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ABSTRACT. Optical flow motion estimation from two images is limited by the aperture problem. A
method to deal with this problem is to use regularization techniques. Usually, one adds a regularization
term with appriopriate weighting parameter to the optical flow cost funtion. Here, we suggest a new
approach to regularization for optical flow motion estimation. In this approach, all the regularization
informations are used in the definition of an appropriate norm for the cost function via a trust function
to be defined, one don't ever need weighting parameter. A simple derivation of such a trust function
from images is proposed and a comparison with usual approaches is presented. These results show
the superiority of such approach over usual ones.

RESUME. Lestimation du mouvement par flot optique est sujet au probléme d’ouverture. Pour cela,
on a recours aux techniques de régularisation. De fagon usuelle, Cela se caractérise par I'ajout d’'un
terme de régularisation pondéré a la fonction co(t du flot optique. Dans ce papier, nous proposons
une nouvelle approche pour la régularisation des méthodes de flot optique. Toute I'information de
régularisation est utilisée pour définir une norme appropriée a la fonction cot par I'intermédiaire d’'une
fonction de confiance qui permet de se passer du parametre de poids. Nous proposons une dérivation
simplifiée de la fonction de confiance a partir des images et présentons les résultats comparés avec
les méthodes usuelles. Ces résultats montrent la supériorité de la nouvelle approche
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1. Introduction

Motion estimation is an example of inverse problem in coreputsion and images
processing. The expression inverse problem is used as ibppmdirect problem. Given
a complete description of the behavior of a physical systerreims of mathematical
models and physical parameters, the state of the systenmegaomiputed using the math-
ematical model; this is known as the forward (direct, matdglr simulation) problem.
The inverse problem consists in using given measuremerkedafystem’s state to infer
the values of the parameters characterizing the model. iiomestimation the inverse
problem consists in determining motion vectors that dbscthe transformation from
one 2D image to another. Motion estimation is affected bpdsedness as general in-
verse problem. Due to the ill-posedness, one has recousspriori informations on the
solution while solving inverse problems. A priori inforrats include but are not limited
to

— background and background errors covariance

— regularity of the solution
These informations are generally used as constraints tingetppropriate solution when
optimization techniques are used to solve an inverse pmoldie usual cases, constrains
are turned into penalization of some characteristics ofthetion. A common constraint
is the regularity of the solution leading to regularizatieohniques for inverse problems.
Until now, regularization is generally used as penalizatiile solving inverse problems.
This practice is affected by two principal problems: - as¢bst function is composite,
the convergence rate of optimization algorithms decreasbgn adequate regularization
functions are defined, one have to define balance paramet®redn regularization func-
tions and the objective function to minimize. The deterriaraof the optimal weighting
parameter requires second order analysis. Here, we suggest approach for regular-
ization of ill-posed inverse problems. We introduce an olmon based trust function
that is used to define an appropriate norm for the cost fumclibis approach don’t need
extra terms in the cost function, and of course is not afteatar by the ill-convergence
due to composite cost function, nor by the choice of weightiarameters.

The present document is organized as followed : in sectipnw@ present inverse
problems in a general framework, the use of a priori infoiore while solving inverse
problems. In section (3), we present regularization methfod inverse problems; we
emphasize on vector fields regularization. In section (€) present the derivation of the
new approach and comparisons with classical methods.

2. Inverse problems

2.1. Definition of inverse problems

2.1.1. Direct problem

Given a physical system whose the state ) can be defined as a function of a so
called control variabler € V

[1]



The modelM (that link the control spack to the state spac¥) defines the direct prob-
lem. Given a realization of the control variabe this problem has a unique solution
in the deterministic case. It is common to have not a reatinaif the control variable,
but observations of the system state. The problem of imfgrfie control variable from
observations is known as an inverse problem.

2.1.2. Inverse problem

The inverse problem associated to the direct problem (emquaj is defined in term
of optimization problem as followed :

find v* = ArgMin(J(v)),v € V [2]

where )
J(v) = Jo(v) = 5IM(v) = yelo [3]

||l-llo is the appropriate norm (taking into account observati@vsuance errors) in the
observation spac®

The problem defined by (equation 2) is known as the unconstidahverse problem.
The existence and uniqueness of the solution to the uneamstt problem (equation
2) is guaranteed ifl is strictly convex and lower semi continuous with

lim  J(v) = 400
V]| —+o0
under these conditions, Jfis differentiable, then the solution to the unconstraimeeise
problem (equation 2) is also the solution of the Euler-Lageequation

VJ(v)=0 [4]

To address the ill-posedness, one uses of all a priori krdyel®f the properties of
the solution.

2.2. Use of a priori knowledges in solving inverse problems

A priori knowledges are a set of constraints on the solutibthe inverse problems.
These constraints define a subgétc V of admissible candidates leading to a constraint
problem defined as

find v* = ArgMin(J(v)) 5]
vew

Here, we are interrested in cases where the set of admissiliiions can mathemat-
ically be defined a3V = {v € V/g¢(v) = 0}, the functiong being to define. In this case,
the constraint problem can be reduced to the unconstragmaliped problem

find v = ArgMin(J,(v) + —Ju(v)),v € V [6]

€c

where.J, is the observation cost function defined by (equation 3) hrdctbnstraint cost
functionJ, is defined as

Jv) = 3l 7]



The solutionv? — v* whene. — 0. Instead of using parameter and let it go to zero,
one can use a multiplicative parameterand let it go to infinity. We are going to con-
sider this case in the remainder part of the documéns known that pure penalization
as defined above is not numerically efficient; it is betterdediaugmented Lagrangian
algorithms see Glowinski et Le Tallec [2]

Developpement here will be limited to background informas and the regularity of
the solution. In this cases, the goal is usually not to findetkect solutionv € W, but
to find the solution that realizes the best fit between therebsien cost function and the
constraint cost function. This is choosing the best paranagor «..

2.2.1. Background and background errors covariance

If one gets from some previous process an approximationeo€dimtrol state and the
associate covariance error also known as background akdfoamd covariance errors,
one may asks to the computed solution to be closed to thisgbagkd. This can be
defined in term of penalization as

find v}, = ArgMin(J,(v) + apJp(v)), v €V [8]

whereq; is the weighting parameter associated to the backgroundfthe cost function
defined as

() = glv ="l ]

well known as Tikhonov regularization [13* is the background knowledge of the so-
lution, and||- ||y, the appropriate norm defined in term of the background canasd er-
rors. This norm will be analyzed in the preconditioning ssttBackground informations
are very important in solving inverse problems; this is apérway to address the ill-
posedness of the problem. Even in the case where there isckgrbaind information, it
is a usual practice to consider the zero background constggthe solution to have small
norm. In real live applications, background comes from fines analysis; this is the case
of forecast centers.

It is common to define the cost functighin term of the incremendv = v — vP
leading to incremental problem,

1 o 1
J(6v) = SIM +6v) = y°I13 + Sanllsv]} [10]
2.2.2. Regularity of the solution

Sometime, the physics of the problem defines the regulafigdmissible solutions
(eg. irrotational or divergence free flow.) These are caiirsts defines as functions of the
derivatives of the control variable. In these case, one dgfine penalized problem

find vy, = ArgMin(J,(6v) + apJo(6V) + o Jr(6V)), v €V [11]

whereq. is the weighting parameter associated to the regularizatot of the cost func-
tion defined in terms of the derivatives of the control vagatiRegularization will be
explored in more details in section (3.)

3. Vector fields regularization

As we said previously, regularization is a class of a priokledges used to address
the ill-posedness while solving inverse problem. One addslarization termgd,. to the



cost function. The functiod,. is based on the derivativesof The order of the derivatives
used in the definition of,. defines the order of the regularization. We will nameorder
regularization those involving up te—order derivatives.

Itis useful to give some specifications of the notations @efin section (2), especially
for the control space.

3.1. Notations

Let be an open subset & (2 ¢ R™), this is the physical space of the system, we
are interested in control spaces definedas (L?(2))". control states are then defined
asv eV = (L*(Q)", v(x) = (v;(x))1<i<n @aNdx = (z;)1<j<m € N

3.2. First order methods
The first order regularization methods defifieas a function of the first order deriva-

tives of v :
J(v) = J, <a ) [12]
Oz 1<i,j<n,

The most used of first order regularization methods is théigripenalization. It has been
used by Horn and Schunck in the formulation of optical flowff3] motion estimation.
The regularization function of Horn and Schunck is definetbew:

1 n
Torad(¥) = 5 /Q S [V 2dx [13]
=1

For incompressible fluid or irrotational flow, it is commongenalize the divergence or
the curl of the vector field leading to divergence penalaati

Tan¥) = 5 [ divw)|Pax [14]
Q
for incompressible fluid flow and curl penalization
1 2
Jeuri(V) = 3 [curl(v)||“dx [15]
Q

for irrotational flow

3.3. Second order methods
The second order regularization methods are based on thedseoder derivatives of

82’01'
r = Jr 16
rv) = (axjaxk)lgi,j,kgn, el

An example based on the first order derivativegi@af andcurl is the regularization of
Suter [8] defined as followed :

1
Touter () = 5 /Q a|[Vdiv(v) > + B Veurl(v)|Pdx [17]



Higher order derivatives ofi can also be used for regularization; for example (17) has
been generalized by Chen and Suter [7] using m-order davigatofdiv and curl.
1

Im(V) = §/Qa|\vmdiv(v)|\2 + BV curl(v)||*dx [18]

4. Turning regularization functions into covariance opera tors

4.1. Regularization operator out of an optimization proces s:case
of gradient penalization

4.1.1. definition
Let:

— v(x) be an incomplete/inconsistent state of the studied sysigmxwe 2 the space
on which the system is defined

— p(x) a scalar positive trust function given the quality of theestaat x

small value meaning bad/lack/inconsistent state
big value for good quality state

we define a restoration of v as the minimum argument of thetfomc
1 n
e(u) = 5/92 [Vui(@)]” + p(x)[lu(x) — v(x)|*dx [19]
=1

The minimization of is achieved by setting to be closed tor wheny is large (v
is of good quality) and smooth (small gradient norm) wheis small (v is not of good
quality)

4.1.2. Practical use

Under the conditions given in section (2), MinAeg equation (19) is defined by the
Euler-Lagrange condition
Vue(u) =0 [20]
The difficulty with nonlinear problems is to expregs. WhenVe is expressed, it can be
used in descent type algorithms to solve the minimizatiablam.Ve can be obtained
by making explicit the linear dependency of the Gateauxdévies: with respect to the
gradient. Development based on vector calculus leads to

Ve (u) = —Au(x) + o(x)(u(x) — v(x)),1 <i<n [21]
Instead of using classical descent type algorithm to gesttation of the problem,

u; can be considered as a function of time and the solution médaby solving (22)
according to development in [6],

rulet) = V2ui(x, 1) = p(x)(ui(x, 1) —vi(x))), 1<i<n [22]
the set of equations (22) are known as the generalized @iffiexjuations. The diffusion

operatorL giving the solutionu* = £(v) = minArg(e) can then used as a covariance
operator to define the appropriate norm for the cost funaifahe inverse problem.



4.1.3. Generalization

If the regularization term is defined ds(v) = ||®(v)||, the functiore can be gener-
alized as

() = 5 [ IBEO)I? + o)) — v() | 23]

The minimum ofz is achieved by setting to be closed te wheny is large § is of good
quality) and®-smooth wherp is small (¢ is not of good quality)

4.2. Application to motion estimation

We performed a set of motion estimation’s twin experimentsrder to analyze the
behavior of the approach we introduced here. We use imagesdrperimental study of
the drift of a vortex on a turntable [4]. The zonal component v;(x,y) and merid-
ional component, = vs(x,y) of the true current velocity are computed by direct image
sequence assimilation (DISA) [5]. The trust function is defi as the edge map (see [6]
for details on edge map function) of the firstimage We usersgooder analysis to define
optimal parameter for gradient, first order div-curl andsetorder div-curl (Suter) reg-
ulization. These optimal parameters are then used to maiehexperiments. Figure (5)
shows the evolution of the normalized root mean square €RBISE, log coordinates)
on velocity and vorticity with the minimization iterationshe graphic clearly shows that
th approach introduced here is better than the others aircctmbination. With this new
approach, velocity error decreases fro60% to 10% after40 iterations while classical
regularization need more th&00 iteration to get the same result. Furthermore, with the
new approach, velocity error can be reduced to less tfawhile for the other methods,
the best result is affected by abdu% of error. Vorticity error is reduce t@% with the
new approach and only % with classical regularization methods.

5. Conclusion

We introduced here a new formalism for taking into accountiarpknowledges on
the regularity of the solution while solving inverse prabk This new formalism is based
on the generalized diffusion equations. Preliminary itsssthows the superiority of this
formalism over classical methods that include regularifgpimations as penalization in
the cost function.
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