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ABSTRACT. Optical flow motion estimation from two images is limited by the aperture problem. A
method to deal with this problem is to use regularization techniques. Usually, one adds a regularization
term with appriopriate weighting parameter to the optical flow cost funtion. Here, we suggest a new
approach to regularization for optical flow motion estimation. In this approach, all the regularization
informations are used in the definition of an appropriate norm for the cost function via a trust function
to be defined, one don’t ever need weighting parameter. A simple derivation of such a trust function
from images is proposed and a comparison with usual approaches is presented. These results show
the superiority of such approach over usual ones.

RÉSUMÉ. L’estimation du mouvement par flot optique est sujet au problème d’ouverture. Pour cela,
on a recours aux techniques de régularisation. De façon usuelle, Cela se caractérise par l’ajout d’un
terme de régularisation pondéré à la fonction coût du flot optique. Dans ce papier, nous proposons
une nouvelle approche pour la régularisation des méthodes de flot optique. Toute l’information de
régularisation est utilisée pour définir une norme appropriée à la fonction coût par l’intermédiaire d’une
fonction de confiance qui permet de se passer du paramètre de poids. Nous proposons une dérivation
simplifiée de la fonction de confiance à partir des images et présentons les résultats comparés avec
les méthodes usuelles. Ces résultats montrent la supériorité de la nouvelle approche
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1. Introduction

Motion estimation is an example of inverse problem in computer vision and images
processing. The expression inverse problem is used as opposite to direct problem. Given
a complete description of the behavior of a physical system in terms of mathematical
models and physical parameters, the state of the system can be computed using the math-
ematical model; this is known as the forward (direct, modeling or simulation) problem.
The inverse problem consists in using given measurements ofthe system’s state to infer
the values of the parameters characterizing the model. In motion estimation the inverse
problem consists in determining motion vectors that describe the transformation from
one 2D image to another. Motion estimation is affected by ill-posedness as general in-
verse problem. Due to the ill-posedness, one has recourse toa priori informations on the
solution while solving inverse problems. A priori informations include but are not limited
to

– background and background errors covariance

– regularity of the solution
These informations are generally used as constraints to getthe appropriate solution when
optimization techniques are used to solve an inverse problem. In usual cases, constrains
are turned into penalization of some characteristics of thesolution. A common constraint
is the regularity of the solution leading to regularizationtechniques for inverse problems.
Until now, regularization is generally used as penalization while solving inverse problems.
This practice is affected by two principal problems: - as thecost function is composite,
the convergence rate of optimization algorithms decreases- when adequate regularization
functions are defined, one have to define balance parameters between regularization func-
tions and the objective function to minimize. The determination of the optimal weighting
parameter requires second order analysis. Here, we suggesta new approach for regular-
ization of ill-posed inverse problems. We introduce an observation based trust function
that is used to define an appropriate norm for the cost function. This approach don’t need
extra terms in the cost function, and of course is not affected nor by the ill-convergence
due to composite cost function, nor by the choice of weighting parameters.

The present document is organized as followed : in section (2), we present inverse
problems in a general framework, the use of a priori informations while solving inverse
problems. In section (3), we present regularization methods for inverse problems; we
emphasize on vector fields regularization. In section (4), we present the derivation of the
new approach and comparisons with classical methods.

2. Inverse problems

2.1. Definition of inverse problems

2.1.1. Direct problem

Given a physical system whose the statey ∈ Y can be defined as a function of a so
called control variablev ∈ V

M : V → Y
v 7→ y = M(v)

[1]



The modelM (that link the control spaceV to the state spaceY) defines the direct prob-
lem. Given a realization of the control variablev, this problem has a unique solution
in the deterministic case. It is common to have not a realization of the control variable,
but observations of the system state. The problem of inferring the control variable from
observations is known as an inverse problem.

2.1.2. Inverse problem

The inverse problem associated to the direct problem (equation 1) is defined in term
of optimization problem as followed :

find v∗ = ArgMin(J(v)),v ∈ V [2]

where

J(v) = Jo(v) =
1

2
‖M(v)− yo‖2O [3]

‖.‖O is the appropriate norm (taking into account observations covariance errors) in the
observation spaceO

The problem defined by (equation 2) is known as the unconstrained inverse problem.
The existence and uniqueness of the solution to the unconstrained problem (equation

2) is guaranteed ifJ is strictly convex and lower semi continuous with

lim
‖v‖→+∞

J(v) → +∞

under these conditions, ifJ is differentiable, then the solution to the unconstrained inverse
problem (equation 2) is also the solution of the Euler-Lagrange equation

∇J(v) = 0 [4]

To address the ill-posedness, one uses of all a priori knowledge of the properties of
the solution.

2.2. Use of a priori knowledges in solving inverse problems

A priori knowledges are a set of constraints on the solution of the inverse problems.
These constraints define a subsetW ⊂ V of admissible candidates leading to a constraint
problem defined as

find v∗ = ArgMin(J(v))
v ∈ W

[5]

Here, we are interrested in cases where the set of admissiblesolutions can mathemat-
ically be defined asW = {v ∈ V/g(v) = 0}, the functiong being to define. In this case,
the constraint problem can be reduced to the unconstrained penalized problem

find v∗
ǫ = ArgMin(Jo(v) +

1

ǫc
Jc(v)),v ∈ V [6]

whereJo is the observation cost function defined by (equation 3) and the constraint cost
functionJc is defined as

Jc(v) =
1

2
‖g(v)‖2 [7]



The solutionv∗
ǫc

→ v∗ whenǫc → 0. Instead of using parameterǫc and let it go to zero,
one can use a multiplicative parameterαc and let it go to infinity. We are going to con-
sider this case in the remainder part of the document.It is known that pure penalization
as defined above is not numerically efficient; it is better to used augmented Lagrangian
algorithms see Glowinski et Le Tallec [2]

Developpement here will be limited to background informations and the regularity of
the solution. In this cases, the goal is usually not to find theexact solutionv ∈ W , but
to find the solution that realizes the best fit between the observation cost function and the
constraint cost function. This is choosing the best parameterǫc orαc.

2.2.1. Background and background errors covariance

If one gets from some previous process an approximation of the control state and the
associate covariance error also known as background and background covariance errors,
one may asks to the computed solution to be closed to this background. This can be
defined in term of penalization as

find v∗
αb

= ArgMin(Jo(v) + αbJb(v)),v ∈ V [8]

whereαb is the weighting parameter associated to the background part of the cost function
defined as

Jb(v) =
1

2
‖v − vb‖2V [9]

well known as Tikhonov regularization [1].vb is the background knowledge of the so-
lution, and‖· ‖V the appropriate norm defined in term of the background covariance er-
rors. This norm will be analyzed in the preconditioning section. Background informations
are very important in solving inverse problems; this is a simple way to address the ill-
posedness of the problem. Even in the case where there is no background information, it
is a usual practice to consider the zero background constraining the solution to have small
norm. In real live applications, background comes from previous analysis; this is the case
of forecast centers.

It is common to define the cost functionJ in term of the incrementδv = v − vb

leading to incremental problem,

J(δv) =
1

2
‖M(vb + δv)− yo‖2O +

1

2
αb‖δv‖

2

V [10]

2.2.2. Regularity of the solution

Sometime, the physics of the problem defines the regularity of admissible solutions
(eg. irrotational or divergence free flow.) These are constraints defines as functions of the
derivatives of the control variable. In these case, one defines the penalized problem

find δv∗
αr

= ArgMin(Jo(δv) + αbJb(δv) + αrJr(δv)),v ∈ V [11]

whereαr is the weighting parameter associated to the regularization part of the cost func-
tion defined in terms of the derivatives of the control variable. Regularization will be
explored in more details in section (3.)

3. Vector fields regularization

As we said previously, regularization is a class of a priori knowledges used to address
the ill-posedness while solving inverse problem. One adds regularization termsJr to the



cost function. The functionJr is based on the derivatives ofv. The order of the derivatives
used in the definition ofJr defines the order of the regularization. We will namem-order
regularization those involving up tom−order derivatives.

It is useful to give some specifications of the notations defined in section (2), especially
for the control space.

3.1. Notations

LetΩ be an open subset ofRm (Ω ⊂ Rm), this is the physical space of the system, we
are interested in control spaces defined asV = (L2(Ω))n. control states are then defined
asv ∈ V = (L2(Ω))n, v(x) = (vi(x))1≤i≤n andx = (xi)1≤j≤m ∈ Ω

3.2. First order methods

The first order regularization methods defineJr as a function of the first order deriva-
tives ofv :

Jr(v) = Jr

(

∂vi
∂xj

)

1≤i,j≤n,

[12]

The most used of first order regularization methods is the gradient penalization. It has been
used by Horn and Schunck in the formulation of optical flow [3]for motion estimation.
The regularization function of Horn and Schunck is defined asfollow:

Jgrad(v) =
1

2

∫

Ω

n
∑

i=1

‖∇vi‖
2dx [13]

For incompressible fluid or irrotational flow, it is common topenalize the divergence or
the curl of the vector field leading to divergence penalization

Jdiv(v) =
1

2

∫

Ω

‖div(v)‖2dx [14]

for incompressible fluid flow and curl penalization

Jcurl(v) =
1

2

∫

Ω

‖curl(v)‖2dx [15]

for irrotational flow

3.3. Second order methods

The second order regularization methods are based on the second order derivatives of
v.

Jr(v) = Jr

(

∂2vi
∂xj∂xk

)

1≤i,j,k≤n,

[16]

An example based on the first order derivatives ofdiv andcurl is the regularization of
Suter [8] defined as followed :

Jsuter(v) =
1

2

∫

Ω

α‖∇div(v)‖2 + β‖∇curl(v)‖2dx [17]



Higher order derivatives ofv can also be used for regularization; for example (17) has
been generalized by Chen and Suter [7] using m-order derivatives ofdiv andcurl.

Jm(v) =
1

2

∫

Ω

α‖∇mdiv(v)‖2 + β‖∇mcurl(v)‖2dx [18]

4. Turning regularization functions into covariance opera tors

4.1. Regularization operator out of an optimization proces s : case
of gradient penalization

4.1.1. definition

Let :

– v(x) be an incomplete/inconsistent state of the studied system with x ∈ Ω the space
on which the system is defined

– ϕ(x) a scalar positive trust function given the quality of the statev atx
{

small value meaning bad/lack/inconsistent state
big value for good quality state

we define a restoration of v as the minimum argument of the function

ε(u) =
1

2

∫

Ω

n
∑

i=1

‖∇ui(x)‖
2 + ϕ(x)‖u(x) − v(x)‖2dx [19]

The minimization ofε is achieved by settingu to be closed tov whenϕ is large (v
is of good quality) and smooth (small gradient norm) whenϕ is small (v is not of good
quality)

4.1.2. Practical use

Under the conditions given in section (2), MinArg(ε) equation (19) is defined by the
Euler-Lagrange condition

∇uε(u) = 0 [20]

The difficulty with nonlinear problems is to express∇ε. When∇ε is expressed, it can be
used in descent type algorithms to solve the minimization problem.∇ε can be obtained
by making explicit the linear dependency of the Gateaux derivativesε̂ with respect to the
gradient. Development based on vector calculus leads to

∇εgrad(u) = −∆u(x) + ϕ(x)(u(x) − v(x)), 1 < i < n [21]

Instead of using classical descent type algorithm to get thesolution of the problem,
ui can be considered as a function of time and the solution obtained by solving (22)
according to development in [6],

∂

∂t
ui(x, t) = ∇2ui(x, t)− ϕ(x)(ui(x, t)− vi(x))), 1 ≤ i ≤ n [22]

the set of equations (22) are known as the generalized diffusion equations. The diffusion
operatorL giving the solutionu∗ = L(v) = minArg(ε) can then used as a covariance
operator to define the appropriate norm for the cost functionof the inverse problem.



4.1.3. Generalization

If the regularization term is defined asJr(v) = ‖Φ(v)‖, the functionε can be gener-
alized as

ε(u) =
1

2

∫

Ω

‖Φ(u(x))‖2 + ϕ(x)‖u(x) − v(x)‖2dx [23]

The minimum ofε is achieved by settingu to be closed tov whenϕ is large (v is of good
quality) andΦ-smooth whenϕ is small (v is not of good quality)

4.2. Application to motion estimation

We performed a set of motion estimation’s twin experiments in order to analyze the
behavior of the approach we introduced here. We use images from experimental study of
the drift of a vortex on a turntable [4]. The zonal componentv1 = v1(x, y) and merid-
ional componentv2 = v2(x, y) of the true current velocity are computed by direct image
sequence assimilation (DISA) [5]. The trust function is defined as the edge map (see [6]
for details on edge map function) of the first image We use second order analysis to define
optimal parameter for gradient, first order div-curl and second order div-curl (Suter) reg-
ulization. These optimal parameters are then used to make a set of experiments. Figure (5)
shows the evolution of the normalized root mean square error(RMSE, log coordinates)
on velocity and vorticity with the minimization iterations. The graphic clearly shows that
th approach introduced here is better than the others and their combination. With this new
approach, velocity error decreases from100% to 10% after40 iterations while classical
regularization need more than200 iteration to get the same result. Furthermore, with the
new approach, velocity error can be reduced to less than1% while for the other methods,
the best result is affected by about10% of error. Vorticity error is reduce to4% with the
new approach and only to40% with classical regularization methods.

5. Conclusion

We introduced here a new formalism for taking into account a priori knowledges on
the regularity of the solution while solving inverse problems. This new formalism is based
on the generalized diffusion equations. Preliminary results shows the superiority of this
formalism over classical methods that include regularity informations as penalization in
the cost function.
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