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SMALL EIGENVALUES OF THE LAPLACIAN FOR ALGEBRAIC

MEASURES IN MODULI SPACE, AND MIXING PROPERTIES

OF THE TEICHMÜLLER FLOW

ARTUR AVILA AND SÉBASTIEN GOUËZEL

Abstract. We consider the SL(2,R) action on moduli spaces of quadratic
differentials. If µ is an SL(2,R)-invariant probability measure, crucial infor-
mation about the associated representation on L2(µ) (and in particular, fine
asymptotics for decay of correlations of the diagonal action, the Teichmüller
flow) is encoded in the part of the spectrum of the corresponding foliated hy-
perbolic Laplacian that lies in (0, 1/4) (which controls the contribution of the
complementary series). Here we prove that the essential spectrum of an invari-
ant algebraic measure is contained in [1/4,∞), i.e., for every δ > 0, there are
only finitely many eigenvalues (counted with multiplicity) in (0, 1/4 − δ). In

particular, all algebraic invariant measures have a spectral gap.

1. Introduction

For any lattice Γ ⊂ SL(2,R), the irreducible decomposition of the unitary repre-
sentation of SL(2,R) on L2(SL(2,R)/Γ) consists almost entirely of tempered repre-
sentations (with fast decay of matrix coefficients): only finitely many non-tempered
representations may appear, each with finite multiplicity. This corresponds to the
well known result of Selberg (see, e.g., [Iwa95]) that in an hyperbolic surface of
finite volume, the Laplacian has only finitely many eigenvalues, with finite multi-
plicity, in (0, 1/4). This has several remarkable consequences, for instance, on the
asymptotics of the number of closed geodesics, the main error terms of which come
from the small eigenvalues of the Laplacian (by Selberg’s trace formula, see [Hej83]),
or for the asymptotics of the correlations of smooth functions under the diagonal
flow [Rat87].

For a more general ergodic action of SL(2,R), the situation can be much more
complicated: in general, one may even not have a spectral gap (SL(2,R) does
not have Kazhdan’s property (T )). Even in the particularly nice situation of the
SL(2,R) action on a homogeneous space G/Γ with G a semi-simple Lie group
containing SL(2,R) and Γ an irreducible lattice in G (a most natural generalization
the case G = SL(2,R) above), non-tempered representations may have a much
heavier contribution: for instance, [KS09, Theorem 1] constructs examples (with
G = SL(2,R)×SU(2)) where the spectrum of the foliated (along SO(2,R)\SL(2,R)
orbits) Laplacian on SO(2,R)\G/Γ has an accumulation point in (0, 1/4). In fact,
whether there is always a spectral gap at all remains an open problem for G =
SL(2,R)× SU(2). While one does expect better behavior in the case where G has
no compact factor, it too remains far from fully understood.

Moduli spaces of quadratic differentials present yet another natural generaliza-
tion of SL(2,R)/Γ, with different challenges. Let g, n ≥ 0 with 3g − 3 + n > 0,
let Mg,n be the moduli space of quadratic differentials on a genus one Riemann
surface with n punctures, and with at most simple poles at the punctures (alter-
natively, it is the cotangent bundle of the moduli space of Riemann surfaces), and
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let M1
g,n ⊂ Mg,n be the subspace of area one quadratic differentials. There is

a natural SL(2,R) action on M1
g,n, which has been intensively studied, not least

because the corresponding diagonal action gives the Teichmüller geodesic flow. If
g = 0 and n = 4 or if g = 1 and n = 1, M1

g,n turns out to be of the form SL(2,R)/Γ.

In higher genus the M1
g,n are not homogeneous spaces, and it is rather important

to understand to which extent they may still behave as such.
Recall that Mg,n is naturally stratified by the “combinatorial data” of the qua-

dratic differential q (order of zeros, number of poles, and whether or not q is a square
of an Abelian differential). Each stratum has a natural complex affine structure,
though it is not necessarily connected, the (finitely many) connected components
having been classified by Kontsevich-Zorich [KZ03] and Lanneau [Lan08]. Each
connected component C carries a unique (up to scaling) finite invariant measure µ
which is SL(2,R) invariant and absolutely continuous with respect to C ∩M1

g,n (in
case of the largest, “generic”, stratum, which is connected, µ coincides with the
Liouville measure in M1

g,n). Those measures were constructed, and shown to be
ergodic, by Masur [Mas82] and Veech [Vee82]. In [AGY06] and [AR09], it is shown
that for such a Masur-Veech measure µ the SL(2,R) action on L2(µ) has a spectral
gap.

There are many more ergodic SL(2,R) invariant measures beyond the Masur-
Veech measures, which can be expected to play an important role in the analysis of
non-typical SL(2,R) orbits (the consideration of non-typical orbits arises, in partic-
ular, when studying billiards in rational polygons). While all such measures have
not yet been classified, it has been recently announced by Eskin and Mirzakhani
that they are all “algebraic”,1 a result analogue to one of Ratner’s Theorems (classi-
fying SL(2,R) invariant measures in an homogeneous space [Rat92]). (For squares
of Abelian differentials in M2,0, a stronger version of this result, including the clas-
sification of the algebraic invariant measures, was obtained earlier by McMullen
[McM07].)

Let µ be an algebraic SL(2,R)-invariant measure in some M1
g,n. Our goal in this

paper is to see to what extent the action of SL(2,R) on L2(µ) looks like an action
on an homogeneous space, especially concerning small eigenvalues of the associated
Laplacian acting on the subspace of SO(2,R) invariant functions in L2(µ). Our main
theorem states that the situation is almost identical to the SL(2,R)/Γ case (the
difference being that we are not able to exclude the possibility that the eigenvalues
accumulate at 1/4):

Main Theorem. Let µ be an SL(2,R)-invariant algebraic probability measure in
the moduli space of quadratic differentials. For any δ > 0, the spectrum of the
associated Laplacian in [0, 1/4 − δ] is made of finitely many eigenvalues, of finite
multiplicity.

This theorem can also be formulated as follows: in the decomposition of L2(µ)
into irreducible components, the representations of the complementary series occur
only discretely, with finite multiplicity. More details are given in the next section.

Our result is independent of the above mentioned theorem of Eskin and Mirza-
khani. With their theorem, we obtain that our result in fact applies to all SL(2,R)-
invariant probability measures.

As mentioned before, the spectral gap (equivalent to the absence of spectrum
in (0, ǫ) for some ǫ > 0) had been previously established in the particular case of
Masur-Veech measures ([AGY06], [AR09]), but without any control of the spectrum

1Here we use the term algebraic in a rather lax sense. What has actually been shown is that
the corresponding GL+(2,R) invariant measure is supported on an affine submanifold of some
stratum, along which it is absolutely continuous (with locally constant density in affine charts).
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beyond a neighborhood of 0 (which moreover degenerates as the genus increases).
Here we not only obtain very detailed information of the spectrum up to the 1/4
barrier (beyond which the statement is already false even for the modular surface
M1,1), but manage to address all algebraic measures, even in the absence of a
classification. This comes from the implementation of a rather different, geometric
approach, in contrast with the combinatorial one used to establish the spectral gap
for Masur-Veech measures (heavily dependent on the precise combinatorial descrip-
tion, in terms of Rauzy diagrams, of the Teichmüller flow restricted to connected
components of stratum).

An interesting question is whether there are indeed eigenvalues in (0, 1/4). It is
well known that there is no such eigenvalue in SL(2,R)/Γ for Γ = SL(2,Z), and by
Selberg’s Conjecture [Sel65] the situation should be the same for any congruence
subgroup. It is tempting to conjecture that, in our non-homogeneous situation,
there is no eigenvalue either, at least when µ is the Masur–Veech measure. We will
however refrain from doing so since we have no serious evidence in one direction or
the other. Let us note however that, for some measures µ, there are indeed eigen-
values: for any finite index subgroup Γ of the congruence subgroup Γ(2) containing
{±1}, the curve SL(2,R)/Γ can be realized as a Teichmüller curve by [EM09]. Suit-
ably choosing Γ and taking for µ the Liouville measure on the resulting Teichmüller
curve, we get an example with eigenvalues. Notice that this shows indeed that there
can be no uniform spectral gap for all algebraic measures in all moduli spaces (it
is unknown whether there is a uniform spectral gap in each fixed moduli space).

A consequence of our main theorem is that the correlations of well behaved func-
tions have a nice asymptotic expansion (given by the spectrum of the Laplacian).
For instance, if f1 and f2 are square-integrable SO(2,R)-finite functions (i.e., f1 and
f2 have only finitely many nonzero Fourier coefficients for the action of SO(2,R)),
then their correlations

∫

f1 · f2 ◦ gt dµ with respect to the Teichmüller flow gt =
(

et 0
0 e−t

)

can be written, for every 0 < δ < 1, as
∑M−1

i=0 ci(f1, f2)e
−ait+o(e−(1−δ)t),

where 0 = a0 < · · · < aM−1 ≤ 1 − δ are the numbers 1 −
√
1− 4λ for λ an eigen-

value of ∆ in [0, (1− δ2)/4]. This follows at once from the asymptotic expansion of
matrix coefficients of SO(2,R)-finite functions in [CM82, Theorem 5.6]. A similar
expansion certainly holds if f1 and f2 are only compactly supported C∞ functions,
but its proof would require more detailed estimates on matrix coefficients.

We expect that our techniques will also be useful in the study of the Ruelle zeta
function ζRuelle(z) =

∏

τ (1 − e−z|τ |) (where τ runs over the prime closed orbits of
the flow g, and |τ | is the length of τ). Recall that ζRuelle(z) can be expressed as

an alternating product
∏

ζk(z)
(−1)k , where ζk is a dynamical zeta function related

to the action of gt on the space of k-forms (see for instance [Fri86]). Along the
proof of the main theorem, we obtain considerable information for the action of
the Teichmüller flow in suitably defined Banach spaces, which goes in the direction
of providing meromorphic extensions of the functions ζk (and therefore also of the
Ruelle zeta functions), hence opening the way to precise asymptotic formulas (which
should include correction terms coming from small eigenvalues of the Laplacian) for
the number of closed geodesics in the support of any algebraic invariant measure.

2. Statements of results

Our results will be formulated in moduli spaces of flat surfaces, as follows. Fix
a closed surface S of genus g ≥ 1, a subset Σ = {σ1, . . . , σj} of S and multiplicities
κ = (κ1, . . . , κj) with

∑

(κi− 1) = 2g− 2. We denote by Teich = Teich(S,Σ, κ) the
set of translation structures on S such that the cone angle around each σi is equal
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to 2πκi, modulo isotopy. Equivalently, this is the space of abelian differentials with
zeroes of order κi − 1 at σi. Let also Teich1 ⊂ Teich be the set of area one surfaces.

Given a translation surface x, one can develop closed paths (or more generally
paths from singularity to singularity) from the surface to C, using the translation
charts. This defines an element Φ(x) ∈ H1(M,Σ;C). The resulting period map
Φ : Teich → H1(M,Σ;C) is a local diffeomorphism, and endows Teich with a
canonical complex affine structure.

The mapping class group Γ of (S,Σ, κ) is the group of homeomorphisms of S
permuting the elements of Σ with the same κi. It acts on Teich and on Teich1.
The space Teich is also endowed with an action of GL+(2,R), obtained by postcom-
posing the translation charts by GL+(2,R) elements. The action of the subgroup
SL(2,R) of GL+(2,R) leaves Teich1 invariant. Since the actions of GL+(2,R) and
Γ commute, we may write the former on the left and the latter on the right.

Definition 2.1. A measure µ̃ on Teich1 is admissible if it satisfies the following
conditions:

• The measure µ̃ is SL(2,R) and Γ-invariant.
• There exists a Γ-invariant linear submanifold Y of Teich such that µ̃ is
supported on X = Y ∩Teich1, and the measure µ̃⊗Leb on X ×R∗

+ = Y is
locally a multiple of the linear Lebesgue measure on Y .

• The measure µ induced by µ̃ on X/Γ has finite mass, and is ergodic under
the action of SL(2,R) on X/Γ.

Although this definition may seem quite restrictive, it follows from the above
mentioned theorem of Eskin and Mirzakhani that ergodic SL(2,R)-invariant mea-
sures are automatically admissible. The following proposition is much weaker, but
we nevertheless include it since its proof is elementary, and is needed to obtain
further information on admissible measures (in particular on their local product
structure, see Proposition 4.1 below).

Proposition 2.2. Let X be a Γ-equivariant C1 submanifold of Teich1 such that
X/Γ is connected, and let µ̃ be a SL(2,R) and Γ-invariant measure on X such that
µ̃ is equivalent to Lebesgue measure, and the induced measure µ in X/Γ is a Radon
measure, i.e., it gives finite mass to compact subsets of X/Γ. Then µ̃ is admissible.

This proposition should be compared to a result of Kontsevich and Möller in
[Möl08]: any GL+(2,R)-invariant algebraic submanifold of Teich is linear. Here,
we obtain the same conclusion if X is only C1, but we additionally assume the
existence of an invariant absolutely continuous Radon measure on X .

Let µ̃ be an admissible measure, supported by a submanifold X of Teich1. Ev-
ery SL(2,R)-orbit in X/Γ is isomorphic to a quotient of SL(2,R). Therefore, the
image of every such orbit in SO(2,R)\X/Γ (the set of translations surfaces in X ,
modulo the mapping class group, and in which the vertical direction is forgotten)
is a quotient of the hyperbolic plane, and is canonically endowed with the hyper-
bolic Laplacian. Gluing those operators together on the different orbits, we get a
Laplacian ∆ on SO(2,R)\X/Γ, which acts (unboundedly) on L2(SO(2,R)\X/Γ, µ),
where µ is µ̃ mod Γ. Our main theorem describes the spectrum of this operator:

Theorem 2.3. Let µ̃ be an admissible measure, supported by a manifold X. De-
note by µ the induced measure on X/Γ. Then, for any δ > 0, the spectrum of
the Laplacian ∆ on L2(SO(2,R)\X/Γ, µ), intersected with (0, 1/4− δ), is made of
finitely many eigenvalues of finite multiplicity.

This theorem can also be formulated in terms of the spectrum of the Casimir
operator, or in terms of the decomposition of L2(X/Γ, µ) into irreducible represen-
tations under the action of SL(2,R): for any δ > 0, there is only a finite number of
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representations in the complementary series with parameter u ∈ (δ, 1) appearing in
this decomposition, and they have finite multiplicity. See §3.4 for more details on
these notions and their relationships.

Remark 2.4. We have formulated the result in the space X/Γ where Γ is the
mapping class group. However, if Γ′ is a subgroup of Γ of finite index, then the
proof still applies in X/Γ′ (of course, there may be more eigenvalues in X/Γ′ than
in X/Γ). This applies for instance to Γ′ the set of elements of Γ that fix each
singularity σi.

Remark 2.5. In compact hyperbolic surfaces, the spectrum of the Laplacian is
discrete. Therefore, the essential spectrum of the Laplacian in [1/4,∞) in finite
volume hyperbolic surfaces comes from infinity, i.e., the cusps. Since the geometry
at infinity of moduli spaces of flat surfaces is much more complicated than cusps,
one might expect more essential spectrum to show up, and Theorem 2.3 may come
as a surprise. However, from the point of view of measure, infinity has the same
weight in hyperbolic surfaces and in moduli spaces: the set of points at distance at
least H in a cusp has measure ∼ cH−2, while its analogue in a moduli space is the
set of surfaces with systole at most H−1, which also has measure of order c′H−2

by the Siegel-Veech formula [EM01]. This analogy (which also holds for recurrence
speed to compact sets) justifies heuristically Theorem 2.3.

Quadratic differentials. Let g, n ≥ 0 be integers such that 3g− 3+n > 0 and let
Tg,n be the Teichmüller space of Riemann surfaces of genus g with n punctures. Its
cotangent space is the spaceQg,n of quadratic differentials with at most simple poles
at the punctures. It is stratified by fixing some appropriate combinatorial data (the
number of poles, the number of zeros of each given order, and whether the quadratic
differential is a square of an Abelian differential or not). Much of the theory of
quadratic differentials is parallel to the one of Abelian differentials, in particular,

each stratum in Qg,n can be seen as a Teichmüller space T̃eich = T̃eich(S̃, Σ̃, κ̃) of

half-translation structures, which allows one to define a natural action of GL+(2,R).
Moreover, strata are endowed with a natural affine structure, which allows one to
define the notion of admissible measure (in particular, the Liouville measure in Qg,n

is admissible). Thus the statement of Theorem 2.3 still makes sense in the setting
of quadratic differentials. As it turns out, it can also be easily derived from the
result about Abelian differentials.

This is most immediately seen for strata of squares, in which case T̃eich is the
quotient of a Teichmüller space of Abelian differentials Teich by an involution (the
rotation of angle π). Taking the quotient by SO(2,R), we see that the spectrum of

the Laplacian for some SL(2,R)-invariant measure in T̃eich is the same as the one
for its (involution-symmetric) lift to Teich, to which Theorem 2.3 applies.

Even when T̃eich is not a stratum of squares, it can still be analyzed in terms
of certain Abelian differentials (the well-known double cover construction also used
in [AR09]). Indeed in this case the Riemann surface with a quadratic differential
admits a (holomorphic, ramified, canonical) connected double cover (constructed
formally using the doubly-valued square-root of the quadratic differential), to which
the quadratic differential lifts to the square of an (also canonical) Abelian differen-
tial. This double cover carries an extra bit of information, in the form of a canonical

involution, so that T̃eich gets identified with a Teichmüller space of “translation
surfaces with involution”. Forgetting the involution, the latter can be seen as an
affine subspace of a Teichmüller space of translation surfaces, allowing us to apply
Theorem 2.3.
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Notations. Let us introduce notations for convenient elements of SL(2,R). For

t ∈ R, let gt =
(

et 0
0 e−t

)

. Its action on Qg is the geodesic flow corresponding to the

Teichmüller distance on Tg, and its action in different strata (that we still call the
Teichmüller flow) will play an essential role in the proof of our main theorem. We

also denote hr = ( 1 r
0 1 ) and h̃r = ( 1 0

r 1 ) the horocycle actions, and kθ =
(

cos θ sin θ
− sin θ cos θ

)

the circle action. Throughout this article, the letter C denotes a constant whose
value is irrelevant and can change from line to line.

Sketch of the proof. The usual strategy to prove that the spectrum of the Lapla-
cian is finite in [0, 1/4] in a finite volume surface S = SO(2,R)\SL(2,R)/Γ is the
following: one decomposes L2(S) as L2

cusp(S) ⊕ L2
eis(S) where L

2
cusp(S) is made of

the functions whose average on all closed horocycles vanishes, and L2
eis(S) is its

orthogonal complement. One then proves that the spectrum in L2
eis(S) is [1/4,∞)

by constructing a basis of eigenfunctions using Eisenstein series, and that the spec-
trum in L2

cusp(S) is discrete since convolution with smooth compactly supported
functions in SL(2,R) is a compact operator.

There are two difficulties when trying to implement this strategy in nonhomoge-
neous situations. Firstly, since the geometry at infinity is very complicated, it is not
clear what the good analogue of L2

eis(S) and Eisenstein series would be. Secondly,
the convolution with smooth functions in SL(2,R) only has a smoothing effect in
the direction of the SL(2,R) orbits, and not in the transverse direction (and this
would also be the case if one directly tried to study the Laplacian); therefore, it is
very unlikely to be compact.

To solve the first difficulty, we avoid completely the decomposition into Eisenstein
and cuspidal components and work in the whole L2 space. This means that we
will not be able to exhibit compact operators (since this would only yield discrete
spectrum), but we will rather construct quasi-compact operators, i.e., operators
with finitely many large eigenvalues and the rest of the spectrum contained in a
small disk. The first part will correspond to the spectrum of the Laplacian in
[0, 1/4− δ] and the second part to the non-controlled rest of the spectrum.

Concerning the second difficulty, we will not study the Laplacian nor convolution
operators, but another element of the enveloping algebra: the differentiation Lω in
the direction ω of the flow gt. Of course, its behavior on the space L2(X/Γ, µ) is
very bad, but we will construct a suitable Banach space B of distributions on which
it is quasi-compact. To relate the spectral properties of gt on B and of ∆ on L2, we
will rely on fine asymptotics of spherical functions in irreducible representations of
SL(2,R) (this part is completely general and does not rely on anything specific to
moduli spaces of flat surfaces).

The main difficulty of the article is the construction of B and the study of Lω on
B. We rely in a crucial way on the hyperbolicity of gt, that describes what happens
in all the directions of the space under the iteration of the flow. If B is carefully
tuned (its elements should be smooth in the stable direction of the flow, and dual
of smooth in the unstable direction), then one can hope to get smoothing effects
in every direction, and therefore some compactness. This kind of arguments has
been developed in recent years for Anosov maps or flows in compact manifolds and
has proved very fruitful (see among others [Liv04, GL06, BT07, BL07]). We use
in an essential way the insights of these papers. However, the main difficulty for
us is the non-compactness of moduli space: since we can not rely on an abstract
compactness argument close to infinity, we have to get explicit estimates there
(using a quantitative recurrence estimate of Eskin-Masur [EM01]). We should also
make sure that the estimates do not diverge at infinity. Technically, this is done
using the Finsler metric of Avila-Gouëzel-Yoccoz [AGY06] (that has good regularity
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properties uniformly in the Teichmüller space) to define the Banach space B, and
plugging the Eskin-Masur function Vδ into the definition of B. On the other hand,
special features of the flow under study are very helpful: it is affine (hence no
distortion appears), and its stable and unstable manifolds depend smoothly on the
base point and are affine. Moreover, it is endowed in a SL(2,R) action, which
implies that its spectrum can not be arbitrary: contrary to [Liv04], we will not
need to investigate spectral values with large imaginary part.

Let us quickly describe a central step of the proof. At some point, we need to
study the iterates Ln

T0
of the operator LT0f = f◦gT0 , for a suitably chosen T0. Using

a partition of unity, we decompose LT0 as L̃1+ L̃2 where L̃1 corresponds to what is

going on in a very large compact set K, and L̃2 takes what happens outside K into
account. We expand Ln

T0
=
∑

γi∈{1,2} L̃γ1 · · · L̃γn . In this sum, if most γis are equal

to 2, we are spending a lot of time outside K, and the Eskin-Masur function gives
us a definite gain. Otherwise, a definite amount of time is spent inside K, where
the flow is hyperbolic, and we get a gain λ given by the hyperbolicity constant of
the flow inside K. Unfortunately, we only know that λ is strictly less than 1 (and
K is very large, so it is likely to be very close to 1). This would be sufficient to
get a spectral gap, but not to reach 1/4 in the spectrum of the Laplacian. A key
remark is that, if we define our Banach space B using Ck regularity, then the gain
is better, of order λk. Choosing k large enough (at the complete end of the proof),
we get estimates as precise as we want, getting arbitrarily close to 1/4.

In view of this argument, two remarks can be made. Firstly, since we need to
use very high regularity, our proof can not be done using a symbolic model since
the discontinuities at the boundaries would spoil the previous argument. Secondly,
since k is chosen at the very end of the proof, we have to make sure that all our
bounds, which already have to be uniform in the non-compact space X/Γ, are also
uniform in k.

The paper is organized as follows. In Section 3, we introduce necessary back-
ground on irreducible unitary representations of SL(2,R), and show that Theo-
rem 2.3 follows from a statement on spectral properties of the differentiation Lω

in the flow direction (Theorem 3.2). In Section 4, we get a precise description of
admissible measures, showing that they have a nice local product structure. Along
the way, we prove Proposition 2.2. In Section 5, we establish several technical
properties of the Ck norm with respect to the Finsler metric of [AGY06] that will
be instrumental when defining our Banach space B. In Section 6, we reformulate
the recurrence estimates of Eskin-Masur [EM01] in a form that is convenient for
us. Finally, we define the Banach space B in Section 7, and prove Theorem 3.2 in
Section 8.

3. Proof of the main theorem: the general part

3.1. Functional analytic prerequisites. Let L be a bounded operator on a com-
plex Banach space (B, ‖·‖). A complex number z belongs to the spectrum σ(L) of
L if zI − L is not invertible. If z is an isolated point in the spectrum of L, we can
define the corresponding spectral projection Πz := 1

2iπ

∫

C(wI − L)−1 dw, where C
is a small circle around z (this definition is independent of the choice of C). Then
Πz is a projection, its image and kernel are invariant under L, and the spectrum
of the restriction of L to the image is {z}, while the spectrum of the restriction
of L to the kernel is σ(L) − {z}. We say that z is an isolated eigenvalue of finite
multiplicity of L if the image of Πz is finite-dimensional, and we denote by σess(L)
the essential spectrum of L, i.e., the set of elements of σ(L) that are not isolated
eigenvalues of finite multiplicity.



SMALL EIGENVALUES OF THE LAPLACIAN IN MODULI SPACE 8

The spectral radius of L is r(L) := sup{|z| : z ∈ σ(L)}, and its essential spectral
radius is ress(L) := sup{|z| : z ∈ σess(L)}. These quantities can also be computed

as follows: r(L) = infn∈N

∥

∥

∥Ln
∥

∥

∥

1/n

, and ress(L) = inf
∥

∥

∥Ln −K
∥

∥

∥

1/n

, where the

infimum is over all integers n and all compact operators K. In particular, we get
that the essential spectral radius of a compact operator is 0, i.e., the spectrum of a
compact operator is made of a sequence of isolated eigenvalues of finite multiplicity
tending to 0, as is well known.

So-called Lasota-Yorke inequalities can also be used to estimate the essential
spectral radius:

Lemma 3.1. Assume that, for some n > 0 and for all x ∈ B, we have
∥

∥

∥Ln
x
∥

∥

∥ ≤Mn ‖x‖ + ‖x‖′ ,

where ‖·‖′ is a seminorm on B such that the unit ball of B (for ‖·‖) is relatively
compact for ‖·‖′. Then ress(L) ≤M .

This has essentially been proved by Hennion in [Hen93], the statement in this
precise form can be found in [BGK07, Lemma 2.2].

Assume now that L is a bounded operator on a complex normed vector space
(B, ‖·‖), but that B is not necessarily complete. Then L extends uniquely to a
bounded operator L on the completion B of B for the norm ‖·‖. We will abu-
sively talk about the spectrum, essential spectrum or essential spectral radius of L,
thinking of the same data for L.
3.2. Main spectral result. Let µ̃ be an admissible measure supported on a man-
ifold X , and let µ be its projection in X/Γ.

We want to study the spectral properties of the differentiation operator Lω in
the direction ω of the flow gt. As in [Liv04], it turns out to be easier to study
directly the resolvent of this operator, given by R(z)f =

∫∞

t=0 e
−ztf ◦ gt dt.

Given δ > 0, we will study the operator M = R(4δ) on the space DΓ of C∞

functions on X , Γ–invariant and compactly supported in X/Γ. Of course, Mf is
not any more compactly supported, so we should be more precise.

We want to define a norm ‖·‖ on DΓ such that, for any f ∈ DΓ, the function
f ◦ gt (which still belongs to DΓ) satisfies ‖f ◦ gt‖ ≤ C ‖f‖, for some constant C

independent of t. Denoting by DΓ the completion of DΓ for the norm ‖·‖, the

operator Lt : f 7→ f ◦ gt extends continuously to an operator on DΓ, whose norm is
bounded by C. Therefore, the operatorM :=

∫∞

t=0
e−4δtLt acts continuously on the

Banach space DΓ, and it is meaningful to consider its essential spectral radius. We
would like this essential spectral radius to be quite small. Since ‖f ◦ gt‖ ≤ C ‖f‖,
the trivial estimate on the spectral radius of M is C

∫∞

t=0 e
−4δt dt = C/(4δ). This

blows up when δ tends to 0. We will get a significantly better bound on the essential
spectral radius in the following theorem.

Theorem 3.2. There exists a norm on DΓ satisfying the requirement ‖f ◦ gt‖ ≤
C ‖f‖ (uniformly in f ∈ DΓ and t ≥ 0), such that the essential spectral radius of
M for this norm is at most 1 + δ.

Moreover, for any f1 ∈ DΓ, the linear form f 7→
∫

X/Γ
f1f dµ extends continu-

ously from DΓ to its closure DΓ.

This theorem is proved in Section 8. The main point is of course the assertion
on the essential spectral radius, the last one is a technicality that we will need later
on.

Let us admit this result for the moment, and see how it implies our main result,
Theorem 2.3. Since Theorem 3.2 deals with the spectrum of Lω, it is not surprising
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that it implies a description of the spectrum of the action of SL(2,R). However,
we only control the spectrum of Lω on a quite exotic Banach space of distribu-
tions. To obtain information on the action of SL(2,R), we will therefore follow an
indirect path, through meromorphic extensions of Laplace transforms of correlation
functions. (It seems desirable to find a more direct and more natural route.)

3.3. Meromorphic extensions of Laplace transforms. From Theorem 3.2, we
will obtain in this section a meromorphic extension of the Laplace transform of the
correlations of smooth functions, to a suitable domain described as follows. For
δ, ǫ > 0, define Dδ,ǫ ⊂ C as the set of points z = x + iy such that either x > 0, or
(x, y) ∈ [−1 + 6δ, 0]× [−ǫ, ǫ].
Proposition 3.3. Let δ > 0. Let f1, f2 ∈ DΓ, define for ℜz > 0 a function

F (z) = Ff1,f2(z) =
∫∞

t=0 e
−zt
(

∫

X/Γ f1 · f2 ◦ gt dµ
)

dt. Then, for some ǫ > 0, the

function F admits a meromorphic extension to (a neighborhood of) Dδ,ǫ.
Moreover, the poles of F in Dδ,ǫ are located in the set {4δ−1/λ1, . . . , 4δ−1/λI},

where the λi are the finitely many eigenvalues of modulus at least 1 + 2δ of the
operator M = R(4δ) acting on the space constructed in Theorem 3.2. The residue
of F at such a point 4δ − 1/λi is equal to

∫

X/Γ f1 · Πλif2 dµ, where Πλi is the

spectral projection of M associated to λi ∈ σ(M).

Proof. Heuristically, we have F (z) =
∫

X/Γ
f1R(z)f2 dµ whereR(z) =

∫∞

t=0
e−ztf◦gt,

and moreover R(z) = (z −Lω)
−1 where Lω is the differentiation in the direction ω.

Let us fix z0 = 4δ. The spectral properties of M = R(z0) = (z0 − Lω)
−1 are well

controlled by Theorem 3.2. In view of the formal identity

(z − Lω)
−1 = (z0 − z)−1(z0 − Lω)

−1((z0 − z)−1 − (z0 − Lω)
−1)−1,

we are led to define an operator

(3.1) S(z) =
1

z0 − z
M
(

1

z0 − z
−M

)−1

,

which should coincide with R(z). In particular, we should have the equality F (z) =
∫

X/Γ f1S(z)f2 dµ. Since S(z) is defined for a large set of values of z, this should

define the requested meromorphic extension of F to a larger domain.

Let us start the rigorous argument. Let DΓ be the Banach space constructed in
Theorem 3.2, and let λ1, . . . , λI be the finitely many eigenvalues of modulus ≥ 1+2δ

of M acting on DΓ. For z with 1/|z0 − z| ≥ 1 + 2δ and 1/(z0 − z) 6∈ {λ1, . . . , λI},
we can define on DΓ an operator S(z) by the formula (3.1). It is holomorphic
on Dδ,ǫ\{4δ − 1/λ1, . . . , 4δ − 1/λI}. Since the points 4δ − 1/λi are poles of finite
order (see e.g. [Kat66, III.6.5]), S(z) is even meromorphic on Dδ,ǫ. Let us finally
set G(z) =

∫

X/Γ
f1S(z)f2 dµ ∈ C, this is well defined by the last statement in

Theorem 3.2. The function G is meromorphic and defined on the set Dδ,ǫ, with
possible poles at the points z0 − 1/λ1, . . . , z0 − 1/λI . To conclude, we just have to
check that F and G coincide in a neighborhood of z0.

If z is very close to z0, 1/(z0 − z) is very large so that all series expansions are
valid. Then the formula (3.1) gives

S(z)f2 = M(1− (z0 − z)M)−1f2 =

∞
∑

k=0

(z0 − z)kMk+1f2.

Since Mk+1f =
∫∞

t=0
tk

k! e
−z0tf ◦ gt dt, we obtain

S(z)f2 =

∫ ∞

t=0

∞
∑

k=0

(z0 − z)k
tk

k!
e−z0tf ◦ gt dt =

∫ ∞

t=0

e(z0−z)te−z0tf2 ◦ gt dt.
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This gives the desired result after multiplying by f1 and integrating.
Let us now compute the residue of S(z)f2 around a point z0 − 1/λi. We have

S(z) =
1

z0 − z

(

1

z0 − z
+M− 1

z0 − z

)(

1

z0 − z
−M

)−1

=
1

(z0 − z)2

(

1

z0 − z
−M

)−1

− 1

z0 − z
.

The term −(z0 − z)−1 is holomorphic around z0 − 1/λi. Therefore, the residue of
S around this point is given by

1

2iπ

∫

C(z0−1/λi)

1

(z0 − z)2

(

1

z0 − z
−M

)−1

dz

=
1

2iπ

∫

C(λi)

w2(w −M)−1 dw

w2
= Πλi ,

where C(u) denotes a positively oriented path around the point u and we have
written w = 1/(z0 − z). This concludes the proof. �

3.4. Background on unitary representations of SL(2,R). Let us describe
(somewhat informally) the notion of direct decomposition of a representation. See
e.g. [Dix69] for all the details.

Let Hξ be a family of representations of SL(2,R), depending on a parameter ξ in
a space Ξ, and assume that this family of representations is measurable (in a suitable
sense). If m is a measure on Ξ, one can define the direct integral

∫

Hξ dm(ξ): an
element of this space is a function f defined on Ξ such that f(ξ) ∈ Hξ for all ξ,

with ‖f‖2 :=
∫

‖f(ξ)‖2Hξ
dm(ξ) < ∞. The group SL(2,R) acts unitarily on this

direct integral, by (g · f)(ξ) = g(f(ξ)). If m′ is another measure equivalent to m,
then the representations

∫

Hξ dm(ξ) and
∫

Hξ dm′(ξ) are isomorphic.
From now on, let Ξ be the space of all irreducible unitary representations of

SL(2,R), with its canonical Borel structure (that we will describe below). Any
unitary representation H of SL(2,R) is isomorphic to a direct integral

∫

Hξ dm(ξ),
where the space Hξ is a (finite or countable) direct sum of one or several copies
of the same representation ξ (we say that Hξ is quasi-irreducible). Moreover, the
measure class of the measurem, and the multiplicity of ξ in Hξ, are uniquely defined
([Dix69, Théorème 8.6.6]), and the representation H is characterized by these data.

Let us now describe Ξ more precisely. The irreducible unitary representations
of SL(2,R) have been classified by Bargmann, as follows. An irreducible unitary
representation of SL(2,R) belongs to one of the following families:

• Representations D+
m+1 and D−

m+1, for m ∈ N. This is the discrete series
(except for m = 0, where the situation is slightly different: these represen-
tations form the “mock discrete series”).

• Representations P+,iv for v ∈ [0,+∞) and P−,iv for v ∈ (0,∞). This is
the principal series (these representations can also be defined for v < 0, but
they are isomorphic to the same representations with parameter −v > 0).

• Representations Cu for 0 < u < 1. This is the complementary series.
• The trivial representation.

These representations are described with more details in [Kna01, II.5]. They are all
irreducible, no two of them are isomorphic, and any irreducible unitary representa-
tion of SL(2,R) appears in this list. In particular, to any irreducible representation
ξ of SL(2,R) is canonically attached a complex parameter s(ξ) (equal to m in the
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first case, iv in the second, u in the third and 1 in the fourth), and the Borel struc-
ture of SL(2,R) is given by this parameter (and the discrete data ± in the first two
cases).

The Casimir operator Ω is a generator of the center of the enveloping algebra
of SL(2,R), i.e., it is a differential operator on SL(2,R), commuting with every
translation, and of minimal degree. It is unique up to scalar multiplication, and we
will normalize it as

(3.2) Ω = (L2
W − L2

ω − L2
V )/4,

where W =
(

0 1
−1 0

)

, ω =
(

1 0
0 −1

)

and V = ( 0 1
1 0 ) are elements of the Lie algebra of

SL(2,R), and LZ denotes the Lie derivative on SL(2,R) with respect to the left
invariant vector field equal to Z at the identity.

The Casimir operator extends to an unbounded operator in every unitary repre-
sentation of SL(2,R). Since it commutes with translations, it has to be scalar on
irreducible representations. With the notations we have set up earlier, it is equal
to (1 − s(ξ)2)/4 ∈ R on an irreducible unitary representation ξ of parameter s(ξ).

An irreducible unitary representation ξ of SL(2,R) is spherical if it contains an
SO(2,R)-invariant non-trivial vector. In this case, the SO(2,R)-invariant vectors
have dimension 1, let v be an element of unit norm in this set. The spherical
function φξ is defined on SL(2,R) by

(3.3) φξ(g) = 〈g · v, v〉,
it is independent of the choice of v. Taking g = gt, the spherical function is simply
the correlations of v under the diagonal flow.

The spherical unitary irreducible representations are the representations P+,iv

and Cu (and the trivial one, of course).

Assume now that SL(2,R) acts on a space Y and preserves a probability measure
µ. Then SL(2,R) acts unitarily on L2(Y, µ) by g · f(x) = f(g−1x). Therefore, the
Casimir operator also acts L2(Y, µ) (as an unbounded operator). Since it commutes
with translations, it leaves invariant the space L2(SO(2,R)\Y, µ) (i.e., the space of
functions on Y that are SO(2,R)-invariant and square-integrable with respect to
µ). On this space, Ω can also be described geometrically as a foliated Laplacian, as
follows.

For x ∈ Y , its orbit mod SO(2,R) is identified with H = SL(2,R)/SO(2,R), by
the map gSO(2,R) 7→ SO(2,R)g−1x (and changing the basepoint x in the orbit
changes the parametrization by an SL(2,R) element). Therefore, any structure on
H which is SL(2,R) invariant can be transferred to SO(2,R)\Y . This is in partic-
ular the case of the hyperbolic metric of curvature −1, and of the corresponding

hyperbolic Laplacian ∆ given in coordinates (xH, yH) ∈ H by −yH
(

∂2

∂x2
H

+ ∂2

∂y2
H

)

.

Let fK be a function on SO(2,R)\Y belonging to the domain of ∆, and let f be
its canonical lift to Y . Then Ωf is SO(2,R)-invariant, and is the lift of the function
∆fK on SO(2,R)\Y . This follows at once from the definitions (and our choice of
normalization in (3.2)).

Consider the decomposition L2(Y, µ) ≃
∫

Ξ
Hξ dm(ξ) of the representation of

SL(2,R) on L2(Y, µ) into an integral of quasi-irreducible representations. Denoting

by H
SO(2,R)
ξ the SO(2,R)-invariant vectors in Hξ, we have L2(SO(2,R)\Y, µ) ≃

∫

ΞH
SO(2,R)
ξ dm(ξ). Therefore, the spectrum of ∆ on L2(SO(2,R)\Y, µ) is equal

to the set {(1 − s(ξ)2)/4}, for ξ a spherical representation in the support of m
(moreover, the spectral measure of ∆ is the image of m under this map). Since
the spectrum of the Casimir operator in the interval (0, 1/4) only comes from the
complementary series representations, which are all spherical, it follows that σ(∆)∩
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(0, 1/4) = σ(Ω) ∩ (0, 1/4), and that the spectral measures coincide. Therefore, it
is equivalent to understand σ(∆) ∩ (0, 1/4) or to understand representations in
the complementary series arising in L2(Y, µ). While the former point of view is
more elementary, the latter puts it in a larger (and, perhaps, more significant)
perspective.

3.5. Meromorphic extensions of Laplace transforms in abstract SL(2,R)
representations. Given H a unitary representation of SL(2,R), let us decom-
pose it as

∫

ΞHξ dm(ξ) where Ξ is the set of unitary irreducible representations of
SL(2,R), and Hξ is a direct sum of copies of the irreducible representation ξ. For
f ∈ H , we will denote by fξ its component in Hξ.

Let us denote by ΞSO(2,R) the set of spherical irreducible unitary representations.
Using the parameter s of an irreducible representation described in the previous
section, ΞSO(2,R) is canonically in bijection with (0, 1] ∪ i[0,+∞). We will denote
by ξs the representation corresponding to a parameter s.

Proposition 3.4. Let f1, f2 ∈ H be invariant under SO(2,R). Let us define the
Laplace transform of the correlations of f1, f2 by

F (z) = Ff1,f2(z) =

∫ ∞

t=0

e−zt〈gt · f1, f2〉,

for ℜ(z) > 0.
The function F admits an holomorphic extension to {ℜ(z) > −1, z 6∈ (−1, 0]}.

Moreover, for every δ > 0, the function F can be written on the half-space {ℜ(z) >
−1 + 2δ} as the sum of a bounded holomorphic function Aδ, and the function

Bδ(z) =
1√
π

∫

s∈[δ,1]

Γ(s/2)

Γ((s+ 1)/2)
〈(f1)ξs , (f2)ξs〉

dm(ξs)

z − s+ 1
.

Proof. We fix a decomposition of Hξ as an orthogonal sum
⊕

0≤i<n ξi, where n =

n(ξ) ∈ N ∪ {+∞} is the multiplicity of ξ in Hξ, and ξ0, . . . , ξn−1 are copies of
the representation ξ. This decomposition is not canonical, but it can be chosen to
depend measurably on ξ (see [Dix69]). If the decomposition ξ is spherical, we fix
in every ξj a vector h(ξ, j) ∈ ξj of unit norm invariant under SO(2,R).

Let f be a SO(2,R)-invariant element of H . For ξ ∈ ΞSO(2,R), the element fξ
of Hξ can uniquely be decomposed as

∑

j<n(ξ) f̂(ξ, j)h(ξ, j), where the coefficients

f̂(ξ, j) ∈ C depend measurably on ξ, j.
We use this decomposition for f1 and f2. Let us recall that we defined the

spherical function φξ of a representation ξ in (3.3). Since the functions gt · h(ξ, j)
and h(ξ, j′) are orthogonal for j 6= j′, we have

〈gt·f1, f2〉

=

∫

ΞSO(2,R)

〈

gt





∑

j<n(ξ)

f̂1(ξ, j)h(ξ, j)



 ,





∑

j′<n(ξ)

f̂2(ξ, j
′)h(ξ,′ j)





〉

dm(ξ)

=

∫

ΞSO(2,R)

∑

j<n(ξ)

f̂1(ξ, j)f̂2(ξ, j)〈gth(ξ, j), h(ξ, j)〉 dm(ξ)

=

∫

ΞSO(2,R)





∑

j<n(ξ)

f̂1(ξ, j)f̂2(ξ, j)



φξ(gt) dm(ξ)

=

∫

ΞSO(2,R)

〈(f1)ξ, (f2)ξ〉φξ(gt) dm(ξ).
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To proceed, we will need fine asymptotics of the spherical functions φξ. The first
one is due to Ratner [Rat87, Theorem 1]: for all δ > 0, there exists a constant C
such that, for any ξ ∈ ΞSO(2,R) with s(ξ) 6∈ [δ, 1], and for any t ≥ 0,

(3.4) |φξ(gt)| ≤ Ce−(1−δ)t.

An important point in this estimate is that the constant C is uniform in ξ, even
though ξ varies in a non-compact domain.

For representations in the complementary series, we will use a more precise
estimate, as follows. Define a function

(3.5) c(s) =
1√
π

Γ(s/2)

Γ((s+ 1)/2)
,

for s ∈ (0, 1]. This function is known as Harish-Chandra’s function. For all δ > 0,
there exists a constant C > 0 such that, for all s ∈ [δ, 1] and all t ≥ 0,

(3.6)
∣

∣

∣φξs(gt)− c(s)e(s−1)t
∣

∣

∣ ≤ Ce−t.

This estimate is proved in Appendix A.1.
We will now conclude, using (3.4) and (3.6). Let us decompose ΞSO(2,R) (iden-

tified through the parameter s with a subset of C) as the union of [δ, 1] and its
complement. Then

F (z) =

∫

ξs∈ΞSO(2,R)

∫ ∞

t=0

e−zt〈(f1)ξs , (f2)ξs〉φξs(gt) dt dm(ξs)

=

∫

s∈ΞSO(2,R)\[δ,1]

∫ ∞

t=0

e−zt〈(f1)ξs , (f2)ξs〉φξs(gt) dt dm(ξs)

+

∫

s∈[δ,1]

∫ ∞

t=0

e−zt〈(f1)ξs , (f2)ξs〉(φξs(gt)− c(s)e(s−1)t) dt dm(ξs)

+

∫

s∈[δ,1]

∫ ∞

t=0

e−zt〈(f1)ξs , (f2)ξs〉c(s)e(s−1)t dt dm(ξs).

Let Bδ(z) be the last term in this expression, and Aδ(z) the sum of the two other
ones. In Aδ, the factors φξs(gt) and φξs(gt) − c(s)e(s−1)t are bounded, respec-

tively, by Ce−(1−δ)t and Ce−t (by (3.4) and (3.6)). Therefore, Aδ(z) extends to
an holomorphic function on {ℜ(z) > −1 + δ}, which is bounded on the half-plane
{ℜ(z) ≥ −1 + 2δ}. Since

∫∞

0
e−at dt = 1/a for ℜ(a) > 0, the function Bδ(z) is

equal to
∫

s∈[δ,1]

〈(f1)ξs , (f2)ξs〉
c(s)

z − s+ 1
dm(ξs),

for ℜ(z) > 0. This function can be holomorphically extended to z 6∈ [−1 + δ, 0], by
the same formula. This proves the proposition. �

3.6. Proof of Theorem 2.3. We decompose the representation H = L2(X/Γ, µ)
of SL(2,R) as a direct integral

∫

Ξ
Hξ dm(ξ), where the representation Hξ is the

direct sum of one or several copies of the irreducible representation ξ ∈ Ξ. We
should prove that, for any δ > 0, the restriction of the measurem to (δ, 1) (identified
with the corresponding set of representations in the complementary series) is made
of finitely many Dirac masses, and that at those points the multiplicity of ξ in Hξ

is finite.
Let δ > 0 be small. Consider the eigenvalues λi constructed in Proposition 3.3.

We claim that, on the interval (6δ, 1), the measure m only gives mass to the points
4δ − 1/λi + 1, and that at such a point the multiplicity of ξ in Hξ is bounded by
the dimension of the image of the spectral projection Πλi described in Proposition
3.3. This will conclude the proof of the theorem.
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To proceed, we will use the fact that we have two different expressions for the
meromorphic extensions of Laplace transforms, one related to the geometry of Te-
ichmüller space coming from Proposition 3.3, and one given by the abstract theory
of representations of SL(2,R) in Proposition 3.4. Identifying these two expressions
gives the results, as follows.

First step: m only gives weight to the points 4δ−1/λi+1. Assume by contradic-
tion thatm gives positive weight to an interval [a, b] containing no such point. There
exists a function f (0) ∈ H invariant under SO(2,R) such that the corresponding

components f
(0)
ξ in Hξ satisfy

∫

[a,b]

∥

∥

∥f
(0)
ξs

∥

∥

∥

2

Hξs

dm(ξs) > 0. Consider f̃
(0)
(n) ∈ DΓ a se-

quence of smooth compactly supported functions converging to f (0) in H . The func-

tions f
(0)
(n) =

∫

θ∈S1
kθ f̃

(0)
(n) dθ also belong to DΓ, are SO(2,R)-invariant, and converge

to f (0) in H . In particular, if n is large enough,
∫

[a,b]

∥

∥

∥(f
(0)
(n))ξs

∥

∥

∥

2

Hξs

dm(ξs) > 0.

Let us fix such a function f = f
(0)
(n).

Consider the function Ff,f (z) =
∫∞

t=0 e
−zt〈f, f◦gt〉 dt, initially defined for ℜ(z) >

0. By Proposition 3.3, it admits a meromorphic extension to the domain Dδ,ǫ for
some ǫ > 0, with possible poles only at the points 4δ−1/λi. Moreover, Proposition
3.4 shows that the same function can be written, on the set {ℜ(z) > −1 + 2δ}, as
the sum of a bounded holomorphic function and the function

Bδ(z) =
1√
π

∫

s∈[δ,1]

Γ(s/2)

Γ((s+ 1)/2)
‖fξs‖2Hξs

dm(ξs)

z − s+ 1
.

It follows that this function Bδ can only have poles at the points 4δ − 1/λi. In
particular, it is continuous on the interval [a − 1, b − 1]. Lemma A.1 implies that

the measure dν(s) = Γ(s/2)
Γ((s+1)/2) ‖fξs‖

2
Hξs

dm(ξs) gives zero mass to [a, b]. In

particular,
∫

[a,b] ‖fξs‖
2
Hξs

dm(ξs) = 0. This is a contradiction, and concludes the

first step.

Second step: at a point s = 4δ− 1/λi+1, the multiplicity of ξs in Hξs is at most
the dimension of ImΠλi in the Banach space of Theorem 3.2. We argue again by
contradiction. Let d = dim ImΠλi , assume that the multiplicity of ξs in Hξs is at

least d+1. Then one can find inHξs d+1 orthogonal functions f (1), . . . , f (d+1) which
are SO(2,R)-invariant. Since m has an atom at ξs, these functions are elements of

H = L2(X/Γ, µ). As above, we consider sequences f
(k)
(n) ∈ DΓ of SO(2,R)-invariant

functions that converge to f (k) in H .
Let F

f
(k)

(n)
,f

(ℓ)

(n)

(z) be the meromorphic extension of the Laplace transform of the

correlations of f
(k)
(n) and f

(ℓ)
(n) ◦ gt, and let Mk,ℓ

n denote its residue around the point

4δ−1/λi. For each n, the residueM
k,ℓ
n is described by Proposition 3.3. Since the op-

erator Πλi has a d-dimensional image, it follows that the rank of the matrixMn is at

most d. On the other hand, Proposition 3.4 shows thatMk,ℓ
n = C〈(f (k)

(n))ξs , (f
(ℓ)
(n))ξs〉

(where C > 0 depends only on s and m). When n tends to infinity, the functions

f
(k)
(n) converge to f (k), hence Mn converges to a diagonal matrix. In particular, Mn

is of rank d+ 1 for large enough n, a contradiction. �

4. Measures with a local product structure on Teich1

To construct the Banach space of Theorem 3.2, we will need more geometric
information on admissible measures, given by the following proposition.

Proposition 4.1. Let µ̃ be an admissible measure, supported on a submanifold X
of Teich1. Then
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(1) For every x ∈ X, there is a decomposition of the tangent space TxX =
Rω(x)⊕ Eu(x) ⊕ Es(x), where ω(x) is the direction of the gt-flow,

Eu(x) = TxX∩DΦ(x)−1(H1(M,Σ;R)), Es(x) = TxX∩DΦ(x)−1(H1(M,Σ; iR)).

(2) The subspaces Es(x) and Eu(x) depend in a C∞ way on x ∈ X, are in-
tegrable, and the integral leaves Wu(x),W s(x) are affine submanifolds of
Teich.

(3) For every x ∈ X, there is a volume form µu on Eu(x) (defined up to sign),
such that x 7→ µu(x) is C∞. Moreover, x 7→ µu(x) is constant along the
unstable manifolds Wu. Additionally, there exists a scalar d ≥ 0 such that
(gt)∗µu = e−dtµu.

(4) For every x ∈ X, there is a volume form µs on Es(x) (defined up to sign),
such that x 7→ µs(x) is C∞. Moreover, x 7→ µs(x) is constant along the
stable manifolds W s. Additionally, (gt)∗µs = edtµs.

(5) For every x ∈ X, the volume form dµ̃(x) on TxX is equal to the product
of dLeb, µu(x) and µs(x) respectively in the directions ω(x), Eu(x) and
Es(x).

All these data are Γ-equivariant. We say that the decomposition dµ̃ = dLeb⊗ dµu⊗
dµs is the affine local product structure of µ.

Note that, since Wu(x) is an affine submanifold, the tangent spaces of Wu(x)
at two different points y1, y2 ∈ Wu(x) are canonically identified (i.e., their images
under DΦ(y1) and DΦ(y2) coincide), hence it is meaningful to say in item 3 of the
above definition that y 7→ µu(y) is constant along Wu(x). The same holds for µs

along W s.
Note also that Eu and Es are really the strong stable and unstable manifolds.

Indeed, DΦ(x)−1(H1(M,Σ;R)) is the weak unstable manifold for the flow on Teich,
but since we are restricting to TxX we are excluding the neutral directions (see the
example of area-one surfaces below).

If x = a + ib in the chart Φ, then for small r we have hr(x) = a + rb + ib. In
particular, the tangent vector to this curve is always b ∈ H1(M,Σ;R), hence hr(x)
is in the unstable manifold Wu(x). Moreover, the differential of hr sends Eu(x) to
Eu(hrx), and it is equal to the identity in the chart Φ. In particular, since µu is
constant along Wu(x), this implies that hr leaves µu invariant, i.e., (hr)∗µu = µu.

The family of volume forms µu(x) on E
u(x) induces a positive measure on each

leaf Wu of the unstable foliation, that we also denote by µu. In the same way, we
get a measure µs on each stable manifolds. Let us note that, although the volume
forms µu(x) are only defined up to sign, the induced positive measures µu are
canonical. If the manifolds Wu and W s were canonically oriented (or at least had
a Γ invariant orientation), then µu(x) and µs(x) themselves would not be defined
only up to sign, but we do not know if this is always the case.

The scalar d in the above proposition can be identified, see Remark 4.4.
See [BL98] for the notion of local product structure in more complicated non-

smooth settings.

Example 4.2. Consider in Teich the subset X = Teich1 of area one surfaces,
with its canonical invariant Lebesgue measure µ̃. We will describe its affine local
product structure. A similar construction is given in [ABEM06, Section 2], in more
geometric terms.

First, assume x ∈ X and Φ(x) = a + ib. Around x, we identify Teich and
H1(M,Σ;C) using Φ. Then the area of a+ a′ + ib is 1 + [a′, b], where [a′, b] is the
intersection product of a′ and b (this is initially defined for elements of H1(M ;R),
but since H1(M,Σ;R) projects to H1(M ;R) it extends trivially to H1(M,Σ;R)).
Therefore, Eu(x) = {a′ ∈ H1(M,Σ;R) : [a′, b] = 0}. This depends smoothly on x,
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and the integral leaves of this distribution are locally the sets {(a+a′, b) : [a′, b] =
0}. These are indeed affine submanifolds of Teich.

Let us now define µu at the point a + ib. The set H1(M,Σ;R) is endowed
with a canonical volume form vol (giving covolume 1 to H1(M,Σ;Z)), we let µu

be the interior product of a and vol, i.e., if v1, . . . , vk is a basis of Eu(x), then
µu(x) = vol(a, v1, . . . , vk). At a nearby point x′ = a+ a′ + ib on the same unstable
manifold, µu(x

′)(v1, . . . , vk) = vol(a + a′, v1, . . . , vk) = vol(a, v1, . . . , vk) since a′

belongs to Eu(x). Therefore, µu(x) = µu(x
′) as claimed.

Let d = k + 1 be the dimension of H1(M,Σ;R). The differential of gt, map-
ping Eu(x) to Eu(gtx), is simply the multiplication by et, therefore (gt)∗µu(x) =
e−(d−1)tµu(x). Since µu(gtx) = etµu(x), we get (gt)∗µu(x) = e−dtµu(gtx).

In the same way, we define a volume form µs(x) on E
s(x). It satisfies (gt)∗µs =

edtµs.
Let us finally define a volume form µ̃′ on TxX as the product of Lebesgue in the

flow direction, µu and µs. It satisfies (gt)∗µ̃
′ = µ̃′, since the factors e−dt and edt

(coming respectively from µu and µs) cancel out.
All those data are intrinsically defined, and therefore Γ-invariant. By ergodicity

of µ in the quotient X/Γ, we have µ̃′ = cµ̃ for some c ∈ (0,+∞).

We will prove simultaneously Proposition 4.1 (the fact that an admissible mea-
sure has a local product structure) and Proposition 2.2 (the fact that an absolutely
continuous measure on a smooth submanifold is automatically admissible): indeed,
we will start from an absolutely continuous measure and prove simultaneously that
it is admissible and that it has an affine local product structure. For this proof,
we will use the non-uniform hyperbolicity of the Teichmüller flow. This property is
well-known, but we will need it later on in the following precise form. Let us fix on
Teich a Γ-invariant Finsler metric. In later arguments, we will use a specific metric
which is well behaved at infinity (constructed in Subsection 5.1), but the following
statement is valid for any metric.

Proposition 4.3. For any set K ⊂ Teich1 which is compact mod Γ, there exists
T = T (K) such that, for any point x ∈ K and any time t such that gtx ∈ K and

Leb{s ∈ [0, t] : gs(x) ∈ K} ≥ T,

then ‖Dgt(x)v‖gtx ≤ ‖v‖x /2 for any v ∈ Es(x), and ‖Dgt(x)v‖gtx ≥ 2 ‖v‖x for

any v ∈ Eu(x).

Proof. The uniform hyperbolicity of the Teichmüller flow in compact subsets of
Teich1/Γ has been proved by Forni in [For02, Lemma 2.1’], for a different norm, the
Hodge norm (and for vectors belonging to H1(M ;C) instead of H1(M,Σ;C)). To
obtain the result for the norm under study, it is sufficient to use the following two
facts:

(1) Vectors inH1(M,Σ;C) that vanish inH1(M ;C) are expanded at a constant
rate et in the unstable direction, and contracted at a constant rate e−t in
the stable direction.

(2) In a fixed compact subset of Teich1/Γ, any two continuous norms are equiv-
alent. �

Proof of Propositions 4.1 and 2.2. Let us fix a measure µ̃ as in the assumptions of
Proposition 2.2: it is supported on a C1 submanifold X of Teich1, equivalent to
Lebesgue measure on X , and induces a Radon measure µ in X/Γ. We will prove
that µ̃ is admissible and that it has an affine local product structure.

For x ∈ Teich1, denote by πω, πu and πs the projections respectively on the flow,
unstable and stable direction in the tangent space TxTeich1.
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First step: the measure µ has finite mass. In particular, the flow gt is conserva-
tive in the measure space (X/Γ, µ).

Since µ is SL(2,R)-invariant, Athreya’s Theorem [Ath06] shows the existence of
a compact set K in X/Γ such that, under the iteration of gt, µ-almost every point
spends asymptotically at least half its time in K. It follows from Hopf’s ergodic
theorem applied to the ergodic components of µ that µ(X/Γ) ≤ 2µ(K). Since µ is
a Radon measure, this quantity is finite and the result follows.

Second step: at every point x ∈ X, we have

(4.1) TxX = πω(TxX)⊕ πu(TxX)⊕ πs(TxX).

We will prove this property for x in a dense subset of X , since the general case
follows by a limiting argument (using the compactness of Grassmannians). The
dimensions of πu(TxX) and πs(TxX) are semi-continuous, hence they are locally
constant on a dense subset of X . Moreover, since the flow gt is conservative and
µ has full support, Poincaré’s recurrence theorem ensures that almost every point
of X comes back close to itself in the quotient X/Γ infinitely often in forward and
backward time. We will prove (4.1) for such a point x.

First, since gt(x) ∈ X for all t ≥ 0, we have ω(x) = ∂gt(x)/∂t|t=0 ∈ TxX . It
is therefore sufficient to check that πu(TxX) ⊂ TxX and πs(TxX) ⊂ TxX . By
symmetry, it is even sufficient to prove the first inclusion.

Since the dimension of πu(TyX) is locally constant around x, there exists a
constant C such that, for any y close to x, any vector wu ∈ πu(TyX) admits a lift
w to TyX with ‖w‖ ≤ C ‖wu‖.

Consider v ∈ TxX , and write it as v = vω + vu + vs ∈ πω(TxX) ⊕ πu(TxX) ⊕
πs(TxX). We should prove that vu ∈ TxX . Let ǫ > 0. Consider t very large such
that y = g−tx is close to x. By Proposition 4.3, if t is large enough, the norm
of wu := Dg−t(x) · vu is bounded by ǫ. We may therefore find w ∈ TyX with
πu(w) = wu, and ‖w‖ ≤ Cǫ. Write w = wω +wu +ws. Then Dgt(y)w ∈ TxX , and
this vector can be written as Dgt(y)(wω+ws)+vu where ‖Dgt(y)(wω + ws)‖ ≤ Cǫ.
We have proved that vu is a limit of points of TxX , and therefore that vu ∈ TxX .
This concludes the proof of the second step.

We can therefore define spaces Eu(x) = πu(TxX) = TxX ∩ Φ−1(H1(M,Σ;R))
and Es(x) = πs(TxX) = TxX ∩Φ−1(H1(M,Σ; iR)) such that TxX = Rω⊕Eu(x)⊕
Es(x). Moreover, the dimensions du and ds of those spaces are locally constant.
Since the space X/Γ is connected, they are in fact constant. Finally, since the
rotation kπ/2 maps Eu(x) to Es(kπ/2x), we have du = ds.

Let Y = R∗
+X . To simplify notations, we will omit Φ and identify locally Y with

a subset of H1(M,Σ;C). Since the tangent vector to the map t 7→ tx at x = a+ ib
is a+ ib, we have TxY = R(a+ ib)+TxX . With the decomposition of TxX given at

the first step and the equality ω(x) = a−ib, we obtain TxY = Ẽu(x)⊕Ẽs(x), where

Ẽu(x) = TxY ∩ H1(M,Σ;R) = Ra ⊕ Eu(x), and Ẽs(x) = TxY ∩ H1(M,Σ; iR) =
iRb⊕ Es(x).

Third step: for any x ∈ Y , we have Ẽs(x) = iẼu(x).

Let e ∈ Ẽu(x) and if ∈ Ẽs(x). For small θ, the rotated vector kθ(e + if) =
(cos(θ)e + sin(θ)f) + i(− sin(θ)e + cos(θ)f) belongs to TkθxY . Taking f = 0 and

projecting to the real component, we deduce that Ẽu(kθx) contains Ẽu(x). Since

they have the same dimension, it follows that Ẽu(kθx) = Ẽu(x). In the same way,

taking e = 0, we get Ẽu(kθx) = i−1Ẽs(x). Finally, Ẽs(x) = iẼu(x), as desired.

Fourth step: Y is an affine submanifold of Teich.



SMALL EIGENVALUES OF THE LAPLACIAN IN MODULI SPACE 18

At every point x ∈ Y , the tangent space TxY = Ẽu(x) ⊕ Ẽs(x) is invariant
by complex multiplication, by the third step. This implies that Y is a complex
(holomorphic) submanifold of Teich, see e.g. [BER99, Proposition 1.3.14].

Let us show that Y is linear around any point x0 ∈ Y (we thank S. Cantat for the
following argument). Working in charts and changing coordinates, we can assume
that x0 = 0 and that T0Y = Ck ⊂ CN , for k = ds + 1 = du + 1. Around 0, the
manifold Y can therefore be written as a graph {(z, f(z))} for some holomorphic
function from Ck to CN−k. At a point x close to 0, the tangent space TxY is
{(v,Df(x)v) : v ∈ Ck}. In particular, the real part of this tangent space is
included in {(v,Df(x)v) : v ∈ Rk}. Since the dimension of the real part of TxY
is exactly k, it follows that Df(x)v is real for any real vector v, i.e., all the matrix
coefficients of Df(x) are real. Since a real valued holomorphic function is constant,
Df is constant. Therefore, Y is linear around x0.

Fifth step: the distributions of du-dimensional subspaces Eu and Es are inte-
grable, and the integral leaves are affine submanifolds of Teich.

The strong unstable manifolds form a foliation F of Teich1 with affine leaves
(see Example 4.2). Moreover, the dimension of TxF ∩TxX is independent of x ∈ X ,
by the second step. It follows that the restriction of F to X defines a foliation of
X , integrating the distribution of subspaces TxF ∩ TxX = Eu(x). In particular,
the leaf Wu(x) integrating Eu(x) is locally given by X ∩Fx, which is also equal to
Y ∩ Fx. Since Y is affine by the fourth step and Fx is affine, Wu(x) is also affine.
The argument is the same for W s.

Sixth step: the measure µ̃Y = µ̃ ⊗ Leb on Y is locally a multiple of the linear
Lebesgue measure on the linear manifold Y .

Given x ∈ Y , fix a reference Lebesgue measure on Y around x (there is a priori

no canonical choice of normalization), and denote by φ̃ the density of µ̃Y with

respect to this Lebesgue measure. We will prove that φ̃ is constant on strong stable
and unstable manifolds in a neighborhood of x. Since the foliations W s and Wu

are smooth and jointly non-integrable, it follows from the classical Hopf argument
that φ̃ is constant. We will work in Y/Γ, around the point xΓ. Let us denote by φ
the density of µ around xΓ.

Since µ has finite mass, we can consider a sequence of compactly supported
smooth measures µn converging (for the total mass norm) to µ on X/Γ. For any
t ≥ 0,

|(gt)∗µn − µ| = |(gt)∗µn − (gt)∗µ| = |µn − µ|.
Therefore, for any sequence tn, the measures (gtn)∗µn converge to µ.

Fix M > 0. Let φn,t denote the density of (gt)∗(µn ⊗ Leb) in a ball B around
xΓ. Then, for any n ∈ N and any M > 0, the integral

∫

y∈B

∫

z∈Wu(y)∩B

min(|φn,t(z)− φn,t(y)|,M) dLeb(z) dLeb(y)

converges to 0 when t tends to +∞. Indeed, the integrand is bounded by M , and
converges almost everywhere to 0 since the flow is hyperbolic along almost every
trajectory and the measure µn is smooth. Let us choose tn such that this integral
is at most 2−n. Since (gtn)∗µn converges to µ, the density φn,tn converges almost
everywhere to φ along a subsequence. This yields

∫

y∈B

∫

z∈Wu(y)∩B

min(|φ(z)− φ(y)|,M) dLeb(z) dLeb(y) = 0.

Letting M tend to infinity, we obtain that φ is almost everywhere constant along
unstable manifolds in B, as desired.

Seventh step: the measure µ is ergodic.
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If µ is not ergodic, we can consider an invariant set A for the action of SL(2,R)
on X/Γ, with positive but not total measure. Consider ν̃ the restriction of µ̃ to the
lift of A in Teich1. The argument in the previous step applies to ν̃ and shows that
the density of ν̃⊗Leb on Y is locally constant. Since Y/Γ is connected, this implies
that ν ⊗ Leb is equivalent to Lebesgue measure on Y/Γ. This is a contradiction,
and proves the ergodicity of µ.

Among other things, we have shown that the measure µ̃ is admissible. This
proves Proposition 2.2. To conclude the proof, we have to complete the construction
of the measures µu and µs forming the affine local product structure of µ.

Eighth step: construction of canonical volume forms µu(x) and µs(x), respec-
tively on Eu(x) and Es(x), in terms of µ̃, which are constant respectively along
Wu and W s. They are only defined up to sign.

Let x ∈ X . Identifying locally Teich with H1(M,Σ;C) thanks to the period

map, we write x = a + ib. If νu(x) is any volume form on Ẽu(x) = Ra + Eu(x),

then it yields a volume form νs(x) on Ẽ
s(x) thanks to the identification of the third

step. The product νu(x)∧νs(x) is a nonzero volume form on Ẽu(x)⊕ Ẽs(x) = TxY ,
it is therefore proportional to µ̃Y (x). Multiplying νu(x) by a unique (up to sign)
normalization, we can ensure that νu(x) ∧ νs(x) = ±µ̃Y . Finally, let µu(x) be the
unique volume form on Eu(x) such that νu(x) is the product of µu(x) and Lebesgue
measure on Ra. Analogously, let µs(x) be the unique volume form on Es(x) such
that νs(x) is the product of µs(x) and Lebesgue measure on iRb.

This construction is completely canonical up to sign, and µ̃(x) = ± dLeb∧µu(x)∧
µs(x) by construction, where dLeb denotes Lebesgue measure along Rω(x). Since
µ̃ is Γ-invariant, it follows that µu and µs are also Γ-invariant (possibly up to sign).

Since µu is constructed in a canonical way in terms of µ̃Y and µ̃Y is constant
along unstable manifolds (by the sixth step), it follows that µu is constant along
unstable manifolds. In the same way, µs is constant along stable manifolds.

Ninth step: there exists d > 0 such that (gt)∗µu = e−dtµu and (gt)∗µs = edtµs.
Since the action of SL(2,R) is ergodic, the action of the horocycle flow is also

ergodic by Howe-Moore’s theorem [HM79]. In particular, we can choose x whose
orbit is dense. For t ≥ 0, the measure (gt)∗µu(x) is a volume form on Eu(gtx), and
can therefore be written as ed(t)µu(gtx) for some d(t) ∈ R. Since the measures µu

are constant along the unstable manifolds of x and of gtx, it follows that, for any
point y in the horocycle through x, we also have (gt)∗µu(y) = ed(t)µu(gty). Since
this horocycle is dense, (gt)∗µu(z) = ed(t)µu(gtz) for any z.

The function t 7→ d(t) is continuous and satisfies d(t+ t′) = d(t) + d(t′), we may
therefore write d(t) = −dt for some d ∈ R (which has to be positive since the flow
is expanding along unstable directions). We obtain (gt)∗µu = e−dtµu.

In the same way, we have (gt)∗µs = ed
′tµs for some d′ ≥ 0. Since µ̃ = dLeb∧µu∧

µs is gt-invariant, it follows that d = d′.
This concludes the proofs of the ninth step and of Propositions 4.1 and 2.2. �

Remark 4.4. The scalar d constructed in Proposition 4.1 satisfies d = du + 1 =
ds + 1, where du and ds are the dimensions respectively of Eu and Es.

To prove this statement, let λ0, . . . , λdu be the Lyapunov exponents of the

Kontsevich-Zorich cocycle (see [For02]) restricted to the bundle Ẽu, for the measure

µ. The Lyapunov exponents of gt along Ẽu are given by ν0 = 1 + λ0, . . . , νdu =

1+λdu, and their sum is equal to d since there is no expansion in the bundle Ẽu/Eu.

Since Ẽs = iẼu, the Lyapunov exponents of the Kontsevich-Zorich cocycle along
Ẽs are also λ0, . . . , λdu , and it follows that the Lyapunov exponents of gt along Ẽ

s

are −1+ λ0, . . . ,−1+ λdu . Since gt preserves the measure µ which is equivalent to
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Lebesgue measure, the sum of its Lyapunov exponents vanishes. Hence,
∑

λi = 0.
Finally, d =

∑

νi = du + 1 +
∑

λi = du + 1.
A suitably generalized Pesin formula also gives that d is the entropy of the

measure µ for the flow gt

5. A good Finsler metric on Teich

5.1. Construction of the metric. To define the Banach space satisfying the
conclusions of Theorem 3.2, we will need a Finsler metric on Teich, with several
good properties:

(1) It should be complete and Γ–invariant.
(2) It should behave in a controlled way close to infinity (technically, it should

be slowly varying, see the definition below).
(3) Under the Teichmüller flow, the metric should be non-contracted in the

unstable direction, and non-expanded in the stable direction.

It is certainly possible to cook up a metric satisfying these requirements using the
Hodge metric of Forni on H1(M ;R) [For02] and extending it first to H1(M,Σ;R)
and then to H1(M,Σ;C) (compare for instance [ABEM06]). However, [AGY06]
introduced a geometrically defined metric that turns out to satisfy all the above
properties. This is the metric we will use for simplicity.

Let us describe this continuous Finsler metric on Teich. Since the tangent space
of Teich is everywhere identified with H1(M,Σ;C) through the period map Φ, it is
sufficient to define a family of norms on H1(M,Σ;C), depending continuously on
the point x ∈ Teich, as follows:

‖v‖x = sup

∣

∣

∣

∣

v(γ)

Φ(x)(γ)

∣

∣

∣

∣

,

where γ runs over the saddle connections of the surface x. It is proved in [AGY06]
that this is indeed a norm, and that the corresponding Finsler metric is complete.
Let d denote the distance on Teich coming from this Finsler metric.

The two following straightforward lemmas show that this metric behaves well
with respect to the Teichmüller flow.

Lemma 5.1. The tangent vectors at 0 to the families t 7→ gt(x), r 7→ hr(x),

r 7→ h̃r(x) and θ 7→ kθ(x) are all bounded by 1 in norm. Therefore, d(x, gtx) ≤ |t|,
d(x, hrx) ≤ |r|, d(x, h̃r(x)) ≤ |r| and d(x, kθx) ≤ |θ|.

Proof. Given x with Φ(x) = a+ ib, we have Φ(gtx) = eta+ ie−tb, hence the tangent
vector of the curve t 7→ gtx at 0 is a − ib, which is clearly bounded by 1 from the
formula. Moreover, Φ(hrx) = a+ rb+ ib, hence the tangent vector to this curve at

0 is b, again bounded by 1. The computations are similar for h̃r and kθ. �

Lemma 5.2. The Teichmüller flow is non-contracting in the unstable direction and
non-expanding in the stable direction, for the above metric. More precisely, for any
t ≥ 0, for v ∈ H1(M,Σ;R) and w ∈ H1(M,Σ; iR), we have ‖Dgt(x)v‖gtx ≥ ‖v‖x
and ‖Dgt(x)w‖gtx ≤ ‖w‖x.

Proof. We have Dgt(x)v = etv. Moreover, if Φ(x) = a + ib, we have Φ(gtx) =
eta+ ie−tb. Therefore,

‖Dgt(x)v‖gtx = sup
γ

et|v(γ)|
|eta(γ) + ie−tb(γ)| ≥ sup

γ

et|v(γ)|
|eta(γ) + ietb(γ)| = ‖v‖x .

The argument for w is the same. �
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The same computation shows that ‖Dgt(x)v‖gtx ≤ e2t ‖v‖x and ‖Dgt(x)w‖gtx ≥
e−2t ‖w‖x, which corresponds to the classical fact that the upper and lower Lya-
punov exponents of the Teichmüller flow are respectively 2 and −2.

Let µ̃ be an admissible measure, and let X denote its support. The above Finsler
metric can be restricted to every stable or unstable manifold in X , and therefore
defines distances dWu , dW s on those manifolds. For r > 0, we denote by Wu

r (x)
the ball of radius r around x in Eu(x) for the distance dWu .

Fix x ∈ X . Let Ψ = Ψx be the canonical local parametrization of the affine
manifold Wu(x) by its tangent plane Eu(x). More formally, we define Ψ(v) for
v ∈ Eu(x) as follows. Consider the path κ starting from x with κ′(t) = v for all t.
For small t, κ(t) is well defined and belongs to Wu(x). It is possible that κ(t) is
not defined for large t, since it could explode to infinity in Teich. If the path κ is
well defined for all t ∈ [0, 1], then we define Ψ(v) = κ(1).

Let us denote by B(0, r) the ball of radius r in Eu(x), for the norm ‖·‖x. The
main result of this section is the following proposition, showing that the norm ‖·‖x
varies slowly in fixed size neighborhoods of any point in the non-compact space
X . This is a kind of bounded curvature behavior. Note however that this metric
depends only in a continuous way on the point, so we can not use true curvature
arguments.

Proposition 5.3. The map Ψ is well defined on B(0, 1/2), and dWu(x,Ψ(v)) ≤
2 ‖v‖x there. Moreover, for v ∈ B(0, 1/2), and for every w ∈ Eu(x),

(5.1) 1/2 ≤ ‖w‖x
‖w‖Ψ(v)

≤ 2.

Finally, for v ∈ B(0, 1/25), we have dWu(x,Ψ(v)) ≥ ‖v‖x /2.
Before proving this proposition, let us give a simple consequence for the doubling

property of µu. Again, the interest of this proposition is that the estimates are
uniform, even though X is not compact.

Corollary 5.4. Let µ̃ be a measure with an affine local product structure, supported
on a submanifold X. There exists C > 0 such that, for every x ∈ X and every
r ≤ 1/100, µu(W

u
2r(x)) ≤ Cµu(W

u
r (x)).

Proof. By Proposition 5.3, Ψ−1(Wu
2r(x)) ⊂ B(0, 4r) and Ψ−1(Wu

r (x)) ⊃ B(0, r/2).
Since y 7→ µu(y) is constant along W

u(x), we have (denoting by du the dimension
of Eu(x))

µu(W
u
2r(x)) = µu(x)(Ψ

−1(Wu
2r(x))) ≤ µu(x)(B(0, 4r))

= 8duµu(x)(B(0, r/2)) ≤ 8duµu(x)(Ψ
−1(Wu

r (x))) = 8duµu(W
u
r (x)). �

The central point in the proof of Proposition 5.3 is the following proposition.

Proposition 5.5. Let κ : [0, 1] → Teich be a C1 path. For each v ∈ H1(M,Σ;C),

e− length(κ) ≤
‖v‖κ(0)
‖v‖κ(1)

≤ elength(κ).

where length(κ) =
∫ 1

t=0 ‖κ′(t)‖κ(t) dt.

By symmetry, it is sufficient to prove the upper bound. For the proof, we start
with the following lemma. We will write κ(t)(γ) instead of Φ(κ(t))(γ).

Lemma 5.6. Let γ be a saddle connection surviving in the surface κ(t), t ∈ [t1, t2].
Then

|κ(t2)(γ)|
|κ(t1)(γ)|

≤ e
∫ t2
t1
‖κ′(t)‖

κ(t)
dt
.
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Proof. Let t ∈ [t1, t2]. For small h,

log |κ(t+ h)(γ)| = log |κ(t)(γ) + hκ′(t)(γ) + o(h)|
= log |κ(t)(γ)|+ log |1 + hκ′(t)(γ)/κ(t)(γ) + o(h)|
= log |κ(t)(γ)|+ hℜ(κ′(t)(γ)/κ(t)(γ)) + o(h).

Hence, t 7→ log |κ(t)(γ)| is differentiable, and its derivative ℜ(κ′(t)(γ)/κ(t)(γ)) is
bounded in norm by ‖κ′(t)‖κ(t). The result follows. �

Proof of Proposition 5.5. For 0 ≤ t′1 ≤ t′2 ≤ 1, let us write

I(t′1, t
′
2) = e

∫ t′2
t′1
‖κ′(t)‖

κ(t)
dt
.

Let γ be a fixed saddle connection in the surface κ(0), we want to show that

(5.2) |v(γ)/κ(0)(γ)| ≤ I(0, 1) ‖v‖κ(1) .

We define by induction a sequence of times t0 < t1 < . . . , and sets Γn of saddle
connections on the surface κ(tn), as follows.

Let t0 = 0 and Γ0 = {γ}. Assume tn and Γn are defined. If all the saddle
connections in Γn survive in the surfaces κ(t), t ∈ [tn, 1], we let tn+1 = 1 and stop
the process here. Otherwise, let tn+1 ∈ (tn, 1] be the first time one or several saddle
connections in Γn disappear. If γ̃ is such a saddle connection, it means that other
singularity points arrive on γ̃, i.e., γ̃ is split in κ(tn+1) into a finite set {γ1, . . . , γk} of
saddle connections, which are all in the same direction. In particular, in homology,
γ̃ =

∑

γi, and moreover |κ(tn+1)(γ̃)| =
∑ |κ(tn+1)(γi)|. We let Γn+1 be the union

of all the saddle connections in Γn that survive up to time tn+1, and all the newly
created saddle connections γi.

We now show that this inductive construction reaches t = 1 in a finite number
of steps. Let Sn =

∑

γ̃∈Γn
|κ(tn)(γ̃)|. For γ̃ ∈ Γn, Lemma 5.6 shows that |κ(tn+1 −

ǫ)(γ̃)| ≤ I(tn, tn+1 − ǫ)|κ(tn)(γ̃)|. Summing over γ̃ and letting ǫ tend to 0, we
get Sn+1 ≤ I(tn, tn+1)Sn. In particular, Sn is uniformly bounded, since Sn ≤
I(0, tn)S0 ≤ I(0, 1)S0. Moreover, the length of saddle connections in all the surfaces
κ(t) is bounded from below, since κ([0, 1]) is a compact subset of the Teichmüller
space. This implies that the cardinality of Γn is uniformly bounded. Since #Γn+1 ≥
#Γn +1, this would give a contradiction if the inductive process did not stop after
finitely many steps.

We claim that, for all n,

(5.3) sup
γ̃∈Γn

|v(γ̃)/κ(tn)(γ̃)| ≤ I(tn, tn+1) sup
γ̃∈Γn+1

|v(γ̃)/κ(tn+1)(γ̃)|.

Let N be such that tN = 1. Multiplying these inequalities for n = 0, . . . , N − 1, we
obtain (5.2), concluding the proof. We now prove (5.3). Let γ̃ ∈ Γn. If γ̃ survives
up to time tn+1, Lemma 5.6 gives |v(γ̃)/κ(tn)(γ̃)| ≤ I(tn, tn+1)|v(γ̃)/κ(tn+1)(γ̃)|,
as desired. Otherwise, γ̃ is split at time tn+1 into finitely many saddle connections
γ1, . . . , γk. For small ǫ > 0, the saddle connection γ̃ survives from time tn to time
tn+1−ǫ. Therefore, Lemma 5.6 gives |v(γ̃)/κ(tn)(γ̃)| ≤ I(tn, tn+1−ǫ)|v(γ̃)/κ(tn+1−
ǫ)(γ̃)|. When ǫ tends to 0, this tends to

I(tn, tn+1)
|v(γ̃)|

|κ(tn+1)(γ̃)|
= I(tn, tn+1)

|
∑

v(γi)|
∑ |κ(tn+1)(γi)|

≤ I(tn, tn+1)

∑

|v(γi)|
∑ |κ(tn+1)(γi)|

≤ I(tn, tn+1) sup
|v(γi)|

|κ(tn+1)(γi)|
.

This proves (5.3). �
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Proof of Proposition 5.3. Let κ be the path starting from x with κ′ = v. If κ is
well defined on an interval [0, t0], then for t ∈ [0, t0]

‖κ′(t)‖κ(t) = ‖v‖κ(t) ≤ ‖v‖x e
∫ t
0‖κ′(r)‖

κ(r)
dr
,

by Proposition 5.5. Therefore, the function t 7→ G(t) =
∫ t

0 ‖κ′(r)‖κ(r) dr satisfies

G′(t) ≤ eG(t) ‖v‖x, i.e., (−e−G(t))′ ≤ ‖v‖x. Integrating this inequality gives G(t) ≤
− log(1− t ‖v‖x), and therefore

‖κ′(t)‖κ(t) ≤
‖v‖x

1− t ‖v‖x
.

If ‖v‖x < 1, this quantity remains bounded for t ∈ [0, 1]. Therefore, Ψ is well
defined on such vectors v. In particular, Ψ is well defined on the ball B(0, 1/2).

Moreover, dWu(x,Ψ(v)) ≤
∫ 1

0 ‖κ′(t)‖κ(t) ≤ ‖v‖x /(1 − ‖v‖x). For v ∈ B(0, 1/2),

this gives

(5.4) dWu(x,Ψ(v)) ≤ 2 ‖v‖x .
Using the same notation G as above, Proposition 5.5 shows that, for every v ∈
B(0, 1/2) and every w ∈ Eu(x), we have e−G(1) ≤ ‖w‖x

‖w‖Ψ(v)
≤ eG(1). Since G(1) ≤

log 2, this proves (5.1).
Let us now prove that, for v ∈ B(0, 1/25), we also have

(5.5) dWu(x,Ψ(v)) ≥ ‖v‖x /2.
Consider κ : [0, 1] → Wu(x) an almost minimizing path for the distance dWu ,
between x and Ψ(v). By (5.4), its length is less than 1/10. Let us lift κ to a path κ̃
taking values in Eu(x), starting from 0 and such that κ = Ψ ◦ κ̃, as long as κ̃ stays
in B(0, 1/2).

While κ̃(t) is defined, we have by (5.1) ‖κ̃′(t)‖x ≤ 2 ‖κ̃′(t)‖κ(t). Integrating this

inequality from 0 to t, we get

‖κ̃(t)‖x ≤
∫ t

0

‖κ̃′(r)‖x dr ≤ 2

∫ t

0

‖κ̃′(r)‖κ(r) dr ≤ 2 length(κ) ≤ 1/5.

Therefore, κ̃(t) stays in B(0, 1/2), and the lifting process may be continued up to
t = 1, where κ̃(1) = v. We get ‖v‖x ≤ 2 length(κ). Hence, ‖v‖x ≤ 2dWu(x,Ψ(v)),
proving (5.5). �

5.2. Ck norm and partitions of unity. When (E, ‖·‖) is a normed vector space
and f is a Ck function on an open subset of E, let ck(f) = sup |Dkf(x; v1, . . . , vk)|
where the supremum is taken on the points x in the domain of f , and the tangent
vectors v1, . . . , vk of norm at most 1.

If an affine manifold has a Finsler metric, we can define in the same way the ck
coefficients of a function, using the affine structure to define the k-th differential at
every point, and the Finsler metric to measure the tangent vectors. Note that the
(possibly non-smooth) variation of the Finsler metric from point to point plays no
role in this definition, since it only uses the Finsler metric at a fixed point. Those
coefficients behave well under the composition with affine maps.

We can then define the Ck norm of a function by ‖f‖Ck =
∑k

j=0 cj(f). When

we say that a function is Ck on a non-compact space, we really mean that its Ck

norm is finite.

Remark 5.7. There are several more general situations where this definition has
a natural extension. Consider for example the following case: W is an affine sub-
manifold of an affine Finsler manifold Z, and v is a vector field defined on W (but
pointing in any direction in Z). Then, for x ∈ W and v1, . . . , vk ∈ TxW , the
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k-th differential Dkv(x; v1, . . . , vk) is well defined and belongs to the normed vec-
tor space TxZ. We can therefore define ck(v) as the supremum of the quantities
∥

∥Dkv(x; v1, . . . , vk)
∥

∥

x
, for x ∈ W and v1, . . . , vk ∈ TxW with ‖vi‖x ≤ 1. Finally,

we set as above ‖v‖Ck =
∑k

j=0 cj(v).

Note however that there are several situations where it is not possible to canoni-
cally define a Ck norm as above. For instance, on a general Finsler manifold, there
is no canonical connection, and therefore Dkf is not well defined. In the same way,
in Remark 5.7, if W is not affine or if Z is not affine, then we can not define ‖v‖Ck .
Of course, in a compact subset ofW , one could choose charts to define such a norm,
but it would depend on the choice of the charts – the equivalence class of the Ck

norm is well defined, but the Ck norm itself is not. Further on, we will need to
control constants precisely, and it will be very important for us to have a canonical
norm.

Consider now an admissible measure µ̃, supported on a manifold X . Since the
local unstable manifoldsWu(x) are affine manifolds, the previous discussion applies
to them.

The next proposition constructs good partitions of unity on pieces of such un-
stable manifolds.

Proposition 5.8. There exists a constant C with the following property. Let W
be a compact subset of an unstable leaf Wu(x). Then there exist finitely many C∞

functions (ρi)i∈I on Wu(x), taking values in [0, 1], with
∑

ρi = 1 on W ,
∑

ρi = 0
outside of {y ∈ Wu(x) : dWu(y,W ) ≤ 1/200}, and each ρi is supported in a ball
Wu

1/200(xi) for some xi ∈ W . Moreover, we can ensure that ck(ρi) ≤ C(k!)2, and

every point of Wu(x) belongs to at most C sets Wu
1/200(xi).

The precise bound C(k!)2 is not important for the applications we have in mind,
what really matters is that we have a bound depending only on k, uniform in x.

Proof. By Proposition 5.3, the norm ‖·‖x is slowly varying in the sense of [Hör03,

Definition 1.4.7]. Applying Theorem 1.4.10 there to the sequence dk = c/k3/2 for
some c > 0, we get a sequence of functions ρi satisfying the conclusion of our
proposition: they satisfy ck(ρi) ≤ Ck(k!)3/2 for a constant C depending only on
the dimension, so ck(ρi) ≤ C′(k!)2, and moreover the assertions on the support
are also satisfied. One should only be a little careful since the supports in [Hör03,
Theorem 1.4.10] are controlled in terms of fixed norms ‖·‖x, while our conclusion
deals with the Finsler metric dWu . Since Proposition 5.3 shows that they are
uniformly equivalent in small neighborhoods of the points, this is not an issue. �

The next lemma is a particular case of Proposition 5.8 (obtained by letting
W =Wu

1/200(x)), and will be needed later on.

Lemma 5.9. There exists a constant C with the following property. For any x ∈ X,
there exists a function ρ on Wu(x), supported in Wu

1/100(x), taking values in [0, 1],

equal to 1 on Wu
1/200(x), with ck(ρ) ≤ C(k!)2.

The interest of this lemma is, again, that the estimates are uniform in x while
this point lives in a noncompact space.

In the next statement, we do not use the distance induced by the Finsler metric
on unstable manifolds, but the global distance. Since the previous arguments only
rely on Proposition 5.5, which is satisfied in Wu as well as in the whole space, this
lemma follows again from the same techniques.

Lemma 5.10. There exists a constant C with the following property. Let F :
Teich → [1,∞) be a function such that | logF (x) − logF (y)| ≤ 2d(x, y) for any
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x, y ∈ Teich. For any V ≥ 1, there exists a C∞ function ρV : Teich → [0, 1] such
that ρV (x) = 1 if F (x) ≤ V and ρV (x) = 0 if F (x) ≥ 2V , satisfying ck(ρV ) ≤
C(k!)2.

6. Recurrence estimates

Our goal in this section is to prove the following exponential recurrence estimate.
Consider an admissible measure µ̃ with its affine local product structure, supported
on a submanifold X . If x is a translation surface, let sys(x) be its systole, i.e., the
length of the shortest saddle connection in x.

Proposition 6.1. Let δ ∈ (0, 1/4). There exists C > 0 such that, for any x ∈ X
and any t ≥ 0,

1

µu(Wu
1/100(x))

∫

Wu
1/100

(x)

Vδ(gty) dµu(y) ≤ Ce−(1−2δ)tVδ(x) + C,

where Vδ(x) = max(1/ sys(x)1+δ , 1). Moreover, the function logVδ is (1 + δ)-
Lipschitz for the Finsler norm of the previous section.

We will use the following lemma, which is due to Eskin-Masur [EM01] and
Athreya [Ath06].

Lemma 6.2. Fix a neighborhood V of the identity in SL(2,R). For every δ > 0,

there exists C > 0 such that, for all t > 0, there exist a function V
(t)
δ : Teich →

[1,∞) and a scalar b(t) > 0 satisfying the following property. For all x ∈ Teich1,
∫ 2π

0

V
(t)
δ (gtkθx) dθ ≤ Ce−(1−δ)tV

(t)
δ (x) + b(t).

Moreover,

(6.1) V
(t)
δ (gx) ≤ CV

(t)
δ (x)

for all x ∈ Teich and all g ∈ V. Finally, there exists a constant Cδ,t such that

V
(t)
δ /Vδ ∈ [C−1

δ,t , Cδ,t].

The order of quantifiers in our statement corrects a mistake in Athreya’s Lemma
2.10.

In the next lemma, we transfer the previous estimate on circle averages to esti-
mates on horocycle averages.

Lemma 6.3. For every δ > 0, there exists C such that, for any large enough t,
there exists b(t) > 0 such that, for any x ∈ Teich1,

∫ 1

0

V
(t)
δ (gthrx) dr ≤ Ce−(1−δ)tV

(t)
δ (x) + b(t) .

Proof. Using the decomposition ANK of SL(2,R), we can write uniquely hr =

gτ(r)h̃r̃(r)kθ(r), where the functions τ , r̃ and θ depend smoothly on r. One easily
checks that θ′(0) 6= 0. In particular, if n is large enough, r 7→ θ(r) is a diffeomor-

phism on [0, 1/n]. Using the commutation relation gτ h̃r̃ = h̃e−2τ r̃gτ , we get

∫ 1/n

0

V
(t)
δ (gthrx) dr =

∫ 1/n

0

V
(t)
δ (gtgτ h̃r̃kθx) dr

=

∫ 1/n

0

V
(t)
δ (h̃r̃e−2(t+τ)gτgtkθx) dr.
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By (6.1), this is bounded by

C

∫ 1/n

0

V
(t)
δ (gtkθx) dr = C

∫

θ([0,1/n])

V
(t)
δ (gtkux)(θ

−1)′(u) du

≤ C

∫ 2π

0

V
(t)
δ (gtkux) du

≤ Ce−(1−δ)tV
(t)
δ (x) + b(t).

Therefore,

∫ 1

0

V
(t)
δ (gthrx) dr =

n−1
∑

j=0

∫ 1/n

0

V
(t)
δ (gthrhj/nx) dr

≤
n−1
∑

j=0

Ce−(1−δ)tV
(t)
δ (hj/nx) + b(t).

With (6.1), this gives the conclusion of the lemma. �

Lemma 6.4. For every δ > 0, there exist C and τ such that, for any t ≥ 0 and
any x ∈ Teich1,

(6.2)

∫ 1

0

V
(τ)
δ (gthrx) dr ≤ Ce−(1−2δ)tV

(τ)
δ (x) + C .

The difference with the previous lemma is that we obtain a result valid for all
times, with constants independent of the time (while b depends on t in the statement
of Lemma 6.3).

Proof. Let us fix τ and b such that, for every x ∈ Teich1,

(6.3)

∫ 1

0

V
(τ)
δ (gτhrx) dr ≤ e−(1−2δ)τ

∫ 1

0

V
(τ)
δ (hrx) + b.

Their existence follows from Lemma 6.3 and (6.1). We can also assume that e2τ is
a (large) integer N .

Let us now prove that, for all n ∈ N,

(6.4)

∫ 1

0

V
(τ)
δ (g(n+1)τhrx) dr ≤ e−(1−2δ)τ

∫ 1

0

V
(τ)
δ (gnτhrx) dr + b.

A geometric series then shows (6.2) for times of the form nτ , and the general result
follows from (6.1).

To prove (6.4), write g(n+1)τhr = gτgnτhr = gτhe2nτrgnτ with e2nτ = Nn = M .
Then, writing r′ =Mr,

∫ 1

0

V
(τ)
δ (g(n+1)τhrx) dr =

M−1
∑

j=0

∫ 1/M

0

V
(τ)
δ (g(n+1)τhrhj/Mx) dr

=

M−1
∑

j=0

∫ 1/M

0

V
(τ)
δ (gτhMrgnτhj/Mx) dr

=
1

M

M−1
∑

j=0

∫ 1

0

V
(τ)
δ (gτhr′gnτhj/Mx) dr′

≤ 1

M

M−1
∑

j=0

(

e−(1−2δ)τ

∫ 1

0

V
(τ)
δ (hr′gnτhj/Mx) dr′ + b

)

,
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where the last inequality follows from (6.3) applied to the point gnτhj/Mx. Chang-
ing again variables in the opposite direction, we get (6.4). �

Proof of Proposition 6.1. The log-smoothness of Vδ readily follows from the fact
that log sys is 1-Lipschitz by [AGY06, Lemma 2.12].

Let τ be given by Lemma 6.4. Since Vδ is within a multiplicative constant of

V
(τ)
δ , it also satisfies the inequality (6.2) (with a different constant C).
Fix r ∈ [0, 1/100]. Since µu is invariant under hr,
∫

Wu
1/100

(x)

Vδ(gty) dµu(y) =

∫

Wu
1/100

(x)

Vδ(gthrh−ry) dµu(y)

=

∫

h−rWu
1/100

(x)

Vδ(gthrz) dµu(z) ≤
∫

Wu
1/50

(x)

Vδ(gthrz) dµu(z).

Averaging over r, we get
∫

Wu
1/100

(x)

Vδ(gty) dµu(y) ≤ 100

∫ 1/100

r=0

∫

Wu
1/50

(x)

Vδ(gthrz) dµu(z) dr

≤ 100

∫

Wu
1/50

(x)

(∫ 1

0

Vδ(gthrz) dr

)

dµu(z).

This is bounded by µu(W
u
1/50(x))(Ce

−(1−2δ)tVδ(x) +C), using (6.2) for Vδ and the

fact that Vδ(z)/Vδ(x) is uniformly bounded for all z ∈ Wu
1/50(x) (since logVδ is

Lipschitz). The result follows since the measures of Wu
1/50(x) and Wu

1/100(x) are

comparable by Corollary 5.4. �

7. Distributional coefficients

In this section, we introduce a distributional norm on smooth functions, similar
in many respects to the norms introduced in [GL06] (the differences are the control
at infinity, and the fact that we only use vector fields pointing in the stable direction
or the flow direction – this is simpler than the approach of [GL06], and is made
possible here by the smooth structure of the stable foliation). Let us fix µ̃ an
admissible measure with its affine local product structure, supported by a manifold
X . Let also δ > 0 be a fixed small number, as in the previous section.

Consider a smooth vector field vs on a piece of unstable manifoldWu
1/100(x), such

that for every y ∈ Wu
1/100(x), v

s(y) ∈ Es(y). We can define its ck coefficients as in

Remark 5.7. For a vector field vω(y) = ψ(y)ω(y) defined onWu
1/100(x), we let its ck

coefficient be ck(ψ). The definitions of ‖vs‖Ck and ‖vω‖Ck follow. Let us stress that
these definitions only involve base points that are located on an unstable manifold:
this implies that these norms behave well under g−t, which is contracting along
such an unstable manifold, and is at the heart of the proof of Lemma 8.2 below.

We want to use such vector fields to differentiate functions, several times. How-
ever, the Lie derivative Lv1Lv2f of a function f can only be defined if Lv2f is defined
on an open set, which means that v2 has to be defined on an open set. Therefore,
we will need to extend the above vector fields to whole open sets, as follows.

Consider first a smooth vector field vs on Wu
1/100(x), pointing everywhere in the

stable direction. We will now construct an extension vs of vs to a neighborhood of
Wu

1/200(x) in X .

For y ∈ Wu
1/100(x), the stable manifold W s(y) is affine, its tangent space is

everywhere equal to Es(y), and we may therefore define vs(z) = vs(y) for z ∈
W s(y): this extended vector field is still tangent to the direction Es. Finally, for
small t, we define vs(gtz) = Dgt(z) · vs(z), i.e., we push the vector field by gt.
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Since gt sends stable direction to stable direction, vs is everywhere tangent to the
stable direction. Since the unstable direction, the stable direction and the flow
direction are transverse at every point, we can uniquely parameterize a point in a
neighborhood of Wu

1/200(x) as gt(z) for some z ∈ W s
ǫ (y), y ∈ Wu

1/200+ǫ(x). This

defines the extension of vs.
If vω is a vector field along Wu

1/100(x) pointing everywhere in the flow direction,

we can also define an extension vω as follows. Along Wu, write vω(y) = ψ(y)ω(y),
where the function ψ is smooth. Let vω(gtz) = ψ(y)ω(gtz) for z ∈ W s

ǫ (y) as above,
this defines a smooth vector field extending vω as desired.

For k, ℓ ∈ N, α ∈ {s, ω}ℓ and x ∈ X , we can now define a distributional coef-
ficient of the C∞ function f at x, as follows (the function Vδ has been defined in
Proposition 6.1):

(7.1) ek,ℓ,α(f ;x) :=
1

Vδ(x)

1

µu(Wu
1/200(x))

sup

∣

∣

∣

∣

∣

∫

Wu
1/200

(x)

φ · Lv1 · · ·Lvℓf dµu

∣

∣

∣

∣

∣

,

where the supremum is over all compactly supported functions φ : Wu
1/200(x) → C

with ‖φ‖Ck+ℓ ≤ 1, and all vector fields v1, . . . , vℓ defined on Wu
1/100(x) such that

vj(y) ∈ Es(y) if αj = s and vj(y) ∈ Rω(y) if αj = ω, and ‖vj‖Ck+ℓ+1(Wu
1/100

(x)) ≤ 1.

Note that the domain of definition of the vector fields is larger than the domain
of integration in (7.1) – this will be useful for extension purposes below. Note also
that we use the Lie derivative with respect to the extended vector fields vj , but
the norm requirements on the vector fields vj are only along Wu and not in the
transverse direction.

Define ek,ℓ,α(f) = supx ek,ℓ,α(f ;x). Let ek,ℓ(f) =
∑

α∈{s,ω}ℓ ek,ℓ,α(f). Finally,

let

(7.2) ‖f‖k = sup
0≤ℓ≤k

ek,ℓ(f).

Remark 7.1. If f1 ∈ DΓ then we have the estimate
∫

X/Γ

f1f dµ ≤ C(f1)ek,0(f) ≤ C(f1) ‖f‖k , f ∈ DΓ,

where C(f1) depends on the support of f1 as well as its Ck norm therein. This is
readily obtained by decomposing f1 as a sum of finitely many functions with small
support (using partitions of unity), using locally the disintegration of µ along local
unstable manifolds, and applying the definition of ek,0 to bound the integrals along
those.

We will also need a weaker norm, that we denote by ‖·‖′k, given by

(7.3) ‖f‖′k = sup
1

Vδ(x)

1

µu(Wu
1/200(x))

∣

∣

∣

∣

∣

∫

Wu
1/200

(x)

φ · Lv1 · · ·Lvℓf dµu

∣

∣

∣

∣

∣

,

where the supremum is over 0 ≤ ℓ ≤ k − 1, over all points x ∈ X , all compactly
supported functions φ : Wu

1/200(x) → C with ‖φ‖Ck+ℓ+1 ≤ 1, and all vector fields

v1, . . . , vℓ defined on Wu
1/100(x) and pointing either in the stable direction or in

the flow direction, such that ‖vj‖Ck+ℓ+1(Wu
1/100

(x)) ≤ 1. Apart from constants, the

difference with the norm ‖f‖k is that we allow less derivatives (at most k − 1
instead of k), and that the test function φ has one more degree of smoothness (it
is in Ck+ℓ+1 instead of Ck+ℓ). Therefore, the norm ‖f‖′k is weaker in all directions
than the norm ‖f‖k. Hence, the following compactness result is not surprising.
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Proposition 7.2. Let K be a compact set mod Γ, and let k ∈ N. Let fn be a
sequence of functions in DΓ, supported in K, and with ‖fn‖k ≤ 1. Then there

exists a subsequence fj(n) which is Cauchy for the norm ‖·‖′k.

In other words, if we work with the completions of the spaces, then the unit
ball for the norm ‖·‖k is relatively compact for the norm ‖·‖′k if we consider only
functions on X/Γ that are supported in a fixed compact set.

The rest of this subsection is devoted to the proof of this proposition (it is similar
to the proof of Lemma 2.1 in [GL06]). We will need a preliminary lemma.

Let us fix for any r a Cr norm on the functions supported in K, such that this
norm is Γ-invariant. Such a norm is not canonically defined, but this will not be a
problem in the statements or results to follow since multiplicative constants do not
matter.

Lemma 7.3. There exists a constant C(k, ℓ,K) such that any smooth function f
supported in K satisfies the following property. For any x ∈ K, any Ck+ℓ vector
fields v1, . . . , vℓ defined on a neighborhood of Wu

1/100(x) with ‖vj‖Ck+ℓ ≤ 1, and any

Ck+ℓ function φ, compactly supported on Wu
1/200(x) with ‖φ‖Ck+ℓ ≤ 1,

∣

∣

∣

∣

∣

∫

Wu
1/200

(x)

φ · Lv1 · · ·Lvℓf dµu

∣

∣

∣

∣

∣

≤ C
∑

ℓ′≤ℓ

ek,ℓ′(f).

The interest of this lemma is that the vector fields vj can be any vector fields,
not only canonical extensions of vector fields pointing in the stable direction or in
the flow direction. Moreover, we also weaken the smoothness of the vector fields vj ,
requiring them only to be Ck+ℓ instead of Ck+ℓ+1.

Proof. We prove the statement of the lemma by induction on ℓ. For ℓ = 0, this
is clear from the definitions. Let us decompose the vector field v1 as vu1 + vs1 + vω1
where those three components point, respectively, in the unstable direction, in the
stable direction and in the flow direction. Along Wu

1/100(x), decomposing vs1 along

coordinates vector fields, we can write it as a linear combination of vector fields of
the form ψs

1w
s
1 where ψs

1 is a function bounded in Ck+ℓ and ws
1 is a C∞ vector field

with ‖ws
1‖Ck+ℓ+1 ≤ C. To simplify notations, we will omit a summation and assume

that we can write vs1(y) = ψs
1(y)w

s
1(y). In the same way, we write vω1 (y) = ψω

1 (y)ω(y)
where ‖ψω

1 ‖Ck+ℓ ≤ C. For convenience, we introduce the notation wω
1 = ω.

Let g = Lv2 . . . Lvℓf . Since Lv1g only depends on the value of the vector field
v1 (and not its derivatives), we have, along Wu

1/200(x), Lv1g = Lvu
1
g + ψs

1Lws
1
g +

ψω
1 Lwω

1
g. Moreover,

∫

Wu
1/200

(x)

φ · Lvu
1
g dµu = −

∫

Wu
1/200

(x)

Lvu
1
φ · g dµu,

which is bounded by C
∑

ℓ′≤ℓ−1 ek,ℓ′(f) by the induction hypothesis, since the func-

tion Lvu
1
φ is Ck+ℓ−1 and is multiplied by ℓ − 1 derivatives of f against Ck+ℓ−1

vector fields.
It remains to bound

∫

Wu
1/200

(x)
φψα1

1 ·L
w

α1
1

Lv2 · · ·Lvℓf dµu, for some α1 ∈ {s, ω}.
Let us exchange the vector fields to put L

w
α1
1

in the last position. Since [Lv, Lw] =

L[v,w], the error we make is bounded by the integral of a Ck+ℓ function multiplied

by ℓ− 1 derivatives of f against Ck+ℓ−1 vector fields. By the induction hypothesis,
this is again bounded by C

∑

ℓ′≤ℓ−1 ek,ℓ′(f).

It remains to bound
∫

Wu
1/200

(x)
φψα1

1 · Lv2 · · ·LvℓLw
α1
1

f dµu. In the same way as

above, we decompose v2 into its unstable, stable and flow part, integrate by parts
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to get rid of the unstable part, and exchange the vector fields to put the remaining
parts of v2 at the end. Iterating this process ℓ times, we end up with an estimate

∣

∣

∣

∣

∣

∫

Wu
1/200

(x)

φ · Lv1 · · ·Lvℓf dµu

∣

∣

∣

∣

∣

≤ C
∑

ℓ′≤ℓ−1

ek,ℓ′(f) + C sup
α∈{s,ω}ℓ

∣

∣

∣

∣

∣

∫

Wu
1/200

(x)

φψα1
1 · · ·ψαℓ

ℓ · L
w

α1
1

· · ·L
w

αℓ
ℓ

f dµu

∣

∣

∣

∣

∣

.

By construction, the vector fields w
αj

j are canonical extensions of Ck+ℓ+1 vector

fields defined alongWu
1/200(x) and pointing in the stable or flow direction. Therefore,

the latter integrals are bounded by Cek,ℓ(f) by definition of this coefficient. �

Proof of Proposition 7.2. The first step of the proof is to show that, to estimate
‖f‖′k, it is sufficient to work with finitely many unstable manifolds. More precisely,
we will show that, for any ǫ > 0, there exist finitely many points (xi)i∈I such that,
for any function f supported in K and Γ-invariant,

(7.4) ‖f‖′k ≤ Cǫ ‖f‖k + C sup

∣

∣

∣

∣

∣

∫

Wu
1/200

(xi)

φ · Lv1 · · ·Lvℓf dµu

∣

∣

∣

∣

∣

,

where the supremum is taken over all 0 ≤ ℓ ≤ k − 1, all i ∈ I, all functions φ
compacly supported on Wu

1/200(xi) and all vector fields vj defined in some fixed

neighborhood Ui of W
u
1/100(xi) with C

k+ℓ+1 norm bounded by 1.

Since K/Γ is compact, it is sufficient to show that integrals along the unstable
manifold of a point x1 can be controlled by similar integrals along the unstable
manifold of a nearby point x0. Let x0, x1 be two nearby points in K (so that their
unstable spaces Eu(x0) and E

u(x1) are also close). Consider a smooth path xt from
x0 to x1, and a smooth family of maps sending Eu(x0) to E

u(xt). Parameterizing
locally the (affine) unstable manifold of the point xt by its tangent space (by the
map Ψxt introduced before Proposition 5.3), we obtain a family of affine maps Φt :
Wu

1/50(x0) → Wu(xt) with Φ0 = id, that we extend smoothly to diffeomorphisms

defined on a neighborhood of Wu
1/50(x0).

Fix 0 ≤ ℓ ≤ k − 1 and consider a Ck+ℓ+1 function φ compactly supported
on Wu

1/400(x1), and C
k+ℓ+1 vector fields v1, . . . , vℓ along Wu

1/50(x1), each of them

pointing either in the stable direction or in the flow direction, with Ck+ℓ+1 norm
bounded by 1. We want to bound the integral

I1 =

∫

Wu(x1)

φ · Lv1 · · ·Lvℓf dµu,

using data along Wu(x0).
For each t, we define vector fields vtj on a neighborhood of Wu

1/75(xt) by v0j =

(Φ1)
∗vj , and v

t
j = (Φt)∗v

0
j . Letting Jt ∈ (0,+∞) be the jacobian of Φt fromWu(x0)

to Wu(xt), we can rewrite I1 as a sum of two terms

I1 =

∫

Wu(x0)

φ◦Φ1·Lv0
1
· · ·Lv0

ℓ
(f◦Φ1)J1 dµu =

∫

Wu(x0)

φ◦Φ1·Lv0
1
· · ·Lv0

ℓ
f ·J1 dµu

+

∫ 1

t=0

∂

∂t

(

∫

Wu(x0)

φ ◦ Φ1 · Lv0
1
· · ·Lv0

ℓ
(f ◦ Φt) · J1 dµu

)

dt.
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The first term is bounded by the second term in the right hand side of (7.4). Writing
wt = (∂Φt/∂t) ◦ Φ−1

t , the integrand of the second term at fixed t is
∫

Wu(x0)

φ ◦ Φ1 · Lv0
1
· · ·Lv0

ℓ
((Lwtf) ◦ Φt) · J1 dµu

=

∫

Wu(xt)

φ ◦ Φ1 ◦ Φ−1
t · Lvt

1
· · ·Lvt

ℓ
Lwtf · J1J−1

t dµu.

This is an integral along an unstable manifold of a Ck+ℓ+1 function multiplied by
ℓ + 1 derivatives of f against Ck+ℓ+1 vector fields. By Lemma 7.3 (applied to
ℓ′ = ℓ + 1, which is licit since ℓ < k by assumption), this is bounded in terms of
‖f‖k. Moreover, if x0 and x1 are close enough, the Ck+ℓ+1 norm of the vector
field wt is arbitrarily small, and we get that this integral is bounded by Cǫ ‖f‖k.
Putting together the two terms, we see that I1 is bounded by the right hand side
of (7.4). Up to constants (which do depend on K), the norm ‖f‖′k is defined using
integrals similar to I1, but where φ is allowed to have a larger support Wu

1/200(x1)

and the vj may have a smaller domain of definition Wu
1/100(x1). However, this is

not a problem, since those more general integrals can be decomposed as sums of a
bounded number of integrals like I1, using partitions of unity. This concludes the
proof of (7.4).

It is now easy to conclude the proof. Fix smooth bump functions ρi compactly
supported in Ui (the domain of definition of the vj in (7.4)) and equal to 1 in
a neighborhood of Wu

1/200(xi). Since Ck+ℓ+1 is compactly included in Ck+ℓ, for

each xi, i ∈ I, we can choose finitely many functions φm,i compactly supported
in Wu

1/200(xi) and finitely many vector fields vj,m,i defined in Ui, such that for all

functions φ and vector fields vj which are bounded by 1 in Ck+ℓ+1, there exists m
such that φ and ρivj are ǫ-close to φm,i and ρivj,m,i in C

k+ℓ. By Lemma 7.3, this
gives with (7.4)

‖f‖′k ≤ C′ǫ ‖f‖k + sup
i,m

∣

∣

∣

∣

∣

∫

Wu
1/200

(xi)

φm,i · Lv1,m,i · · ·Lvℓ,m,i
f dµu

∣

∣

∣

∣

∣

.

Consider now a sequence fn with ‖fn‖k ≤ 1. We extract a subsequence fj(n)
along which all the finitely many quantities

∫

Wu
1/200

(xi)
φm,i·Lv1,m,i · · ·Lvℓ,m,i

fj(n) dµu

converge. It follows that lim supn,n′→∞

∥

∥fj(n) − fj(n′)

∥

∥

′

k
≤ 2C′ǫ. Letting ǫ tend to 0

and using a standard diagonal argument, we get the required Cauchy sequence. �

8. A good bound on the essential spectral radius of M
Let µ̃ be an admissible measure with its affine local product structure, supported

by a submanifold X of Teich1. In this section, we prove Theorem 3.2. As in the
statement of this theorem, let us write Mf =

∫∞

t=0
e−4δtLtf dt (to be interpreted

as explained in §3.2), where δ > 0 is fixed and Ltf = f ◦ gt.
To prove Theorem 3.2, we have to construct a good norm on DΓ. It turns out

that the norms ‖·‖k that we have constructed in the previous section in (7.2) are
suitable for this purpose. The following statement contains Theorem 3.2 (see also
Remark 7.1).

Theorem 8.1. For all k, there exists C > 0 such that ‖Ltf‖k ≤ C ‖f‖k, uniformly
in t ≥ 0. Therefore, M acts continuously on the completion of DΓ for the norm
‖·‖k.

Moreover, if k is large enough, then the essential spectral radius of M on this
space is at most 1 + δ.
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This section is devoted to the proof of this result. Until the end of its proof,
we will always specify if a constant depends on k, by using a subscript as in Ck.
Most constants will be independent of k, and this will be very important for the
argument, since k will be chosen only at the very end of the proof.

For technical reasons, it is convenient to work with another norm that is equiv-
alent to ‖·‖k. For A ≥ 1, let us first define a norm equivalent to ‖·‖Ck , by

‖f‖Ck
A

=
∑k

j=0 cj(f)/(j!A
j). Since cj(fg) ≤ ∑j

m=0

(

j
m

)

cm(f)cj−m(g), it follows

that ‖fg‖Ck
A
≤ ‖f‖Ck

A
‖g‖Ck

A
. Moreover, for any fixed Ck function f and any ǫ > 0,

if A is large enough, then ‖f‖Ck
A

≤ (1 + ǫ) sup |f |. Let us define eAk,ℓ,α(f ;x) like

ek,ℓ,α(f ;x), but replacing the requirements ‖φ‖Ck+ℓ ≤ 1 and ‖vj‖Ck+ℓ+1 ≤ 1 (for
the supremum taken in (7.1)) by ‖φ‖Ck+ℓ

A
≤ 1 and ‖vj‖Ck+ℓ+1

A
≤ 1.

We will need to deal separately with the case where all the vector fields in
the definition of eAk,ℓ,α point in the stable direction, and the case where at least

one vector field points in the flow direction. Let us therefore define eAk,ℓ,s(f ;x) =

eAk,ℓ,{s,...,s}(f ;x), and e
A
k,ℓ,ω(f ;x) = sup eAk,ℓ,α(f ;x), where the supremum is over all

α ∈ {s, ω}ℓ different from {s, . . . , s}. Let eAk,ℓ,s(f) = supx e
A
k,ℓ,s(f ;x), and similarly

for eAk,ℓ,ω(f). For B ≥ 1, let ‖f‖A,B
k,s =

∑k
ℓ=0B

−ℓeAk,ℓ,s(f), and similarly for ‖f‖A,B
k,ω .

Finally, let ‖f‖A,B
k = ‖f‖A,B

k,s + ‖f‖A,B
k,ω . This norm is equivalent to ‖f‖k, but more

convenient for a lot of inequalities.
In the statements below, when we say “for all large enough A,B...”, we mean:

if A is large enough, then, if B is large enough (possibly depending on A), then...
The assumption “for all large enough k,A,B” should be interpreted in the same
way.

We now start the proof. Some arguments are borrowed from [GL06]. We write
D for the set of C∞ functions supported in a compact set mod Γ. It contains the
previously defined set DΓ of functions in D that are Γ-invariant.

Lemma 8.2. There exists a constant C0 ≥ 1 satisfying the following property. For
every k, ℓ ∈ N and every α ∈ {s, ω}ℓ, if A is large enough, then for every t ≥ 0,
every f ∈ D and every x ∈ X,

(8.1) eAk,ℓ,α(f ◦ gt;x) ≤ C0e
A
k,ℓ,α(f)

(

e−(1−2δ)t + 1/Vδ(x)
)

.

Proof. We first give the proof for ℓ = 0.
Fix some point x, and some compactly supported function φ : Wu

1/200(x) → C

with ‖φ‖Ck
A

≤ 1. We want to estimate
∫

Wu
1/200

(x) φ(y) · f ◦ gt(y) dµu(y). We

change variables, letting z = gt(y). By Proposition 4.1, the resulting jacobian has
the form e−dt for some d > 0. The integral becomes an integral over gt(W

u
1/200(x)).

Proposition 5.8 provides a partition of unity (ρi)i∈I on this set, with good properties.
In particular, ρi is supported in a ball Wu

1/200(xi). The integral becomes

∑

i

∫

Wu
1/200

(xi)

ρi(z)φ(g−tz) · f(z) e−dt dµu(z).

Since g−t is affinely contracting along Wu, ‖φ ◦ g−t‖Ck
A
≤ ‖φ‖Ck

A
≤ 1. Therefore,

the Ck
A norm of ρi · φ ◦ g−t is bounded by ‖ρi‖Ck

A
. If A is large enough, this is at

most 2 (since the coefficients cm of ρi, for 1 ≤ m ≤ k, are uniformly bounded by
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Proposition 5.8). Therefore, the above integral is bounded by

(8.2)
∑

i

CeAk,0(f)Vδ(xi)µu(W
u
1/200(xi))e

−dt

≤ CeAk,0(f)
∑

i

∫

Wu
1/200

(xi)

Vδ(z) e
−dt dµu(z),

since log Vδ is Lipschitz by Proposition 6.1. The covering multiplicity of the sets
Wu

1/200(xi) is uniformly bounded, by Proposition 5.8. Moreover, all those sets

are included in {z : d(z, gt(W
u
1/200(x))) ≤ 1/200}, which is itself included in

gt(W
u
1/100(x)) since g−t contracts the distance alongW

u. Therefore, (8.2) is bounded

by

CeAk,0(f)

∫

gt(Wu
1/100

(x))

Vδ(z) e
−dt dµu(z) = CeAk,0(f)

∫

Wu
1/100

(x)

Vδ(gty) dµu(y).

By Proposition 6.1, this is bounded by CeAk,0(f)µu(W
u
1/100(x))(e

−(1−2δ)tVδ(x) + 1).

Finally,

1

Vδ(x)

1

µu(Wu
1/200(x))

∣

∣

∣

∣

∣

∫

Wu
1/200

(x)

φ · f ◦ gt dµu(y)

∣

∣

∣

∣

∣

≤ CeAk,0(f)
µu(W

u
1/100(x))

µu(Wu
1/200(x))

(

e−(1−2δ)t + 1/Vδ(x)
)

.

The ratio of the measures is bounded, by Corollary 5.4. This proves (8.1) when
ℓ = 0.

Assume now ℓ > 0, we have to estimate

(8.3)

∫

Wu
1/200

(x)

φ · Lv1 · · ·Lvℓ(f ◦ gt) dµu,

where the vector fields vj are defined on Wu
1/100(x), satisfy ‖vj‖Ck+ℓ+1

A
≤ 1, and

point in the direction Es or Rω. Consider a function ρ equal to 1 in Wu
1/200(x) and

compactly supported inWu
1/100(x) (as constructed in Lemma 5.9), and define a new

vector field vj,1 = ρ · vj . It coincides with vj on Wu
1/200(x), therefore the integral

(8.3) can also be written using vj,1 instead of vj . Moreover, if A is large enough,

the definition of the Ck+ℓ+1
A norm ensures that

‖vj,1‖Ck+ℓ+1
A

= ‖ρ · vj‖Ck+ℓ+1
A

≤ ‖ρ‖Ck+ℓ+1
A

‖vj‖Ck+ℓ+1
A

≤ 21/ℓ.

Let wj = (gt)∗vj,1. Since the extension wj is defined using the affine structure
and the flow direction, which are invariant under the affine flow gt, it follows that
wj = (gt)∗vj,1. Therefore,

Lv1,1 · · ·Lvℓ,1(f ◦ gt)(y) = Lw1 · · ·Lwℓ
f(gty).

We claim that the vector fields wj are bounded by 21/ℓ in Ck+ℓ+1
A (even better,

cm(wj) ≤ cm(vj,1) for all m). We can then proceed as in the ℓ = 0 case, getting

simply an additional error factor equal to
∏ℓ

j=1 ‖wj‖Ck+ℓ+1
A

≤ 2. One should pay

attention to the fact that, with the above definition, the vector fields wj are not
always defined on all the balls W1/100(xi), for those xi that are close to the bound-
ary of gt(W1/200(x)). This is not a problem since wj is compactly supported in
gt(W1/100(x)) by construction: one may therefore extend it by 0 wherever it is not
defined (this is why we had to use vj,1 and not vj in this construction).

It remains to check the formula cm(wj) ≤ cm(vj,1). It comes from the fact that
the definition of cm only involves differentiation along directions in Wu, and that
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g−t is contracting along this manifold. If αj = ω, i.e., vj points in the flow direction,
this estimate is straightforward. Let us therefore assume that αj = s, i.e., vj points
in the stable direction. Consider a point z in the domain of definition of wj , and
m vectors u1, . . . , um at that point which are tangent to Wu(x), with ‖um‖z ≤ 1.
Write y = g−tz. We get

Dmwj(z;u1, . . . , um) = e−tDmvj,1(g−tz;Dg−t(z) · u1, . . . , Dg−t(z) · um).

Therefore,

‖Dmwj(z;u1, . . . , um)‖y = e−t ‖Dmvj,1(g−tz;Dg−t(z) · u1, . . . , Dg−t(z) · um)‖y
≤ e−tcm(vj,1) ‖Dg−t(z)u1‖y · · · ‖Dg−t(z)um‖y .

Since the differential Dg−t(z) contracts in the direction of Wu by Lemma 5.2, we
have ‖Dg−t(z)un‖y ≤ ‖un‖z ≤ 1. This yields

(8.4) ‖Dmwj(z;u1, . . . , um)‖y ≤ e−tcm(vj,1).

We are interested in bounding ‖Dmwj(z;u1, . . . , um)‖z. Since d(y, z) ≤ |t| by
Lemma 5.1, Proposition 5.5 shows that the ratio between ‖·‖y and ‖·‖z is at most

et. This cancels the factor e−t in (8.4), and we get the conclusion. �

Corollary 8.3. For every k ∈ N, for every large enough A and B, for every t ≥ 0

and every f ∈ D, we have ‖f ◦ gt‖A,B
k ≤ 2C0 ‖f‖A,B

k .

Proof. The function Vδ is bounded from below by 1. Taking the supremum over x
in (8.1), we get eAk,ℓ,α(f ◦ gt) ≤ 2C0e

A
k,ℓ,α(f). The result follows from the definition

of the ‖·‖A,B
k norm. �

It follows from this corollary that we can define the operator M on DΓ. Let
N ∈ N, we will study the norm of MN . We have

(8.5) MNf =

∫ ∞

t=0

tN−1

(N − 1)!
e−4δtLtf dt.

We will estimate differently the contributions ‖Mnf‖A,B
k,ω and ‖Mnf‖A,B

k,s to

‖Mnf‖A,B
k . Let us first deal with the former.

Lemma 8.4. For any N ∈ N, for any k, if A and B are large enough, we have
∥

∥MNf
∥

∥

A,B

k,ω
≤ 5C0 ‖f‖A,B

k .

Proof. We will prove that, for any N, k, ℓ and A sufficiently large, there exists a
constant CN,k,ℓ,A such that

(8.6) eAk,ℓ,ω(MNf) ≤ CN,k,ℓ,A

∑

ℓ′<ℓ

eAk,ℓ′(f) + 4C0e
A
k,ℓ(f).

Taking B much larger than all CN,k,ℓ,A for 0 ≤ ℓ ≤ k, this implies directly the
statement of the lemma.

Let us fix N, k, ℓ, A. We split MN as the sum of M1 :=
∫ D

0
tN−1

(N−1)!e
−4δtLt dt

and M2 :=
∫∞

D
tN−1

(N−1)!e
−4δtLt dt, where D is suitably large.

Lemma 8.2 shows that eAk,ℓ,ω(Ltf) ≤ 2C0e
A
k,ℓ,ω(f). Hence, if D is large enough

(depending on N), we have eAk,ℓ,ω(M2f) ≤ C0e
A
k,ℓ,ω(f). The term M2 is therefore

not a problem to prove (8.6).
Let us handle M1. Consider first a point x such that Vδ(x) ≥ e(1−2δ)D. For

such a point x, Lemma 8.2 gives eAk,ℓ,ω(Ltf ;x) ≤ 2C0e
A
k,ℓ,ω(f)e

−(1−2δ)t for t ≤ D.
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In particular,

eAk,ℓ,ω(M1f ;x) ≤
∫ D

t=0

tN−1

(N − 1)!
e−4δteAk,ℓ,ω(Ltf ;x) dt

≤ 2C0

∫ D

t=0

tN−1

(N − 1)!
e−4δteAk,ℓ,ω(f)e

−(1−2δ)t dt ≤ 2C0e
A
k,ℓ,ω(f)

since
∫∞

t=0
tN−1

(N−1)!e
−(1+2δ)t dt ≤

∫∞

t=0
tN−1

(N−1)!e
−t dt = 1. This concludes the proof for

such points x.
It remains to consider points x with Vδ(x) ≤ e(1−2δ)D. This set is very large

if D is large, but it is compact mod Γ. Fix such a point x, we have to estimate
integrals of the form

∫

Wu
1/200

(x)
φ · Lv1 · · ·Lvℓ(M1f) dµu, where ‖φ‖Ck+ℓ

A
≤ 1 and

‖vj‖Ck+ℓ+1
A

≤ 1, and at least one of the vector fields vj points in the flow direction.

To begin, assume that the last vector field vℓ points in the flow direction, i.e.,
vℓ(y) = ψ(y)ω(y) for some function ψ with ‖ψ‖Ck+ℓ+1

A
≤ 1. In the expression

Lv1 · · ·Lvℓ−1
(ψLω(M1f)), if we use at least one of the Lie derivatives to differentiate

ψ, we obtain a term bounded by Ck,ℓ,Ae
A
k,ℓ′(M1f) for some ℓ′ < ℓ. This is bounded

by CN,k,ℓ,A,De
A
k,ℓ′(f) by Lemma 8.2. This error term is compatible with (8.6). The

remaining term is ψLv1 · · ·Lvℓ−1
(Lω(M1f)). Since M1f =

∫ D

t=0
h(t)Ltf dt for

some smooth function h, we have Lω(M1f) = h(D)LDf −h(0)f −
∫D

t=0
h′(t)Ltf dt.

Therefore, the integral we are studying can be bounded in terms of ℓ−1 derivatives
of f (or images of f under operators Lt), and this is bounded by CN,k,ℓ,A,De

A
k,ℓ−1(f).

This error term is again compatible with (8.6).
Assume now that one of the vector fields vj points in the flow direction, but that

it is not necessarily the last one. We can exchange the vector fields to put the vector
field vj in the last position and conclude as above. Since [Lw1 , Lw2 ] = L[w1,w2], the
additional error corresponds to the integration of ℓ− 1 derivatives of M1f against
a Ck+ℓ function, but one of the vector fields is not the canonical extension of
a vector field defined on Wu

1/100(x). Since we work in the set {Vδ ≤ e(1−2δ)D}
which is compact mod Γ, Lemma 7.3 shows that this error is bounded in terms of
supℓ′<ℓ ek,ℓ′(f), and is again compatible with (8.6). �

It remains to study
∥

∥MNf
∥

∥

A,B

k,s
. We will rather estimate ‖Ltf‖A,B

k,s if t is large

enough, this will readily gives estimates for
∥

∥MNf
∥

∥

A,B

k,s
by (8.5).

Let us fix some constants. First, we recall that C0 has been defined in Lemma
8.2. Let T0 > 0 be large enough so that 40C0 ≤ eδT0 . Let V = 2e(3−2δ)T0 , and
define

(8.7) K = {x ∈ Teich1 : Vδ(x) ≤ 4V e2T0}.
This set is compact mod Γ. Finally, applying Proposition 4.3 to K, we get a time
T = T (K).

We will study the operator LnT0 , for all n large enough so that nT0 ≥ T/δ. By
Lemma 5.10, we can define a C∞ function ρV such that ρV (x) = 1 if Vδ(x) ≤ V
and ρV (x) = 0 if Vδ(x) ≥ 2V . Write ψ1 = ρV and ψ2 = 1− ρV so that ψ1 +ψ2 = 1.

We decompose LT0(f) = LT0(ψ1f) + LT0(ψ2f) = L̃1f + L̃2f . Therefore, LnT0 =
∑

γ∈{1,2}n L̃γ1 · · · L̃γn .

We first give a lemma ensuring that the multiplication by ρV or 1 − ρV in the
definition of L̃1 and L̃2 is not harmful, and then we will turn to the study of
L̃γ1 · · · L̃γn for γ ∈ {1, 2}n. We will handle in Lemma 8.6 the case where most γi
are equal to 2 (i.e., most time is spent close to infinity, and we can use the good
recurrence estimates of Proposition 6.1), and in Lemma 8.7 the case where a definite
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proportion of the γi is equal to 1 (i.e., some time is spent in the compact set K,
and we can take advantage of the hyperbolicity of the flow there).

Lemma 8.5. Let k ∈ N, and let ψ : X → [0, 1] be a C2k function supported in a
compact set mod Γ. If A and B are large enough, then for any f ∈ D, we have

‖ψf‖A,B
k,s ≤ 3 ‖f‖A,B

k,s .

Proof. Let us prove that, for every k, ℓ ≤ k and every large enough A, there exists
a constant Ck,ℓ,A such that, for any f ∈ D,

(8.8) eAk,ℓ,s(ψf) ≤ 2eAk,ℓ,s(f) + Ck,ℓ,A

∑

ℓ′<ℓ

eAk,ℓ′,s(f).

The statement of the lemma follows directly from this estimate if B is much larger
than any of the Ck,ℓ,A.

To estimate eAk,ℓ,s(ψf), we have to compute integrals of the form
∫

Wu
1/200

(x)

φ · Lv1 · · ·Lvℓ(ψf) dµu,

where ‖φ‖Ck+ℓ
A

≤ 1 and v1, . . . , vℓ have a Ck+ℓ+1
A –norm along Wu

1/100(x) bounded

by 1. We can use each Lvi to differentiate either ψ or f . If we differentiate ψ m
times for some m > 0, we obtain an integral of ℓ − m derivatives of f against a
Ck+ℓ−m function, hence this is bounded by CeAk,ℓ′,s(f) for ℓ

′ = ℓ−m (note that we

are working in the lift of a compact subset of Teich1/Γ, hence the C
k+ℓ norm of the

extended vector fields vj is bounded). The remaining term is
∫

φψ ·Lv1 · · ·Lvℓf . If
A is large enough, ‖φψ‖Ck+ℓ

A
≤ ‖φ‖Ck+ℓ

A
‖ψ‖Ck+ℓ

A
≤ 2, hence this integral is bounded

by 2eAk,ℓ,s(f). We have proved (8.8). �

Lemma 8.6. For every k, n ∈ N, for every γ ∈ {1, 2}n, for every large enough
A,B, we have for every f ∈ D

∥

∥

∥
L̃γ1 · · · L̃γnf

∥

∥

∥

A,B

k,s
≤ (10C0)

ne−(1−2δ)T0#{i : γi=2} ‖f‖A,B
k,s .

Proof. It is sufficient to prove that
∥

∥

∥
L̃1f

∥

∥

∥

A,B

k,s
≤ 10C0 ‖f‖A,B

k,s and
∥

∥

∥
L̃2f

∥

∥

∥

A,B

k,s
≤ 10C0e

−(1−2δ)T0 ‖f‖A,B
k,s .

Since Vδ is bounded from below by 1, Lemma 8.2 shows that ‖LT0f‖A,B
k,s ≤

2C0 ‖f‖A,B
k,s if A is large enough. Therefore,

∥

∥

∥L̃1f
∥

∥

∥

A,B

k,s
= ‖LT0(ρV f)‖A,B

k,s ≤ 2C0 ‖ρV f‖A,B
k,s ≤ 6C0 ‖f‖A,B

k,s ,

by Lemma 8.5, if A and B are large enough.
We turn to L̃2f = LT0((1 − ρV )f). Let x ∈ X . Since logVδ is 2-Lipschitz,

Vδ(gT0y) ≤ e2T0Vδ(y) for all y. If Vδ(x) ≤ e−2T0V/2, it follows that Vδ(y) ≤
e−2T0V on Wu

1/100(x), and therefore that Vδ(gT0y) ≤ V on gT0(W
u
1/100(x)). Hence,

1 − ρV = 0 on this set. The definition of eAk,ℓ,s gives eAk,ℓ,s(LT0((1 − ρV )f);x) = 0.
We therefore obtain by Lemma 8.2

eAk,ℓ,s(LT0((1 − ρV )f) = sup
Vδ(x)≥e−2T0V/2

eAk,ℓ,s(LT0((1 − ρV )f ;x)

≤ sup
Vδ(x)≥e−2T0V/2

C0e
A
k,ℓ,s((1 − ρV )f)

(

e−(1−2δ)T0 + 1/Vδ(x)
)

≤ C0e
A
k,ℓ,s((1 − ρV )f)

(

e−(1−2δ)T0 + 2e2T0/V
)

.
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Taking into account the definition of ‖·‖A,B
k,s and the equality 2e2T0/V = e−(1−2δ)T0 ,

we obtain

‖LT0((1 − ρV )f)‖A,B
k,s ≤ 2C0 ‖(1− ρV )f‖A,B

k,s e−(1−2δ)T0 .

By Lemma 8.5, ‖(1− ρV )f‖A,B
k,s ≤ ‖f‖A,B

k,s + ‖ρV f‖A,B
k,s ≤ 4 ‖f‖A,B

k,s if A,B are large

enough. We obtain
∥

∥

∥
L̃2f

∥

∥

∥

A,B

k,s
≤ 8C0e

−(1−2δ)T0 ‖f‖A,B
k,s as desired. �

We defined an auxiliary norm ‖·‖′k in (7.3).

Lemma 8.7. Consider γ = (γ1, . . . , γn) with #{i : γi = 1} ≥ T/T0. Then, for
all k, if A and B are large enough,

(8.9)
∥

∥

∥L̃γ1 · · · L̃γnf
∥

∥

∥

A,B

k,s
≤ 2−k/2 · 12C0 ‖f‖A,B

k + Cn,k,A,B ‖ψγf‖′k ,

where the function ψγ is C∞ and supported in a compact set mod Γ.

The point of this lemma is that, if γ is fixed, we can choose k very large to make
the first term in (8.9) arbitrarily small, while the second term gives a compact
contribution (thanks to Proposition 7.2), and will therefore not be an issue to
control the essential spectral radius.

Proof. We can write L̃γ1 . . . L̃γnf = LnT0(ψf), where ψ = ψγ =
∏n

j=1 ψγj ◦
g−(n−j)T0

is C∞ and compactly supported.

To estimate eAk,ℓ,s(L̃γ1 . . . L̃γnf) for some 0 ≤ ℓ ≤ k, we should estimate integrals
of the form

(8.10)

∫

Wu
1/200

(x)

φ · Lv1 · · ·Lvℓ(LnT0(ψf)) dµu,

where ‖φ‖Ck+ℓ
A

≤ 1, the vector fields vj all point in the stable direction and

‖vj‖Ck+ℓ+1
A

≤ 1.

As in the proof of Lemma 8.2, we first replace vj by a compactly supported vector

field vj,1 on Wu
1/100(x), with ‖vj,1‖Ck+ℓ+1

A
≤ 21/2 (assuming A is large enough). Let

wj be the push-forward of vj,1 under gnT0 , and let (ρi) be a partition of unity on
gnT0(W

u
1/200(x)) (c.f. Proposition 5.8). The integral (8.10) becomes

∑

i∈I

∫

Wu
1/200

(xi)

ρi(z)φ(g−nT0z) · Lw1
· · ·Lwℓ

(ψf)(z) e−dnT0 dµu(z).

Let I ′ ⊂ I be the set of is such that ψ is not identically zero on Wu
1/200(xi). We

claim that, for i ∈ I ′, for all y ∈Wu
1/200(xi),

(8.11) Leb{s ∈ [0, nT0] : g−s(y) ∈ K} ≥ T,

where K is defined in (8.7). Indeed, let z ∈ Wu
1/200(xi) satisfy ψ(z) 6= 0. For all

j with γj = 1, we have ψ1(g−(n−j)T0
z) 6= 0, therefore Vδ(g−(n−j)T0

z) ≤ 2V . Since
g−(n−j)T0

is a contraction along Wu, we obtain Vδ(g−(n−j)T0
y) ≤ 4V for any y ∈

Wu
1/200(xi). For any s ∈ [0, T0], Vδ(g−sg−(n−j)T0

y) ≤ e2sVδ(g−(n−j)T0
y) ≤ e2T04V ,

i.e., g−sg−(n−j)T0
y ∈ K. This implies that

Leb{s ∈ [0, nT0] : g−s(y) ∈ K} ≥ T0#{j : γj = 1},
which is greater than or equal to T , by the assumptions of the lemma. This proves
(8.11).

Fix now i ∈ I ′, we work along Wu
1/200(xi). Since gt is uniformly hyperbolic

along trajectories that spend a time at least T in K (by Proposition 4.3), we have
cm(φ◦g−nT0) ≤ 2−mcm(φ), and cm(wj) ≤ 2−m−1cm(vj,1) (note that we have a gain
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even for m = 0 since the vector itself is contracted by the differential of gnT0). This
gives ‖φ ◦ g−nT0‖Ck+ℓ

A
≤ ‖φ‖Ck+ℓ

A
(there is no gain here at level m = 0, so no gain

overall) and ‖wj‖Ck+ℓ+1
A

≤ 2−1 ‖vj,1‖Ck+ℓ+1
A

≤ 2−1/2. This gives a gain of 2−1/2

with respect to the non-contracting situation of Lemma 8.2, and we end up after
the same computations with

(8.12) eAk,ℓ,s(LnT0(ψf)) ≤ 2C0 · 2−ℓ/2eAk,ℓ,s(ψf).

This gives a certain gain if ℓ is large. In particular, for ℓ = k, we obtain a gain of
2−k/2, as in the estimate (8.9) we are trying to prove. However, this is not sufficient
for smaller ℓ. Assume now ℓ < k, we will regularize the function φ by convolution
in this case.

For ǫ > 0, we consider a function φ̃ on Wu
1/100(xi) such that cm(φ − φ̃) ≤ ǫ for

m < k + ℓ, ck+ℓ(φ̃) ≤ 2ck+ℓ(φ) and ck+ℓ+1(φ̃) ≤ Ck,A/ǫ. Note that, since φ̃ is
obtained by convolution between φ and a kernel of support of size ǫ, the support of
φ̃ is larger than that of φ. Since all the functions we are considering are multiplied
by the partition of unity ρi, this is not a problem.

Along Wu
1/200(xi), the function φ′ = (φ − φ̃) ◦ g−nT0 satisfies cm(φ′) ≤ ǫ for

m < k + ℓ and ck+ℓ(φ
′) ≤ 2 · 2−(k+ℓ)ck+ℓ(φ). Choosing ǫ = 2−(4+k+ℓ), we have

finally ‖φ′‖Ck+ℓ
A

≤ e1/A2−4−k−ℓ + 21−k−ℓ ‖φ‖Ck+ℓ
A

≤ 2(3/2)−k−ℓ for any A ≥ 1. Let

us decompose in (8.10) the function φ as φ′+ φ̃. The resulting term coming from φ′

is similar to (8.12) but with an additional factor 2(3/2)−k−ℓ, while the term coming

from φ̃ is bounded in terms of ‖f‖′k, since there are at most ℓ < k derivatives of f

integrated against a function in Ck+ℓ+1. In the end, we get

eAk,ℓ,s(LnT0 (ψf)) ≤ 2C0 · 2−ℓ/2 · 2(3/2)−k−ℓeAk,ℓ,s(ψf) + Cn,γ,A,k ‖ψf‖′k .
Summing the last equation for ℓ = 0, . . . , k − 1 and (8.12) for ℓ = k, we obtain

‖LnT0(ψf)‖A,B
k,s ≤ 4C02

−k/2 ‖ψf‖A,B
k,s + Cn,γ,A,k ‖ψf‖′k .

Since the function ψ is C∞ and compactly supported, Lemma 8.5 applies if B is
large enough. This concludes the proof. �

To simplify notations, we write Ocomp(f) for terms bounded by ‖ψf‖′k, for some
C∞ function ψ in Teich1 that is supported in a compact set mod Γ. This notation
is invariant under Lt for fixed t (since this operator acts continuously for ‖·‖′k), and
under addition (if ψ1 and ψ2 are two C∞ functions whose support is compact mod
Γ, consider a function ψ with the same properties which is equal to 1 on supp(ψ1)∪
supp(ψ2), then ‖ψ1f‖′k = ‖ψ1ψf‖′k ≤ C(ψ1) ‖ψf‖′k, and a similar inequality holds
for ψ2).

Corollary 8.8. For every n ∈ N with n ≥ T/(δT0), if k,A,B are large enough, we
have

‖LnT0f‖A,B
k,s ≤ e−(1−4δ)nT0 ‖f‖A,B

k +Ocomp(f).

Proof. We write LnT0f =
∑

γ∈{1,2}n L̃γ1 · · · L̃γnf , and estimate the terms coming

from each γ.
If #{j : γj = 1} ≥ δn, then the resulting term is bounded by Lemma 8.7.

Otherwise, #{j : γj = 2} ≥ (1 − δ)n, and Lemma 8.6 gives an upper bound of

the form (10C0)
ne−(1−2δ)T0(1−δ)n ‖f‖A,B

k . Since (1− 2δ)(1− δ) ≥ 1− 3δ, we obtain
after summing over the 2n possible values of γ

‖LnT0f‖A,B
k,s ≤ 2n(10C0)

ne−(1−3δ)T0n ‖f‖A,B
k + 2n · 12C02

−k/2 ‖f‖A,B
k

+ Cn,k,A,B

∑

‖ψn,γf‖′k .
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Choosing k large enough, we can make sure that 12C02
−k/2 ≤ (10C0)

ne−(1−3δ)T0n,
and we obtain a bound of the form

(40C0)
ne−(1−3δ)T0n ‖f‖A,B

k + Cn,k,A,B

∑

‖ψn,γf‖′k .

Since 40C0 ≤ eδT0 , this implies the statement of the corollary. �

Corollary 8.9. For any large enough N , if k,A,B are large enough, we have
∥

∥MNf
∥

∥

A,B

k,s
≤ 2C0(e

(1−4δ)T0 + 2) ‖f‖A,B
k +Ocomp(f).

Proof. We start from the formula

MNf =

∫ ∞

t=0

tN−1

(N − 1)!
e−4δtLtf dt =

∞
∑

n=0

∫ (n+1)T0

nT0

tN−1

(N − 1)!
e−4δtLtf dt.

On an interval [nT0, (n+1)T0] with small n (i.e., n < T/(δT0)), we use the simple

bound ‖Ltf‖A,B
k,s ≤ 2C0 ‖f‖A,B

k coming from Lemma 8.2. Since for any fixed T∗ > 0,
∫ T∗

0
tN−1

(N−1)! dt tends to zero when N → ∞, the contribution of those intervals is

bounded, say, by 2C0 ‖f‖A,B
k if N is large enough.

We use the same trivial bound on the intervals [nT0, (n+1)T0] with very large n
(n ≥ n0(N) to be chosen later). The contribution of these intervals is then bounded
by

∫ ∞

n0(N)T0

tN−1

(N − 1)!
e−4δt2C0 ‖f‖A,B

k dt.

Choosing n0(N) large enough, we can ensure that this is bounded by 2C0 ‖f‖A,B
k .

Consider now n in between. For t ∈ [nT0, (n+ 1)T0], we have

‖Ltf‖A,B
k,s ≤ 2C0 ‖LnT0f‖A,B

k,s ≤ 2C0e
−(1−4δ)nT0 ‖f‖A,B

k +Ocomp(f)

≤ 2C0e
(1−4δ)T0e−(1−4δ)t ‖f‖A,B

k +Ocomp(f).

Integrating over t and then summing over n, we get a contribution bounded by

2C0e
(1−4δ)T0

∫ ∞

t=0

tN−1

(N − 1)!
e−4δte−(1−4δ)t ‖f‖A,B

k dt+Ocomp(f),

which is bounded by 2C0e
(1−4δ)T0 ‖f‖A,B

k + Ocomp(f) since
∫∞

t=0
tN−1

(N−1)!e
−t dt =

1. �

Proof of Theorem 8.1. The first part of the statement is contained in Lemma 8.2.
It remains to estimate the essential spectral radius of M. Adding the estimates of
Lemma 8.4 and of Corollary 8.9, we have for large enough N, k,A,B

∥

∥MNf
∥

∥

A,B

k
≤ 2C0(e

(1−4δ)T0 + 5) ‖f‖A,B
k +Ocomp(f).

Let us fix once and for all N large enough so that 2C0(e
(1−4δ)T0 + 5) ≤ (1 + δ)N ,

and k,A,B such that the previous estimate holds. This estimate translates into
the following: there exists a C∞ function ψ supported in a compact set mod Γ such
that, for any function f in D,

∥

∥MNf
∥

∥

A,B

k
≤ (1 + δ)N ‖f‖A,B

k + ‖ψf‖′k .

The unit ball of DΓ for the norm ‖·‖k is relatively compact for the semi-norm

‖f‖′ := ‖ψf‖′k, by Proposition 7.2. By Hennion’s Theorem (Lemma 3.1), it follows

that the essential spectral radius of M for the norm ‖·‖A,B
k on the space DΓ is

at most 1 + δ. Since this norm is equivalent to ‖·‖k, this concludes the proof of
Theorem 8.1. �
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Appendix A.

A.1. Spherical functions. In this section, we prove the estimate (3.6) on the
behavior of the spherical function φξs when ξs is a representation of SL(2,R) in
the complementary series. It is a consequence of classical estimates on spherical
functions, let us for instance follow the computations in [Hel00]. For ℜs ∈ [−1, 1],
let us define coefficients Γn(s) by Γ0 = 1, Γn = 0 if n is odd, and n(n− s)Γn(s) =
∑

0<k≤n/2 Γn−2k(s)(2n − 4k − s+ 1) if n is even. It is easy to check by induction

that these coefficients grow more slowly than any exponential. In particular (see,
e.g., [Hel00, Lemma 4.13]), for every ǫ > 0, there exists a constant C > 0 such that

(A.1) ∀s ∈ [−1, 1], ∀n ∈ N, |Γn(s)| ≤ Ceǫn.

These coefficients are chosen so that t 7→ e(s−1)t
∑

Γn(s)e
−2nt satisfies an explicit

differential equation of order 2 which is also satisfied by φξs . Another solution of

the same equation is t 7→ e(−s−1)t
∑

Γn(−s)e−2nt. It follows that φξs is a linear
combination of those two functions. One can identify the coefficients in this linear
combination (they are given by the c function (3.5)), to obtain the following formula
for φξs : for every s ∈ (0, 1] ∪ i(0,+∞),

φξs(gt) = c(s)e(s−1)t
∑

n≥0

Γn(s)e
−2nt + c(−s)e(−s−1)t

∑

n≥0

Γn(−s)e−2nt.

This is [Hel00, Theorem IV.5.5] in the case of SL(2,R) (the formula for c is given
in [Hel00, Theorem IV.6.4]).

For s ∈ [δ, 1], the dominating term in this formula is c(s)e(s−1)t, and the sum of
the other terms is bounded by Ce−t if t ≥ 1, by (A.1). Since φξs(gt)− c(s)e(s−1)t

is uniformly bounded for t ∈ [0, 1] and s ∈ [δ, 1], the estimate (3.6) follows.

A.2. Boundary behavior of Cauchy transforms.

Lemma A.1. Let ν be a nonnegative measure on [0, 1], with finite mass. Assume

that the function F (z) =
∫

s∈[0,1]
dν(s)

z−s+1 , defined for z ∈ C − [−1, 0], admits a con-

tinuous extension to an interval [a− 1, b− 1] ⊂ [−1, 0]. Then ν[a, b] = 0.

Proof. Let us first show that, if F is continuous at a point x − 1, with x ∈ [0, 1],
then

(A.2) ν[x− ǫ, x+ ǫ] = o(ǫ).

We have

F (x− 1 + iy) =

∫

dν(s)

x+ iy − s
=

∫

x− s− iy

(x − s)2 + y2
dν(s).

As a consequence,

Im(F (x− 1 + iy)− F (x− 1− iy)) = −2

∫

y

(x− s)2 + y2
dν(s).

If F can be extended continuously to x − 1, this quantity tends to 0. For s ∈
[x− y, x+ y], the integrand is at least y/(2y2), therefore

ν[x− y, x+ y]/y ≤ 2

∫ x+y

s=x−y

y

(x − s)2 + y2
dν(s)

≤ | Im(F (x− 1 + iy)− F (x− 1− iy))| → 0.

This proves (A.2).
Assume now that F can be continuously extended to a whole interval [a−1, b−1].

For any x ∈ [a, b], we have ν[x− ǫ, x+ ǫ] = o(ǫ). By [Mat95, Theorem 2.12], for any
ρ > 0, we can cover [a, b] with intervals In with bounded overlap, with ν(In) ≤ ρ|In|.
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Therefore, ν[a, b] ≤
∑

ν(In) ≤ ρ
∑

|In| ≤ ρC(b−a). Letting ρ tend to 0, we obtain
ν[a, b] = 0. �
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[Hen93] Hubert Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens,
Proc. Amer. Math. Soc. 118 (1993), 627–634. MR1129880.

[HM79] Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations,
J. Funct. Anal. 32 (1979), 72–96. MR533220.
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