

Our next task will be to clarify the first point in Remark 1.1. Before let us prove the following
result:

Proposition 3.2. Let A € L(C™) be given and let us denote by {1 }1<i<p C C the set of distinct
eigenvalues of A*. Then, there exists an integer ko = ko(A) € N, only depending on A, such that,

ti = Hj 7 Ak — A (17)
foreveryk > ko, I >1,k#1, andi,j:1<14,j<p.
Proof: First, let us observe that A\ is given by (5) and then, for pg = 1 and Ky = 1, one has
M — M| > polk® — 13|, Vk,1> K.

Let us consider )
ko = max {KO, [ max | — ,uj|] + 1} ,
p

po 1<i,5<

and let us take & > ko, [ > 1, with k # [, and 4, j, with 1 < 4,5 <p. Then, if y; — p; € R, we can
conclude the result. If y; — p; € R and, for instance, k > [,
pi = 5 < |pi = 5] < poko < po(k +1) < po(k +1)(k = 1) = po(k* = 1%) < A\ — Ar.
Finally, if u; — p; € R and k£ <, one has
i — i < i — pl < poko < po(k +1) < po(k + 1)1 —k) <\ — Ay

We have thus the proof. ]

By means of the previous result we can establish an equivalent condition to (8). Thus, one
has:

Corollary 3.3. Let A € L(C™) and B € L(C™;C") be given and let us consider ko > 1 provided
by Proposition 3.2. Then, the three following conditions are equivalent

1. rank Ky = nk for every k > 1.
2. rank Ky, = nk for every k : 1 <k < kyg.
3. rank Ky, = nko.

Proof: Of course, condition 1 implies condition 2 and this one implies condition 3.

Let us now prove that condition 3 implies condition 1 and, to this end, let us take ko such
that (17) holds. In order to prove the result, let us denote by o(L}) the set of eigenvalues of the
matrix £} € L(C"*). From the definition of L, (see (6) and (7)) we get

o(Lr)={-N+p:1<1<k 1<i<p},

(remember that {1 }1<i;<p C C is the set of distinct eigenvalues of A*).
Let us start with the case k = ko + 1. By contradiction, let us suppose that rank Ky, 11 <
n(ko + 1). It is clear that

o(Lry41) = o(Lr)) U{=Akor1 +pi 1 < i < p}.

Using the Hautus criterium (16) for the couple (L} ., Bk,+1) and taking into account that

rank Ky, = nko we deduce that there exists an eigenvector V € Cn(ko+1) of L}, +1 associated
t0 —Agg+1 + pi, with ¢ : 1 <4 <p, such that

Bi, 1V =0. (18)
9



From Proposition 3.2, we deduce that O’(LZD) N{=Akg+1 + i : 1 <i < p} =0 and therefore, the
vector V = (V))i<j<ko+1 € Ckot1) is an eigenvector of L}, 1 associated to —Ag,41 + p; if and
only if

Vi=0, Vj#ko+1, and Viy41 =,

where v € C™ is an eigenvector of A* associated to p;. Thus, condition (18) implies that v belongs
to the kernel of B*. Using again the Hautus test (16), this time applied to (4, B), we infer that
rank [A | B] = rank X; < n. But this last inequality contradicts condition 2.

The general case k > kg can be obtained combining an induction argument and the previous
reasoning.

Let us now prove the case k < kg. Actually, we can prove that if rankX; = nk, then
rank K1 = n(k — 1). Indeed, by contradiction, if rank X1 < n(k — 1), using again Proposi-
tion 3.1, there exists an eigenvector V € C**~1 of the matrix L7} _, associated to § € C such
that B;_,V = 0. It is easy to check that ¢ is also an eigenvalue of L} which has as associated

eigenvector
i |4 nk
V= ( 0 > eC

and BV = 0. This contradicts the previous assumption and ends the proof. ]

In the next result we will study the Kalman condition (8) in the particular case m = 1. Thus,
one has

Proposition 3.4. Let us fix A € L(C") and B € C" (m = 1). Then, the following conditions are
equivalent

1. rank Xy = nk for every k > 1.
2. rank[A| B] = n and

i — My 7& Ak — )\la V(k,Z), (lvj) € Nx {1a2a 7p} with (k,Z) 7é (la])

Proof: Let us assume that rank K, = nk for every k > 1. It is then clear that rank [A | B] = n.
By contradiction, assume that there exist k,1 > 1, with £ > [, and 4,75 : 1 <4, j < p such that

At = =N+ py = 6.

Then, 6 € o(K}). Let us take w; € C" and wy € C™ eigenvectors of A* associated, resp., to y;
and p1;. Then, Vi = (Vi ¢)1<o<k, Vo = (Va,0)1<e<k € C™, with

Vig=wy and Vi, =0, Vl#Fk,
VQJ = W2 and ng = 0, A4 75 l,

are two independent eigenvectors of X, associated to . Using Proposition 3.1 we deduce that the
set {B;Vi, BiVi} C C is linearly independent (m = 1). This is evidently absurd. So, we have
condition 2.

On the other hand, let us assume that (A, B) satisfies condition 2. We deduce that (17) holds
with kg = 1. Applying directly Corollary 3.3 with kg = 1 we obtain rank X = nk for every k > 1.
This ends the proof. [ ]

Remark 3.1. As said in Remark 1.1 and in view of this last result, we deduce that Theorem 1.1
generalizes the controllability result for system (1) stated in [13] and [14] forn=2and m=1. m

Let us now analyze condition (8) when m > n (at least the same number of controls than
equations) and the matrix B € L(C™;C™) satisfies rank B = n. One has:

Proposition 3.5. Let us fir A € L(C™) and B € L(C™;C") such that rank B = n. Then, the
pair (A, B) satisfies condition (8) for any k > 1.
10



Proof: Let us fix £ > 1. In order to prove (8), we will use Proposition 3.1 for the pair (L, By)
(see (7) for the definition of these matrices). Therefore, let us consider § € o(L}), an eigenvalue
of L}. Associated to ¢, let us consider the set,

1(9)2{(l,i):1§l§k7 1< <p, 9:_)\l+/~ti}-
Aided by this set we can obtain a basis of eigenvectors of L} associated to 6:

EVEO)= |J {V,ecC:1<j<n},
(1,3)€I(0)

with VZZJ = (V»l’jz)lgggk and Vil’je € C" given by Vllf = 01,005 ;.

3

The set {B)ZV Ve EV(@)’} can be writen as

{B;V :V € EV(0)} = {B*v; ; : i such that, for { > 1, ([,i) € I(f) and 1 < j < n;}
C{B™;; :1<i<p, 1 <j<n}

Taking into account that rank B* = n and the set {vi’j :1<i<p, 1<j<n;} CC"is linearly
independent, we deduce that {B;V : V € EV(0)} is also linearly independent. This finalizes the
proof of the result. ]

4. Biorthogonal families: construction and estimates

This section will be devoted to proving Theorem 1.2. To this end, we will follow here the
strategy based on the Laplace transform which explicitly construct the biorthogonal family from
the fixed complex sequence. This strategy has been used for instance in [29] in order to construct
a biorthogonal family to the set {e*Akt}kzl, where {Aj }r>1 is a real positive sequence satisfying
suitable properties.

Throughout this section 7 > 1 will denote a positive integer and A = {Ax},~; C Cy =
{A e C: R\ > 0} is a complex sequence satisfying B

A # A, Vk,jeNwith k # j. (19)
We will obtain the proof of the Theorem 1.2 reasoning as follows:

1. First, we will prove the existence of a biorthogonal family {¢k.;}; 51 <<, 1 C A(A,7,00) to

{tjeiAkt}kx 0<j<n—1 (

>1,0<5<n
more general Ay than those satisfying condition (10) in Theorem 1.2. In this proposition we
will also give an estimate of the norm in L?(0, 00; C) of ¢y ; in terms of a Blaschke product
associated to the sequence A (see (21)).

2. Secondly, we will use assumptions (10) in order to get an estimate of the Blaschke product
Pk in (21) (see Proposition 4.5).

3. Finally, we will directly prove Theorem 1.2 when T" = oo and will deduce the general case
T € (0,00) using a well known argument (see Corollary 4.6).

see Proposition 4.1). In view of other applications, we will consider

For T € (0, 0], let us recall that A(A,n,T) is the space given by

- L2(0,T;C
A(A,n,T) =span {tHe=Mt: k>1, 0<j<n—1} ( )

and is a closed subspace of L?(0,T;C).
Let us also recall that the function ey ; is given by

erj(t) =tle ™t ¢>0,

with (k, j) such that £ > 1 and 0 <j <n—1.
We will obtain the proof of Theorem 1.2 from several previous results. Let us start with the
following one:

11



Proposition 4.1. Assume that A = {A},~, C C4 satisfies (19) and the assumption

RA
> i 5 < oo, (20)
=1 (1+RAL)? + (3Ax)

Then, there exists a biorthogonal family { ¢k} 51 g<jcn1 C AN, T) to {ek such

that
L\ @@=+
1
" (%Ak >

7j}k21,0§j§n71

k.51 22(0.00:0) < C (RA)"D |1 4 Ay Pr=Dpr=0) - (21)

where C' is a positive constant, only depending on n, and Py, is given by

1+Ak/A*
P = H —t
o1 1—Ax/Ae|’

£k

To prove this result, we need some preliminary lemmata.

Lemma 4.2. Under the assumptions of Proposition 4.1, let us consider the Blaschke product
associated to A, W : C,. — C, defined by:

A Ay
A 5 A
W) = kl:[lkl_'_/\/A*, eC,

A [Ar— 1 Af +1
A A, +1]A; -1

k= (O =14f Ay =1).

Then, W € H>*(C,.), the space of bounded and holomorphic functions defined on Cy, and satisfies
[W(A)| <1 for RA >0, |[W(it)]=1 a.e. inR and
W()\o) =0<= Mg = A withk > 1.
Moreover, Ay is a simple root of W, for any k > 1.
Proof: Let U be the unit ball of C and let us consider a sequence {ay}r>1 C U such that
> (1= or]) < 0.
k>1

Then, it is well known (see for instance [27]) that the following function

C(z) = H low] au _*Z , with z e U,
ap 1—ajz
E>1

is well defined and C' € H>®(U). Moreover, C(e?) = 1 for almost all § € (—m, ).
We will obtain the proof of the lemma from the previous properties of the function C'. Indeed,
it is not difficult to check that

142

h:zeUw h(z) =

€Cy

is a bijective map. In addition, A is holomorphic in U and W () = C(h™1()\)) with ay, = b= (Ay).

Observe that
ARA 12
(1—Jap)=1- (1~ — 5
(1+RAR)™ + (SAx)

and ).~ (1 — |ag|) < oo if and only if (20) holds. Combining the previous properties we conclude
that W € H>(C,) if and only if condition (20) is fulfilled.

Finally, it can be easily checked that [W(A)| < 1 for RA > 0, [W(iT)| = 1 for almost all 7 € R
and the two last properties. ]

As a direct consequence of the previous result we deduce:
12



Corollary 4.3. Under the assumptions of Proposition 4.1, one has that A(A,n,o0) is a proper
closed subspace of L* (0, 00;C).

Proof: Since conditions (19) and (20) are assumed, it follows that W € H*(C,) given by
Lemma 4.2, satisfies W # 0. Let us set

n

W) , forxeCy. (22)

PN = 1Ty

Simple computations immediately show that ® € H?(C ), the space of holomorphic functions
on C; such that

+oo
/ |®(0 +iT)*dT < 00, Vo >0,
— o0

+oo ) 1/2
Bl = ([ oG0P ar) .

—00

with norm

Using the properties of the function W, it is not difficult to check that, for a positive constant C,,
(only depending on 7)), one has
@[ r2(cy) < C

It is well known that the Laplace transform is a homeomorphism* from L2(0,00;C) into
H?(C,). Therefore, there exists a nontrivial function ¢ € L?(0, 00; C) such that

L[~
@(A):%/O e Me*(t) dt.

Observe that, thanks to Lemma 4.2, {Ay}r>1 are the zeros of ® and have multiplicity . In
particular ®)(Ay) = 0 for every k > 1 and j:0 < j <7 — 1. Thus

/ tjeiAktSO*(t) dt = (ek,j ’ QD)L2(O,OO;(C) = 07 V(k,]) tk > ]-7 0 S] < n—- 1.
0

We have then proved that there exists ¢ € L2(0,00;C), with ¢ # 0, such that ¢ € A(A,n,c0)* .
This finalizes the proof. ]

Starting from the function ® defined in (22), we would like to construct a family of functions
{®),;} C H?(C,) satisfying some additional conditions. These are given in the following result:

Lemma 4.4. Assume that the sequence {Ay},~, satisfies (19) and (20). Then, there exists a
familly {®y ;j i>1,1<j<y C H*(CL) such that

O (N) = (—1)"0uje, (k. §),(Lv) sk 1>1, 0< v <n—1, (23)

and
H;(Ag)

— e V(k,j):k>1,0<j<n—1, (24)
|cI>(n)(Ak)|" J

1Px,jll 2,y <

where C' is a positive constant, only depending on n, and ® and H;(Ay) are respectively given
by (22) and
1 >(2nj)(nj1)+1

Hj(Ag) =1+ (m

4 For the space H2(C4) and the properties of the Laplace transform, see for instance [29, pp. 19-20]).
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Before presenting the proof of this lemma, let us complete the proof of Proposition 4.1.

Proof of Proposition 4.1: From Lemma 4.4 we deduce that ® ; € H?(C;.) for every (k,j) : k >
land 0 < j <n—1. Thus, using again the Laplace transform, for any ¥ > 1land 7:0<j <n—1,
there exists a nontrivial function @, ; € L?(0, 00; C) such that

1 > _
Py () /0 e M@ (t)dt, VA e Cy,

T or

and [|pr 1| 22(0,00:c) < Cl| @k 5l 72(cy) for a positive constant C. We also have

1 o0
e (N) = (_1)”5/0 e MGr (t)dt, YA€Cy, Yv>0.

Let us consider the projection operator Il : L?(0, 00; C) — A(A,7n,00). One has
/ e MR TN " (t) dt :/ tle Moty dt, Y(k,j):k>1,0<j<n-1, Yee L*0,00;C).
0 0

Taking into account (23) and the two previous equalities, we deduce that the set {¢x ; }k>1,0<j<n,
with ¢ ; = IIAPk, j /27, is a biorthogonal family associated to {#/e **};>1 0<j<, and

llor,illz20,00:0) < Cll @l H2(Cy)

for a positive constant C'.

From (24) and in order to prove (21), let us calculate |®( (A)|. First, the function ® can be
written as ®(A) = [f(N\)]" with f a holomorphic function on C;. Since Ay is a simple zero of f,
we get @D (Ay) = n![f'(Ap)]", ie.,

20 ) = ot [ 5]

1+ A7

where W is given in Lemma 4.2. On the other hand, a simple calculation gives

—A; 1—Ag/A
W' (Ag) = _5’“7];\1_[55#
k=1

2ALR 14+ Ak/Az ’
04k
and therefore

1 1—Ak/As

M (AN = !
L e A P TewwWE ™ 115 FAe/A;

t#k
Finally, from (24) we get (21). This ends the proof. |

Proof of Lemma 4.4: Let usfix k> 1and j:0<j <n—1and let us set

o)

Fes =

YAeCy, (25)

where @ is given by (22). From the properties of the function ®, we get

() =0, Wi>1withl £k Yv:0<v<n—1,

£ ) =0, Vi0<v<j-1, (26)
; 1 |

flg;r”) (Ar) = (j;y)"@(n-W)(Ak)’ Vuip > 0.

(n+v)!
14



In particular, f(])(Ak) = ZLpM(A) # 0 (remember that Ay is a zero of ® of multiplicity ;

n!

see (22)).
We will obtain the proof after several steps.

Step 1: In this first step we will prove that there exists a polynomial function p = py, ; of degree

1n — j — 1 such that the function defined by

O 5(N) == PN fi;(N), VAECy,
satisfies (23).
Clearly, for any polynomial p we have
‘13;27])(/\)*0 Vi:l#£k Vv:0<v<n-—1,
@,(53(/\)_0 VWw:0<v<j<n-—1

Thus, in order to get (23), we have to show that there is a polynomial p such that (IDg; (Ag) =

and ‘ng”)(/\k) =0for 1 <v<n—j—1. In view of (26)), these relations lead to

(-1 o (=1

k])(Ak) 5! @) (Ag)
v—1
> ap®(Ar) +p (M) =0, Vr:il<v<n—j-1,
£=0
where
Jjt+v
“ ( ¢ > 0 () vl B0y
vl — 3 =
( j4v ) f;gj])(Ak) An+v =20 dM(AL)
v

forevery v, : 0 <{l<v<n—j—1.
These relations allow us to compute p(”)(Ak) for 0 <v <n—j—1 and thus

T W)
= 3 oy

v=0

Evidently ® ;(A) := p(A\) fx,; () satisfies (23).

(27)

(=1)

(28)

Step 2: Let us now prove some estimates of the polynomial p constructed in the previous step.

We can rewrite the identities in (28) as a linear system of the form AP = B with

1 0 - 0 0 o

aio 1 e 0 0 1B (Ag)
A= as0 a1 - 0 0 < L((Cn_j), B = ) S (Cn_j

0 0
An-j-1,0 Gn—j-11 “* Ap-j-1p—j-2 1
and P = (p(y)(Ak))ogz/Sn—j—l ecr.
Thus P = A7'B and |Plca-; < ||A7!|||B|ca-s, where || - || stands for the Hilbert-Schmidt
norm of a matrix, i.e., if M € L(C"77), then
1/2

M ={ > fmel®

1<r,s<n—j

15



Let us write A = I; — V. Then (see [17, Theorem 1.4.1, p. 6]):

241 (n—j—1)/2
||A—1H < <1+W) ]
n—j—1

Recall that V' = I; — A. Taking into account the expression of the elements a,, of V' (see (29))
we have:

2
vin! QUTr=0(A)
LHVIP=1+ > el =1+ > ' '
O<t<igni1 0<tenyi1 O(n+v—120) O (Ay)
5 vl =0 (A |
- 1 —
o<t<iThi Om+v =0 ®(A)
Coming back to P, one has:
n—j—1
2\ 1
Pl < [A7 | Blers < > [elrt 0y s (30)
0<e<v<n—j—1 [ (A)|"

for a positive constant C' which only depends on 7.
Finally, let us estimate |®"T7 =) (A)]| for (v,£) : 0 < £ < v < n—j—1. Since ® is a holomorphic
function on C,, we can write:

! D(2)
M (A,) = ﬂf T >
(Ag) 2 Joppjer (2 — M) dz, Ym >0

where © > 0 is such that {z € C: |z — Agx| =r} C C,. Observe that we can take r = Ay /2.
On the other hand, from the definition of ® (see (22)) and the properties of W (Lemma 4.2), we
deduce

|® (2) <1, VzeCy.

<7 ) —
IhllS:

| m!
‘P(m)(Ak)’SLf{ dz="2" vym>o,
‘ 2™t J = rm

with 7 = RA; /2.
Going back to (30), we get

(n—j—1)/2

1 1 Ho;(A
|P|(C77—j <C E a2 +0) — < C O]( k)_' ’ (31)
0<e<n—j—1 (RAR)™ “I’(")(Ak)’n ! “I’(”)(Ak)’n !

for a new positive constant C' only depending on n and where Hy ;(Ax) given by

1\ @r—i-D0—i-1)
) ~

Hoj(Ay) =1+ (

Step 3: We finalize the proof of Lemma 4.4 showing that the function

o) K p(Ay)

A= A" = v!

Py, (A) = p(AN) fr,;(A) = (A—Ag), VAeC,,

(the function @ is given by (22)) satisfies @5 ; € H*(Cy) and (24).
16



On the one hand, taking into account (31), we can infer

Hoj(Ar) " Hoj (A |
Ip(iT)| < CL’“Z}_]. Z liT — Agl” < C% (1 + |iT — Ak"ﬂfjfl) ’
e (A)|" T |00 (Ay)]

with C a positive constant only depending on 7. On the other hand, we can estimate,

o Ho;(Ay)? /00 (14 |iT — Ag[7371)?
|(I)(n) (Ak)|2(77_j) oo |ZT — Ak|2(77_j)
Ho;(Ay)? < 1 1\°
< C? J : 4 |2,
= lamag o \agr Faa,) 1%lees
H;(Ay)?
|(I)(71)(Ak)|2(n_j) )

19k 5172,y < @ (ir)|* dr <

<c?

where H; is given in the statement of Lemma 4.4 and C' is a new positive constant only depending
on 7. This last inequality shows that @ ; € H?(C,), inequality (24) and finishes the proof of
Lemma 4.4. ]

In Proposition 4.1 we have proved that, under assumptions (19) and (20) on the sequence
A = {Ay}i>1 C Cy4, there exists a biorthogonal family {¢k7j}k21,0§j§n—1 C A(A,n,00) to the set
{tje_Akt}kN 0<j<n—1
>1,0<5<n
slightly stronger assumptions upon the sequence A (see assumptions in Theorem 1.2) we can
estimate the infinite product P given in the statement of Proposition 4.1. One has:

(n > 1 is fixed) which satisfies (21). Now, we will see that if we impose

Proposition 4.5. Let {Ay},~, be a sequence of complex numbers satisfying (10). Then, for every
e > 0 there exists a constant C(g) > 0 such that

Pre=]

0©>1
£k

14+ Ap/Aj

< 8%/\1c > .
T=Ar/A, < Cle)e , Vk>1 [

The proof of this result can be found for instance in [26], [12] and [14] (see (25), p. 1730 in the
last reference). See also [21] where a slightly stronger inequality is proved under assumptions on
{Ak}r>1 which, in particular, imply (10).

Proof of Theorem 1.2: Let us start proving Theorem 1.2 in the case T = oc.
First, if {A},~, satisfies(10), then one has (19) and there exists a positive constant Cs such
that N

KA, 1 1 1
2 2 S §777
(14 RAR) + (SAR)° ~ RAx ~ & [Ag]
RA, S Al 1

) >Cs—.
1+ %A%+ (S0~ U+ A2+ A2 = 7 TA]

Therefore (20) holds and we can apply Proposition 4.1 to the sequence {Ax},-, deducing the
existence of a family {¢x;},+; o<j<n—1 C AN, 00) biorthogonal to {t/e which
satisfies (21).

Secondly, taking ¢ > 0 and using that ®A; — oo we infer that for a positive constant C(n, ¢)

one has
1\ @ m=i—D+1
1 -
i (%Ak)

— At
Yes10<i<n-1

(%Ak)n(nij) |1 + Ak‘%(”_j) < 01(7775)68%/\’“/2,

for any (k,7) with k> 1land 0 <j<n-—1.
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Finally, applying Lemma 4.5, with ¢/(2n(n — j)), instead of € and taking into account the
previous inequality and (21) we obtain (11). This finalizes the proof in the case T' = oc.

Before continuing the proof of Theorem 1.2, let us present a consequence of the result proved
for T = oo

Corollary 4.6. Let us assume the assumptions of Theorem 1.2. Then, for any T € (0,00) the
restriction operator Ry : A(A,n,00) — A(A,n,T) defined by

RTSO = §0|(0,T)7 VSO € A(Av m, OO)
is a topological isomorphism. In particular, there exists a constant C(T) > 0 such that
[ellr2(0,00:0) < C(D)||Rrellrz0,1c)s Vo € A(A, 1, 00). u

The proof of this result can be seen for instance in [12], [21] or [14].

Let us now go back to the proof of Theorem 1.2 and so, let us assume that T € (0,00). If
we apply the previous case, we deduce the existence of a family {@r ;},+, o<j<n—1 C A(A,n, o)

biorthogonal to {t/e in L?(0, 00; C) which satisfies (11).
Let us set

—Ait
Yesrogign—1

org = (RpY) @ry € AN, T), V(k,j):k>1,0<j<n-1

From Corollary 4.6 and the properties of the family {@r,;};~, o< j<, 1, it is clear that ¢y ; satis-
fies (11) for any (k, 7).
On the other hand, with the notation ey ;(t) = t/e ! we can write

6k16ij = (k. Pui)L2(0,00:0) = (Rp Rrenj, $1i)12(0,00:C)
= (Rreg,j, (R;Fl)* P1i)r20,1:0) = (x> vii)r2 ey V(K 5), (1,19),

Le., {9k tis10cjen1 C A(A,n,T) is a biorthogonal family to {ex,;}ysy g<jcy 1 i L?(0,T;C)
which also satisfies estimate (11). This ends the proof of Theorem 1.2. |

Remark 4.1. In Corollary 4.3 we have proved that, under assumption (20), A(A, 7, o0) is a closed
proper subspace of L?(0,00;C). In fact, from the results proved in Proposition 4.1 it is clear that
{ex,j : k>1, 1 <j<n} form a strongly independent set, i.e., each element ey ; of this set is
outside the closure of the space spanned by the other functions of the set. This two results can be
easily generalize to the case T € (0, 00):

“Let us assume that hypotheses in Proposition 4.1 holds. Then A(A,n,T) is a closed
proper subspace of L*(0,T;C). In addition, the set {ey;: k>1, 0<j <n—1} forms
a strongly independent set. [ |

5. Exact controllability to trajectories. Proof of Theorem 1.1

We will devote this section to prove Theorem 1.1. Using Proposition 2.4, we will just prove
the null controllability at time T of the system. To this end, we will follow the method used
by Fattorini and Russell in [11] and [12] for the study of the null controllability of a scalar heat
equation. By means of this method we will reduce the controllability problem for system (1) to a
moment problem.

In subsection 5.1, we explain the moment method and derive the moment problems that must
be satisfied by the components of the control v. We end this section with the proof of Theorem 1.1.
All along this section we will assume that the coupling matrices A and B fulfill conditions (8).

Recall that {1 }1<i<p C C is the set of distinct eigenvalues of A*. In this section we will use
the notation introduced in Section 3 (see p. 8).
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5.1. The moment problem

In this subsection we will see that, under assumption (8), the null controllability problem for
system (1) is equivalent to a problem (the moment problem) for the unknown control v.

Let us now fix yo € H~1(0,7;C"). Using formula (14) for t = T, we deduce that, if ¢ is a
solution of the adjoint system (13) corresponding to ¢o € Hg (0, 7; C™), then the null controllability
problem for system (1) is equivalent to the problem

Find v € L? (0,T;C™) such that

T ) (32)
(o0l 0)) = / (0(t) . B0 (0, 8))em dt, Vipo € HE (0,m:C).

If pg € Hg (0,7;C™) is given, then the corresponding solution to (13) is given by

pla,t) =Y e IHANT D0, ()0 4, with o = / po(z)¢x(z) du € C",
E>1 0

(¢r given in (5)).
Let us fix kg > 1 as in Proposition 3.2 and let us consider the finite-dimensional space

Xo={w:w= Z wi P, with wy, € C™}.
1<k<ko

In general, given y € H~1(0, m;C") (resp. y € L?(0,7;C")), we will use the notation

yr = (Y, ¢r) €C", (vesp. yx = (¥, Px)r2(0,7)),

where (-, -) stands for the usual duality pairing between H~1(0,7) and H{ (0, 7). With this nota-
tion, we consider

N3 ko i
Yy = <l/0,k € C™°, with yox = (yo, ¥r) € C", (33)
kv2 1<k<ko

and &g = <k\/%g00,k) € C"*o, Then, it is not difficult to see,
1<k<ko

* 2 .
B*p,(0,t) = BZOeLko(Tft)q)o + Z k\/;B*e(/\kld+A T4y, te(0,T),
k>ko

—(yo, ¢ (+,0)) = —(Yo , €50 " 0)cnre — > ok, A o0 en
k>ko

with (Bg,, Lk, ) given by (7).
Taking first g arbitrary in Xy and then ¢g = a¢y, with a € C" and k > kg, and using that
{¢x}r>1 is an orthonormal basis of L? (0, ), (32) transforms into the problem

Find v € L? (0,T;C™) such that

T
/ (o(T — 1), Bt ™ot ®g)en di = F(Yo, &o), Vo € CFo, s
0

T
/ (u(T —t), B* MLt A ) e dt = fr(yo,a), Ya € C", Yk > ko,
0

where we have introduced the bilinear forms F' : C**o x C"*0 — C and f;, : H~!(0,7;C")xC" — C
given by

F(Yy, ®g) = —(Yy, e“ T ®0)cnrg ,  V(Yo, ®g) € C¥o x Crko,

| * (35)
fk(yo»a) = _% g (yo,ka e(_AkIdJrA )Ta)C"a v(yf))a) S H_l(oa ™ (Cn) X Cn'
19



So we have reduced our control problem to a vector moment problem. In order to analyze this
moment problem, let us first introduce the Jordan structure of the matrix L} : Let {y¢}1</<5 C C
be the set of distinct eigenvalues of L} . Following the notation that we have introduce for the
matrix A* (see p. 8), for £ : 1 < £ < p, we denote by N, the geometric multiplicity of v, and we
assume that we have numbered the eigenvalues in such a way that

Ny =Ny, 2<0<p.

Also, the sequence {W7J}1<j<Ng will denote a basis of eigenvectors of L}, = associated to v,. To
each eigenvector V; ; we associate its Jordan chain (of dimension 77 ;) and the corresponding set
of generalized eigenvectors {V; j}lgig;” defined by:

{ Li Vii=vVi+ Vit 1<i<7y,
* T g o T g

L Ves” = Ve

(so that VZ"’ =Vi;)-

In fact, the eigenvalues, eigenvectors and the Jordan canonical form of the matrix Lf = is
determined by the eigenvalues, eigenvectors and the Jordan canonical form of A*. Thus, ., with
1 < ¢ < p, is an eigenvalue of L} if and only if for k : 1 < k < kg and [ : 1 <1 < p, one
has vy = —Ax + ;. In this last case, the vector V = (Vi)lgigko € C™o is an eigenvector of Lzo
associated to vy if and only if

Vi=0, Vi#k, and Vy =v; withj:1 <5 <ny.
On the other hand, it is also clear that the following properties hold:
p<p<pky, Ni=max{Np:1<¢<p}>n; =max{n :1<1<p} (36)
With the previous notation, if ¢ € R, we can write:

ng 2

ad ~ ~
thon = et Z ijfﬂ V(l,9,0):1<l<p, 1<)< Ny, 1<1<7,,

Ti,— [

eyl = et Z —UZJ;U, V(l,5,4):1<1<p, 1<j<my, 1<i<m7,.

For the sake of simplicity, we will show the moment method under the assumption:
T,j = T, ijlﬁlﬁp, 1<5<ng,

i.e., we will suppose that the Jordan’s block associated to the eigenvalues of A* have the same
dimension. Observe that this assumption also implies 7, = 7, for every ¢,7, with 1 < ¢ < p and
1<7< Ng.

Now, let us fix (¢,7,2) and (I,7,7) with 1 <€ <p, 1 <3< N, 1 <21 <7, =7, 1<1<p,
1<j<mand1<i<m;=m,andlet us take &g =V and a = vli)j in (34). So, from (37) and
taking into account that {VZ] :1<4<p, 1 <3< Ny, 1 <1<7} and {vlij 1<I<p, 1<5<
ny, 1 <i <7} are basis of C™° and C" (resp.), we deduce that (34) is equivalent to
Find v € L?(0,T;C™) such that

Te—1 T ;o0

3 St~ * 171t+o 9
Z(/ ;eﬂyetv(t) dta Bkro‘/é,—; )Cm = F(Y07‘/€,])a V(&]a Z) :

o=0 Y0
1</<p, 1<3<Nyand1<:1< 7, (38)
TI—1 T tU . .
Z(/ — e TMFEDUG() dt, BTt )em = fi(yo,vi ), (k.1 4,4) ;
o0 o O

k>ky, 1<I<p 1<j<nrand1<i<7,
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where v(t) = v(T —t), for t € [0,T).
From Proposition 3.1 applied to C' = Ly, and D = By,, we know that condition (8) (with
k = ko) is equivalent to
rank [By Vi1 | By Veal - | Bi,Ven,] = Ney, VL1 <L <. (39)
In particular, we infer that m > Ny, for every £ : 1 < ¢ < p and from (36) also m > n; for all
l:1< 1< p. Thus, the set {BZOVI,j}ISjSNl C C™ is linearly independent. We complete the
previous set with the vectors {V;}1<j<m_n, C C™ in order to have a basis of C™:

B ={B;,Vijh<i<n U{Vihi<j<m-n-
We can associate with each vector By VZ and B*vl", j of C™, its coordinates in this basis:

m—Ny
B Vi, = Za/ﬂBkOVLq—l— Z ¢V 1<SU<P 1< <N, 1<1<7,

Nl m— N1 (40)
By = S Bt S BT 1S0Sp 125 1Sin
q=1 q=1

Thus, coming back to (38), we obtain that this problem is equivalent to
Find v € L?(0,T;C™) such that

Te—1 Ny

ZZ l]z+a/ Te’ygt/\'()dt Bko‘/lq)

o=0 g=1
Te—tm—Ny Ttg
£33 ([ G Ton = P0GV

oc=0 q=1 g
V(l,7,2) with 1 <£<p, 1 <3< Nyand 1<1<7,
71—t N1
S Aol G B Ve
o=0 g=1

71—t m—N1

+Z Z ﬁl,j i+o / 0" ( Ak_hul)t/v( )dt? Vq)(C’” = fk(y07vli,j)’

o=0 g¢g=1
V(k,l,7,4) with bk > ko, 1 <I<p, 1<j<mand1<i<m7.

Let us now consider {®; 4} 1<q<n, U {®1.4}1<q<m_n, a biorthogonal basis associated to the
previous basis B of C™. We will look for a control v given by

0(t) = ug()®iyq, (41)

with u, € L2(0,T;C) for ¢: 1 < g < Ny.
Using the equalities (91,4, By Vii)cm = 64 and (@14, Vj)em = 0, valid for every (q,4,7) :
1<q,i < Njand 1<j<m— Nj, we can rewrite the previous moment problem as

Find u, € L*(0,T;C), with 1 < ¢ < Ny, such that
Te—1 N o
> 1’,]71“"‘7/ Qewuq(t) dt = F(Yo, V),
o=0 g=1
V(4 g,2) with1<¢<p, 1<j3< Npand1<:<7, (42)
T1—1 N1
ZZ@,; 2+o’/ 0' el Antmit q(t)dt:fk(ymvli,j),
o=0 g=1
V(k,l,7,3) with bk > ko, 1 <I<p, 1<j<mand1<i<m7.
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Our aim is to prove that the previous moment problem admits, for every ¢, a solution u, which
lies in L2(0,T;C). The previous reasoning shows that the corresponding control v(t) = o(T — t),
with ¥ given by (41), is in L?(0,T;C™) and solves the null controllability problem for system (1).

For (¢,v) and (I,0) such that 1 <¢<p, 0<v <7 —1,1<i<pand 0<o <7 —1,let us

T T
tl/
Xow = (/ ety (t )dt) LY = (/ eTAetnty, ()dt) eCcM,
’ 0 1/! ’ 0 0-'
1<q<Ny

1<q<N,

eC™, Fllfa(C‘JO) = (fk(yo, . a)) e C™and

1<j<my

set

Fr,(Yo) = (F(YOv‘/ﬁ_y))KﬂM

A[ v = (O[Z:;ﬁ—u> 1<j<N, € L(CNl;CNZ)7 Bl,a’ = <6l,3 T — o—) 1<5<n, S 'C((CN1§CHL)a

17 1<g<N; 1<g<N: ( )
43

where F(Yy, ®o) and fi(yo,a) are given in (35).

Step 1: Let us first consider the case £ = 1. Let us recall that (ozg j z) e are the coordinates
i) 1 <q< N,

of By Vi, with respect to the basis B = {Bj; V1 j}1<j<n, U {f/\'j}lgjgm,Nl of C™. In particular,

m— N1
BkOVTI*ZaljﬁBkovlq+ Z O‘ljanI’ V7:1 <3< Ny.

Since Vf]" =V, ; for every ¢, j,if £ =1 we get

{Oé 6 Vj,q:1§j7qu]_and

1,571
aUTl 0, Vj,q:lgj,qgm—Nl.

From (42) and using the previous equalities (¢ = 1) we obtain:

T
= [ it a =P,
0

N, T T
1=R-1 ) afjna / il uy(t)dt + / et uy () dt = F(Yo, Vi),

q=1

7'1 1N1

= 17 Z Z 1] 1+o’/ je’h Q<t) dt = F(}/O)Vll,])

o=0 ¢g=1
Using (43), we infer that, for £ = 1, the first part of system (42) is equivalent to the linear algebraic

system
X1,0 = F10(Yo),

A1 X0+ X1 = Fi1(Yo),

Az X0+ A7 0 X+ + X500 =Fr51(Y),

or in matrix form:

1y 0 0 0 X1 Fi0(Yo)
A171 1 0 0 Xl,l Fl,l(YO)
Al’g A171 I 0 X1,2 = FI,Q(YO)
Al,'T'l—l Al,ﬁ—? Al,?—l_g e Iy X1,7~'1—1 F1,7~'1—1(1f0)
=M,
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Clearly this system possesses a unique solution given by

X1,0 Fi0(Yo) C1,0(Yo)
X1 . F11(Yo) C11(Yo)
= M; , = )
X171 Fi 7 -1(Yo) C1.7-1(Y0)

Observe that the matrix M; € L(C™™) only depends on the coupling matrices A and B and can
be computed independently of the initial datum yq.

In other words, if we write C1 5 (y0) = (¢1,0,4(Y0))1<q<n: € CM (Yj given in (33)), we have
established that the components of u, of the control v with respect to the set {®1 4}1<q<n, must
solve the following first family of moment problems:

T
(A .
/0 ;e'yltuq(t) dt =c10,4(W0), Y(o,q):0<0o<7—-1,1<¢g<N;.

Finally, taking into account the expressions of C1 +(yo), F1,-(Yo) (see (43)) and F (Y, o) (see (35)),
we deduce the existence of a positive constant C = C(A, B) for which

|1,0,4(y0)| < C‘|€Lk°T||L(C"’“0)HyO“H*l(O,w;C") , Y(0,9):0<0<7 -1, 1<q¢g< Ny

Step 2: Consider now the case 2 < £ < p. Following the same reasoning as before, we find that
the first equation of system (42) can be equivalently rewritten as:

ApoXeo0 = Fro(Yo),

Ap1Xoo+ AroXenr = Fra(Y), m
44

Arz,-1 X0+ Avs—0Xea + -+ AroXo 7,1 = Frz—1(Y0).

Let us show that this linear system (which has 7,N; unknown and 7, N, < 7,N; equations) is
compatible.
Indeed, remember that Ay g € L(CN1;CNe) (see (43)) and its components agj 7, are the coordi-

nates of the vectors By V;; = Bj;, Vi ; with respect to the basis B (see (40)). Again condition (39)
implies that the set {B;OVM :1 < j < Ny} € C™ is linearly independent and, evidently, also
rank Ap g = N;. Then, there exists a permutation matrix P, € L(R™1) (only depending on Ay,

ie., on ¢, A and B) such that A, oP; = [gg,o | lN)g,o] with /Lp € L(CNt) a squared matrix and
rank ;1470 = rank Ay o = Ny. For each o with 0 < o <7y — 1, we also set Ay ,P; = [;1&0 |5g70}
with /L,C, € L(C™). If we look for a solution under the form X, , = P, { Xé"’ } the previous
system transforms into:

Ar0X00 = Fro(Yo),
Ap1Xoo+ AroXen = Foa(Yo),

ge,aflf(e,o + ZZ,-T-ngXE,l +oe 4 ge,of(l,aq =Fy7-1(Yo).

This system has a unique solution which can be written as )?g,g = CN'g,U(yo) (0<o <7, —1) with

éz,o(yo) Fyo(Yo)
Co1(yo) . Fy1(Yo)
=M, ) , (45)
Crz,-1(%0) Fy7-1(Y0)
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where M, € L(C™N¢) is the coefficient matrix of the linear system (which, once again, only depends
on ¢ and the coupling matrices A and B) and Fy,(Yp) € CM and Y are given in (43) and (33).
This proves that the system (44) is compatible and, in fact, we have obtained a particular solution.

We can repeat the arguments shown in the case £ = 1 and deduce that the components of the
previous solution of system (44) satisfy the family of moment problems

T

. _ _

/ ;e’yetuq(t)dtch,o',q(yo)7 V(ﬁ,o,q)2§€§p, OSUST€_17 1SQSN15
O .

where the coefficient c¢,q,4(yo) are given by (cr,0,4(¥0)),<,<n, = CZ"’O(yO)

Again, taking into account the expressions of Fy ,(Yp) and F(Yy, ®g) (see (43) and (35)), we
deduce again the existence of a positive constant C' = C(A, B) such that, for every (¢, o, q) with
2<l<p,0<o0<7—1and 1< q< Ny, one has

Ly T
|¢t,0,9(W0)| < Clle™ o || crro)llyoll -1 (0,mscm)- (46)

Step 3: Now, we are going to obtain an infinite family of moment problems using the second
identity in (42). We fix k > ko and [ : 1 <1 < p. Following the same ideas as before, we obtain
that the second identity in (42) is equivalent to

Bl,OYl]fo = Fz]fo(yo)7

BiaY/y + BioYh = Ffi(vo),
(47)

B 1Y+ Bi oY+ 4+ BioYh, = FFL (o),

where B; , and Flka given in (43).
Again, we have a compatible system of dimension (7;n;) x (1;N1) (n; < Ny, see (36)). Indeed,
from the Kalman rank condition (2) we deduce

rank [B*vy 1 | B g | -+ | B oy, | =m, VI:1<1<p,

and also rank By g = n;. Therefore, for a permutation matrix Q; € L(R™1) (only depending on
I, A and B), we can write B oQ; = [EZ,O | 13170} with El,o € L(C™) and rank §l70 =n;. We also
write By »Q; = [El,a \ ﬁlﬂ}, with Elﬁ € L(C™) (0 <o <7—1), and we obtain a solution to (47)
2, N
as Yl’fg =Q [ YBU ] with Ylka € C™ solution to
Bio¥ily = Flio(wo).
BiaYy + BiroYly = Fli(yo),

El,ﬂ*li;l{eo + élﬂ'z*?i}l?l +ot El,oi;l{vn—l = Fllfn—l(y0>7

If we denote by means of ]\Al/l € L(Cm™) the previous coefficient matrix (which only depends
on [, A and B), then we have managed to obtain a solution of the system (47) under the form

. Dk
}/2,,{)0' = le,o_(yo) Wlth le,o'(yo) = Ql |: l,go(yo) :| and

(Do (o)) (50) = My (FL (50)) oy - (48)
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Finally, let us remark that, from the expressions of F*, (yo) and fi(yo,a) (see (43) and (35)),

we have the existence of a positive constant C' = C(A, B) such that the components d’fwg)q(yo)

(¢:1<q< Ny)of Df,(yo) satisfy

c, .
|d} 5.4 (y0)] < EHB( MLt AT ey |yo el (49)
for every (k,l,0,q) with k > ko, 1 <I<p,0<o<7m—land 1<qg<N;.

Summarizing, with the previous notation and assuming that 7, ; = 7, forall ,j : 1 <1 <p
and 1 < j < ny, we have proved:

Proposition 5.1. Assume that condition (8) holds and let us consider the integer ko provided
by Proposition 3.2. Let us also fix yo € H~1(0,7;C"). Then, for every ({,1) with 1 < { < p
and 1 < 1 < p, there exist matrices M, € L(C™Ne), M; € L(C™™) and permutation matrices

Py, Q; € L(RNY), which only depend on the coupling matrices A and B, such that, if for every g,
with 1 < g < Ny, the function u, € L?(0,T;C) satisfies the family of moment problems:

T
tY o« . _
/ —'e’“tuq(t) dt = copq(y0), V(v):1<0<p, 0<v<7—1,
o (50)
/ 76(*>\k+lﬁ)t uq(t) dt = dﬁa,q(?JO)? V(k,l,U) ik > kO, 1<i< 'z 0<o<m—1,
0

then the controlv given by v(t) = 0(T —t) (t € (0,T)), with v given by (41), is in L*(0,T;C™) and
solves the null controllability problem for system (1). In (50) the coefficients cg, 4 and dﬁmq(yo)
are respectively given by

C Nk
(Cf’u’q(yo))1SQSN1 = PZ |: Ce,y()(yO) :| ’ (dﬁU,‘I(yO))lquNl = Ql |: Dl’ob(yo) :|

and El’fg(yo) and (N/*g’l,(yo) by (45) and (48). Finally, there exists a positive constant C, only
depending on A and B, such that (46) and (49) hold. ]

5.2. Proof of Theorem 1.1
In this subsection we are going to prove Theorem 1.1.

Necessary condition: Let us show that condition (8) is necessary in order to get the exact
controllability to the trajectories of system (1). To this end, we will use Proposition 2.4. To be
precise, let us assume that, for kg > 1, one has

rank Ky, = rank [By, | Lio Bro | L3, Bro | -+ | L3 7? By, | L7507 By] < miko

and let us prove that the observability inequality (15) fails (L and By are given in (7)).

Indeed, using the Kalman rank condition for ordinary differential systems, we deduce that the
pair (L,’;O,Bzo) is not observable, i.e., there exists ®;, € C™* with ®; # 0 such that the solution
® to the system

—®' =L} @ in (0,7),
O(T) = ®g € C™o,
satisfies
By, ®(t) =0, Vvte(0,T).

If now we do ®¢ = (k\/ggomk) e (with @o, € C" for every k: 1 <k < ko) and we take
1<k<ko

ko
po(x) = Z ©0,k Pk (),
35



then, ¢o € H}(0,7;C™), ¢o % 0 and the corresponding solution ¢ to (13) satisfies
B*¢.(0,-) = By, ®(t) =0 on (0,T).

Evidently, this proves that inequality (15) fails.

Sufficient condition: Let us assume that the pair (A4, B) satisfies condition (8) and let us prove
that system (1) is exactly controllable to trajectories at time T or, equivalently, is null controllable
at time T (T € (0,T) is given). To this ends, let us fix yo € H~1(0,7;C").

As said before, we will follow the technique from [11] and we will prove the result as a conse-
quence of Proposition 5.1 and Theorem 1.2.

CASE 1: With the notation of Section 3 and Subsection 5.1, let us first assume that the matrix A
is such that 7, ; =7, forall [,j: 1 <l <pand 1< j<ny.

Let us also take ky > 1 provided by Proposition 3.2. Recall that {y,}1</<; C C and
{m}ti1<i<p C C are, resp., the set of distinct eigenvalues of the matrices L} and A*. Let us
fix 4 > 0 such that R(A; — iy + p) > 0 for every [ : 1 <1 < p. With this notation, let us set

AZ:_’YZ_‘_/JH fOI'ngSﬁ,
App(i—1)ptl = Nigko — i+, fori>1, 1 <1 <p.

Recall that, given £ : 1 < £ < p, one has vy = —Ax + p, with 1 < k < kg and 1 <[ < p. Thanks
to Proposition 3.2 we also have that the sequence A = {Ay},~, satisfies (19). On the other hand,
from the property satisfied by i, we deduce that RA; > 0, i.e.,

{Ar}psr CCy
Our next task will be to prove that the sequence {Ax}, -, satisfies (10):
(a) RA > 6|Ag] for a positive § wich only depends on A. Indeed,

whence we deduce the existence of Ky > 1 (only depending on {i;}1<;<p) such that ®A, > %|Ak|
for every k > K. Taking
1 RA
d=mins -, — : 1 <k <K,
win{y iy 1 << Kol
we deduce this first property.
(b) Let us recall that A\ = k? (see (5)). Therefore, the second property

can be easily deduced.

(c) Finally, let us prove that there exists p > 0 (which only depends on A) such that |[Ax — Ay >
plk—1| for every k > 1 > 1. Let us first consider £ > p+1 and | < k. Then, for some v : 1 <v < p,
we can write k =p+ (i — 1)p+ v and Ay = \; — u, + p. Let us take,

My = max — M, = max 0 — > A\
1§u,a§p|u” Hel 1§u§p71§egﬁh ol 2 Ao

and
In =max {0, [Mo +2(p — ko — 1)]} + 1,

L :maX{O, B (p—2ko+ Vb — 2ko)% + 4(M; — ko +p — 1))} } 41,

Ko=p+Iop and K1 = p + I1p.
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Observe that M; > k2 and, thus, I; is well defined. It is also clear that the constants My, My,
Ky and K, only depend on the matrix A.
Then, if k > Ko and p <l < k, that isto say, if k > Kgand l =p+ (j—1)p+o with 1 < j <4
and 0:1 <o < p, we have i > Iy and so
k=ll=(—-jp+tv—o<(i=jlp+p—1=<(i+j+2ko)(i—j)— Mo
< (i4ko)? = (j + ko)® — |po — ] < |Agx — Ay.
Let us now assume that & > K; and 1 <[ < p. In particular, i > I, Ay = —v, + p and we can
write
k—1l=p+(G—1p+v—1<p+ip—1<(i+ko)*— M
< (i4 ko) — v — | < [Ag — Ay
Summarizing, if k > K = max {Ky, K1}, we have proved

A=A > k=1, VI:1<I<k

Finally, let us set

with mg = min |Ax — Ay].

0
P= K o 1<I<k<K

Thus, p > 0 (thanks to (19)), p only depends on the matrix A and |Ay — Ay| > plk — | for every
k, 1 with 1 <[ < k < K. This finishes the proof of condition (10).

Let us take n = max {7, 7, : 1 <1 <p, 1 <L <p} (we are following the notations introduced
in Subsection 5.1). With 7 and the sequence {Ay},~, we can apply Theorem 1.2 and deduce the
existence of a family F = {¢ C L?(0,T;C) biorthogonal to {t/e
which satisfies (11).

Our objective is to apply Proposition 5.1 and, in particular, to solve the family of moment
problems (50). Given yo € H~1(0,7;C"), we will take as control in system (1) the following
function: v(t) = v(T —t) for every t € (0,T), with ¥ given by (41) and u, (1 < ¢ < Ny) defined
on the interval (0,T") by

bisros )
G k>1,0<5<n—1 k>1,0<5<n—1

P Ti—1 p m—1
ug(t) = Z Z Cuq(yo)e M puu(t) + Z Z Z A 5.4 (0)e " Ot (k—ko—1)+1,0 (1),
=1 v=0 k>ko =1 0=0

where the coefficients c¢ ., q(yo) and dﬁg,q(yo) are provided by Proposition 5.1 and satisfy (46)
and (49).

Using the orthogonality properties of the family J we deduce that v and u, solve the moment
problems (50). Therefore, if we prove that u, € L?(0,T;C), we could apply Proposition 5.1 and
conclude that the control v € L?(0,T;C™) solves the null controllability problem for the coupled
parabolic system (1).

Let us take € > 0 (which will be chosen later). Using (11), (46) and (49) we get

e e

1

o
lugllz20,mic) < Cle, T, A, B[l ™| ¢ (cnroy W0l -1 0,mscm)
¢

p
1 . o
+C(e, T, A, B) E E EHe( Aelat AT oy e ROR=1D [y 4 |
k>kg =1

1
||y0||H—1(07ﬂ.;(Cn) + Z Ee (T E)Ak|y07k|]
k>ko

p

S C(&‘,T, A7 B)

<C(e,T,A,B)

1 o
1+ %€ 2« EW] lyollrr-2(0,m5c) »
k>ko
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where C(e, T, A, B) is a positive constant. Taking ¢ € (0,7, for example ¢ = T'/2, we obtain
that the series in the definition of u, converges absolutely in L%(0,7;C). As a consequence
ug € L?(0,T;C), for every ¢ : 1 < ¢ < Ny, and for a positive constant C(T, A, B) the control v
satisfies

||UHL2(0,T;C’”) < CHyO||H*1(O,7r;C“) .

This proves the sufficient implication of Theorem 1.1 under the hypothesis 7 ; = 7, for all [, 5 :
1<l<pand1<j<n;.

CASE 2: Let us now prove that system (1) is null controllable at time T in the general case.
Thanks to Proposition 2.4, this null controllability property is equivalent to the observability
inequality (15) for the solutions ¢ of the adjoint system (13). Thus, let us show this observability
inequality.

Following the notations introduced in Subsection 3 (see p. 8), we can write A* = PJ*P~! with
P € L(C™) a regular matrix and J* the Jordan canonical form of A* which is given by

J* = diag (J1(p), J2(pu2), -+, Jp(pp)) € L(C™),
where
Ji(p) = diag (Ji,1 (), Ji2(pe), -+ 5 Jin, () € L(C™), 1 <1< p,

my = Z;”Zl 71,5 is the algebraic multiplicity of 1 and J; ;(1;) € L(C™3) (1 < j < ny) is the Jordan
block associated to the eigenvector v; ; of A*, i.e.,

w0 - 0
1w - 0 ‘

Jigw) =1 . ... | €LCM).
0 - 1

Let us set B = P*B. If we perform the change of variables ¢ = P, with ¢ the solution
to (13) associated to pg € H}(0,7;C™), then the observability inequality (15) is equivalent to the
existence of a positive constant C; such that

T
960 g0 men < 1 [ 1B 000t (51)

for every 1o € H}(0,7;C™), with 1 the solution to

—p = gy + Y in Q,
1#(0, ) =0, Q/J(L ) =0 on (O’T)a (52)
¢(7T) = % in (Oa ﬂ-)'

Let us fix a positive integer k. With the new matrices (J, B), we can introduce (Ly, By) as
in (7), i.e.,

B
Bp=| 0 | €eL(C™C¥), Ly =diag(Li,---, L) € L(C™) and
B
Ki = [Lk | Br] = [Bi | Lk By | L2By| - -+ | L2*72 By, | Li*1 By ] € L(Cmnk, CF).

where L; = —\ Iy + J.
One has: B
rank X =nk, Vk>1. (53)
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Indeed, if we set P, = diag (P, P, -k-)-,P) € L(C"*), then P is a regular matrix, B, = ]S,Q‘Bk,
Ly = PrLy(Pr)~" and Ky = P;Ky. From (8) we infer (53).
From the Jordan canonical form of A* we can obtain a decomposition of C" as follows: if
z € C", then
Pl(Z) —Pl,l(z)
z= and P(z) = ,
Pp(z) P (2)
with P:2€C"— P(z) eC™ and P, j: 2€ C"— P j(2) e C (1<1<p,1<j<m).

Our next objective is to change the matrices J and B in order to get new matrices J and B
such that the set {y}1<i<p is also the set of distinct eigenvalues of J* (with the same geometric
multiplicity n;), with the property: “for everyl:1 <1 < p, the Jordan blocks of J associated to
1y have the same dimension 7;” and for which the previous case could be applied.

To this end, let us take

p
T = 1%?5” Ti,5, My=mn1, N= ;ml
and R R R N R
T+ = ding (Jy (1), apiz), -+, Ty (11p)) € L(CT),
where

~

Ti(ur) = diag (Jo1 (), Joo (), s T () € L(C™), 1 <1<p, and

w0 0
Jii () = s : € L(Cmi), 1<j<my.
0 - 1 py

In particular the Jordan blocks of J* associated to each eigenvalue have the same dimension.
Let us also introduce the operator II : z € C" — IIz € C™ given by

le Hl,lz
Iz = : , Iz = : e C™ andHl7j:z€C"»—>Hl7J—z(Poz)é(cﬂ.
: : ¥
sz Hlmz !
Finally, if B = (by| -+ | bm), let us set B = (Iby | - - - | Ibyy).

With the previous notation and using the pair (j , é), we can also construct the corresponding
matrices By € L(C™;C"*), L), € L(C™) and X}, € L(C™* C™) as above. Thus, if k > 1 is
given, one has the following properties:

~ ~

L oo(Ly) =o(L}) = {=Ni+m:1<i<k, 1<1<p}. Moreover, the geometric multiplicity of
e o(Ly) =o(Ly) coincides.

2. V € C"" is an eigenvector of Z,’; associated to y if and only if I,V € C™F is an eigenvector
of L} associated to p (ITj, : C™* — C™ is the operator defined as follows: if V' = (V;)1<i<k €
C™*, with V; € C", then I,V = (IIV;), ., ., € C™). Indeed, the set of eigenvectors of the

matrix Ez (resp. EZ) can be easily constructed from the eigenvectors of J* (resp. J *). On
the other hand, it is also easy to check that v € C" is an eigenvector of J* associated to fi
if and only if ITv € C™ is an eigenvector of J* associated to p;.
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3. rank X, = nik. Indeed, first condition (53) holds. Using Proposition 3.1, this last condition
is equivalent to:

dim span {EZV : V is an eigenvector of E,”; associated to u} = geometric multiplicity of p,

for every p € o(L}). From the two previous properties we can clearly deduce:

span {EZW : W € C™ is an eigenvector of E,”; associated to p} =
span {E;V :V € C™* is an eigenvector of ff,g associated to p},

for all p € o(L}) = a(ﬁi) Therefore, using again Proposition 3.1, we conclude that
rank U?k = nk.

4. We can apply the previous step to system (1) (with coupling matrices (J, B) instead of
(A, B)) and conclude that this system is exactly controllable to the trajectories at time T
Equivalently, there exists a positive constant C; such that the observability inequality

T
1960y 0mery < O [ 1B D00t

holds for every solution i./; of

_{#\t = {#\auz + JA*QZ in Q,
/(Z(Ov ) = 07 {[J\(la ) =0 on (OvT)7 (54)
»(,T) = 4o in (0,7).

with g € HL(0, m; CP).

Let us now finalize the proof of Theorem 1.1. If we fix 19 € H} (0, 7; C") and we take 1//}\0 = [Ty,
the corresponding solution to (54) is given by ¢ = Iy with 1 the solution to problem (52)
associated to ¢g. The observability inequality (51) is now an easy consequence of the corresponding
observability inequality established for the solutions to problem (54).

This ends the proof of Theorem 1.1. [ |

The arguments given in the proof of Theorem 1.1 and Proposition 3.2 allow us to prove the
following consequence:

Corollary 5.2. Let us fixt A € L(C™) and B € L(C™;C™). Let us assume that the algebraic
Kalman condition (2) holds. Then for any yo € Xg- there exists v € L?(0,T;C™) such that the
solution to (1) satisfies y(-,T) =0 in (0,7). The space X is given by

Xo={w:w= Z wi Pk, with wy, € C™}.
1<k<ko

where kg is provided in Proposition 3.2. [ ]

6. Further results and open problems

1. In this work we have dealt with the null controllability result for system (1). Taking into account
the results in the paper, it is not difficult to prove the following approximate controllability result:

Theorem 6.1. Let us fir A € L(C") and B € L(C™;C™). Then, system (1) is approzimately
controllable at any time T > 0 if and only if

rank Ky = nk, Vk>1. [ |
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2. Let us assume now that in system (1) A € L(R™) and B € L(R™;R™). In this case, if
Yo € H71(0,7;R"™) the null control for system (1) can be chosen in L2(0,7;R™). Indeed, if
v € L?(0,T;C™) is a control for which the solution y of system (1) satisfies y(-,7) = 0 in (0, 7),
then Rv also gives the null controllability result.

3. For the sake of simplicity, we have presented our controllability result for the Laplacian operator
—0z with boundary Dirichlet conditions. It is possible to consider general second order self-adjoint
differential operators R given by

(Ry)(z) = (p(2)y'(x))" + q(x)y(x), = € (0,m),
where p € C%(0,7) , ¢ € C°(0,7) and for a positive constant ¢; one has
0<c <p(x), ze€(0,m).

In this case it is well known that the operator R with homogeneous boundary conditions has a
sequence of eigenvalues {\;}r>1 and eigenfunctions {¢y }r>1 such that

e = (k4 @) +0(1), [6,(0)] = cav/Ar +O(1), for k — oo,
with ¢p a positive constant (for instance, see [11]). The same proof of Theorem 1.1 given in this

work can be easily adapted to the operator R to give the same result.

4. Asin [11], one can consider a control that depends only on time
Yt = Yoo + Ay + Bfv in Q= (0,m) x (0,7),
y(0,-)=0, y(m-)=0 on (0,T), (55)
y(+,0) = o in (0, ),

where A € L(C") and B € L(C™;C") are two given matrices, yo € L?(0,7;C") is the initial
datum and f € L?(0,7;C) is a given function such that for every e > 0

inf |f| e >0 (56)

where fi = (f,é%)r2(0,r) € C. In system (55), v € L*(0,7;C™) is a control function that, of
course, only depends on time.

In order to deal with this controllability problem we can reason as before. In this case the
control problem is the following

Find v € L? (0,T;C™) such that
T
7(:‘/07 50(7 0))L2(0,W;C") = / (U(t) ) B*(fv 90(7 t))L2(0,7r))(C"” dt7 VSDO S L2 (07 U (Cn) .
0

An inspection of the prove of Theorem 1.1, shows that by using the same arguments, one has

Theorem 6.2. Let us fir A € L(C"), B € L(C™;C") and f € L*(0,m;C) satisfying (56). Then,
system (55) is exactly controllable to trajectories at any time T if and only if the pair (Lx, By) is
controllable for all k > 1, with (L, By) defined in (7). n

5. A natural question is what happens if we consider the situation where some controls act on
r=0and x =7.

Let
Yt = Yoo + Ay in Q = (0,7'(') X (07T)a
y(ou ) = Blvh y(ﬂ-7 ) = BZUQ on (O7T)7 (57)
y(-,0) = yo in (0, ),
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where A € L(C"), By € L(C™;C"), By € L(C™2;C") are given matrices and yo € H (0, 7; C")
is the initial datum. In system (57), v; € L?(0,7;C™), vy € L?(0,T;C™2) are the controls
functions which act on the system by means of the Dirichlet boundary condition at points z = 0
and x = 7.

We set

Ly =-Mlg+ A€ L(CY), B=(By|By)€L(C™m;C"), Vk> 1.

Let m = m; + my. With the same notations and following the same ideas as below, one has:

Theorem 6.3. For A € L(C"), By € L(C™;C™) and By € L(C™2;C™), System (57) is exactly
controllable to trajectories at any time T if and only if

rank Ky = nk, Vk>1. [ |

6. The boundary controllability problem for this kind of parabolic systems in higher dimension
of space is widely open except of course in the case where rank B = n.

7. Let us consider the system

Yt = Dyzx + Ay in Qa
y(oa ) = BU7 y(ﬂ—v ) =0 on (07 T)7 (58)
y('a O) =% in (Oaﬂ—)a

where
D = diag (dy,...,d,), AeL(C"), Bel(C™C")),

with d; > 0 for 1 < ¢ < n. The null controllability problem for this system is widely open. When
n=2,m=1and A and B are given by

(1) ()

in [14] it is proved that the approximate controllability of system (58) at time T' > 0 holds if and

only if
Vdi/dy & Q.

The null controllability problem is much more intricate; in [25] it is also showed that there are
matrices D such that y/d;/ds ¢ Q (and then, system (58) is approximately controllable at any
time T') for which system (58) is not null controllable for any time 7.

In a forthcoming work [7], we show that we can define a Kalman condition for system (58)
by replacing Ly (defined in (6)) by —AxD + A. The approximate controllability of this system is
equivalent to the same Kalman rank condition (8). Nevertheless we cannot generalize the proof
of exact controllability to trajectories. The main difference between D = I; and the previous
case is that the eigenvalues of L* = DJ,, + A* may not satisfy the separability condition in
assumption (10) of Theorem 1.2.
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