Appendix 1: R code for the ecological illustration

Stéphane Dray, Manuela Royer-Carenzi and Clément Calenge

Data are contained is the object trajbear.rda. This is an object of the class ltraj.

library(adehabitat)

plot(trajbear)

It contains 336 relocations.

Correlogram for the length steps can be computed using the function acfdist.ltraj. Here, it is tested using 999 permutations.

```
acfdist.ltraj(trajbear, lag = 48)
title(main = "Lengths: Observed data")
```


No structure is identified for the correlograms of absolute and relative angles:

acfang.ltraj(trajbear, lag = 48, xlab = "Lag", which = "relative")
title(main = "Relative angles")

acfang.ltraj(trajbear, lag = 48, xlab = "Lag", which = "absolute")
title(main = "Absolute angles")

The average daily pattern of step lengths could then be represented:

```
boxplot(trajbear[[1]]$dist ~ substr(trajbear[[1]]$date,
    12, 16), col = "lightgrey", ylab = "distance (m)",
    xlab = "hour", pch = 20)
lines(1:48, tapply(trajbear[[1]]$dist, substr(trajbear[[1]]$date,
    12, 16), mean, na.rm = T), lwd = 2, ty = "l")
points(1:48, tapply(trajbear[[1]]$dist, substr(trajbear[[1]]$date,
    12, 16), mean, na.rm = T), pch = 21, bg = "white")
```


This structure corresponds to a circadian activity with two peaks. Detrending would then be performed on this data. A spatial weighting object is created to represent the temporal structure of the data:

```
deldir 0.0-10
Please note: The process for determining duplicated points
has changed from that used in version 0.0-9.
lw1 <- nb2listw(cell2nb(48 * 7, 1))</pre>
```

library(spdep)

Then, a detrending is performed on the data. Residuals (i.e. detrended data) are stored in trajresid and predictions (i.e. structure corresponding to the circadian activity) are stored in trajpred:

```
trajresid <- trajpred <- trajbear</pre>
 y <- trajbear[[1]]$dist
 y[is.na(y)] = mean(na.omit(y))
 MEtest <- ME(y ~ 1, listw = 1w1, nsim = 999, alpha = 0.05)
eV[,29], I: 0.2737 ZI: NA, pr(ZI): 0.001
eV[,6], I: 0.2481 ZI: NA, pr(ZI): 0.001
eV[,28], I: 0.2270 ZI: NA, pr(ZI): 0.001
eV[,31], I: 0.2063 ZI: NA, pr(ZI): 0.001
eV[,1], I: 0.1862 ZI: NA, pr(ZI): 0.002
eV[,62], I: 0.1653 ZI: NA, pr(ZI): 0.002
eV[,34], I: 0.1432 ZI: NA, pr(ZI): 0.003
eV[,7], I: 0.1224 ZI: NA, pr(ZI): 0.02
eV[,2], I: 0.1017 ZI: NA, pr(ZI): 0.034
eV[,48], I: 0.089 ZI: NA, pr(ZI): 0.046
eV[,27], I: 0.07595 ZI: NA, pr(ZI): 0.068
 p <- ncol(MEtest$vectors)</pre>
 lm1 <- lm(trajbear[[1]]$dist ~ MEtest$vectors[, 1:(p -</pre>
     1)])
 trajresid[[1]]$dist[!is.na(trajresid[[1]]$dist)] <- residuals(lm1)</pre>
 trajpred[[1]]$dist[!is.na(trajpred[[1]]$dist)] <- predict(lm1)</pre>
```

Autocorrelation has been removed from the data. Residuals are then independent and can used as response variable in subsequent analysis:

acfdist.ltraj(trajresid, lag = 48)
title(main = "Residuals")

The structure corresponding to the circadian activity has been completely identified by the detrending approach:

acfdist.ltraj(trajpred, lag = 48)
title(main = "Predictions")

