A new approach for regularization of inverse problems in image processing

I. Souopgui^{1,2}, E. Kamgnia², F.-X. Le Dimet¹, A. Vidard¹

INRIA / LJK Grenoble
 University of Yaounde I

10th African Conference on Research in Computer Science and Applied Mathematics - CARI 2010 October 18 - 21, 2010, Yamoussoukro, Côte d'Ivoire

Inverse problems : variational formulation

- Definition
- A priori knowledges
- Regularization : Vector fields
- Prom classical regularization to Generalized Diffusion
 - Regularization as smoothing operators
 - Case of gradient penalization
- 3 Application to geophysical fluid motion estimation
 - Motion estimation problem
 - From regularization to pseudo covariance operator
 - Experimental result

Conclusion

Inverse problems : variational formulation

eneralized Diffusion regularization Application Conclusion Definition A priori knowledges Regularization

Ingredients

Physical system

$$\mathcal{M}: \ \mathcal{V} \
ightarrow \ \mathcal{Y} \ \mathbf{v} \
ightarrow \ \mathbf{y} = \mathcal{M}(\mathbf{v})$$

Observation

yo

Observation system

$$\begin{array}{cccc} \mathcal{H}: & \mathcal{Y} &
ightarrow & \mathcal{O} \ & \mathbf{y} & \mapsto & \mathcal{H}(\mathbf{y}) \end{array}$$

- $\mathbf{y} \in \mathcal{Y}$, the system state
- $\textbf{v} \in \mathcal{V}$, the control variable
- $\mathcal M,$ model mapping $\mathcal V$ to $\mathcal Y$

•
$$\mathbf{y^o} \in \mathcal{O}$$
, observed state

• \mathcal{H} observation operator mapping \mathcal{Y} to \mathcal{O}

(日) (同) (三) (三)

Definition A priori knowledges Regularization

Definition

Giving observed state $\mathbf{y}^{\mathbf{o}}$,

Inverse problem (unconstrained)

Find $\mathbf{v}^* = \mathsf{MinArg}(J(v))$, $\mathbf{v} \in \mathcal{V}$ where

$$J(\mathbf{v}) = J_o(\mathbf{v}) = \frac{1}{2} \|\mathcal{H}(\mathcal{M}(\mathbf{v})) - \mathbf{y}^{\mathbf{o}}\|_{\mathcal{O}}^2$$
(1)

under adequate conditions, the solution \mathbf{v}^* is given by the Euler-Lagrange Equation $\nabla J(\mathbf{v}^*) = 0$

Application

Problems

- ill-posedness ⇒ use a priori knowledges;
- ill-conditionning \Rightarrow use preconditioning.

・ロト ・同ト ・ヨト ・ヨト

Definition A priori knowledges Regularization

A priori knowledges

For a priori knowledge A, set $J = J_o + J_A$ where J_A is defined to force the solution to satisfy A

Use of a priori informations

 \bullet Background \boldsymbol{v}^{b} and background error covariance \boldsymbol{B}

$$J_{\scriptscriptstyle b} = \frac{1}{2} \alpha_b \| \mathbf{v} - \mathbf{v}^{\mathsf{b}} \|_{\mathsf{B}^{-1}}^2 \tag{2}$$

• Regularity of the solution : Φ-smooth (minimum gradient)

$$J_r = \frac{1}{2} \alpha_r \|\Phi(\mathbf{v})\|^2 \tag{3}$$

< A²
 ▶

 Φ function of the derivatives of \boldsymbol{v}

Inverse problems : variational formulation

Generalized Diffusion regularization Application Conclusion Definition A priori knowledges Regularization

Vector fields regularization

first order regularization : first order derivatives of \boldsymbol{v}

$$\Phi^{(1)}\left(\frac{\partial v_i}{\partial x_j}\right)_{1\leq i,j\leq r}$$

• gradient penalization :
$$J_{\nabla}(\mathbf{v}) = \frac{1}{2} \alpha_{\nabla} \int_{\Omega} \sum_{i=1}^{n} \| \nabla v_i \|^2 d\mathbf{x}$$

second order regularization : second order derivatives of \boldsymbol{v}

$$\Phi^{(2)}\left(\frac{\partial^2 v_i}{\partial x_j \partial x_k}\right)_{1 \leq i,j,k \leq n,}$$

• Suter regularization :

$$J_{suter}(\mathbf{v}) = \frac{1}{2} \int_{\Omega} \alpha_{\nabla div} \|\nabla div(\mathbf{v})\|^2 + \alpha_{\nabla curl} \|\nabla curl(\mathbf{v})\|^2 d\mathbf{x}$$

 \Rightarrow difficult to defined optimal weighting parameter(s)

• □ ▶ • • □ ▶ • • □ ▶

- ∢ ⊒ →

Regularization as smoothing operators Case of gradient penalization

Notations and definition

Let :

- v(x) be an incomplete/inconsistent control variable, with $\textbf{x}\in \Omega$ the physical space
- $\Phi(\mathbf{v})$ regularization operator as defined previously
- $\varphi(\mathbf{x})$ a scalar positive trust function given the quality of \mathbf{v} at \mathbf{x}

small value meaning bad/lack/inconsistent control variable large value for good quality control variable

we define restored control variable $\mathbf{u}^* = \mathsf{MinArg}(\varepsilon(\mathbf{u})), \mathbf{u} \in \mathcal{V}$

$$\varepsilon(\mathbf{u}) = \frac{1}{2} \int_{\Omega} \|^2 \Phi(\mathbf{u}(\mathbf{x})) \|^2 + \varphi(\mathbf{x}) \|\mathbf{u}(\mathbf{x}) - \mathbf{v}(\mathbf{x})\|^2 d\mathbf{x}$$
(4)

Regularization as smoothing operators Case of gradient penalization

$$arepsilon(\mathbf{u}) = rac{1}{2} \int_{\Omega} \|\Phi(\mathbf{u}(\mathbf{x}))\|^2 + arphi(\mathbf{x})\|^2 \mathbf{u}(\mathbf{x}) - \mathbf{v}(\mathbf{x})\| d\mathbf{x}$$

 ε is minimized by setting ${\bf u}$ to be :

- close to **v** when φ is large (**v** has adequate properties)
- Φ regular when φ is small (otherwise)

Under adequate conditions $MinArg(\varepsilon)$ is given by the Euler-Lagrange condition

$$\nabla_{\mathbf{u}}\varepsilon(\mathbf{u}) = 0 \tag{5}$$

Gateaux derivatives development leads to

$$\nabla_{\mathbf{u}}\varepsilon(\mathbf{u}) = \Phi^* \circ \Phi(\mathbf{u}(\mathbf{x})) + \varphi(\mathbf{x})(\mathbf{u}(\mathbf{x}) - \mathbf{v}(\mathbf{x}))$$
(6)

Regularization as smoothing operators Case of gradient penalization

Gradient penalization : mathematical expression

$$J_{\nabla}(\mathbf{v}) = \frac{1}{2} \alpha_{\nabla} \int_{\Omega} \sum_{i=1}^{n} \|\nabla v_i\|^2 d\mathbf{x}$$

Applied as smoothing operator, we get

 $\Phi_{\nabla}^* \circ \Phi_{\nabla} = -\Delta$, with boundary conditions : $\nabla u_i \perp \nu$ on $\partial \Omega$

$$\Rightarrow \nabla \varepsilon_{\nabla}(u_i) = -\Delta u_i(\mathbf{x}) + \varphi(\mathbf{x})(u_i(\mathbf{x}) - v_i(\mathbf{x})), 1 \le i \le n$$
(7)

(日) (同) (三) (三)

Regularization as smoothing operators Case of gradient penalization

Numerical implementation Generalized diffusion implementation

Classical implementation : given $\nabla \varepsilon$, use descent-type algorithms.

Problem : solve the Euler-Lagrange equation

$$\Delta u_i - \varphi(\mathbf{x})(u_i(\mathbf{x}) - v_i(\mathbf{x})) = 0, \quad 1 \le i \le n$$
(8)

considers u_i as a function of time and solve the equivalent problem

$$\frac{\partial}{\partial t}u_i(\mathbf{x},t) = \Delta u_i(\mathbf{x},t) - \varphi(\mathbf{x})(u_i(\mathbf{x},t) - v_i(\mathbf{x}))), \quad 1 \le i \le n \quad (9)$$

known as the generalized diffusion equations. As diffusion operator, it can directly be used in background covariance [see Weaver et al.]

Image: A math a math

optical flow of Horn and Shunck : luminance conservation

$$\frac{df}{dt} = 0 \tag{10}$$

 $f(\mathbf{x}, t)$ noted f is the luminance function.

For geophysical fluid images, the mass conservation equation is more adequate [Fitzpatrick 1985]

$$\frac{df}{dt} + f(\nabla \cdot \mathbf{v}) = 0 \tag{11}$$

 $\mathbf{v}(\mathbf{x})$ is the velocity at \mathbf{x} given the luminance function $f(\mathbf{x}, 0) = f^0(\mathbf{x})$ at time 0, solution to equations (10) or (11) defines $f(\mathbf{x}, t)$ as function of the static velocity field $\mathbf{v}(\mathbf{x})$

$$egin{array}{cccc} \mathcal{M}: & \mathcal{V} &
ightarrow & \mathcal{F} \ & \mathbf{v} & \mapsto & \mathbf{f} = \mathcal{M}(\mathbf{v}) \end{array}$$

Motion estimation problem From regularization to pseudo covariance operator Experimental result

motion estimation is reduced to the inverse problem :

 $\delta \mathbf{v}^* = \mathsf{MinArg}(J(\delta \mathbf{v}))$

with

$$J(\delta \mathbf{v}) = \frac{1}{2} \|\mathcal{M}(\mathbf{v}^{\mathbf{b}} + \delta \mathbf{v}) - \mathbf{f}^{\mathbf{o}}\|_{\mathcal{F}}^{2} + \frac{1}{2} \|\delta \mathbf{v}\|_{\mathcal{V}}^{2}$$
(12)

Aperture problem :

only motion along the normal to iso-contours can be inferred \Rightarrow use regularization

Motion estimation problem From regularization to pseudo covariance operator Experimental result

・ ロ ト ・ 同 ト ・ 三 ト ・

Trust function for motion estimation

Proposition: define trust function φ

to have large values on discontinuities (contours) for motion component along the normal to the contour, and small values in homogeneous areas.

Example : set φ to be the contours map c^1 or c^2 defined as

$$c^{1}(\mathbf{x}, f) = \|\nabla_{\mathbf{x}} f(\mathbf{x})\|^{2}$$

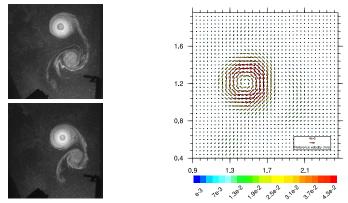
$$c^{2}(\mathbf{x}, f) = \|\nabla_{\mathbf{x}} (\mathbf{G}_{\sigma}(\mathbf{x}) * f(\mathbf{x}))\|^{2}$$

Conclusion

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Twin experiments

Direct Image sequences assimilation [Titaud et al 2009] \Rightarrow true initial state (velocity fields)



Images from [J.-B. Flór (LEGI) and I. Eames, 2002]

< □ > < A > >

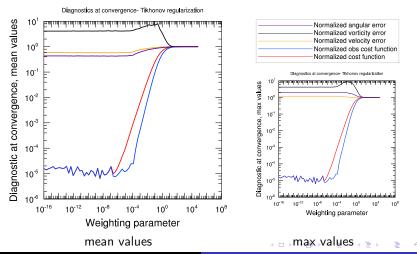
Conclusion

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Error analysis : Tikhonov regularization

Evolution of diagnostic functions with respect to the weighting parameter

 α

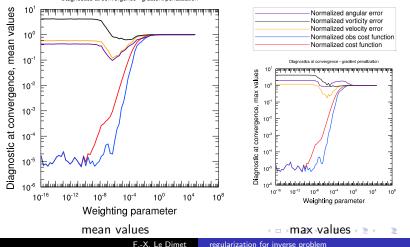


F.-X. Le Dimet regularization for inverse problem

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Error analysis : gradient penalization

Evolution of diagnostic functions with respect to the weighting parameter α_∇

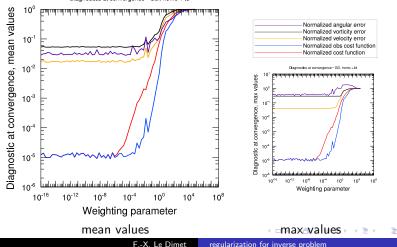


Diagnostics at convergence - gradient penalization

Experimental result

Error analysis : Generalised diffusion

Evolution of diagnostic functions with respect to the weighting parameter α_{GD}

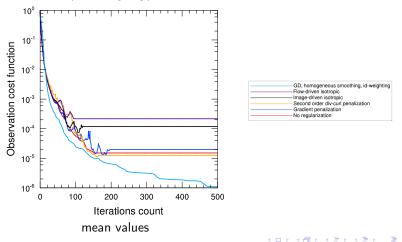


Diagnostics at convergence - GD, homo + Id

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Error analysis : Comparison - cost function

Evolution of the observation cost function with minimization iterations

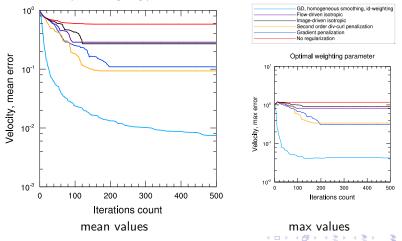


Optimal weighting parameter

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Error analysis : Comparison - velocity error

Evolution of the velocity error with minimization iterations

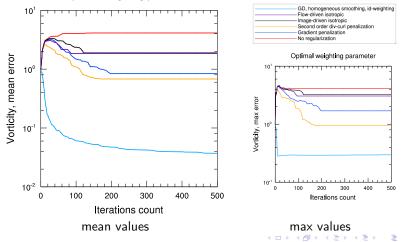


Optimal weighting parameter

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Error analysis : Comparison - vorticity error

Evolution of the vorticity error with minimization iterations



Optimal weighting parameter

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Image: A math a math

Error analysis : Comparison - angular error

Evolution of the angular error with minimization iterations

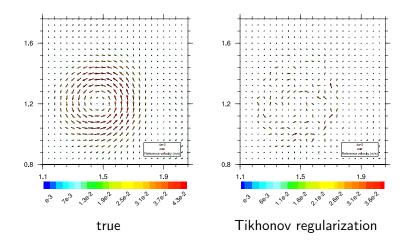
Optimal weighting parameter 10² GD, homogeneous smoothing, id-weighting Flow-driven isotropic Image-driven isotropic Second order div-curl penalization Gradient penalization No regularization Optimal weighting parameter Mean angular error 10³ 10¹ Max angular error 10¹ 10⁰ 100 200 300 400 500 100 200 300 400 500 Iterations count Iterations count mean values max values

F.-X. Le Dimet regularization for inverse problem

Conclusion

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Analysis : vector field

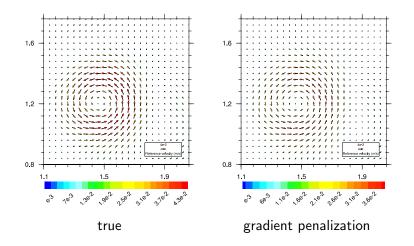


< □ > < 同 >

Conclusion

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Analysis : vector field

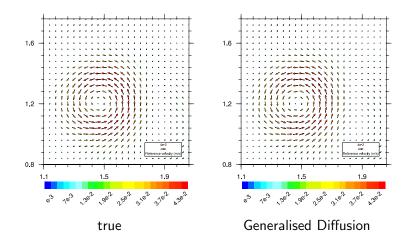


< □ > < 同 >

Conclusion

Motion estimation problem From regularization to pseudo covariance operator Experimental result

Analysis : vector field



< □ > < 同 >

Conclusion

Conclusion

Inverse problems :

- $\bullet \text{ ill-posed} \Rightarrow \text{use regularization}$
- ill-conditioned \Rightarrow use preconditioner

proposed : promising approach for regularization of inverse problems.

<ロト < 同ト < 三ト