
HAL Id: hal-00539777
https://hal.science/hal-00539777v1

Submitted on 29 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Cluster Resource Allocation for Multiple Parallel
Task Graphs

Henri Casanova, Frédéric Desprez, Frédéric Suter

To cite this version:
Henri Casanova, Frédéric Desprez, Frédéric Suter. On Cluster Resource Allocation for Multiple Par-
allel Task Graphs. Journal of Parallel and Distributed Computing, 2010, 70 (12), pp.1193-1203.
�10.1016/j.jpdc.2010.08.017�. �hal-00539777�

https://hal.science/hal-00539777v1
https://hal.archives-ouvertes.fr

On Cluster Resource Allocation

for Multiple Parallel Task Graphs

Henri Casanovaa, Frédéric Desprezb, Frédéric Suter∗,c

aDepartment of Information and Computer Sciences
University of Hawai‘i at Manoa, USA.

bLIP UMR 5668, ENS Lyon, INRIA, CNRS, UCBL, University of Lyon, France.
cIN2P3 Computing Center, CNRS/IN2P3, Lyon-Villeurbanne, France

Abstract

Many scientific applications can be structured as Parallel Task Graphs (PTGs), that is, graphs of data-
parallel tasks. Adding data-parallelism to a task-parallel application provides opportunities for higher per-
formance and scalability, but poses additional scheduling challenges. In this paper, we study the off-line
scheduling of multiple PTGs on a single, homogeneous cluster. The objective is to optimize performance
without compromising fairness among the PTGs. We consider the range of previously proposed scheduling
algorithms applicable to this problem, both from the applied and the theoretical literature, and we propose
minor improvements when possible. Our main contribution is an extensive evaluation of these algorithms
in simulation, using both synthetic and real-world application configurations, using two different metrics for
performance and one metric for fairness. We identify a handful of algorithms that provide good trade-offs
when considering all these metrics. The best algorithm overall is one that structures the schedule as a
sequence of phases of increasing duration based on a makespan guarantee produced by an approximation
algorithm.

Key words: Multi-criteria Scheduling, Resource Allocation, Parallel Task Graphs, Cluster.

1. Introduction

Scientific applications executing on parallel computing platforms can exploit two types of parallelism:
task parallelism and data parallelism. A task-parallel application is partitioned into a set of tasks with
possible precedence constraints to form a task graph. A data-parallel application exhibits parallelism at
the level of loops, so that iterations can be executed conceptually in a single instruction multiple Data
(SIMD) fashion. A way to expose increased parallelism, to achieve higher scalability and performance, is
to design parallel applications that use both types of parallelism, using so-called mixed parallelism. With
mixed parallelism, applications are structured as parallel task graphs (PTGs). A PTG is a directed acyclic
graph (DAG) in which vertices represent tasks and edges represent precedence constraints and possible data
dependencies between tasks. Each task is a data-parallel task. Each task is thus moldable, meaning that
it can be executed using different numbers of processors. The number of processors allocated to a task is
called the task’s allocation. The task execution time is typically non-decreasing as the allocation increases.
Figure 1 shows two possible configurations of an example five-task PTG, each configuration corresponding
to different allocations. PTGs arise naturally in many applications (see [8] for a discussion of the benefits of
mixed parallelism and for application examples).

One well-known challenge for executing PTGs is scheduling, that is, making decisions for mapping com-
putations to compute resources in a view to optimizing some performance metric. Mixed parallelism adds

∗Corresponding Author
Email address: Frederic.Suter@cc.in2p3.fr (Frédéric Suter)

Preprint submitted to Elsevier November 29, 2010

processors

execution
time

A: 3,2 A: 1,3.5

B: 6,1 C: 3,3
B: 2,3 C: 5,2

D: 1,4 D: 4,2

E: 6,1.5
E: 4,2.5

Example configuration (b)Example configuration (a)

number of

task

Figure 1: Example five-task PTG, with two possible configurations. Each task is labeled as X : x, y, where X is the task’s
name, x is the task’s allocation, and y is the task’s execution time.

2

another level of difficulty to the already challenging scheduling problem for task-parallel applications because
data-parallel tasks are moldable. This raises the question of how many processors should be allocated to each
data-parallel task. In other words, what is the best trade-off between running more concurrent data-parallel
tasks each with a smaller allocation, and running fewer concurrent tasks each with a larger allocation?

Sharing of a commodity cluster for scientific application is traditionally done via batch schedulers [13].
Batch schedulers do not optimize user-perceived notions of performance and fairness [16, 26]. Furthermore,
most of them (the exception being OAR [4]) do not provide guidance for picking numbers of processors for
tasks, which is a key question for PTG scheduling. For these reasons we do not consider batch scheduling, but
instead study the sharing of cluster resources among multiple PTGs in an off-line context, in which several
PTGs have been submitted by different users and are ready to execute at the same time. The objectives
are: (i) to minimize the overall makespan of the execution of all the PTGs; and (ii) to maximize the fairness
among the PTG executions.

Three approaches have been proposed in the literature that relate to the above problem. In [31], Zhao et
al. propose several techniques for scheduling multiple task graphs of sequential tasks. They either combine
multiple task graphs into one and then use a standard task graph scheduling approach, or perform task-by-
task scheduling over all tasks in all task graphs. In [20, 21], N’takpé et al. propose a different approach
by which each PTG is simply given a subset of the processors and scheduled on this subset using a known
PTG scheduling algorithm. The size of each subset is determined according to various criteria pertaining to
the characteristics of the PTGs. Finally, in [11], Dutot et al. propose bi-criteria algorithms for scheduling
independent moldable jobs, based on an approximation algorithm for optimizing the makespan [?]. Their
work addresses a more general problem than the one addressed in this paper because PTGs are a special
case of moldable jobs.

Our main contribution in this work is a comparison of all the above algorithms. This comparison is
done in simulation, over a wide range of representative scenarios, using three metrics related to performance
and/or fairness. Also, instead of using the algorithms exactly as they have been described in the literature,
we have enhanced them with several common-sense improvements and, when required, modifications so that
they are usable for our target problem.

This paper is organized as follows. Section 2 discusses related work. Section 3 details our platform and
application models, and gives a precise problem statement. Section 4 describes all scheduling algorithms,
which we evaluate experimentally in Section 5. Section 6 concludes the paper with a summary of our findings.

2. Related Work

Several authors have studied the scheduling of multiple task graphs of sequential tasks onto heterogeneous
platforms [31, 9, 15]. In [31] four algorithms are proposed that combine multiple task graphs into a single
composite task graph, which is then scheduled using a standard task graph scheduling algorithm, and two
algorithms that perform task-by-task scheduling over all tasks in all task graphs in a view to optimizing
fairness. In [9] a two-level distributed scheduling algorithm for multiple task graphs is proposed. The first
level is a WAN-wide distributed scheduler responsible for dispatching the different task graphs (viewed at
this level as a single task) to several second-level schedulers that are LAN wide and centralized. The focus
of that work is more on environment-related issues (such as machine failure rates and queue waiting times)
than on scheduling concerns (such as promoting fairness among applications). In [15] the authors propose a
hierarchical competitive scheduling heuristic for multiple tasks graphs. A restrictive assumption, which we
do not make in this work, is that each application is responsible for its own scheduling and has no direct
knowledge of the other applications. All the above focus on task graphs of sequential tasks and not on
PTGs. Consequently, they do not address the difficult issue, which arises in PTGs, of how many processors
should be given to each task. In this work we extend the algorithms in [31] to PTGs and include them in
our evaluation.

Several algorithms have been recently proposed to schedule a single PTG. Most of these algorithms
proceed in two phases. During a “resource allocation phase,” they determine how many processors should
be used for each task. Once all task allocations are determined, a “task mapping phase” is used to assign

3

tasks to particular processors at particular times, ensuring that those processors are available to execute the
task and that task precedence constraints are respected. The CPA (Critical Path and Area-based scheduling)
algorithm in [24] aims at finding the best compromise between the length of the critical path and the average
area (which measures the sum of the processor×time area required by all tasks). One drawback of CPA
is that, for some application and platform configurations, it produces allocations that are too large and
reduce concurrency in a way that is detrimental to performance. The MCPA algorithm in [2] addresses this
drawback in the case of a PTG structured as a sequence of levels comprising independent tasks. Unlike CPA
and MCPA, the iCASLB algorithm in [30] performs resource allocation and task mapping simultaneously by
iteratively increasing the allocations of tasks on the critical path, with a look-ahead mechanism to avoid being
trapped in local minima, and a backfilling post-processing phase to improve the schedule. All three algorithms
assume a homogeneous platform. The HCPA algorithm in [19] extends the CPA algorithm to heterogeneous
platforms by using the concept of a homogeneous reference cluster and by translating allocations on that
reference cluster into allocations on actual clusters comprising processors of various speeds. The M-HEFT
algorithm in [6] extends the well-known HEFT algorithm for scheduling task graphs [29] to handle PTGs.
Weaknesses in both HCPA (and thus in CPA) and M-HEFT were identified and remedied in [22], which
performs a thorough comparison of both improved algorithms. In the case of a homogeneous multi-cluster
platform, an algorithm to schedule a single PTG was recently proposed in [12]. This algorithm is based
on a resource allocation algorithm that provides a performance guarantee, but has high computational
complexity. Directly extending these heuristics and algorithms to schedule multiple PTGs simultaneously
is an open question. In this work we use the improved HCPA algorithm from [22] for scheduling individual
PTGs within specific subsets of the available processors.

To the best of our knowledge, the only previously published work that targets the scheduling of multiple
PTGs is [21], which assumes a homogeneous, but multi-cluster, platform. The authors propose several
algorithms that attempt to constrain the amount of resources that can be allocated to each PTG judiciously.
We include these algorithms in our evaluation. In this work we restrain our study to the case of a single
homogeneous cluster, which is the most commonly available type of parallel computing platform.

From the theoretical standpoint, the problem of scheduling multiple PTGs is a special case of the problem
of scheduling independent moldable jobs, given that PTGs are inherently moldable. This problem has been
studied for homogeneous clusters and a guaranteed algorithm for makespan optimization with a 3/2 + ǫ
approximation ratio is given in [?]. Particularly relevant for this work is the work in [11], which builds on
the algorithm in [?] and proposes algorithms for solving a bi-criteria scheduling, with the two criteria being
makespan and weighted average completion time. We build on the ideas in [11] to develop algorithms for
scheduling PTGs rather than generic moldable jobs.

3. Problem Statement

3.1. Platform and Application Models

A cluster consists of P processors. We use the term processor to refer to an individually schedulable
compute resource. With this terminology, a “processor” may, in fact, be a physical compute node that is
a multi-processor and/or multi-core computer. Processors are interconnected by a high-speed, low-latency
network. A PTG is modeled as a DAG G = (V, E), where V = {vi | i = 1, . . . , V } is a set of vertices
representing data-parallel tasks, or tasks for short, and E = {ei,j | (i, j) ∈ {1, . . . , V } × {1, . . . , V }} is a set
of edges representing precedence constraints between tasks.

While we model task precedence constraints, we do not model any communication network or any data
transfer between tasks, with the same rationale as in [1]. The algorithms we study generate schedules in
which a task may complete well before the beginning of one or more of its successors. This affords much
greater flexibility for fair sharing and efficient use of cluster resources for multiple simultaneous application
executions, but precludes the use of synchronous network communication between tasks. Instead, the output
data generated by a task must be stored temporarily until its recipient task begins execution. A simple way
to store output data is to save them to files (e.g., via a parallel file system on a storage area network).
We assume such an approach. The overhead of storing output data and of loading input data is comprised

4

in each task’s performance model as an overhead that depends on the input and output data size. Note
that, in some schedules, a direct network communication between two tasks is possible when a successor
task happens to start executing right after its predecessor completes. Nevertheless, we make the simplifying
assumption that all data communication is handled via file I/O.

Without loss of generality we assume that G has a single entry task and a single exit task. Since data-
parallel tasks can be executed on various numbers of processors, we denote by T (v, p) the execution time
of task v if it were to be executed on p processors. In practice, T (v, p) can be measured via benchmarking
for several values of p, or it can be calculated via a performance model. The overall execution time of G,
or makespan, is defined as the time between the beginning of G’s entry task and the completion of G’s exit
task.

3.2. Metrics and Problem Statement

We consider the simultaneous execution of N PTGs on a cluster. The problem is to allocate resources
to the tasks of these PTGs and to schedule them. We consider three metrics to quantify the quality of a
schedule. For PTG i = 1, . . . , N , we use C∗

maxi
to denote the ideal execution time on the dedicated cluster,

and Cmaxi
to denote the execution time in the presence of competition with the other PTGs.

We quantify the overall performance of the PTGs using the sum of completion times divided by the sum
of ideal completion times, which we call the scaled sum completion time, and which is defined as:

N∑

i=1

Cmaxi
/

N∑

i=1

C∗

maxi
.

While the sum completion time captures a notion of average performance, we also use a standard metric for
the performance of the whole batch of PTGs, i.e., the overall makespan, defined as maxi=1,...,N Cmaxi

.
One of our objectives is to evaluate the ability of scheduling algorithms to achieve fair schedules. A

popular metric to evaluate the level of performance achieved by a job that competes with other jobs is the
stretch, also called slowdown. In our case, jobs are PTGs, and the stretch of PTG i is defined as Cmaxi

/C∗

maxi
.

For instance, if a PTG could have run in 2 hours using the entire cluster, but instead ran in 6 hours due
to competition with other PTGs, then its stretch is 3. This is the most widely accepted definition in the
literature, with a lower value denoting better performance. Note, however, that in [31], whose algorithms
we evaluate in this paper, Zhao et al. define the stretch as the inverse of the standard definition. In our
description of the work in [31] we use the standard definition. It is understood that when we use terms like
“increasing” or “smaller,” in the original article Zhao et al. would have used “decreasing” or “larger.”

A perfectly fair schedule can then be defined as a schedule in which all PTGs have the same stretch.
One possibility is to define unfairness as the difference between the maximum stretch and the minimum
stretch, or the average absolute value of the difference between the stretch of each PTG and the overall
average stretch [31, 21]. Another natural definition would be to define unfairness as the standard deviation
or the coefficient of variance of the stretches. Yet another possibility, which we adopt in this work, is to
quantify unfairness as the maximum stretch, defined as maxi=1,...,N C∗

maxi
/Cmaxi

. If the maximum stretch is
optimally minimized, then all PTGs have the same stretch and fairness is optimal. Minimizing the maximum
stretch has long been known to be a good approach to improve performance as well as fairness [3]. We select
this metric because it is not completely agnostic to performance. Consider schedule A in which all PTGs have
a stretch of 1,000, while a schedule B exists in which all PTGs can have stretches between 10 and 20. With
the aforementioned fairness metrics, schedule A would be deemed preferable because the unfairness would
be equal to 0. However, schedule B is preferable to all users, which is clearly indicated by the maximum
stretch metric.

Note that the stretch can be used to define a performance metric as an alternative to our scaled sum
completion time. For instance, performance can be quantified by the sum stretch or average stretch [3].
Nevertheless, we opt for scaled sum completion time, based on the following rationale. Consider a 100-
processor cluster on which to schedule 101 independent, sequential jobs. 100 of these jobs run in 1 time unit,
and one runs in ε time units. There are two reasonable types of schedule: either the task with execution

5

time ε runs before a task with execution time 1 (schedule A), or it runs after such a task (schedule B).
The standard average stretch definition gives 101 + ε for schedule A, and 101 + 1/ε for schedule B. As ε
becomes small, in spite of the schedules becoming virtually identical, these stretches diverge and schedule
B has an infinite average stretch. Using the scaled sum completion time definition, schedule A obtains
(100 + 2ε)/(100 + ε) and schedule B obtains (101 + ε)/(100 + ε). As ε goes to 0, these two schedules have
roughly equivalent stretches. We thus deem the scaled sum completion time more stable than the average
stretch, which is why we use it in this work.

4. Resource Allocation and Scheduling Algorithms

In this section we describe the algorithms that we include in our study. Whenever applicable, we explain
how we have improved algorithms proposed in the literature or how we have adapted them for our target
scheduling problem.

4.1. Baseline Algorithm

We consider a näıve algorithm that serves as a baseline comparator for all other algorithms. This
algorithm, which we call SELFISH, operates as follows. For each PTG, SELFISH uses the HCPA algorithm
in [22] to compute the allocation (i.e., the number of processors) for each task of the PTG. This is done
assuming that the entire cluster is dedicated to the PTG’s execution. The HCPA allocation computation
proceeds as follows. Initially, each task is allocated only one processor. Task allocations are then increased
iteratively. At each iteration, HCPA selects the task v, with current allocation pv, on the current critical path
that would benefit the most from one extra processor, i.e., the task v for which the ratio T (v, pv+1)/(pv+1)
is the smallest. The allocation of this task is then increased by 1 (vp ← vp + 1) and the process is repeated.
HCPA uses a stopping criterion to decide when to stop increasing task allocations. The goal is to achieve
an optimal trade-off between the length of the critical path and the average processor utilization. We refer
the reader to [22] for the details of this stopping criterion.

Once an allocation has been computed for all tasks of all PTGs, these tasks are scheduled on the cluster
using a simple list scheduling approach. Consider task vi,j , i.e., task j in PTG i, and let bli,j denote the task’s
bottom level. SELFISH sorts the tasks by decreasing bli,j values, and then schedules each task, in this order,
as early as possible. Once a full schedule has been produced there may be opportunities to reduce schedule
fragmentation by moving task start times earlier. SELFISH takes advantage of such opportunities by using
the same backfilling post-processing phase as that used in [30], inspired by the “conservative backfilling”
technique used by batch schedulers [18]. Tasks are considered in the order in which they were scheduled
and each task is started as early as possible as long as no other task is delayed. We reuse this technique
as a way to compact schedules at the last step of all the algorithms described hereafter, and simply call it
“backfilling.” We have found it to be beneficial for all our performance metrics for all algorithms.

One clear weakness of SELFISH is that it does not differentiate between “short” and “long” PTGs. Since
it schedules all tasks of all PTGs together, by decreasing bottom level, the completion of a short PTG could
be postponed, leading to a high stretch. Recall that for each PTG i we have applied the HCPA algorithm
assuming that the full cluster is dedicated to that PTG, leading to execution time C∗

maxi
. We propose two

simple enhancements to SELFISH to ensure that tasks belonging to PTGs with short execution times are given
higher priority. SELFISH ORDER is similar to SELFISH, but instead of sorting tasks by bli,j values it sorts them
by increasing C∗

maxi
values, and then by decreasing order of bli,j values. This simply amounts to schedule

short PTGs before long PTGs. SELFISH WEIGHT instead sorts the tasks by decreasing bli,j/(C
∗

maxi
)2. This

heuristic attempts to weigh the bottom level of a task by the makespan of its PTG so as to give priority to
tasks belonging to short PTGs. The use of the power 2 does not have a theoretical justification, but in our
experiments led to much improved results. In all these algorithms all ties are broken randomly.

4.2. Algorithms Based on Zhao et al.

In [31], Zhao et al. describe six algorithms for the scheduling of multiple task graphs of sequential tasks
over heterogeneous platforms. These algorithms fall into two categories. The first category contains four

6

algorithms, named C1, C2, C3, and C4, which combine the task graphs into a single composite graph. C1,
C2, and C3 all combine the task graphs in a fork-join manner by making all their entry tasks successors
of a new zero-weight entry task, and all their exit tasks predecessors of a new zero-weight exit task. C1
schedules the composite task graphs using a standard graph scheduling heuristic (the authors of [31] use
either HEFT [29] or Hybrid.BMCT [25]). C2 and C3 partition the composite task graph into precedence
levels, where all tasks within a level can be executed concurrently. Levels are then scheduled in sequence.
C2 uses a standard independent task scheduling heuristic. C3 schedules tasks in a round-robin fashion in a
view to increasing fairness. The C4 algorithm is markedly different in that it first determines the makespan
of each task graph if it were to execute alone of the target platform using a standard task graph scheduling
heuristic. Then shorter graphs are “grafted” onto larger graphs at judicious locations. This composite graph
is then scheduled using a standard graph scheduling heuristic.

The two algorithms in the second category, F1 and F2, attempt to minimize unfairness at each scheduling
decision. At each step, the algorithms estimate current stretches. These stretches are zero for task graphs
with no scheduled tasks, which is the case of all graphs initially. The algorithms sort the task graphs first
by descending stretches and then, for equal stretches, by decreasing maximum bottom level of tasks yet to
be scheduled. A task from the first task graph in the list is then scheduled on a processor using a standard
task graph scheduling algorithm. Therefore, at each step the algorithms attempt to schedule a task from
the task graph with the worst current stretch. The F1 and F2 algorithms differ in the way they estimate
the current stretch. After scheduling a task t of task graph G, F1 computes G’s new current stretch by
dividing t’s completion time by its completion time in the schedule computed assuming that G is alone on
the platform. F2 instead updates the current stretch of all task graphs. Let ct be the completion time of task
t. For each task graph, F2 finds the most recently scheduled task t′ that executes at time ct, if it exists. F2
then determines what percentage of task t′ is completed by time ct, and at what time the same percentage
of task t′ is completed in the schedule computed assuming that the task graph is alone on the platform. The
current stretch for this task graph is then set to ct divided by this time.

The results in [31] show that F1 and F2 are superior to the other algorithms in terms of fairness, and
essentially equivalent in terms of overall makespan. While C1 leads to the best makespans, it is the worst
algorithm in terms of fairness. C1 is nevertheless interesting as it corresponds to a simple approach that is
straightforward to implement. C4 is the best of the four algorithms that combine task graphs. Consequently,
we include C1, C4, F1, and F2 in our study.

These algorithms are for scheduling task graphs of sequential tasks, while our goal is to schedule PTGs.
Fortunately, it is possible to extend them to PTGs. In [31] each algorithm is based on a standard task graph
scheduling algorithm to (i) compute the makespan of each task graph assuming it is alone on the platform;
(ii) pick and schedule tasks; and (iii) estimate in-progress stretches for all task graphs. It turns out that we
can use a standard PTG scheduling algorithm to the same end. We use the improved version of the HCPA
algorithm in [22]. Finally, we compact the produced schedules with the backfilling approach described in
Section 4.1.

4.3. Algorithms by N’takpé et al.

In [21], N’takpé et al. propose to construct fair schedules for multiple PTGs by constraining the number
of processors allocated to each PTG. More precisely, their resource allocation procedure ensures that no more
than a fraction of the available processors in the platform is allocated to the tasks in a given precedence level
of each PTG. The rationale is that the candidate ready tasks often belong to the same precedence level of a
single PTG and thus can be executed concurrently. To prevent the postponing of tasks belonging to short
PTGs (i.e., PTGs with short critical paths), a problem identified in [31], N’takpé et al. propose a mapping
procedure that performs list scheduling only on ready tasks. In this way, even a short PTG can start at time
0. They name their family of algorithms constrained resource allocation (CRA).

N’takpé et al. consider several strategies to determine the resource constraint for each PTG. Three of
these strategies lead to a good trade-off between fairness and overall makespan. The first, named CRA NDAGS,
simply gives an equal share of the resources to each PTG. The two other strategies account for specific
characteristics of the PTGs. The CRA WORK strategy accounts for the amount of computation for the PTGs

7

by specifying the resource constraint of the ith PTG, Pi, as

Pi =
1

2N
+

ωi

2
∑N

j=1 ωj

, (1)

where ωi denotes the sequential work of the ith PTG (i.e., the sum of the sequential execution times of all
its tasks).

The CRA WIDTH strategy accounts for the maximum width of each PTG, i.e., the size of the precedence
level that comprises the most tasks. A PTG with a large level should be able to exploit more task parallelism,
and should therefore be given a larger allocation. Otherwise, this large level could become a performance
bottleneck. The CRA WIDTH strategy specifies the resource constraint of the ith PTG as

Pi =
1

2N
+

width(i)

2
∑N

j=1 width(j)
, (2)

where width(i) denotes the number of tasks in the largest level of the ith PTG. N’takpé et al. have shown
that this last strategy is the fairest of the three.

For each of these algorithms, we also implement a WEIGHT variant that sorts the tasks in the same way
as the SELFISH WEIGHT variant of SELFISH, as described in Section 4.1. ORDER variants that sort tasks as
SELFISH ORDER are also possible, but our simulation results showed them to be outperformed by the WEIGHT
variants. Therefore, given the sheer number of algorithms being evaluated in this work, we do not include
them in our results.

We include these algorithms in our study but compact the schedules they produce using the backfilling
approach described in Section 4.1.

4.4. Algorithms Based on Dutot et al.

In [11], Dutot et al. propose algorithms for scheduling moldable independent jobs on a homogeneous
cluster. All their algorithms rely on the 3/2 + ǫ approximation algorithm in [?]. This algorithm computes
an approximation of the optimal makespan, C∗

max, computes an allocation for each moldable job (i.e., a
number of processors), and produces a schedule. This schedule is structured as two phases, or “shelves”,
with jobs scheduled in either one of the two shelves (larger jobs in the first longer shelf, and smaller jobs
in the second shorter shelf). The first algorithm in [11] simply uses the two-shelf schedule produced by the
approximation algorithm. Two other algorithms are proposed that use only the allocations produced by the
approximation algorithm and use two well-known list scheduling algorithms to schedule the jobs with these
allocations. The first is LPTF (longest processing time first), which gives priority to the job that has the
longest processing time. The second is SAF (smallest area first), which gives priority to the job that has the
smallest product of the number of processors allocated to it and its execution time.

The last algorithm proposed by Dutot et al. uses only the approximation of C∗

max computed by the
approximation algorithm. It then partitions the time from 0 to C∗

max in K phases, or “shelves,” where K
depends on C∗

max and the smallest possible execution time over all jobs. By contrast with the schedule
produced by the approximation algorithm, there can be more than two shelves, and the shelves increase in
duration throughout the schedule. The goal is then to determine which jobs are scheduled within each shelf.
This is done by solving a knapsack problem, via dynamic programming, for each shelf, from the smallest
to the largest shelf. The goal is to maximize the “weights” of the jobs packed into each shelf, where the
weights are those used for computing the weighted average completion time, which is one of the two criteria
to optimize. The resulting schedule is then compacted via a number of optimizations (e.g., shuffle the order
of shelves randomly, use a list scheduling heuristic to schedule jobs while respecting a given shelf order).

The work by Dutot et al. addresses a more general problem than ours since PTGs are just one kind of
moldable jobs. Indeed, since the tasks in a PTG are themselves moldable, a PTG can be executed on any
number of processors p, with p varying from 1 to P . As a result, the algorithms in [11] produce coarse-grain
schedules that cannot take advantage of the fine-grain structure of PTGs and lead to schedule fragmentation.
We propose algorithms based on the ideas in Dutot et al., but that schedule PTGs and focus on optimizing

8

makespan and fairness rather than makespan and weighted average completion time. We label this family
of algorithms CAFM (coarse-grain allocation fine-grain mapping), since allocations are computed assuming
generic moldable jobs, but task mapping is done with respect to individual PTG tasks.

The first step of all algorithms is to compute the execution time of each PTG assuming that p processors
are available, with p varying from 1 to P . This is done using the improved HCPA algorithm from [22] to
schedule the PTG on the given number of processors. In this way we obtain a specification of each PTG
as a moldable job. We can then use the approximation algorithm in [?] to compute an approximation of
C∗

max, and an allocation for each job. Note that, unlike in [11], we do not attempt to reuse the two-shelf
schedule produced by this algorithm for two reasons. First, the second shelf contains mostly smaller jobs,
which is detrimental to fairness. Second, even if the two shelves were to be swapped, we propose below a
K-shelf algorithm that subsumes the two-shelf approach.

Once allocations have been computed for each job, like in [11], we can use standard list scheduling
techniques to schedule the jobs. Each job is then assigned a rectangular “box” in the schedule, which spans
a number of processors and a number of time units. Within this box we can then schedule the individual tasks
of the job, which is really a PTG. Recall that this is done using the improved HCPA algorithm from [22].
Once this is done for all PTGs, we obtain a schedule for all tasks of all PTGs. This schedule is likely very
fragmented, and we compact it using backfilling, as explained in Section 4.1. For list scheduling we use the
SAF and LPTF approaches as in [11]. However, we note that LPTF, unlike SAF, is likely detrimental to
fairness since it gives priority to longer jobs and risks postponing the execution of shorter jobs. For this
reason we also use a shortest processing time first (SPTF) approach. We obtain three algorithms: CAFM LPTF,
CAFM SPTF, and CAFM SAF.

The K-shelf idea in [11] is attractive from the perspective of fairness, as smaller jobs can be placed in
smaller, earlier shelves. We reuse the algorithm from [11] to compute a K-shelf schedule for moldable jobs.
One difference is that the packing of jobs into shelves solves a knapsack problem in which the weights of all
the jobs are equal to 1, as opposed to an arbitrary weight. This is because our objective is to maximize an
unweighted notion of fairness, rather than maximizing weighted average completion time. Note that, unlike
in [11], we do not shuffle the shelf order as shelves of non-decreasing durations promote fairness. Once a
K-shelf schedule has been produced, as for the three CAFM algorithms described earlier, we schedule the
tasks of each PTG within its box, and use backfilling to compact the schedule. We name this algorithm
CAFM K SHELVES.

Finally, we propose an algorithm that combines the ideas from the CRA algorithms of N’takpé et al.
(see Section 4.3) and those of Dutot et al. Recall that the algorithms of N’takpé et al. simply attempt to
constrain the number of processors used for each PTG. While their algorithms use a number of heuristics
to compute these constraints, it is possible to base them on the allocations computed by the approximation
algorithm in [?]. These allocations are known to provide a strong guarantee on the overall makespan, and
may therefore provide a good basis for producing a desirable overall schedule. Using the same procedure
as for the other algorithms in this section we execute the approximation algorithm and obtain an resource
constraint for each PTG. Using this constraint, we can now compute an allocation for each task of each PTG
using the improved HCPA algorithm in [22]. We can then schedule all tasks together, using the standard list
scheduling approach of prioritizing tasks by decreasing bottom levels. Like for the other CAFM algorithms,
we compact the schedule using backfilling. We name this algorithm CAFM CRA.

Like for the algorithms described in the previous section, we also implement a CAFM CRA WEIGHT variant
of CAFM CRA that sorts the tasks in the same way as the SELFISH WEIGHT variant of SELFISH, as described
in Section 4.1. And here also the corresponding ORDER variant was found to be outperformed by the WEIGHT
variant, and is not included in our results.

5. Experimental Evaluation

5.1. Experimental Methodology

We use simulation for evaluating the algorithms in the previous section. Simulation allows us to perform a
statistically significant number of experiments for a wide range of application configurations (in a reasonable

9

amount of time). We use the SimGrid toolkit v3.3.3 [7, 27] as the basis for our simulator. SimGrid

provides the required fundamental abstractions for the discrete-event simulation of parallel applications in
distributed environments, and it was specifically designed for the evaluation of scheduling algorithms. We
explain hereafter how we instantiate the models described in Section 3.1 for the simulation experiments.

5.1.1. Platforms

We use configurations from four clusters in the Grid’5000 platform deployed in France [5, 14]. Two
of them, grillon and grelon, are located in Nancy, chti is located in Lille, and gdx is located in Orsay.
Each cluster uses a Gigabit switched interconnect internally (100µs latency and 1Gb bandwidth). Table 1
summarizes the number of processors per cluster and the computation speed of the processors in each cluster,
in GFlop/sec. These values were obtained with the High-Performance Linpack benchmark over the AMD
Core Math Library (ACML).

Cluster grelon grillon chti gdx
#proc. 120 47 20 216

Gflop/sec 3.185 3.379 4.311 3.388

Table 1: Cluster characteristics.

5.1.2. Applications

To instantiate the PTG model described in Section 3.1 we need to define specific models for execution
times of data-parallel tasks and for the structure of the task graph.

We take a simple approach for modeling data-parallel task execution times. We assume that a task
operates on a dataset of d double-precision elements (for instance a

√
d×
√
d square matrix). We arbitrarily

assume that processors have at most 1GByte of memory and thus d ≤ 121M . We also assume that d is above
4M (if d is too small, the data-parallel task should most likely be fused with its predecessor or successor).
We model the computational complexity of a task, in number of operations, with one of the three following
expressions, which are representative of common applications: a ·d (e.g., a stencil computation on a

√
d×
√
d

domain), a · d log d (e.g., sorting an array of d elements), d3/2 (e.g., a multiplication of
√
d ×
√
d matrices).

For the first two types of complexity a is picked randomly between 26 and 29, to capture the fact that
some of these tasks often perform multiple iterations. We consider four scenarios: three in which all tasks
have one of the three computational complexities above, and one in which task computational complexities
are chosen randomly among the three. Beyond this model for sequential task execution, we also need to
model parallel executions, i.e., how T (v, p) varies with p. We use a simple model that is used extensively
in the literature, thus allowing our results to be compared with previously published results consistently.
This model is based on Amdahl’s law and specifies that a fraction α of a task’s sequential execution time is
non-parallelizable. Recall that this non-parallelizable part comprises the overhead of the I/O necessary for
data communication between tasks. We pick random α values uniformly between 0% and 25%. With this
model, the task execution time strictly decreases as the number of processors increases.

We consider random PTGs that consist of 10, 20, or 30 data-parallel tasks. We use four commonly used
parameters to define the shape of a PTG: width, regularity, density, and jumps. The width determines the
maximum parallelism in the PTG, that is the number of tasks per level. A small value leads to “chain”
PTGs and a large value leads to “fork-join” PTGs. The regularity denotes the uniformity of the number of
tasks in each level. A low value means that levels contain very dissimilar numbers of tasks, while a high value
means that all levels contain similar numbers of tasks. The density denotes the number of edges between
two levels of the PTG, with a low value leading to few edges and a large value leading to many edges. These
three parameters take values between 0 and 1. In our experiments we use values 0.2, 0.5, and 0.8 for width,
and 0.2 and 0.8 for regularity and density. This leads to PTGs with mean maximum task parallelism of
V 0.2, V 0.5, or V 0.8, where V is the total number of tasks, and coefficients of variance 20% or 80%. As a
result, we generate PTGs that are close to chain graphs and PTGs that are close to fork-join graphs, with
a spectrum of configurations in between. Furthermore we add random “jump edges” that go from level l

10

to level l + jump, for jump = 1, 2, 4 (the case jump = 1 corresponds to no jumping “over” any level).
We refer the reader to our graph generation program and its documentation for full details on the graph
generation algorithm [28]. Generating three samples for each DAG configuration, and accounting to the four
aforementioned computational complexity scenarios, we obtain a total of 3× 4× 3× 2× 2× 3× 3 = 1, 296
different random DAGs.

While the above specifies a way to generate a population of synthetic PTGs, we also consider real PTGs
from the Strassen matrix multiplication and from the fast Fourier transform (FFT) applications. Both are
classical test cases for PTG scheduling algorithms and we refer the reader for instance to [10] for details on
their structure. These PTGs are more regular than our synthetic PTGs, which are more representative of
workflow applications that compose arbitrary operators in arbitrary ways. We consider FFT PTGs with 2,
4, and 8 levels (that is 5, 15, and 39 tasks, and a maximum parallelism of 2, 4, and 8, respectively) All the
Strassen PTGs have 25 tasks, and the maximum parallelism is 10. As for the random DAGs, we consider
four different computational complexity scenarios. This is to explore scenarios beyond those corresponding
to the actual FFT and Strassen applications. For each FFT PTG configuration we generate 10 samples, for
a total of 3× 4× 10 = 120 PTGs. For each Strassen PTG configuration we generate 25 samples, for a total
of 1× 4× 25 = 100 PTGs.

Considering random, FFT, and Strassen PTGs, the number of tasks per PTG ranges between 5 and 39
tasks. This is representative of real-world workloads. For instance, the study in [23] reports on scientific
workflow applications that are found in the workload of the Austrian Grid platform. Most of these workflows
comprise around 30 tasks, 75% of them have fewer than 40 tasks, and only 5% of them have large numbers
of tasks (higher than 200).

For each of our three classes of PTGs we consider problem instances for N = 2, 4, 6, 8, and 10 concurrent
PTGs. For each value of N we generate 25 random sets of PTGs. Since we consider four different platforms,
we have 25×4 = 100 instances of our scheduling problem for each class of PTGs, for a total of 300 instances.
This amounts to a total of 1500 simulation scenarios, since we use five different values for N . Each algorithm
is executed for each scenario.

5.2. Simulation Results

In what follows we first present results for all our algorithms for the scaled sum completion time metric
(Section 5.2.1), the makespan metric (Section 5.2.2), and the maximum stretch metric (Section 5.2.3). We
also present results that compare the algorithms for two metrics simultaneously (Section 5.2.4). We then
study how our fairness metric, the maximum stretch, varies with the number of PTGs that are simultaneously
scheduled (Section 5.2.5). We report one results regarding cluster utilization (Section 5.2.6). Finally, we
discuss the execution times of the different algorithms (Section 5.2.7).

5.2.1. Scaled Sum Completion Time Distribution

Figure 2 shows the distribution of scaled sum completion time values for all algorithms. The results
are presented in box-and-whiskers fashion. The box represents the inter-quartile range (IQR), i.e., all the
values comprised between the first (25%) and third (75%) quartiles, while the whiskers show the minimal
and maximal values. The horizontal line within the box indicates the median, or second quartile, value. For
each algorithm the figure displays four box-and-whiskers diagrams, from left to right: (i) results for random
PTGs; (ii) results for Strassen PTGs; (iii) results for FFT PTGs; and (iv) results computed over all PTGs.

We first discuss the sensitivity of our results with respect to the three PTG populations. Focusing on
median values, one observable trend is that, except for the algorithms in the SELFISH family, the scaled
sum completion times are higher for the Strassen PTGs than for the random and FFT PTGs. The relative
difference between the median value for two PTG populations is as high as 52.0% for F1 and 49.0% for
SELFISH. For the other algorithm this relative difference goes from 7.5% to 42.4% and is 19.2% on average.
In terms of absolute values, the difference between median values for different PTG populations for a single
algorithm is on average 0.40. One important question is how the ranking of the algorithms varies according
to different PTG populations. Still focusing on median values, we compute the rankings of the algorithms for
each of the three populations and for all PTGs. The rank values range from 1 to 19 since there are 19 different

11

 0 1 2 3 4 5 6 7 8 9

SELFISH

SELFISH_ORDER

SELFISH_WEIGHT

C1

C4

F1

F2

CRA_NDAGS

CRA_NDAGS_WEIGHT

CRA_WORK

CRA_WORK_WEIGHT

CRA_WIDTH

CRA_WIDTH_WEIGHT

CAFM_CRA

CAFM_CRA_WEIGHT

CAFM_SAF

CAFM_SPTF

CAFM_LPTF

CAFM_K_SHELVES

Scaled Sum Completion Time

F
ig
u
re

2
:
D
istrib

u
tio

n
o
f
sca

led
su

m
co

m
p
letio

n
tim

e
v
a
lu
es

fo
r
a
ll
a
lg
o
rith

m
s
in

b
o
x
-a
n
d
-w

h
isk

ers
fa
sh

io
n
.
F
o
r
ea

ch
a
lg
o
rith

m
,

th
e
resu

lts
a
re

sh
o
w
n
fo
r
ra
n
d
o
m
,
S
tra

ssen
,
F
F
T
,
a
n
d
a
ll
P
T
G
s.

12

algorithms. We find that the rank of an algorithm using the random, FFT, and Strassen PTG populations
differs from the rank using all PTGs by, on average, 1.68, 1.57, and 2.10, respectively. The difference in
ranking for an algorithm that is the ith best performing algorithm for a given PTG population and is the
jth best performing algorithm considering all PTGs is computed as |i− j|. SELFISH WEIGHT has the highest
such differences in ranking (4, 5, and 6 for each of the PTG populations), but turns out to be consistently
outperformed by SELFISH ORDER and is not a contender for being the algorithm of choice. We conclude that,
given the relatively small differences in ranking, using the results computed over all PTGs gives a reasonable
view of the results. For the rest of this discussion, we consider only the fourth box-and-whisker diagram for
each algorithm.

SELFISH leads to the worst results, with maximum scaled sum completion times up to 8.43. The
SELFISH ORDER variant leads to dramatically better results with a maximum of 3.75, a third quartile of
2.46, a second quartile of 1.71, a first quartile of 1.17, and a minimum of 0.96. The SELFISH WEIGHT variant,
although it improves on SELFISH, is significantly worse than SELFISH ORDER, with, for instance, a maximum
as high as 7.69 and a median at 1.71. We have mentioned that for algorithms in the CRA and the CAFM families
the ORDER variants, not included here, were outperformed by the WEIGHT variants. This trend is reversed
for algorithms in the SELFISH family, but our inspection of the schedules did not reveal any clear reason for
this trend reversal. All algorithms based on the algorithms of Zhao et al. (see Section 4.2) are outperformed
by SELFISH ORDER. The best algorithm in the CRA family is CRA WORK WEIGHT, but its performance is only
slightly better than that of CRA WORK (the only differences are a third quartile lower by 0.05 and a maximum
lower by 0.39). CRA WORK WEIGHT leads to results less consistent than those of SELFISH WEIGHT: it has higher
maximum and third quartile values, similar median value, and lower first quartile and minimum values. The
best of the CAFM algorithms is CAFM K SHELVES, with CAFM SAF and CAFM SPTF close behind. Note that
CARM LPTF leads to much worse worst cases, with a maximum scaled sum completion time almost as high as
6. This confirms that LPTF schedules short PTGs late, thus increasing their completion times unnecessarily,
as explained in Section 4.4. CAFM CRA suffers from the same weakness. More generally, our results show that
algorithms that explicitly schedule short PTGs first outperform the other algorithms in the same family that
do not. The performance of CAFM K SHELVES is almost identical to that of SELFISH ORDER for all the quar-
tiles. We conclude that, for the scaled sum completion time metric, SELFISH ORDER and CAFM K SHELVES

are the best algorithms. We note, however, that several algorithms achieve reasonable performance with
maximum values around 4 and median values under 2.

An interesting phenomenon, which occurs in 6% of our simulation scenarios, for algorithms in the CRA

family, is that a PTG can experience a shorter makespan in a concurrent schedule than if it were scheduled
alone on the platform using the HCPA algorithm in [22]. This happens in cases with few concurrent PTGs
and is explained as follows. The HCPA algorithm bounds the number of processors that can be used in a
schedule as a way to increase parallel efficiency. It turns out that this bound can be more stringent than the
bound used by the CRA algorithms, and thus can lead to longer schedules.

5.2.2. Makespan Distribution

Results for the makespan metric are shown in Figure 3, which is similar to Figure 2. With respect to the
sensitivity of our results to the PTG populations, we find that the relative difference between the median
value for two PTG populations ranges between 17.0% (for C4) and 39.8% (for CAFM CRA WEIGHT) and is
29.1% on average. Like in the previous section, we evaluate the sensitivity of the algorithm ranking to the
PTG populations. For the random, FFT, and Strassen PTG populations we find that the average ranking
differences with the ranking computed considered all PTGs are 2.0, 2.4, and 1.15. Here again, we conclude
that using results computed over all PTGs is reasonable for analyzing our results, which is what we do in
the rest of this discussion. However, we note two notable exceptions: the maximum makespan achieved by
CRA WIDTH and CRA WIDTH WEIGHT is larger by roughly a factor 2 for the random PTGs than for the FFT
and Strassen PTGs.

Using SELFISH as a reference, the only algorithms that outperform it noticeably for one or more quartile
statistics are C1, CRA WORK, CRA WORK WEIGHT, and all the CAFM algorithms. Expectedly, the ORDER and
WEIGHT variants do not lead to improvements in makespan since for this metric the order in which the
PTGs complete is of no consequence. The good performance of C1 is expected since it treats the PTGs

13

 0

 500

 1000

 1500

 2000

 2500

 3000

SELFISH

SELFISH_ORDER

SELFISH_WEIGHT

C1

C4

F1

F2

CRA_NDAGS

CRA_NDAGS_WEIGHT

CRA_WORK

CRA_WORK_WEIGHT

CRA_WIDTH

CRA_WIDTH_WEIGHT

CAFM_CRA

CAFM_CRA_WEIGHT

CAFM_SAF

CAFM_SPTF

CAFM_LPTF

CAFM_K_SHELVES

Makespan (in sec.)

F
ig
u
re

3
:
D
istrib

u
tio

n
o
f
o
v
era

ll
m
a
k
esp

a
n
v
a
lu
es

fo
r
a
ll
a
lg
o
rith

m
s
in

b
o
x
-a
n
d
-w

h
isk

ers
fa
sh

io
n
.
F
o
r
ea

ch
a
lg
o
rith

m
,
th

e
resu

lts
a
re

sh
o
w
n
fo
r
ra
n
d
o
m
,
S
tra

ssen
,
F
F
T
,
a
n
d
a
ll
P
T
G
s.

14

as a single PTG and uses a scheduling heuristic that was designed to minimize the overall makespan. The
best algorithm overall is CAFM CRA, with the lowest maximum (1310.69), third quartile (404.73), median
(249.35), and minimum (3.71), but its performance is comparable to that of C1, and also to that of the
CRA WORK, CRA WORK WEIGHT, and CAFM algorithms, which all have maximum makespans under 1800. Like in
the previous section, we find that several algorithms perform reasonably well and that the makespan metric
does not designate a single clear winner. For instance, CAFM K SHELVES, which is found in the previous
section to be among the two best algorithms in terms of scaled sum completion time, has median value only
20% larger than that of CAFM CRA.

5.2.3. Maximum Stretch Distribution

Figure 4 shows results for the maximum stretch metric. These results are even more consistent across
PTG populations than those in the previous sections with respect to median values: the average ranking
differences between rankings for random, FFT, and Strassen PTGS and the ranking computed over all PTGs
are 0.84, 0.84, and 1.89, respectively. The biggest difference is 6, for F1 and F2. In the discussion hereafter we
use statistics computed over all PTGs. However, we see that for the maximum and third quartile statistics
some algorithms are sensitive to the PTG populations. This is seen as variation of the position of the
top whisker within each group of the box-and-whisker diagram, which is particularly noticeable for C1 and
CRA WIDTH. Regardless, unlike the previous two metrics, the maximum stretch is discriminating as several
algorithms are significantly outperformed by a few others. These better algorithms have results that are
consistent across PTG populations.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

S
E

L
F

IS
H

S
E

L
F

IS
H

_
O

R
D

E
R

S
E

L
F

IS
H

_
W

E
IG

H
T

C
1

C
4

F
1

F
2

C
R

A
_
N

D
A

G
S

C
R

A
_
N

D
A

G
S

_
W

E
IG

H
T

C
R

A
_
W

O
R

K

C
R

A
_
W

O
R

K
_
W

E
IG

H
T

C
R

A
_
W

ID
T

H

C
R

A
_
W

ID
T

H
_
W

E
IG

H
T

C
A

F
M

_
C

R
A

C
A

F
M

_
C

R
A

_
W

E
IG

H
T

C
A

F
M

_
S

A
F

C
A

F
M

_
S

P
T

F

C
A

F
M

_
L

P
T

F

C
A

F
M

_
K

_
S

H
E

L
V

E
S

M
ax

im
um

 S
tr

et
ch

Figure 4: Distribution of maximum stretch values for all algorithms in box-and-whiskers fashion. For each algorithm, the results
are shown for random, Strassen, FFT, and all PTGs.

Using the maximum stretch as a metric for fairness (low maximum stretch indicating good fairness),
the least fair algorithm is SELFISH, with a median value of 17.49 and a maximum value of 487.69.
SELFISH WEIGHT performs roughly an order of magnitude better (median value of 2.38 and maximum value

15

of 42.18), but is not as good as SELFISH ORDER (median value of 1.79 and maximum value of 5.23). This is
consistent with results in the two previous sections. We see that all algorithms based on those of Zhao et
al. in [31] achieve larger maximum values than SELFISH ORDER by at least an order of magnitude. Among
the algorithms in the CRA family, the best algorithm is CRA WORK WEIGHT. In the CAFM family, CAFM SAF,
CAFM SPTF, and CAFM K SHELVES are the best algorithms. An expected observation is that the algorithms
that achieve the best worst-case fairness (i.e., the ones with the lowest top whiskers in the figure) are the ones
that explicitly schedule shorter PTGs first. This explains the high maximum values (above 100) of SELFISH,
CRA NDAGS, CRA WIDTH, CAFM CRA, and CAFM LPTF, which either do not pay special attention to short PTGs
or actually schedule them later explicitly. One interesting feature of the results is that all CRA algorithms
use the same mapping procedure, while all the CAFM algorithms use the same allocation procedure. In both
families of algorithms we see some algorithms that perform very poorly and some algorithms that perform
very well. For the two other metrics, all algorithms perform somewhat similarly, but for minimizing the
maximum stretch (i.e., for avoiding cases in which a few PTGs experience very poor performance), both
allocation and mapping must be done judiciously.

The fairest algorithm overall is SELFISH ORDER, with a median value of 1.79, a third quartile of 2.40,
and a maximum of 5.23. CAFM K SHELVES is strictly better than CRA WORK WEIGHT according to all quartile
statistics, with a median value of 2.43, a third quartile of 4.18 and a maximum of 21.09. CAFM SAF and
CAFM SPTF achieve slightly better maximum values (17.98 in both cases), but have median values above 4.50,
i.e., above the median value of CAFM K SHELVES. We conclude that the best algorithm in terms of maximum
stretch is SELFISH ORDER followed by CAFM K SHELVES.

According to all results seen so far, one algorithm that is among the best for each metric is
CAFM K SHELVES. SELFISH ORDER is a close contender, and it outperforms CAFM K SHELVES for the maxi-
mum stretch metric.

5.2.4. Bi-criteria Performance Relative to SELFISH

The results obtained so far make it difficult to fully understand the trade-offs between the different
metrics. In this section we conduct a bi-criteria analysis of the algorithms, using SELFISH as a baseline so as
to quantify how the different algorithms improve the schedules relative to the performance of the simplest
algorithm. For each algorithm, each simulation scenario, and each performance metric, we compute a relative
metric by dividing by the value achieved by SELFISH. Values larger (resp. lower) than 1 thus mean that an
algorithm is less (resp. more) effective than SELFISH. For each algorithm we then compute the harmonic
mean of these ratios over all simulation scenarios. We do not use the arithmetic mean because SELFISH

experiences high variations in our metrics across our experimental scenarios, meaning that a few ratios could
dominate the arithmetic mean. The harmonic mean is typically used precisely to avoid such bias.

Figure 5 shows all algorithms in a two-dimensional “Pareto” plot, where the x-axis is the mean relative
makespan and the y-axis is the mean relative makespan. Algorithms located toward the bottom-left corner
of the graph are preferable, and algorithms that are non-dominated, i.e., not outperformed by any single
other algorithm for both the mean relative makespan and the mean relative scaled sum completion time, are
linked with a line.

This figure confirms some of the findings in the previous three sections. We see that several algorithm
can improve on the straightforward SELFISH approach for both criteria. The algorithms based on those of
Zhao et al. in [31] are all significantly outperformed by other algorithms. We also see that the WEIGHT

version of each algorithm lies to the right and below the original algorithm, meaning that it improves the
scaled sum completion time but degrades the makespan. The same observation holds for SELFISH WEIGHT

and SELFISH ORDER. Among the non-dominated algorithms, SELFISH ORDER achieves the best scaled sum
completion time, but leads to a makespan more than 10% larger than SELFISH. This demonstrates that
improving upon SELFISH in terms of fairness is straightforward, but doing so while maintaining, or improving,
the makespan requires more sophisticated algorithms. At the other end of the spectrum is CAFM CRA, which
achieves a makespan 20% lower than that of SELFISH. CAFM LPTF also achieves a low makespan, but only
slightly lower than that of CRA WORK at the expense of a large increase in scaled sum completion time, as seen
by the steep line segment connecting the two algorithms. CRA WORK, CRA WORK WEIGHT, and CAFM K SHELVES

16

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.8 0.9 1 1.1 1.2

S
ca

le
d

S
um

 C
om

pl
et

io
n

T
im

e
re

la
tiv

e
to

 S
E

LF
IS

H

Makespan relative to SELFISH

CAFM_CRA_WEIGHT

C1

C4

F1

F2

CRA_WIDTH

CRA_WIDTH_WEIGHT

CAFM_SAF

CAFM_SPTF

CRA_NDAGS

CRA_NDAGS_WEIGHT

SELFISH_WEIGHT

CAFM_CRA

CRA_WORK

CRA_WORK_WEIGHT

CAFM_LPTF

CAFM_K_SHELVES

SELFISH_ORDER

Figure 5: Mean scaled sum completion time versus mean makespan, relative to SELFISH.

17

are non-dominated, and form a spectrum of trade-offs between makespan and scaled sum completion time.
Note that CAFM CRA WEIGHT is almost non-dominated, but, like CAFM LPTF, does not seem to be a good
alternative to CRA WORK. Among the six non-dominated algorithms, CAFM LPTF and SELFISH ORDER both pay
for a small decrease in one criterion by a large increase in the other.

Figure 6 is similar to Figure 5 but its y-axis shows the mean maximum stretch relative to SELFISH. This
figure only shows the six non-dominated algorithms in Figure 5. It turns out that most other algorithms are
dominated for these two metrics as well, the exception being CAFM CRA WEIGHT. The observations made on
Figure 5 regarding the relative performance of the algorithms hold for Figure 6. As in the previous sections,
we see that some algorithms outperform SELFISH in terms of the maximum stretch by more than one order
of magnitude.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

M
ax

im
um

 S
tr

et
ch

 r
el

at
iv

e
to

 S
E

LF
IS

H

Makespan relative to SELFISH

CAFM_LPTF

CRA_WORK

CAFM_CRA

CRA_WORK_WEIGHT

CAFM_K_SHELVES

SELFISH_ORDER

Figure 6: Mean maximum stretch versus mean makespan, relative to SELFISH.

Figure 7 shows the mean maximum stretch versus the mean scaled sum completion time, relative to
SELFISH, for the six non-dominated algorithms shown in the previous figure. SELFISH ORDER is the only
non-dominated algorithm. It is therefore never dominated regardless of which two metrics are considered.
However, it leads to a very high makespan, more than 10% larger than that of SELFISH. Likely preferable
in practice is CAFM K SHELVES, followed by CRA WORK WEIGHT.

5.2.5. Maximum Stretch vs. Number of PTGs

In this section we study how the maximum stretch, i.e., our measure of fairness, evolves as the number of
concurrently scheduled PTGs increases. Presumably, as the number of PTGs increases, maintaining fairness
among PTGs becomes more difficult. the results are shown in Figure 8, which plots the mean maximum
stretch, averaged over all simulation scenarios for a given number of scenarios, versus the number of PTGs.
The baseline algorithm, SELFISH, shows a steep growth in mean maximum stretch as the number of PTGs
increases. This is expected since this algorithm pays no attention to fairness. To avoid unnecessary clutter

18

 0.5

 0.6

 0.7

 0.8

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
ca

le
d

S
um

 C
om

pl
et

io
n

T
im

e
re

la
tiv

e
to

 S
E

LF
IS

H

Maximum Stretch relative to SELFISH

CRA_WORK

CRA_WORK_WEIGHT

CAFM_CRA

CAFM_LPTF

CAFM_K_SHELVES

SELFISH_ORDER

Figure 7: Mean maximum stretch versus mean scaled sum completion time, relative to SELFISH.

19

we present results only for the fairest algorithm in each algorithm family. We include two of the algorithms
proposed by Zhao et al., C4 and F2, as they use significantly different approaches. These two algorithms
lead to results that are better than those of SELFISH, with C4 being the better of the two. SELFISH ORDER,
CRA WORK WEIGHT, and CAFM K SHELVES have similar behavior, and exhibit only slowly increasing mean max-
imum stretch. We conclude that these algorithms are able to produce fair schedules even when the number
of PTGs competing for resources increases.

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10

M
ax

im
um

 S
tr

et
ch

Number of PTGs

SELFISH
SELFISH_ORDER
C4
F2
CRA_WORK_WEIGHT
CAFM_K_SHELVES

Figure 8: Mean maximum stretch versus the number of concurrent PTGs.

5.2.6. Cluster Utilization

We define the utilization of a cluster for an experimental scenario as the number of idle processors as a
given instant, average over the overall makespan. Table 2 shows the utilization results for each algorithm,
averaged over all experimental scenarios for a given cluster (see Table 1 for cluster specifications). All
utilization levels reported in the table are above 75%, and 89.5% of them are 90% or higher. This indicates
that, in our experiments, the PTGs can saturate the clusters. This confirms that we study high-load scenarios
in which there is true competition for compute resources. The lowest utilization levels are achieved for the
largest cluster (gdx), which is expected. Particularly notable are the utilization levels around 75% for that
cluster when using the CAFM algorithms.

5.2.7. Comparison of Scheduling Times

In this section we compare our algorithms in terms of time to compute a schedule. Times are measured on
an Intel 2.20GHz processor and for the most demanding scenarios in our experiments: scheduling 10 random
PTGs on the largest cluster (216 processors). Cluster size has a high impact on the time to compute a
schedule for several algorithms as it increases the convergence time of the allocation procedure of the HCPA
algorithm, which is used as a building block. All results hereafter are averages over five samples.

20

chti grillon grelon gdx
SELFISH 100.00 99.82 98.78 96.20
SELFISH ORDER 100.00 99.77 97.72 94.30
SELFISH WEIGHT 100.00 99.77 97.78 94.40
C1 99.87 99.44 95.85 89.47
C4 99.96 99.47 96.38 90.88
F1 100.00 99.82 98.68 96.18
F2 100.00 99.82 98.68 96.15
CRA NDAGS 99.85 99.93 99.88 99.87
CRA NDAGS WEIGHT 99.33 98.146 99.02 98.80
CRA WORK 99.96 99.92 99.87 99.91
CRA WORK WEIGHT 99.96 99.48 99.10 99.10
CRA WIDTH 99.83 99.85 99.82 99.81
CRA WIDTH WEIGHT 99.24 98.14 98.81 98.74
CAFM CRA 99.79 98.89 91.63 78.30
CAFM CRA WEIGHT 99.72 98.55 89.82 75.62
CAFM SAF 99.77 98.64 90.34 76.76
CAFM SPTF 99.77 98.63 90.26 76.67
CAFM LPTF 99.66 98.50 90.05 76.05
CAFM K SHELVES 99.88 99.38 94.98 88.07

Table 2: Cluster utilization levels in percentage, averaged over all simulation scenarios for a given cluster and a given algorithm.

The baseline algorithm, SELFISH, computes schedules in 0.29 seconds. The CRA algorithms are faster,
at 0.09 seconds. These algorithms first determine a resource constraint for each PTG. They then build the
schedule of each PTG according to this constraint and thus on fewer processors, which takes less time than
for the whole cluster as in SELFISH. F1 and F2 compute schedules in 0.20 s. C1 and C4 compute schedules in
2.22 s. These algorithms schedule a very large composite graph for which the bottom levels of unscheduled
tasks must be recomputed at each iteration. The CAFM algorithms all take significantly more time, around
50 s. 85% of this time is due to determining the specification of each PTG as a moldable job, which invokes
HCPA many times. The performance of HCPA is very sensitive to the shape of the PTGs, being particularly
poor for PTGs that have low task parallelism. Note that if a PTG is executed more than once, then its
specification as a moldable job does not need to be recomputed. In this case the CAFM algorithms would
exhibit runtimes under 15 seconds, still orders of magnitude larger than the runtimes of the CRA algorithms.

6. Conclusion

In this paper, we have evaluated algorithms for off-line scheduling of multiple PTGs on a cluster. We
have used three metrics to quantify the quality of a schedule, namely, the scaled sum completion time, the
makespan, and the maximum stretch. The first two metrics pertain to performance and the third ones to
performance and fairness. Based on our experiments, three our of the nineteen studied algorithms have
emerged. We have found that CAFM K SHELVES is the best algorithm, considering its performance on all
three metrics. This algorithm computes resource allocations based on the guaranteed algorithm in [?] for
optimizing the makespan, and builds the schedule as a sequence of “shelves” of increasing durations based on
the makespan guarantee. Another algorithm that achieves performance close to that of CAFM K SHELVES is
CRA WORK WEIGHT. This algorithm is based on one of the algorithms in [21], and uses a much simpler allocation
and mapping procedure. This algorithm may therefore be a good choice for large problem instances, for which
the time needed by CAFM K SHELVES to compute the schedule may be prohibitively large. CRA WORK WEIGHT

would also be a good choice for practitioners that prefer a less involved implementation of the scheduling
algorithm. Finally, the even simpler SELFISH ORDER outperforms both these algorithms in terms of maximum

21

and scaled sum completion time, but performs poorly in terms of makespan. If makespan is not a metric
under consideration, then SELFISH ORDER is the algorithm of choice.

Acknowledgments

The authors wish to thank the anonymous reviewers for their insightful suggestions that have greatly
contributed to improving the quality of this work. This work has been partially supported by the ANR
project SPADES (08-ANR-SEGI-025).

References

[1] K. Aida and H. Casanova. Scheduling Mixed-Parallel Applications with Advance Reservations. Cluster
Computing Journal, 12(2):205–220, 2009.

[2] S. Bansal, P. Kumar, and K. Singh. An Improved Two-Step Algorithm for Task and Data Parallel
Scheduling in Distributed Memory Machines. Parallel Computing, 32(10):759–774, 2006.

[3] M. Bender, S. Chakrabarti and S. Muthukrishnan. Flow and Stretch Metrics for Scheduling Continuous
Job Streams. In Proceedings of the ACM/SIAM Symposium on Discrete Algorithms (SODA), pages
270–279, January 1998.

[4] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounié, P. Neyron, and O. Richard. A
Batch Scheduler with High Level Components. In Proceedings of the 5th International Symposium on
Cluster Computing and the Grid (CCGrid), pages 776–783, May 2005.

[5] R. Bolze, F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou, S. Lanteri, J. Leduc,
N. Melab, G. Mornet, R. Namyst, P. Primet, O. Richard, E.-G. Talbi and I. Touche. Grid’5000: A
Large Scale and Highly Reconfigurable Experimental Grid Testbed. International Journal of High
Performance Computing and Applications, 20(4): 481–494, 2006

[6] H. Casanova, F. Desprez, and F. Suter. From Heterogeneous Task Scheduling to Heterogeneous Mixed
Parallel Scheduling. In Proceedings of the 10th International Euro-Par Conference, volume 3149 of
Lecture Notes in Computer Science, pages 230–237. Springer-Verlag, August 2004.

[7] H. Casanova, A. Legrand, and M. Quinson. SimGrid: a Generic Framework for Large-Scale Distributed
Experiments. In Proceedings of the 10th Int. Conference on Computer Modeling and Simulation, March
2008.

[8] S. Chakrabarti, J. Demmel, and K. Yelick. Modeling the Benefits of Mixed Data and Task Parallelism.
In Proceedings of the 7th Symposium on Parallel Algorithms and Architectures (SPAA), pages 74–83,
1995.

[9] H. Chen and M. Maheswaran. Distributed Dynamic Scheduling of Composite Tasks on Grid Systems.
In Proceedings of the 12th Heterogeneous Computing Workshop (HCW), 2002.

[10] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press/McGraw-Hill, 1990.

[11] P.-F. Dutot, L. Eyraud, G. Mounié, and D. Trystram. Bi-criteria Algorithm for Scheduling Jobs on
Cluster Platforms. In Proceedings of the 16th ACM symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA), pages 125–132, 2004.

[12] P.-F. Dutot, T. N’takpé, F. Suter, and H. Casanova. Scheduling Parallel Task Graphs on (Almost) Ho-
mogeneous Multi-cluster Platforms. IEEE Transactions on Parallel and Distributed Systems, 20(7):940–
952, 2009.

22

[13] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel Job Scheduling — A Status Report. In
Proceedings of the 10th Workshop on Job Scheduling Strategies for Parallel Processing, volume 3277 of
Lecture Notes in Computer Science. Springer-Verlag, June 2004.

[14] Grid5000. https://www.grid5000.fr.

[15] M. A. Iverson and F. Özgüner. Hierarchical, Competitive Scheduling of Multiple DAGs in a Dynamic
Heterogeneous Environment. Distributed System Engeneering, 1(3), 1999.

[16] C. B. Lee and A. Snavely. Precise and Realistic Utility Functions for User-Centric Performance Analysis
of Schedulers. In Proceedings of the IEEE International Symposium on High-Performance Distributed
Computing (HPDC), June 2007.

[17] J. Y.-T. Leung, editor. Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC
Press, 2004.

[18] A.W. Mu’alem and D. G. Feitelson. Utilization, Predictability, Workloads, and User Runtime Estimates
in Scheduling the IBM SP2 with Backfilling. IEEE Trans. on Parallel and Distributed Computing,
12:529–543, 2001.

[19] T. N’takpé and F. Suter. Critical Path and Area Based Scheduling of Parallel Task Graphs on Het-
erogeneous Platforms. In Proceedings of the 12th International Conference on Parallel and Distributed
Systems (ICPADS), pages 3–10, 2006.

[20] T. N’takpé and F. Suter. Self-Constrained Resource Allocation for Parallel Task Graph Scheduling on
Shared Computing Grids. In Proceedings of the 19th IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS), November 2007.

[21] T. N’takpé and F. Suter. Concurrent Scheduling of Parallel Task Graphs on Multi-Clusters Using
Constrained Resource Allocations. In Proceedings of the 10th IEEE International Workshop on Parallel
and Distributed Scientific and Engineering Computing (PDSEC), May 2009.

[22] T. N’takpé, F. Suter, and H. Casanova. A Comparison of Scheduling Approaches for Mixed-Parallel
Applications on Heterogeneous Platforms. In Proceedings of the 6th International Symposium on Parallel
and Distributed Computing (ISPDC), pages 250–257, July 2007.

[23] S. Ostermann, Radu P., T. Fahringer, A. Iosup, and D. Epema. Trace-Based Characteristics of Grid
Workflows. In T. Priol and M. Vanneschi, editors, From Grids to Service and Pervasive Computing,
volume 10 of CoreGRID, pages 191–204. Springer-Verlag, 2008.

[24] A. Radulescu and A. van Gemund. A Low-Cost Approach towards Mixed Task and Data Parallel
Scheduling. In Proceedings of the 15th International Conference on Parallel Processing (ICPP), Septem-
ber 2001.

[25] R. Sakellariou and H. Zhao. A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems. In
Proceedings of the 13th Heterogeneous Computing Workshop (HCW), April 2004.

[26] U. Schwiegelshohn and R. Yahyapour. Fairness in parallel job scheduling. Journal of Scheduling,
3(5):297–320, 2000.

[27] The SimGrid project. http://simgrid.gforge.inria.fr.

[28] F. Suter. DAG Generation Program. http://www.loria.fr/∼suter/dags.html.

[29] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-Effective and Low-Complexity Task Scheduling
for Heterogeneous Computing. IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274,
2002.

23

[30] N. Vydyanathan, S. Krishnamoorthy, G. Sabin, U. Catalyurek, T. Kurc, P. Sadayappan, and J. Saltz.
An Integrated Approach for Processor Allocation and Scheduling of Mixed-Parallel Applications. In
Proceedings of the 35th International Conference on Parallel Processing (ICPP), pages 443–450, August
2006.

[31] H. Zhao and R. Sakellariou. Scheduling Multiple DAGs onto Heterogeneous Systems. In Proceedings of
the 15th Heterogeneous Computing Workshop (HCW), April 2006.

24

