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A parametric 2D Finite-Element scheme is developed for sizing strip-like defects in elastic or viscoelastic, 
isotropic or anisotropic material plates. The reflection and transmission coefficients produced by mode 
conversion phenomenon when a pure incident Lamb wave mode is sent towards the defect, are used as input data 
for the inversion process. The inversion process consists in quantifying one or two unknown parameters 
representing the geometry of the defect. A finite Element based model is used to simulate the Lamb wave 
scattering for various values of the aimed parameters, and specific post-processing based on the Shkerdin’s 
orthogonality relation is applied to predict the needed reflection and transmission coefficients. The target is 
known reflection and transmission coefficients initially obtained from an experiment, which can be either a 
numerical experiment for validation purposes, or proper measurements on a sample for NDE application 
purposes. The inversion process is stopped when the predicted reflection and transmission coefficients fit at best 
those obtained from initial experiment. In this preliminary study, two geometrical parameters have successfully 
been quantified for two types of defects in two waveguides: the depth and width of (1) a notch at the surface of 
an Aluminium plate, (2) an impact damage in a composite plate. 

1  Introduction 
A material may be strongly affected by a defect at the 

surface or inside the body. Therefore, it is very important to 
estimate the size of a defect using non-destructive 
measurements to assess the structural strength and 
serviceability of the structure. Several authors have worked 
on defect detection and sizing using different approaches 
[1, 2, 3]. In this study, we investigate the propagation of 
ultrasonic guided wave modes along plate-like structures, 
and more specifically their scattering by a defect, to 
quantify the size of this defect. We use reflection and 
transmission coefficients of the scattered modes to estimate 
two geometrical parameters of the defect, considering that 
its location along the guide is already known. The 
frequency of the incident mode sent towards the defect is 
chosen below the 

� 

A1 mode cut-off frequency, so that only 
two fundamental Lamb modes can propagate. In these 
conditions, there can only be two waves reflected from and 
two waves transmitted past the defect, namely the 
fundamental A0 or S0 modes. When either A0 or S0 mode is 
made incident along a plate having a defect, then four 
reflection and transmission coefficients at most  can be used 
to estimate the size of the defect. 

A two-dimensional (2D) finite element –based model is 
used for simulating the propagation of guided waves and 
their scattering by a defect. Also, a specific inversion 
scheme is developed to quickly and efficiently estimate two 
geometrical parameters, which are representative of the size 
of a defect. Results obtained using this routine are 
compared to those obtained using the standard least square 
method. Both geometrical parameters considered in this 
study are the width and depth of (1) a rectangular notch in 
an aluminium plate and (2) an impact damage with 
isosceles triangle shape in a composite plate. 

2  Formulation of problem 
We consider the propagation of Lamb modes along the 

x-direction of Cartesian coordinate axis and producing 
nonzero strains in the Oxy plane only of a solid plate-like 
guide. Considering plain-strain conditions, each mode n 
produces displacements and stresses that can be expressed 
in two dimensions. The power normalized mode fields 
(modes with unit amplitude) of modes can be written as 
following: 
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where t is the time, is the angular frequency, f is 
ordinary frequency (in hertz), ‘

� 

i ’ is the complex number 
such as 

� 

i2 = −1. 

� 

kn = ′ k n − i ′ ′ k n  is the complex wave-
number of the mode n. 

� 

′ k n  is the real part of the wave-
number, 

� 

′ ′ k n  is attenuation and 
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are the power-normalized displacements and stress fields of 
the mode, respectively and 

� 

Px0  is the value of 

� 

Px n
 in the 

following expression of the time averaged acoustic 
power [4] with 

� 

x = 0, i.e., for 

� 

e−2kn
//x = 1. 
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The shape of the strip-like defect is supposed to be 

uniform along z-axis, as shown in Figure 1. 

 

Figure 1: Schematic of a 3-D plate-like guide having strip 
defect normal to plane of propagation Oxy.   

3    FE modelling and inverse procedure 

3.1   2D FE model and parametric defect  

The two dimensional partial differential equations using 
plane strain conditions in frequency domain are  
 

� 

C11
∂ 2ux
∂x 2

+ C66
∂ 2ux
∂y 2

+ C12 + C66( ) ∂
2uy

∂x∂y
= −ρω 2ux,

C22

∂ 2uy
∂y 2

+ C66

∂ 2uy
∂x 2

+ C21 + C66( ) ∂
2ux

∂x∂y
= −ρω 2uy,

(3) 

 

where ux and uy are the displacement components in the 
Fourier domain. These equations are written in a specific 
COMSOL [5] formalism, and solved for a single frequency 
of interest. This model is written for the case of a plane of 
propagation Oxy coinciding with a plane of symmetry of an 
orthotropic material. The subscripts ‘ij’ in moduli Cij 
corresponds to 

� 

xx↔ 1,  yy↔ 2,  xy↔ 6. If the material is 
viscoelastic, then moduli Cij can be defined as 
Cij = C'ij + i C''ij, the real part representing the material 
stiffness and the imaginary part its viscoelasticity. Two 
efficient absorbing regions are placed at both edges of the 
plate. The plate is ‘h’ mm thick and ‘L’ mm long. Both 
types of defects mentioned earlier, i.e., the notch and the 
impact damage have been modelled using specific functions 
of space as parametric representations. Two parameters are 
considered in these functions: ‘w’ as width (or extend along 
the guide) and ‘d’ as through-thickness depth, both for the 
notch and the impact damage. In this latest case, the 
material is supposed to be strongly micro-cracked inside the 
defect, as to be representative of the state of a composite 
material after a strong impact. In the FE model, the incident 
wave mode is launched along the plate and towards the 
defect by applying its stress mode shape as a volume force 
through the plate thickness, over a 

� 

λmax /4  mm length 
along x, just after the left-hand-side absorbing region 
(Figure 2). Lagrange-Quadratic triangular mesh elements 
with maximum size equal to 

� 

λmin /4  are used. The meshing 
is also refined in the region supposed to be damaged (as 
written before, the location along the guide of the defect is 
supposed to be known in this study). 

� 

xl   and  xr  are 
positions along x selected to apply the orthogonality 
relation –based post-processing needed for computing 
reflection and transmission coefficients, respectively [6, 7]. 

� 

xend
labs  and xbegin

rabs  are starting points of left and right 
absorbing regions, respectively. Labs is the length of these 
absorbing regions, chosen equal to 

� 

3.5λmax  for safety. The 
FE model is solved for a single frequency by applying 
Neumann boundary conditions on all four boundaries of the 

plate, so that all surfaces are free of stress. The schematic 
for such FE model is shown in Figure 2.   

 

 
Figure 2: Inverse 2D finite element model. 

Functions of space used for modelling both types of 
defects are defined as follows: 

 
(a) Rectangular notch with two parameters i.e., depth 

(d) and width (w) can mathematically be modelled as 
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where xd is the centre position of the defect along x-axis. It 
means that inside the notch region, the material coefficients 
and density are zero. This assumption behaves like that the 
waveguide is having an actual rectangular notch for given 
depth (d) and width (w). 
 

 (b) Cracked zone is modelled as an isosceles triangle 
with two parameters, width as base of triangle (w) and 
through-thickness depth (d) as height of triangle. We 
assume that this cracked zone has been produced by a point 
impact onto the plate, which leads to a local decrease in the 
material stiffness. For this case, the mathematical 
expressions for cracked-zone like defect will be: 
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where 
  

� 

β =
w(-h + y)
2d

. 

3.2   2D Orthogonality procedure 

To calculate the complex amplitude of any (incident or 
scattered) guided mode n belonging to the total fields 
predicted by the FE model, the Shkerdin’s orthogonality 
relation [6] is used and applied between the power-
normalized fields of that mode, and the total field (with 
superscript t), as explained in [7]. Following formulae is 
used to compute the complex amplitude 

� 

αn  of the mode: 
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This post-processing technique is valid for both elastic 

and viscoelastic media [7]. Power normalized mode shapes 
for this orthogonality based processing technique are 
obtained by using the SAFE method [8]. 



 
3.3   Inverse procedure 

When a pure Lamb mode is made incident towards a 
defect in waveguide, then mode conversion phenomenon 
occurs due to the presence of defect. The reflection and 
transmission coefficients obtained from scattering will 
provide information about the size and position of the 
defect.  These coefficients are used as input data for this 
inverse process. In this present study the coefficients of 
reflection and transmission are computed from numerical 
experiment. The parametric expression representing the 
geometry of defect is inserted into inverse FE model in the 
region of possible defect and we solve this FE model for 
two parameters (say p1 and p2) for M and N different values 
respectively. For each pair (p1, p2), orthogonality relation is 
applied to get reflection and transmission coefficients using 
modal basis obtained from SAFE method [8]. Then the 
modulus of reflection and transmission coefficients is saved 
in four matrices of order

� 

M × N . After this, the input data is 
compared with their respective reflection and transmission 
coefficient matrices using following two principles:  

 
Principle 1: Let   

� 

RCExp
A0  and RCExp

S0  be the experimental 
obtained absolute values for reflection coefficients for 

� 

A0  

and 

� 

S0  modes at the position xl, and   

� 

TCExp
A0  and TCExp

S0  be 
the absolute experimental values for transmission 
coefficients for

� 

A0  and 

� 

S0  modes at the position xr. Let 

  

� 

RCkl
A0[ ]M ×N

 and RCkl
S0[ ]M ×N

 be the matrices of absolute 

values of reflection coefficients and 

  

� 

TCkl
A0[ ]M ×N

 and TCkl
S0[ ]M ×N

be matrices of absolute 

values of transmission coefficients for 

� 

A0  and 

� 

S0  modes, 
respectively, at the same positions xl and xr, obtained from 
the FE model by varying two parameters (M values for w 
and N values for d) and post-processing using orthogonality 
relation. Let us assume that the relative error between input 
data and data obtained using the FE model is . Then, we 
select the approximate solutions within this relative error as 
follows: 

 

Let Si be the sets such that 
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Then the set of feasible solutions will consist of all those 

solutions, which satisfy all the four inequalities defined in 

equation (7). Let 
  

� 

S = 
i=1

4
Si , then this set S shall contain all 

possible positions ‘kl’ in the matrices, which satisfy all the 
four inequalities in equation (7). Therefore the reflection 
and transmission coefficients corresponding to set S will be 
very close to the corresponding target values or input data. 
The advantage of this principle is that the result is visual 
and it can help to estimate the efficiency of each coefficient. 

 

Principle 2: The second method for optimization in this 
study is the Least Square method. This is used as follows: 
Let S be a set of positions ‘kl’ in the matrix such that 

� 

RCkl
A0 − RCExp

A0( )2 + RCkl
S0 − RCExp

S0( )2 + TCkl
A0 − TCExp

A0( )2 + TCkl
S0 − TCExp

S0( )2   

is smallest. Since the set S is finite, we can easily estimate 
two parameters representing the geometry of the defect. 

4       Validation of inverse technique 
The inverse technique is validated first for a simple 

case, which is a rectangular notch of 1.5 mm depth (d) and 
10 mm width (w) at the surface of 4 mm thick Aluminium 
plate, which is an isotropic and elastic material. The results 
obtained for both parameters w and d, using the first 
principle, are so that depth is estimated between 1.5 mm 
and 1.6 mm, and width between 10 mm and 10.1 mm. 
Using the second principle, these depth and width are found 
close to 1.5 mm and 10 mm, respectively, so equal to the 
true values. All results are very close to the actual width 
and depth of the rectangular notch. So, we will now check 
this inverse technique for sizing a cracked zone with 
isosceles triangular shape inside a Carbon epoxy composite 
plate, which is an anisotropic and viscoelastic material. 

 
Cracked zone in Carbon Epoxy Composite: 
 

(a) Numerical experiment: We consider a Carbon epoxy 
composite plate with thickness 2.36 mm. The material 
properties are given in Table 1. The cracked zone in this 
composite sample is considered as an isosceles triangle 
whose height (through thickness depth in the plate) is 
1.86 mm and width of the base is 20 mm. The material 
stiffness inside this region is considered as 20% of the 
material stiffness of the composite sample. For FE 
modelling, we consider L =200 mm, h =2.36 mm, 
and . The centre position of impact 
along x is xd =100 mm. A pure S0 mode is sent towards this 
cracked zone at a frequency of 220 kHz. Since at this 
frequency, only two modes can propagate (Figure 3), we 
will have four reflection and transmission coefficients. The 
meshing contains 9473 triangular elements with 39530 
degrees of freedom. The positions for applying 
orthogonality relation are xl=80 mm and xr=120 mm which 
are 20 mm away from the centre of the defect.  

 
Material Carbon-Epoxy 

Composite 
Thickness (mm) 2.36 
Density (g/cm3) 1.89 
C11 (GPa) 24.31+0.80i 
C22 (GPa) 15.96+0.48i 
C33 (GPa) 45.53+0.80i 
C12 (GPa) 8.28+0.25i 
C13 (GPa) 7.00+0.40i 
C23 (GPa) 9.23+0.40i 
C44 (GPa) 5.17+0.20i 
C55 (GPa) 4.00+0.20i 
C66 (GPa) 3.92+0.15i 

Table 1: Material properties of Carbon epoxy plate. 

The absolute values of reflection and transmission 
coefficients obtained by numerical experiment at 20 mm 
away from the centre of the cracked zone are 



 

  

� 

RCExp
A0 = 0.0152,  TCExp

A0 = 0.1188,  RCExp
S0 = 0.0519 and TCExp

S0 = 0.5023. 
We now use these coefficients calculated by numerical 
experiment as input data to the inverse routine for 
quantifying both parameters w and d. 
      
 

 
Figure 3: Dispersion curve for 2.36mm thick Carbon epoxy 
composite plate with operating points, incident wave (

� 

•) 
and scattered waves (

� 

O).  

 

Figure 4: Positions of the elements in matrices of 
coefficients close to respective target values by 3% -  : A0 
transmission coefficients, : S0 transmission coefficients, 

: A0 reflection coefficients, : S0 reflection coefficients,  
  is the position where all four coefficients are close to the 
target by less than 3%. 

(b) Inverse problem: The FE model for inverse problem 
is same as considered in earlier section. The parametric 
defect is inserted into this FE model by the expression for 
cracked zone discussed earlier in equation (5). The centre of 
cracked zone along x is xd =100 mm. Because w and d are 
now going to be varied, the region of possible defect with 

mesh refinement is larger than in previous section. 
Consequently, the FE model contains 21604 triangular 
elements with 89166 degrees of freedom (more than for 
producing the initial target coefficients). It is solved with 
Langrage quadratic elements for through thickness depth 
‘d’ varying between 1.8 mm and 1.9 mm with a step size of 
0.1 mm and width ‘w’ of the base running between 
19.5 mm and 20.5 mm with a step size of 0.1 mm. The 
relative error e=3% in this case. 

Figure 4 represents the positions of different 
coefficients, which are close to their respective target 
coefficients by 3%. We see from Figure 4 that the width of 
the zone is estimated between 20.0 mm to 20.1 mm and 
through-thickness depth between 1.86 mm and 1.87 mm.  
This solution is very close to the actual initial target, which 
was a cracked zone with 20 mm width and 1.86 mm depth.  

If we use the Least Square principle to check our above 
inverse routine, then the optimized values for both 
parameters are width = 20 mm and depth = 1.86 mm, which 
are exactly same as the initial target data. 

5 Conclusion 
In this paper, we have developed a 2D finite element -

based inverse technique, which can quantify two 
geometrical parameters for sizing strip like defects in plate-
like waveguides. This technique works for a single 
frequency in which only two modes can propagate in the 
plate. The reflection and transmission coefficients produced 
by defect scattering when a pure incident mode below the 

� 

A1 cut-off frequency is sent towards the defects are used as 
input data for inversion process to estimate the two 
parameters. We have used two principles to optimize these 
parameters, and two types of defects have been modelled by 
changing material properties as functions of space: a 
rectangular notch in an Aluminium plate and a cracked zone 
caused by a point impact on a Carbon epoxy plate.  The 
mesh in the region of possible defect is strongly refined, so 
that the shape of the parametric defect can be properly 
modelled in the FE numerical simulations. The proposed 
inverse routine has shown to be fast and accurate for two 
simple cases, and has been successfully compared with the 
Least Square method. It presents the interest of being visual 
and robust, and will be further tested for more complex 
defect shapes. 
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