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Abstract:15

Studies of animal movements has been popularized for many large and shy16

species by the increasing use of radio telemetry methods (VHF and GPS tech-17

nologies). Data are collected with high sampling frequency, and consist of18

successive observations of the position of an individual animal. The statistical19

analysis of such data poses several problems due to the lack of independence20

of successive observations. However, the statistical description of the tempo-21

ral autocorrelation between successive steps is rarely performed by ecologists22

studying the patterns of animals movements. The aim of this paper is to warn23

ecologists against the consequences of failing to consider this aspect. We discuss24

the various issues related to analysing autocorrelated data, and show how the25

exploratory analysis of autocorrelation can both reveal important biological in-26

sights, and help to improve the accuracy of movement models. We suggest some27

tools that can be used to measure, test and adjust for temporal autocorrelation.28

A short ecological illustration is presented.29

Keywords: autocorrelation function; GPS; independence test; radio telemetry;30

permutation test31
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1 Introduction32

Radio telemetry has become increasingly popular as a convenient means of studying move-33

ments of wildlife (Dunn and Gipson 1977) and it can be used to collect data that consist of34

successive observations of the locations of an individual animal. The recent development35

of GPS technology makes it possible to collect relocation data automatically, at short,36

regular intervals. However, as the time interval decreases, the dependence between succes-37

sive observations usually increases so that the problem of autocorrelation must be taken38

into considered in the analysis. Autocorrelation can be defined as a property of random39

variables, which means that values from samples taken near to each other tend to be ei-40

ther more similar (positive autocorrelation) or less similar (negative autocorrelation) than41

would be expected from a random arrangement. This nearness can be defined in space42

(spatial autocorrelation), or in time (temporal autocorrelation). The main difference is43

that an observation is only influenced by past values in temporal autocorrelation whereas44

spatial dependence extends in all directions. Autocorrelation is often seen as an obsta-45

cle, as it interferes with standard statistical hypothesis testing (Legendre 1993), and many46

approaches have been developed to eliminate it by restricting data prior to analysis. How-47

ever, autocorrelation is often an intrinsic property of biological data, so that eliminating48

it could reduce the relevance of ecological studies. In the context of animal movement,49

which is by definition a non-independent phenomenon, De Solla et al. (1999) summarized50

the situation clearly: Animals typically move in a non-random fashion, and thus ecolo-51

gists are frequently faced with strongly autocorrelated data sets, particularly when frequent52

observations are collected using radiotelemetry.53

Solow (1990) distinguished two approaches in the literature on animal movements: one54

focusing on relocations, and the other on the movements between relocations. The question55

of autocorrelation must be (and indeed has been) considered in different ways in these two56

approaches. Any temporal autocorrelation between the coordinates of successive reloca-57

tions must be taken into account when the analysis is based on relocations. For instance,58

in the context of home range estimation, this problem has been discussed in a number of59
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papers (e.g., Dunn and Gipson 1977, Swihart and Slade 1985a;b, De Solla et al. 1999), and60

so we will not consider it any further here. On the other hand, the analysis of movements61

between relocations raises the question of the temporal autocorrelation between succes-62

sive steps (i.e. the displacement between two successive relocations). The development of63

models of realistic animal movement is a very active field of research at present (Patterson64

et al. 2008, Schick et al. 2008). The aim of these studies is to understand why, how and65

where animals move, and to see how this could affect the spatial dynamics at higher levels66

of organization (population, community, etc). Recent methodological developments have67

improved the ability of models to handle the biological complexity of animal movements68

(Nathan et al. 2008), and to account for multiple behavior modes (e.g. searching, resting,69

etc), characteristics of landscape (e.g. patchiness) or environmental variations (e.g. spatial70

distribution of resources). The various internal (e.g. behavioral) or external (e.g. environ-71

mental) factors influencing organisms could induce temporal autocorrelation in movement72

data. For instance, autocorrelation in steps could be due to the animal’s switching between73

different movement strategies. Hence, autocorrelation is usually considered as an emergent74

property in a modelling framework and its exploratory analysis is rarely performed by75

authors.76

The interest of the empirical study of autocorrelation has been affirmed in the recent77

special issue of PNAS on movement ecology by Wittemyer et al. (2008). They stated78

that the role of autocorrelation, at different temporal scales, in the movement pathways of79

animals is an important understudied phenomenon that is critical for predictive modeling80

of population spatial properties. Following this idea, the aim of this paper is to demonstrate81

that movement ecology could benefit from a deeper exploratory analysis of the empirical82

data, with a special emphasis on temporal autocorrelation. We present the various problems83

linked to the analysis of autocorrelated data, and show how the study of autocorrelation84

can reveal important biological insights, help to develop new biological hypotheses, and85

thus make it possible to improve the accuracy of movement models. We suggest some tools86

that can be used to measure, test and adjust for temporal autocorrelation. An ecological87

illustration is presented.88
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2 Description of movement paths89

The analysis of movements involves recording the path of an individual through space and90

time. Animal movement is a continuous process, but its observation using radio telemetry91

technologies leads to a discrete representation. The data gathered consist of a sequence92

of successive relocations (xi, yi) of an individual collected at time i. Steps are defined93

as the displacement between two successive relocations. As this displacement is usually94

represented as a straight-line, a path is represented as a series of straight-lines. Following95

Marsh and Jones (1988), several descriptors (Calenge et al. 2009) can be associated with96

each step to quantify animal movements (see Fig. 1). For example, the n-th step can be97

characterized by:98

� its length (dn)99

� the increment in the X and Y directions (δxn and δyn)100

� the absolute angle between the step and the X direction (αn)101

� the relative (or turning) angle between the n-th step and the previous one (ρn)102

� the squared net displacement after n consecutive steps (Rn
2)103

The parameters dn and ρn have been widely used since the early work of Siniff and Jessen104

(1969), while Rn
2 has been popularized by Kareiva and Shigesada (1983). GPS collars are105

often programmed to collect regular data, so that we assume from here on that the time106

lag between two relocations is constant. Despite improvements in this technology, GPS107

telemetry can still result in missing data in the form of failed location attempts. If this108

happens, data are still considered to be regular, as the steps connecting a relocation to a109

missing value are missing, but still characterized by the same time interval as the observed110

steps (see Calenge et al. 2009). The presence of missing data can be due for example to111

the behaviour of the animal or to the habitat structure (e.g., Frair et al. 2004, Graves and112

Waller 2006, Bourgoin et al. 2009). It is then important to deal with missing observations113
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when analysing movement data because their structure could be related to important bio-114

logical variables and thus gives some information about movement characteristics. In this115

context, Calenge et al. (2009) suggests that the analysis of the patterns of missing values116

should be a part of trajectory analysis (p. 36). As missing data are a key component of117

GPS data, we propose several procedures that have the ability to deal with them when118

analysing autocorrelation structures.119

Illustration — Fig. 2a shows an example of a movement path. The data set contains120

the 336 relocations (extending over one week, with a recording interval of 30 minutes) of a121

female brown bear monitored using a GPS collar in July 2004 in Sweden.122

3 Autocorrelation and the analysis of movement paths123

3.1 Definition of theoretical models124

Understanding how animals move is often based on a confrontation of the observed data125

with theoretical models. The observed distribution of some of the parameters defined126

above may be compared to the distribution expected under the assumption of the theoreti-127

cal model. These comparisons could be performed using graphical tools (e.g., Kareiva and128

Shigesada 1983) or traditional testing procedures. The random walk (RW) and the corre-129

lated random walk (CRW) are the models most often used (e.g., Marsh and Jones 1988).130

RW corresponds to a succession of random steps, whereas the CRW model assumes that131

the movement of animals exhibits directional persistence (“correlated”). In a mathematical132

context, the CRW model differs from the RW model, because it assumes a unimodal and133

symmetric distribution (about zero) of the turning angles whereas the RW model assumes134

a uniform distribution. Both models also require the independence of successive turning135

angles and step lengths. Turchin (1998, p. 135) stated that CRW formulation assumes that136

the move durations, speeds, and turning angles are not serially correlated, an assumption137

that should be tested statistically. This advice has sometimes been followed in the liter-138

ature (e.g., Bergman et al. 2000, Nolet and Mooij 2002, Revilla et al. 2004, Bailey and139

Thompson 2006, Dumont et al. 2007). For instance, Root and Kareiva (1984) tested the140
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autocorrelation for distances and turning angles using Pearson’s correlation coefficients. If141

no tests of independence are performed, the probability that a model (e.g. RW, CRW)142

will be rejected when it is false (i.e. statistical power) is lower than expected, because it is143

assumed a priori that independence assumptions are met.144

3.2 Computation of mean squared net displacement and related tools145

Kareiva and Shigesada (1983) proposed an explicit formula of the expected mean squared146

net displacement E(Rn
2) for (C)RW models. They insisted on the notion of independence147

of parameters (e.g. p. 235, the word “independent” is italicized) to obtain a correct148

derivation of E(Rn
2). The algorithm proposed by McCulloch and Cain (1989) to compute149

the variance in squared displacement V (Rn
2) for a CRW, and the expected value of the ∆150

statistic presented by Marsh and Jones (1988) to distinguish between the CRW and the151

biased random walk (BRW) models are also based on the assumption of independence of152

some parameters. Marsh and Jones (1988, p. 129) stated that the information given in153

their paper can be used to construct a simple test to distinguish between the two models154

but pointed out that we must, of course, have other reasons for restricting consideration155

to just these two types of model. One of these reasons is that the underlying assumptions156

of independence have been confirmed. In this context, using these tools without checking157

the independence of parameters (see e.g., Odendaal et al. 1989, Firle et al. 1998, Morales158

and Ellner 2002) makes no sense.159

3.3 Standard hypothesis tests on movement descriptors160

The various descriptors (see the previous section) are routinely used in standard statis-161

tical procedures (e.g. ANOVA, t-test for linear descriptors; Rayleigh test of uniformity162

for angular descriptors) to test hypotheses concerning animal movements. Usually, these163

procedures require the independence of observations. If data are positively autocorrelated,164

classical tests are biased because computed statistics are too often declared significant un-165

der the null hypothesis (Legendre 1993, p. 1660). Hence, the hypothesis of independence166

(i.e., absence of autocorrelation) should be tested and not rejected before using standard167
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hypothesis tests on movement descriptors.168

In his note on the analysis of angular data, Cain (1989, p. 1542) stated that statistical169

tests [...] are based on the assumption that observed angles are independent, a condition170

that may not be satisfied when multiple angles are recorded from a single individual. He171

conducted a survey of the literature and showed that independence tests are rarely per-172

formed before hypothesis tests on angular data, and concluded that a lack of independence173

among successive angles not only violated hypothesis test assumptions, it also has important174

movement consequences: organisms that alternate right and left turns, for example, will175

displace farther than those whose turning angles are independent. A short review of the176

recent literature demonstrated that some authors did test independence (e.g., Fortin et al.177

2005, Bailey and Thompson 2006), but many others did not check the independence as-178

sumptions before carrying out standard hypothesis tests (e.g., Bowne et al. 1999, Cardona179

et al. 2005, Lorch et al. 2005, Parks et al. 2006). More surprisingly, several authors (e.g.,180

Bergman et al. 2000, Austin et al. 2004, Lancaster et al. 2006) performed independence181

tests (usually to check CRW assumptions), rejected the hypothesis of independence and182

then used wrongly standard tests on autocorrelated data.183

Testing for the independence of path descriptors is essential, and probably the first step184

that should be carried out when analyzing movement data. This can be done by means of185

several procedures.186

4 Independence testing procedures187

Several approaches have been used in the literature to test the independence of descriptors.188

Among the different descriptors, angular data require a particular attention due to their189

nature and must be analyzed using appropriate circular statistics (Cain 1989).190

4.1 The autocorrelation function191

In the literature, some authors (Bergman et al. 2000, Austin et al. 2004, Bailey and Thomp-192

son 2006), following the recommendations of Turchin (1998), used autocorrelation functions193

(ACF, Diggle 1990), a standard tool for the analysis of time series which consists of plot-194
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ting the values of autocorrelation measured for different time lags against the corresponding195

lags. For a real-valued random variable X taking values x1, · · · , xN , the sample autocorre-196

lation function for a given time lag h is:197

ρ̂(h) =

N−h∑
i=1

zi · zi+h
N∑
i=1

zi
2

where zi = xi −
1

N

N∑
i=1

xi.

For a significance level α, we conclude that data are not independent if
√
n|ρ̂(h)| exceeds198

the standard gaussian (1 − α
2
)-quantile. Note that the autocorrelation function for lag 1199

(i.e. ρ̂(1)) is sufficient to test for independence (Diggle 1990). For the first order lag (i.e.,200

h = 1), we have:201

ρ̂(1) =

N−1∑
i=1

zi · zi+1

N∑
i=1

zi
2

= 1− 1

2Nσ̂2

(
z2
1 + z2

N +
N−1∑
i=1

(zi − zi+1)
2

)

where σ̂2 = 1
N

∑N
i=1 z

2
i .202

The foregoing equations allow us to link the ACF to the two methods generally used to203

measure the autocorrelation. The first method considers the products zi · zi+1 (Wald and204

Wolfowitz 1943), while the second considers the local differences (zi+1−zi)2 (von Neumann205

et al. 1941, von Neumann 1941). In this paper, we will focus on the second approach which206

has been implemented in the adehabitat package (Calenge 2006) for the R software.207

ACF is not designed to handle missing data. Consequently, the previous testing proce-208

dure cannot be used for data sets with missing observations. Fortunately, similar tools have209

been developed in the context of spatial analysis, particularly the correlogram (Legendre210

and Legendre 1998, p. 714), which can easily be modified to accept missing values. In the211

following sections, we propose statistics and procedures adapted to movement data with212
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missing observations for linear and angular descriptors.213

4.2 Linear descriptors214

Among the different linear descriptors, tests of independence are often used for the length215

of the step. Several authors have used the Pearson product-moment correlation coefficient216

and its associated t-test (Nolet and Mooij 2002, Banks and Yasenak 2003, Lancaster et al.217

2006) to evaluate the significance of the correlation of the variable of interest (e.g. the218

length) and a time-shifted version of itself. Others have preferred to use Spearman’s rank219

correlation coefficient (Cain et al. 1991, Dumont et al. 2007) on the same data. As explained220

below, standard tests (including t-test) assume independence of observations, and this221

kind of approach violates this basic assumption. A correct way to test for independence is222

provided by permutation procedure. For a path with N steps, a measure of autocorrelation223

(von Neumann 1941, von Neumann et al. 1941) of step lengths is given by:224

SL =
1

Nd

N−1∑
n=1

(dn+1 − dn)2

where Nd = N − 1 is equal to the number of summed squared differences. Our presen-225

tation focused on step lengths, but the method can also be used for other linear descriptors226

(e.g., δxn, δyn). The principles of the randomization procedure are as follows:227

(i). Compute a reference value of SL using original data.228

(ii). Randomly permute the values of the step lengths, and recompute the SL statistic.229

This operation is repeated a number of times (e.g., 999), to provide a set of values of230

the statistic under the null hypothesis of independence (H0).231

(iii). Compare the observed statistic to the distribution containing the values obtained by232

permutation as well as the reference value; compute the associated probability and233

take the appropriate statistical decision (reject or fail to reject the null hypothesis of234

independence).235
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Depending on the alternative hypothesis (H1), the third step will involve different pro-236

cedures. If the alternative hypothesis is the presence of positive autocorrelation, using a237

significance level equal to α, a p-value is estimated as: (number of random values equal to238

or less than the observed value + 1)/(number of permutations + 1). The null hypothesis239

is rejected if the p-value is below the threshold of significance (α). If the alternative hy-240

pothesis is the presence of negative autocorrelation, a p-value is estimated as: (number of241

random values equal to or greater than the observed value + 1)/(number of permutations242

+ 1). Again, the null hypothesis is rejected if the p-value is below the threshold of signifi-243

cance (α). Lastly, if the alternative hypothesis is the presence of autocorrelation (positive244

or negative), a two-sided test can be used. The estimation of the p-value is equivalent to245

the second procedure described above, except that random and observed values are first246

centered (using the average of random values), and then transformed into their absolute247

values.248

In the case of missing data, the computation of SL is restricted to the Nd pairs of249

successive observed data (i.e. if dn is missing, (dn − dn−1)
2 and (dn+1 − dn)2 are not250

computed) and only observed data are permuted (i.e. the structure of the missing data is251

kept constant under permutation).252

Our procedure can also be used to construct a correlogram by plotting the statistic253

SL(h) = 1
Nd(h)

∑N−h
n=1 (dn+h − dn)2 against the time lag h. The significance of SL(h) is254

assessed using the permutation procedure, as described above. Since tests are performed255

for various time lags, results could be corrected using a multiple adjustment method such256

as Bonferroni or Holm’s sequential procedure (Legendre and Legendre 1998).257

Illustration — A correlogram (Fig. 2b) computed on the bear step length data indicated258

a significant positive autocorrelation for the three first lags, and also for several lags between259

14 and 27 (7-13h30) and lag 43 (21h30). This seems to reflect a recurrent periodic structure260

related to diel movement patterns.261
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4.3 Angular descriptors262

In the literature, angular autocorrelation has been analyzed using both qualitative and263

quantitative measurements (Turchin 1998). There have been a few attempts to use quan-264

titative measures: Lancaster et al. (2006) used the circular coefficient of correlation of265

Jammalamadaka and Sengupta (2001) while Nolet and Mooij (2002) used the coefficient of266

Jupp and Mardia (1980). Tests based on qualitative measurements involve transforming267

angles as right (R) or left (L) deviations from the previous direction for turning angles,268

or from the X axis for absolute angles (Cain 1989). Then one can use a runs test on269

the sequence of R and L (e.g., Bailey and Thompson 2006). An alternative approach is270

to construct the contingency table with the four possible values of successive steps (LL,271

RR, LR, RL) as entries. Independence is then tested using a χ2 test with one degree of272

freedom (e.g., Cain et al. 1991, Banks and Yasenak 2003). Schaeffer and Messier (1997)273

transformed left and right deviations into 0 and 1, and then computed an ACF on this274

binary variable (see also Bergman et al. 2000). Transforming angular data into qualitative275

information undoubtedly leads to a loss of information. Moreover, we do not think that the276

R-L transformation, which considers only two directions, is really suitable for the analysis277

of movement data. Indeed, if an animal moves in a given direction with slight deviations to278

the left and then to the right, this would lead to a negative association (LR) but we would279

assume a positive autocorrelation as the movement is always in the same main direction.280

On the other hand, if an animal moves in given direction and then in the opposite with281

slight deviations to the left for both steps, this would lead to a positive association (LL) but282

we would assume a negative autocorrelation as the main direction has completely changed.283

If we consider the turning angles, it seems natural to assume that positive autocorrela-284

tion means that the direction taken for the n-th step is similar to the previous one, while285

negative autocorrelation means that the direction of the n-th step is opposite to that of286

the previous step. Hence, it would be preferable to use a qualitative measurement that287

considers the four possible directions corresponding to different values of turning angles288

(Fig. 3): turn right (R, −π/2), turn left (L, π/2), go forwards (F, 0) or go backwards (B, π289
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or -π). It makes sense to consider the sequences LL, RR, FF or BB as positive associations,290

and LR, RL, FB or BF as negative associations.291

As an alternative, we propose to use a quantitative coefficient (the chord distance) to292

measure angular autocorrelation (Fig. 3b). Chord distance is low when two successive293

angles are similar. In the case of sequences LR, RL, FB or BF, the distance reaches its294

maximum, and is equal to 2. For a sequence of N turning angles, we propose measuring295

the autocorrelation as the sum of the squared chord distances:296

SA =
1

Nd

N−1∑
n=1

[
(cos ρn+1 − cos ρn)2 + (sin ρn+1 − sin ρn)2

]
=

2

Nd

N−1∑
n=1

1− cos(ρn+1 − ρn)

Like the linear descriptors, the angular autocorrelation can be tested using the permu-297

tation procedures described above. A correlogram can also be computed.298

Illustration — Correlograms of absolute and turning angles computed on the bear data299

did not highlight any autocorrelation structure, and are not reported here.300

5 Understanding autocorrelation and detrending301

Autocorrelation is a very general property of ecological variables. Unfortunately, it is also302

an obstacle in ecological studies as it violates the basic assumptions of standard statistical303

hypothesis testing. Autocorrelation is ususally viewed as a form of bias, and a common304

procedure is to eliminate it before analysing the data by subsampling (Turchin 1998, p.305

130). However, we do not think that subsampling of relocations or steps should be routinely306

used before the analysis of movement paths. The first reason for this is that computing307

some descriptors requires two relocations (e.g., distance) or two steps (turning angle),308

and in such circumstances, subsampling will reduce the accuracy of the estimates. The309

second reason is that autocorrelation is often the consequence of ecological processes. This310

is particularly true for long-time surveys obtained with GPS monitoring, for which the311

animal’s ”switching behaviour” is often responsible of the presence of autocorrelation. In312

some cases, this autocorrelation can be generated by a process unrelated to the focus issue313

(e.g., the mechanistic aspects of the locomotion process), which would justify eliminating it314
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prior to the analysis. However, we stress that the preliminary analysis of the autocorrelation315

and identifying its causes are essential if we are to gain a better understanding of the316

patterns of animal movements.317

Legendre (1993) stated that spatial structures observed in ecological communities can318

arise from two independent processes. Environmental factors that influence species dis-319

tributions are spatially structured and, as a result of an indirect process, communities of320

species are also spatially structured (induced spatial dependence). Spatial autocorrelation321

can also be created directly at the community level as a result of contagious biotic processes.322

By analogy, two processes can be considered to be a potential cause of temporal autocorre-323

lation of successive steps (Martin et al. 2008). If movement parameters are dependent on324

local environmental conditions, then environmental variability can induce temporal auto-325

correlation of movement descriptors (Turchin 1998, p. 135). Here, ”environment” is used in326

a very broad sense, and includes both abiotic (e.g., altitude) and biotic factors (e.g., distri-327

bution of preys and predators). Temporal autocorrelation can also be the consequence of328

internal (individual) processes (e.g., circadian activity). When the origins of autocorrela-329

tion have been identified, it can then be eliminated before carrying out the other analyses.330

This requires tools to describe temporal patterns explicitly in order to detrend the data,331

and perform subsequent analyses on the residual (or detrended) data. Several methods332

exist to detrend time series including the variate difference method, Fourier series (Witte-333

myer et al. 2008) or harmonic regression (see for instance Legendre and Legendre 1998,334

Ch. 12 for details). Tools developed for the analysis of spatial autocorrelation (e.g., Dray335

et al. 2006) can also be useful. The reader could consult Frair et al. (2005) for an example336

of detrending of animal movement data. Detrending of angular data is more complicated,337

and involves the use of circular regression methods (Fisher 1996, Ch. 6).338

Illustration — The daily pattern of step lengths is represented in Fig. 2c, and is339

characterized by two peaks of activity corresponding to long step lengths. This circadian340

pattern with two peaks is common, and has been demonstrated for several species (Aschoff341

1966). Hence, this circadian pattern must be taken into account before attempting any342

other analysis of step lengths.343
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We modelled the temporal constraint as a linear graph with 336 nodes, and computed344

Moran’s eigenvector maps (Dray et al. 2006) for the associated weighting matrix. This345

approach can be used to construct a set of predictors in order to model an autocorrelated346

signal in ecological data (Peres-Neto 2006). Detrending was performed using the procedure347

proposed in Griffith and Peres-Neto (2006) with a significance level equal to 0.05. The348

correlogram computed on detrended data (Fig. 2d) demonstrated that the autocorrelation349

structure corresponding to the circadian rhythm has been removed. The correlogram for350

the trend (Fig. 2e) corresponds to a periodic pattern (the period is around 10-14h). The351

detrended data can then be used for subsequent analysis.352

6 Concluding remarks353

In these days of state-space and hierarchical Bayesian modelling (Patterson et al. 2008,354

Schick et al. 2008), our approach may look rather old-fashioned. What is the point of data355

exploration when models of realistic movements are available? Answers to this question356

can be found in the old debate initiated by Tukey (1977; 1980) about exploratory and357

confirmatory analyses. Data exploration allows one to extract what the data says, without358

any a priori hypothesis. It can be useful for generating new questions/ideas, improving359

the sampling design or guiding the choice of subsequent analyses. In the field of animal360

movement, autocorrelation is an important property of the data that could reveal infor-361

mation about how animals move. Patterns revealed by its exploratory analysis help to362

generate new hypotheses about the behavioral processes related to animal mobility. These363

hypotheses can then be tested by introducing new parameters into animal movement mod-364

els. For instance, our example suggests that a model integrating the time of the day (e.g.365

Preisler et al. 2004) should be used to analyse brown bear movement data. Exploratory366

analysis and modelling of animal movements should therefore not be opposed, but rather367

considered as two complementary approaches. The reader could consult Brillinger et al.368

(2004) for a nice example of an exploratory analysis of animal movement data.369

We hope that this paper will help to improve the way we tackle the question of auto-370
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correlation in animal movement analysis. An appropriate approach would consist of the371

following steps:372

� measure and test autocorrelation using appropriate procedures;373

� if autocorrelation is detected, its structure must be studied as it can reflect ecological374

processes of interest.375

Then, depending on the type of subsequent analysis, one can:376

� detrend the data so that autocorrelation (corresponding to processes analyzed in the377

previous step) is eliminated;378

� use detrended data in the analysis. Standard statistical tools can now be used, as379

the observations are now independent.380

or381

� incorporate new parameters in movement models that account for the hypothesised382

processes.383

In order to help ecologists, functions that can be used to store and manage animal move-384

ment paths and to measure and test autocorrelation have been included in the adehabitat385

package (Calenge 2006) for the R software. The reader could consult Calenge et al. (2009)386

for more details about these functions. Appendix 1 provides a complete example corre-387

sponding to the brown bear illustration used in this paper.388
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7 Figure legend517

Fig. 1: Parameters used to describe steps. The n-th step is associated to its length (dn),518

the increments in the X and Y directions (δxn and δyn), the absolute angle (αn), the519

turning angle (ρn) and the squared net displacement (Rn
2).520

Fig. 2: Analysis of brown bear data. (a) representation of the movement path. (b)521

correlogram of step lengths (SL(h)). The gray area corresponds to a 95% confidence522

interval obtained by permutation procedure (999 permutations). The gray dotted line523

depicts the median of the values of the statistic computed on permuted data. Empty524

circles represent non-significant autocorrelation, while black squares correspond to525

significant values. (c) Boxplots of the daily pattern of step lengths. The line with white526

circles corresponds to average values. Correlogram for the detrended step lengths (d) and527

the trend (e). The trend corresponds to the predictions of the linear model with step528

length as response variable and 9 Moran’s eigenvectors maps as explanatory variables;529

detrended data correspond to the residuals of this model.530

Fig. 3: Using the chord distance to measure the autocorrelation for the turning angles.531

(a) A path of 4 steps encompasses 3 successive turning angles ρ1, ρ2 and ρ3. (b) Small532

chord length corresponds to positive association between successive angles ρ1 and ρ2 and533

large chord length corresponds to ”negative association” between successive angles ρ2 and534

ρ3.535
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