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Studies of animal movements has been popularized for many large and shy species by the increasing use of radio telemetry methods (VHF and GPS technologies). Data are collected with high sampling frequency, and consist of successive observations of the position of an individual animal. The statistical analysis of such data poses several problems due to the lack of independence of successive observations. However, the statistical description of the temporal autocorrelation between successive steps is rarely performed by ecologists studying the patterns of animals movements. The aim of this paper is to warn ecologists against the consequences of failing to consider this aspect. We discuss the various issues related to analysing autocorrelated data, and show how the exploratory analysis of autocorrelation can both reveal important biological insights, and help to improve the accuracy of movement models. We suggest some tools that can be used to measure, test and adjust for temporal autocorrelation.

A short ecological illustration is presented.

Introduction

Radio telemetry has become increasingly popular as a convenient means of studying movements of wildlife [START_REF] Dunn | Analysis of radio telemetry data in studies of home range[END_REF] and it can be used to collect data that consist of successive observations of the locations of an individual animal. The recent development of GPS technology makes it possible to collect relocation data automatically, at short, regular intervals. However, as the time interval decreases, the dependence between successive observations usually increases so that the problem of autocorrelation must be taken into considered in the analysis. Autocorrelation can be defined as a property of random variables, which means that values from samples taken near to each other tend to be either more similar (positive autocorrelation) or less similar (negative autocorrelation) than would be expected from a random arrangement. This nearness can be defined in space (spatial autocorrelation), or in time (temporal autocorrelation). The main difference is that an observation is only influenced by past values in temporal autocorrelation whereas spatial dependence extends in all directions. Autocorrelation is often seen as an obstacle, as it interferes with standard statistical hypothesis testing [START_REF] Legendre | Spatial autocorrelation: trouble or new paradigm?[END_REF], and many approaches have been developed to eliminate it by restricting data prior to analysis. However, autocorrelation is often an intrinsic property of biological data, so that eliminating it could reduce the relevance of ecological studies. In the context of animal movement, which is by definition a non-independent phenomenon, De [START_REF] Solla | Eliminating autocorrelation reduces biological relevance of home range estimates[END_REF] summarized the situation clearly: Animals typically move in a non-random fashion, and thus ecologists are frequently faced with strongly autocorrelated data sets, particularly when frequent observations are collected using radiotelemetry. [START_REF] Solow | A note on the statistical properties of animal locations[END_REF] distinguished two approaches in the literature on animal movements: one focusing on relocations, and the other on the movements between relocations. The question of autocorrelation must be (and indeed has been) considered in different ways in these two approaches. Any temporal autocorrelation between the coordinates of successive relocations must be taken into account when the analysis is based on relocations. For instance, in the context of home range estimation, this problem has been discussed in a number of papers (e.g., [START_REF] Dunn | Analysis of radio telemetry data in studies of home range[END_REF]Gipson 1977, Swihart andSlade 1985a;b, De Solla et al. 1999), and so we will not consider it any further here. On the other hand, the analysis of movements between relocations raises the question of the temporal autocorrelation between successive steps (i.e. the displacement between two successive relocations). The development of models of realistic animal movement is a very active field of research at present [START_REF] Patterson | State-space models of individual animal movement[END_REF][START_REF] Schick | Understanding movement data and movement processes: current and emerging directions[END_REF]). The aim of these studies is to understand why, how and where animals move, and to see how this could affect the spatial dynamics at higher levels of organization (population, community, etc). Recent methodological developments have improved the ability of models to handle the biological complexity of animal movements [START_REF] Nathan | A movement ecology paradigm for unifying organismal movement research[END_REF], and to account for multiple behavior modes (e.g. searching, resting, etc), characteristics of landscape (e.g. patchiness) or environmental variations (e.g. spatial distribution of resources). The various internal (e.g. behavioral) or external (e.g. environmental) factors influencing organisms could induce temporal autocorrelation in movement data. For instance, autocorrelation in steps could be due to the animal's switching between different movement strategies. Hence, autocorrelation is usually considered as an emergent property in a modelling framework and its exploratory analysis is rarely performed by authors.

The interest of the empirical study of autocorrelation has been affirmed in the recent special issue of PNAS on movement ecology by [START_REF] Wittemyer | Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses[END_REF]. They stated that the role of autocorrelation, at different temporal scales, in the movement pathways of animals is an important understudied phenomenon that is critical for predictive modeling of population spatial properties. Following this idea, the aim of this paper is to demonstrate that movement ecology could benefit from a deeper exploratory analysis of the empirical data, with a special emphasis on temporal autocorrelation. We present the various problems linked to the analysis of autocorrelated data, and show how the study of autocorrelation can reveal important biological insights, help to develop new biological hypotheses, and thus make it possible to improve the accuracy of movement models. We suggest some tools that can be used to measure, test and adjust for temporal autocorrelation. An ecological illustration is presented.

The analysis of movements involves recording the path of an individual through space and time. Animal movement is a continuous process, but its observation using radio telemetry technologies leads to a discrete representation. The data gathered consist of a sequence of successive relocations (x i , y i ) of an individual collected at time i. Steps are defined as the displacement between two successive relocations. As this displacement is usually represented as a straight-line, a path is represented as a series of straight-lines. Following [START_REF] Marsh | The form and consequences of random walk movement models[END_REF], several descriptors [START_REF] Calenge | The concept of animals trajectories from a data analysis perspective[END_REF]) can be associated with each step to quantify animal movements (see Fig. 1). For example, the n-th step can be characterized by: its length (d n ) the increment in the X and Y directions (δx n and δy n ) the absolute angle between the step and the X direction (α n ) the relative (or turning) angle between the n-th step and the previous one (ρ n ) the squared net displacement after n consecutive steps (R n

2 )

The parameters d n and ρ n have been widely used since the early work of [START_REF] Siniff | A simulation model of animal movement patterns[END_REF], while R n 2 has been popularized by [START_REF] Kareiva | Analyzing insect movement as a correlated random walk[END_REF]. GPS collars are often programmed to collect regular data, so that we assume from here on that the time lag between two relocations is constant. Despite improvements in this technology, GPS telemetry can still result in missing data in the form of failed location attempts. If this happens, data are still considered to be regular, as the steps connecting a relocation to a missing value are missing, but still characterized by the same time interval as the observed steps (see [START_REF] Calenge | The concept of animals trajectories from a data analysis perspective[END_REF]. The presence of missing data can be due for example to the behaviour of the animal or to the habitat structure (e.g., [START_REF] Frair | Removing GPS collar bias in habitat selection studies[END_REF][START_REF] Graves | Understanding the causes of missed global positioning system telemetry fixes[END_REF][START_REF] Bourgoin | What determines global positioning system fix success when monitoring free-ranging mouflon?[END_REF]. It is then important to deal with missing observations when analysing movement data because their structure could be related to important biological variables and thus gives some information about movement characteristics. In this context, [START_REF] Calenge | The concept of animals trajectories from a data analysis perspective[END_REF] suggests that the analysis of the patterns of missing values should be a part of trajectory analysis (p. 36). As missing data are a key component of GPS data, we propose several procedures that have the ability to deal with them when analysing autocorrelation structures.

Illustration -Fig. 2a shows an example of a movement path. The data set contains the 336 relocations (extending over one week, with a recording interval of 30 minutes) of a female brown bear monitored using a GPS collar in July 2004 in Sweden.

3 Autocorrelation and the analysis of movement paths

Definition of theoretical models

Understanding how animals move is often based on a confrontation of the observed data with theoretical models. The observed distribution of some of the parameters defined above may be compared to the distribution expected under the assumption of the theoretical model. These comparisons could be performed using graphical tools (e.g., [START_REF] Kareiva | Analyzing insect movement as a correlated random walk[END_REF] or traditional testing procedures. The random walk (RW) and the correlated random walk (CRW) are the models most often used (e.g., [START_REF] Marsh | The form and consequences of random walk movement models[END_REF].

RW corresponds to a succession of random steps, whereas the CRW model assumes that the movement of animals exhibits directional persistence ("correlated"). In a mathematical context, the CRW model differs from the RW model, because it assumes a unimodal and symmetric distribution (about zero) of the turning angles whereas the RW model assumes a uniform distribution. Both models also require the independence of successive turning angles and step lengths. Turchin (1998, p. 135) stated that CRW formulation assumes that the move durations, speeds, and turning angles are not serially correlated, an assumption that should be tested statistically. This advice has sometimes been followed in the literature (e.g., [START_REF] Bergman | Caribou movement as a correlated random walk[END_REF][START_REF] Nolet | Search paths of swans foraging on spatially autocorrelated tubers[END_REF][START_REF] Revilla | Effects of matrix heterogeneity on animal dispersal: from individual behavior to metapopulation-level parameters[END_REF][START_REF] Bailey | Quantitative analysis of the bottlenose dolphin movement patterns and their relationship with foraging[END_REF][START_REF] Dumont | Random movement pattern of the sea urchin Strongylocentrotus droebachiensis[END_REF]. For instance, [START_REF] Root | The search of resources by cabbage butterflies (Pieris rapae): Ecological consequences and adaptive significance of markovian movements in a patchy environment[END_REF] tested the autocorrelation for distances and turning angles using Pearson's correlation coefficients. If no tests of independence are performed, the probability that a model (e.g. RW, CRW)

will be rejected when it is false (i.e. statistical power) is lower than expected, because it is assumed a priori that independence assumptions are met.

3.2 Computation of mean squared net displacement and related tools [START_REF] Kareiva | Analyzing insect movement as a correlated random walk[END_REF] proposed an explicit formula of the expected mean squared net displacement E(R n 2 ) for (C)RW models. They insisted on the notion of independence of parameters (e.g. p. 235, the word "independent" is italicized) to obtain a correct derivation of E(R n 2 ). The algorithm proposed by [START_REF] Mcculloch | Analyzing discrete movement data as a correlated random walk[END_REF] to compute the variance in squared displacement V (R n 2 ) for a CRW, and the expected value of the ∆ statistic presented by [START_REF] Marsh | The form and consequences of random walk movement models[END_REF] to distinguish between the CRW and the biased random walk (BRW) models are also based on the assumption of independence of some parameters. Marsh and Jones (1988, p. 129) stated that the information given in their paper can be used to construct a simple test to distinguish between the two models but pointed out that we must, of course, have other reasons for restricting consideration to just these two types of model. One of these reasons is that the underlying assumptions of independence have been confirmed. In this context, using these tools without checking the independence of parameters (see e.g., [START_REF] Odendaal | Influence of host-plant density and male harassment on the distribution of female Euphydras anicia (Nymphalidae)[END_REF][START_REF] Firle | The influence of movement and resting behavior on the range of three carabid beetles[END_REF][START_REF] Morales | Scaling up animal movements in heterogeneous landscapes: the importance of behavior[END_REF] makes no sense.

Standard hypothesis tests on movement descriptors

The various descriptors (see the previous section) are routinely used in standard statistical procedures (e.g. ANOVA, t-test for linear descriptors; Rayleigh test of uniformity for angular descriptors) to test hypotheses concerning animal movements. Usually, these procedures require the independence of observations. If data are positively autocorrelated, classical tests are biased because computed statistics are too often declared significant under the null hypothesis [START_REF] Legendre | Spatial autocorrelation: trouble or new paradigm?[END_REF](Legendre , p. 1660)). Hence, the hypothesis of independence (i.e., absence of autocorrelation) should be tested and not rejected before using standard Testing for the independence of path descriptors is essential, and probably the first step that should be carried out when analyzing movement data. This can be done by means of several procedures.

Independence testing procedures

Several approaches have been used in the literature to test the independence of descriptors.

Among the different descriptors, angular data require a particular attention due to their nature and must be analyzed using appropriate circular statistics [START_REF] Cain | The analysis of angular data in ecological field strudies[END_REF]).

The autocorrelation function

In the literature, some authors [START_REF] Bergman | Caribou movement as a correlated random walk[END_REF][START_REF] Austin | Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator[END_REF][START_REF] Bailey | Quantitative analysis of the bottlenose dolphin movement patterns and their relationship with foraging[END_REF], following the recommendations of [START_REF] Turchin | Quantitative analysis of movement: measuring and modeling population redistribution in plants and animals[END_REF], used autocorrelation functions (ACF, Diggle 1990), a standard tool for the analysis of time series which consists of plot-ting the values of autocorrelation measured for different time lags against the corresponding lags. For a real-valued random variable X taking values x 1 , • • • , x N , the sample autocorrelation function for a given time lag h is:

ρ(h) = N -h i=1 z i • z i+h N i=1 z i 2 where z i = x i - 1 N N i=1 x i .
For a significance level α, we conclude that data are not independent if √ n| ρ(h)| exceeds the standard gaussian (1 -α 2 )-quantile. Note that the autocorrelation function for lag 1 (i.e. ρ(1)) is sufficient to test for independence [START_REF] Diggle | Time series: a biostatistical introduction[END_REF]). For the first order lag (i.e., h = 1), we have:

ρ(1) = N -1 i=1 z i • z i+1 N i=1 z i 2 = 1 - 1 2N σ2 z 2 1 + z 2 N + N -1 i=1 (z i -z i+1 ) 2 where σ2 = 1 N N i=1 z 2 i .
The foregoing equations allow us to link the ACF to the two methods generally used to measure the autocorrelation. The first method considers the products z i • z i+1 [START_REF] Wald | An exact test for randomness in the non-parametric case based on serial correlation[END_REF], while the second considers the local differences (z i+1 -z i ) 2 [START_REF] Von Neumann | The mean square successive difference[END_REF], von Neumann 1941). In this paper, we will focus on the second approach which has been implemented in the adehabitat package [START_REF] Calenge | The package "adehabitat" for the R software: a tool for the analysis of space and habitat use by animals[END_REF] for the R software.

ACF is not designed to handle missing data. Consequently, the previous testing procedure cannot be used for data sets with missing observations. Fortunately, similar tools have been developed in the context of spatial analysis, particularly the correlogram (Legendre and Legendre 1998, p. 714), which can easily be modified to accept missing values. In the following sections, we propose statistics and procedures adapted to movement data with missing observations for linear and angular descriptors.

Linear descriptors

Among the different linear descriptors, tests of independence are often used for the length of the step. Several authors have used the Pearson product-moment correlation coefficient and its associated t-test [START_REF] Nolet | Search paths of swans foraging on spatially autocorrelated tubers[END_REF][START_REF] Banks | Effects of plot vegetation diversity and spatial scale on Coccinella septempunctata movement in the absence of prey[END_REF][START_REF] Lancaster | Flow-and substratum-mediated movement by a stream insect[END_REF]) to evaluate the significance of the correlation of the variable of interest (e.g. the length) and a time-shifted version of itself. Others have preferred to use Spearman's rank correlation coefficient [START_REF] Cain | Long-term suppression of insect herbivores increases the production and growth of Solidago atissima rhizomes[END_REF][START_REF] Dumont | Random movement pattern of the sea urchin Strongylocentrotus droebachiensis[END_REF]) on the same data. As explained below, standard tests (including t-test) assume independence of observations, and this kind of approach violates this basic assumption. A correct way to test for independence is provided by permutation procedure. For a path with N steps, a measure of autocorrelation (von Neumann 1941, von Neumann et al. 1941) of step lengths is given by:

S L = 1 N d N -1 n=1 (d n+1 -d n ) 2
where N d = N -1 is equal to the number of summed squared differences. Our presentation focused on step lengths, but the method can also be used for other linear descriptors (e.g., δx n , δy n ). The principles of the randomization procedure are as follows:

(i). Compute a reference value of S L using original data.

(ii). Randomly permute the values of the step lengths, and recompute the S L statistic.

This operation is repeated a number of times (e.g., 999), to provide a set of values of the statistic under the null hypothesis of independence (H 0 ).

(iii). Compare the observed statistic to the distribution containing the values obtained by permutation as well as the reference value; compute the associated probability and take the appropriate statistical decision (reject or fail to reject the null hypothesis of independence).

Depending on the alternative hypothesis (H 1 ), the third step will involve different procedures. If the alternative hypothesis is the presence of positive autocorrelation, using a significance level equal to α, a p-value is estimated as: (number of random values equal to or less than the observed value + 1)/(number of permutations + 1). The null hypothesis is rejected if the p-value is below the threshold of significance (α). If the alternative hypothesis is the presence of negative autocorrelation, a p-value is estimated as: (number of random values equal to or greater than the observed value + 1)/(number of permutations + 1). Again, the null hypothesis is rejected if the p-value is below the threshold of significance (α). Lastly, if the alternative hypothesis is the presence of autocorrelation (positive or negative), a two-sided test can be used. The estimation of the p-value is equivalent to the second procedure described above, except that random and observed values are first centered (using the average of random values), and then transformed into their absolute values.

In the case of missing data, the computation of S L is restricted to the N d pairs of successive observed data (i.e. if d n is missing, (d n -d n-1 ) 2 and (d n+1 -d n ) 2 are not computed) and only observed data are permuted (i.e. the structure of the missing data is kept constant under permutation).

Our procedure can also be used to construct a correlogram by plotting the statistic

S L (h) = 1 N d(h) N -h n=1 (d n+h -d n ) 2
against the time lag h. The significance of S L (h) is assessed using the permutation procedure, as described above. Since tests are performed for various time lags, results could be corrected using a multiple adjustment method such as Bonferroni or Holm's sequential procedure [START_REF] Legendre | Numerical Ecology[END_REF].

Illustration -A correlogram (Fig. 2b) computed on the bear step length data indicated a significant positive autocorrelation for the three first lags, and also for several lags between 14 and 27 (7-13h30) and lag 43 (21h30). This seems to reflect a recurrent periodic structure related to diel movement patterns.

Angular descriptors

In the literature, angular autocorrelation has been analyzed using both qualitative and quantitative measurements [START_REF] Turchin | Quantitative analysis of movement: measuring and modeling population redistribution in plants and animals[END_REF]. There have been a few attempts to use quantitative measures: [START_REF] Lancaster | Flow-and substratum-mediated movement by a stream insect[END_REF] used the circular coefficient of correlation of [START_REF] Jammalamadaka | Topics in Circular Statistics[END_REF] while [START_REF] Nolet | Search paths of swans foraging on spatially autocorrelated tubers[END_REF] used the coefficient of [START_REF] Jupp | A general correlation coefficient for directional data and related regression problems[END_REF]. Tests based on qualitative measurements involve transforming angles as right (R) or left (L) deviations from the previous direction for turning angles, or from the X axis for absolute angles [START_REF] Cain | The analysis of angular data in ecological field strudies[END_REF]. Then one can use a runs test on the sequence of R and L (e.g., [START_REF] Bailey | Quantitative analysis of the bottlenose dolphin movement patterns and their relationship with foraging[END_REF]. An alternative approach is to construct the contingency table with the four possible values of successive steps (LL, RR, LR, RL) as entries. Independence is then tested using a χ 2 test with one degree of freedom (e.g., Cain et al. 1991, Banks and[START_REF] Banks | Effects of plot vegetation diversity and spatial scale on Coccinella septempunctata movement in the absence of prey[END_REF]. [START_REF] Schaeffer | Footedness in foraging muskoxen Ovibos moschatus[END_REF] transformed left and right deviations into 0 and 1, and then computed an ACF on this binary variable (see also [START_REF] Bergman | Caribou movement as a correlated random walk[END_REF]. Transforming angular data into qualitative information undoubtedly leads to a loss of information. Moreover, we do not think that the R-L transformation, which considers only two directions, is really suitable for the analysis of movement data. Indeed, if an animal moves in a given direction with slight deviations to the left and then to the right, this would lead to a negative association (LR) but we would assume a positive autocorrelation as the movement is always in the same main direction.

On the other hand, if an animal moves in given direction and then in the opposite with slight deviations to the left for both steps, this would lead to a positive association (LL) but we would assume a negative autocorrelation as the main direction has completely changed.

If we consider the turning angles, it seems natural to assume that positive autocorrelation means that the direction taken for the n-th step is similar to the previous one, while negative autocorrelation means that the direction of the n-th step is opposite to that of the previous step. Hence, it would be preferable to use a qualitative measurement that considers the four possible directions corresponding to different values of turning angles (Fig. 3): turn right (R, -π/2), turn left (L, π/2), go forwards (F, 0) or go backwards (B, π or -π). It makes sense to consider the sequences LL, RR, FF or BB as positive associations, and LR, RL, FB or BF as negative associations.

As an alternative, we propose to use a quantitative coefficient (the chord distance) to measure angular autocorrelation (Fig. 3b). Chord distance is low when two successive angles are similar. In the case of sequences LR, RL, FB or BF, the distance reaches its maximum, and is equal to 2. For a sequence of N turning angles, we propose measuring the autocorrelation as the sum of the squared chord distances:

S A = 1 N d N -1 n=1 (cos ρ n+1 -cos ρ n ) 2 + (sin ρ n+1 -sin ρ n ) 2 = 2 N d N -1 n=1 1 -cos(ρ n+1 -ρ n )
Like the linear descriptors, the angular autocorrelation can be tested using the permutation procedures described above. A correlogram can also be computed.

Illustration -Correlograms of absolute and turning angles computed on the bear data did not highlight any autocorrelation structure, and are not reported here.

Understanding autocorrelation and detrending

Autocorrelation is a very general property of ecological variables. Unfortunately, it is also an obstacle in ecological studies as it violates the basic assumptions of standard statistical hypothesis testing. Autocorrelation is ususally viewed as a form of bias, and a common procedure is to eliminate it before analysing the data by subsampling (Turchin 1998, p. 130). However, we do not think that subsampling of relocations or steps should be routinely used before the analysis of movement paths. The first reason for this is that computing some descriptors requires two relocations (e.g., distance) or two steps (turning angle), and in such circumstances, subsampling will reduce the accuracy of the estimates. The second reason is that autocorrelation is often the consequence of ecological processes. This is particularly true for long-time surveys obtained with GPS monitoring, for which the animal's "switching behaviour" is often responsible of the presence of autocorrelation. In some cases, this autocorrelation can be generated by a process unrelated to the focus issue (e.g., the mechanistic aspects of the locomotion process), which would justify eliminating it prior to the analysis. However, we stress that the preliminary analysis of the autocorrelation and identifying its causes are essential if we are to gain a better understanding of the patterns of animal movements. [START_REF] Legendre | Spatial autocorrelation: trouble or new paradigm?[END_REF] stated that spatial structures observed in ecological communities can arise from two independent processes. Environmental factors that influence species distributions are spatially structured and, as a result of an indirect process, communities of species are also spatially structured (induced spatial dependence). Spatial autocorrelation can also be created directly at the community level as a result of contagious biotic processes.

By analogy, two processes can be considered to be a potential cause of temporal autocorrelation of successive steps [START_REF] Martin | Importance of movement constraints in habitat selection studies[END_REF]. If movement parameters are dependent on local environmental conditions, then environmental variability can induce temporal autocorrelation of movement descriptors (Turchin 1998, p. 135). Here, "environment" is used in a very broad sense, and includes both abiotic (e.g., altitude) and biotic factors (e.g., distribution of preys and predators). Temporal autocorrelation can also be the consequence of internal (individual) processes (e.g., circadian activity). When the origins of autocorrelation have been identified, it can then be eliminated before carrying out the other analyses.

This requires tools to describe temporal patterns explicitly in order to detrend the data, and perform subsequent analyses on the residual (or detrended) data. Several methods exist to detrend time series including the variate difference method, Fourier series [START_REF] Wittemyer | Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses[END_REF] or harmonic regression (see for instance Legendre and Legendre 1998, Ch. 12 for details). Tools developed for the analysis of spatial autocorrelation (e.g., [START_REF] Dray | Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM)[END_REF] can also be useful. The reader could consult [START_REF] Frair | Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk[END_REF] for an example of detrending of animal movement data. Detrending of angular data is more complicated, and involves the use of circular regression methods (Fisher 1996, Ch. 6).

Illustration -The daily pattern of step lengths is represented in Fig. 2c, and is characterized by two peaks of activity corresponding to long step lengths. This circadian pattern with two peaks is common, and has been demonstrated for several species [START_REF] Aschoff | Circadian activity pattern with two peaks[END_REF]. Hence, this circadian pattern must be taken into account before attempting any other analysis of step lengths.

We modelled the temporal constraint as a linear graph with 336 nodes, and computed Moran's eigenvector maps [START_REF] Dray | Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM)[END_REF] for the associated weighting matrix. This approach can be used to construct a set of predictors in order to model an autocorrelated signal in ecological data [START_REF] Peres-Neto | A unified strategy for estimating and controlling spatial, temporal and phylogenetic autocorrelation in ecological models[END_REF]. Detrending was performed using the procedure proposed in [START_REF] Griffith | Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses[END_REF] with a significance level equal to 0.05. The correlogram computed on detrended data (Fig. 2d) demonstrated that the autocorrelation structure corresponding to the circadian rhythm has been removed. The correlogram for the trend (Fig. 2e) corresponds to a periodic pattern (the period is around 10-14h). The detrended data can then be used for subsequent analysis.

Concluding remarks

In these days of state-space and hierarchical Bayesian modelling [START_REF] Patterson | State-space models of individual animal movement[END_REF][START_REF] Schick | Understanding movement data and movement processes: current and emerging directions[END_REF], our approach may look rather old-fashioned. What is the point of data exploration when models of realistic movements are available? Answers to this question can be found in the old debate initiated by [START_REF] Tukey | Exploratory data analysis[END_REF][START_REF] Tukey | We need both exploratory and confirmatory[END_REF] about exploratory and confirmatory analyses. Data exploration allows one to extract what the data says, without any a priori hypothesis. It can be useful for generating new questions/ideas, improving the sampling design or guiding the choice of subsequent analyses. In the field of animal movement, autocorrelation is an important property of the data that could reveal information about how animals move. Patterns revealed by its exploratory analysis help to generate new hypotheses about the behavioral processes related to animal mobility. These hypotheses can then be tested by introducing new parameters into animal movement models. For instance, our example suggests that a model integrating the time of the day (e.g. [START_REF] Preisler | Modeling animal movements using stochastic differential equations[END_REF]) should be used to analyse brown bear movement data. Exploratory analysis and modelling of animal movements should therefore not be opposed, but rather considered as two complementary approaches. The reader could consult Brillinger et al.

(2004) for a nice example of an exploratory analysis of animal movement data.

We hope that this paper will help to improve the way we tackle the question of auto-correlation in animal movement analysis. An appropriate approach would consist of the following steps: measure and test autocorrelation using appropriate procedures;

if autocorrelation is detected, its structure must be studied as it can reflect ecological processes of interest.

Then, depending on the type of subsequent analysis, one can:

detrend the data so that autocorrelation (corresponding to processes analyzed in the previous step) is eliminated; use detrended data in the analysis. Standard statistical tools can now be used, as the observations are now independent.

or incorporate new parameters in movement models that account for the hypothesised processes.

In order to help ecologists, functions that can be used to store and manage animal movement paths and to measure and test autocorrelation have been included in the adehabitat package [START_REF] Calenge | The package "adehabitat" for the R software: a tool for the analysis of space and habitat use by animals[END_REF] for the R software. The reader could consult [START_REF] Calenge | The concept of animals trajectories from a data analysis perspective[END_REF] for more details about these functions. Appendix 1 provides a complete example corresponding to the brown bear illustration used in this paper. (x n+1 ,y n+1 ) q q q q q q Fig. 1 536 Dray et al.
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Fig. 1 :

 1 Fig.1: Parameters used to describe steps. The n-th step is associated to its length (d n ), the increments in the X and Y directions (δx n and δy n ), the absolute angle (α n ), the turning angle (ρ n ) and the squared net displacement (R n 2 ).

Fig. 2 :

 2 Fig. 2: Analysis of brown bear data. (a) representation of the movement path. (b) correlogram of step lengths (S L (h)). The gray area corresponds to a 95% confidence interval obtained by permutation procedure (999 permutations). The gray dotted line depicts the median of the values of the statistic computed on permuted data. Empty circles represent non-significant autocorrelation, while black squares correspond to significant values. (c) Boxplots of the daily pattern of step lengths. The line with white circles corresponds to average values. Correlogram for the detrended step lengths (d) and the trend (e). The trend corresponds to the predictions of the linear model with step length as response variable and 9 Moran's eigenvectors maps as explanatory variables; detrended data correspond to the residuals of this model.

Fig. 3 :

 3 Fig.3: Using the chord distance to measure the autocorrelation for the turning angles.(a) A path of 4 steps encompasses 3 successive turning angles ρ 1 , ρ 2 and ρ 3 . (b) Small chord length corresponds to positive association between successive angles ρ 1 and ρ 2 and large chord length corresponds to "negative association" between successive angles ρ 2 and ρ 3 .

  Fig.2

  In his note on the analysis of angular data,[START_REF] Cain | The analysis of angular data in ecological field strudies[END_REF]Cain ( , p. 1542) stated that statistical tests[...] are based on the assumption that observed angles are independent, a condition that may not be satisfied when multiple angles are recorded from a single individual. He conducted a survey of the literature and showed that independence tests are rarely performed before hypothesis tests on angular data, and concluded that a lack of independence among successive angles not only violated hypothesis test assumptions, it also has important movement consequences: organisms that alternate right and left turns, for example, will
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displace farther than those whose turning angles are independent. A short review of the recent literature demonstrated that some authors did test independence (e.g.,

Fortin et al. 2005, Bailey and[START_REF] Bailey | Quantitative analysis of the bottlenose dolphin movement patterns and their relationship with foraging[END_REF]

, but many others did not check the independence assumptions before carrying out standard hypothesis tests (e.g.,

[START_REF] Bowne | Effects of landscape spatial structure on movement patterns of the hispid cotton rat (Sigmodon hispidus)[END_REF][START_REF] Cardona | Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys[END_REF][START_REF] Lorch | Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations[END_REF][START_REF] Parks | Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay[END_REF]

). More surprisingly, several authors (e.g.,

[START_REF] Bergman | Caribou movement as a correlated random walk[END_REF][START_REF] Austin | Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator[END_REF][START_REF] Lancaster | Flow-and substratum-mediated movement by a stream insect[END_REF]

) performed independence tests (usually to check CRW assumptions), rejected the hypothesis of independence and then used wrongly standard tests on autocorrelated data.
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