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Pointwise Regularity of Fitness Landscapes
and the Performance of a Simple ES

Evelyne Lutton and Jacques Lévy Véhel

Abstract— We present a theoretical and experimental analysis ~ While it seems clear that local regularity has a major
of the influence of the pointwise irregularity of the fithess impact on difficulty for EA, it is not however the only
function on the behavior of an (1+1)ES. Previous work on  taci0r and other sources like “epistasy” have to be taken

this subject suggests that the performance of an EA strongly . . - . .
depends on the irregularity of the fithess function. Severairreg- into account [15]. The relationship between irregularityla

ularity measures have been derived for discrete search spas, €Ppistasy has not yet been fully investigated. It seems hewev
in order to numerically characterize this type of difficulty probable that these two sources are of different nature
for EA. These c'haracterlgatlons are mainly based on H|del’ (“epistasy is not enough” [14]): some irregular functions
exponents. Previous studies used however a global charadte are weakly epistatic (for examplg(zy, ..., z,,) = 71z eixi),

zation of fitness regularity (the global Hilder exponent), with hil lar functi b ‘static (lik
experimental validations being conducted on test functiog with while some regular functions may be very epistatic (like

uniform regularity. This is extended here in two ways: Resuls f(xy, ) = Hiv ;).

are now stated fo_r continl_Jou_'s searc_h spaces, and_ _pointwise Another factor is temporal noise [1], [2]. We do not
instead of global imegularity is considered. In addition, we = hqider in this paper temporal variations. All functions
present a way to modify the genetic topology to accommodate . . . . .
for variable regularity: The mutation radius, which controls considered in this paper are fixed, and remain the same
the size of the neighbourhood of a point, is allowed to vary during the EA evolution. Regularity variations are consti

according to the pointwise irregularity of the fitness funcion.  only with respect to the spatial parameters.

These results are explained through a simple theoretical alysis . I . .
which gives a relation between the pointwise Eider exponent Our work is a contribution to the topic of controlled fitness

and the optimal mutation radius. Several questions conneetl landscapes, which has been largely developed in the EA
to on-line measurements and usage of regularity in EAs are community (NK-landscapes and tunable fithess landscapes

raised. [14], (1,))-ES on simple function [3]), and on which the
behaviour of some simple EA engines are easier to analyse.

Additionally, fithess landscapes involve genetic engine

Intuition, experiments, and theory tends to prove thatharacteristics, that set a specific topology on the dedimiti
irregularity is a major cause of convergence pathology fadomain: For a same fitness function, two different EA en-
optimisation algorithms in general, and for EAs in partioul gines (for example with or without crossover) may have very
Previous work on this topic have established a relatiogifferent behaviour. The terms “fitness landscape” invslve
between a measure of the fitness regularity (the globalétdldooth the profile of the fitness function on its definition
exponent of the fitness function) and a deception measugemain and the search paths produced by the genetic opera-
[10], [7]. Experimental analyses on Weierstrass functionsors. As a consequence, useful quantities for modeling EAs
have confirmed the theoretical findings. should be measured with respect to this “genetic” topology.

Weierstrass functions are interesting test functions, #&or regularity measurements the same holds: Irregularity
they have a controlled regularity and provide really difficu characteristics must be measured with respect to an un-
functions to be tested. Additionnally, the regularity of aderlying measure based on the genetic operators effect. In
Weierstrass function is uniform over its domain. If this isother terms, the neighbourhood system that serves as a basis
convenient for understanding the behaviour of an EA ifor the calculation of Holder exponents should be linked
controlled environment, this is a limitation in practic®éal with transition probabilities via the genetic operatorse W
world” fitness functions that one encounters in usual EAhould thus talk about fitness landscape irregularityeaubt
applications have variable regularity. of fitness function irregularity. A first attempt has been elon

It seems intuitive that the global results obtained pren this direction in [7] for discrete fithess landscapes. The
viously should apply locally: More precisely, one expectpresent work deals with continuous functions.
that an EA should more easily locate a maximum lying The paper is organized as follows: Section Il recalls the
in a smooth region than a maximum lying in an irrégupasic definitions of Holder global and pointwise exponents
lar neighbourhood. This intuition was confirmed trough a’section 11l proposes an analysis that relates the pointwise
experimental analysis, [11]. In that purpose, functionwi yegylarity of a fitness function with the mutation radius of a
controlled but variable regularity have been built. (1+1)ES. Section IV recalls the test-functions built in [11].

INRIA - Complex Team, 78153 Le Chesnay Cedex FranceThe EXpe.rimental anal)./Sis of t.he proposed aqlaptive mutatio
http://conplex.inri a.fr’, evelyne.lutton@inria.fr, jacqt]es.levy- Scheme is presented in section V. Conclusions and future
vehel@inria.fr work are detailed in section VI.

I. INTRODUCTION AND MOTIVATION



II. GLOBAL AND POINTWISE REGULARITY sphere and smooth fithess models [3]. While the calculation
Holder regularity analysis is an important topic in vasou of this qugntity is difficult_ for complex fitness 'functiona,et
fields such as partial differential equations, fractal getgn COMPputation of a bound is possible for mutation-only ES on
and signallimage processing ([8]). Holder regularitywts the class of functions described in section Il
to quantify in a precise way both the pointwise and global L€t us consider aniform mutation with radiuss. The
regularity. For our purposes, the following notions will beMean fitness after mutation is equal to:

relevant. To simplify notations, we assume that our signals , 1 [rto
are nowhere differentiable. Generalization to other diggna f'(@) = %/ f(t)at (2)
only requires simple modifications. ] e .
Let a € (0,1), andQ C R. One says that a functiof Th_e .globallquantlty that Was,used in [10] as a measure of
defined onQ belongs toC'® () if: EA-difficulty is Af = max (| f (x)_ - f(x)|_). For discrete
search spaces and irregular functions, a link with the dloba
30 Vryeq: |f(@) = f)l <c Holder exponent and the parameters of the GA was exhibited.

|z —yl* Since we consider now functions with varying pointwise

The supremum of the values such thatf belongs to regularity, it is natural to consider a localized measure of
C(Q) is called the global Holder exponent ¢fin Q. From  difficulty, i.e. Af(z) := [f'(z) — f(x)|. Using the pointwise
the definition, it is clear that smaller values @fcorrespond H0lder a(z) exponent of f at z, this quantity may be

to more irregular functions. estimated at any given point as follows:
A pointwise characterization may be obtained as follows:
Let » € R, ands be a real number wit) < s < 1. A 1 [rte _
function f : R — R belongs toC*(z) if there existd > 0 Af@) =< 2/, . |£(#) = f(w)ldt
and a constant’, such that C z+o
. < = |t — x|*@qt
ly—z| <= [fly) - f@) < Caly—=[>. (1) 20 Jo—o

The pointwise Hlder exponentof f atz, denoted by (x),
is defined to besup{s: f € C*(x)}. C, o)

Thus Af(x) < 1

Since o(z) is defined at each point, we may associate _ a(x_)_jL o
to f the functionz — a(z) which measures the variation 1hiS bound suggests that the difficulty varies in a non-
of its regularity with location. Section IV allows one to linéar way with the pointwise regularity of the function.rFo
get an intuitive feeling of Holder exponents with graphdnstance, for a fixed < 1, it decreases when increases:
of functions with prescribed pointwise regularity. Hélde W|tr_1 small enough mutation radii, smoother functions are
regularity characterization is widely used in fractal gsid  €asier to handle.
because it has direct interpretations both mathematically A mutation radius varying according to the pointwise
and in applications. It has been shown for instance that yeqy|arity
indeed corresponds to the auditive perception of smooghnes
for voice signals. Similarly, simply computing the Holder
exponent at each point of an image already gives a good idt%rg'_e
of its structure, as for instance its edges [8]. More gethgral !
in many applications, it is desirable to model, synthesize o Co®)
process signals which are highly irregular, and for whidh th al@) +1

relevant information lies in the singularities more tharha

amplitude. In such cases, the study of the Hélder function Where X is a user-defined constant. This leads to the follow-
of obvious interest. ing law of adaptivity of the mutation radius with respect to

xX.

A natural idea is then to choose a location-dependent
o(x), tuned so as to obtain constaftf(x) along the
ctory. In other words, we require that:

=K

I1l. POINTWISE HOLDER REGULARITY AND EAS )
A. Bounding the “expected fitness progress” o(z) = (K(Oé(ﬂ?) + 1)) () 3)
An interesting quantity for the analysis EA behaviour is the Ca
expected fitness that can be obtained after the applicafion o Note that the dependency of with respect toa is not
genetic operators. This quantifyy, called “adjusted fitness” trivial. In particular, according to the value of the ratio
by Goldberg [5], [6], is defined on each point of the searck-, the mutation radius may be an increasirgg(when
domain. In other words, it is what can be expected as afitneé% < 0.8) or decreasingg.g. when C% > 1) function of
value from the current point using the genetic operators. the regularity on0, 1] (the admissible range of for a non-
For continuous search space, this quantity is related to thdferentiable function).
expected progress in one step of @ 1)ES or an (1 + In practice, using (3) to tune the value @frequires the
A)ES. Itis used as a basis for convergence speed analysis computation of bothy(z) andC, at each pointe. This is a



delicate point. A precise estimate would necessitate kmgwi  Figure 1 displays a generalized Weierstrass function with
the value off at finely sampled points, which is of courseh(z) = x on (0,1). One can clearly see the local regularity
not available in applications. We remark however that aimcreasing along the graph. However, an additional fedture
initial rough estimation is already sufficient for our pusgo present: The local oscillation is large around 0, and dee®a
This estimation may be refined as the algorithm proceedss x increases. It is important to note that the variation of
We thus propose the following procedure: For each point the local oscillation is independent from the evolution of
where the mutation will be applied, we compute the value af(z). This particular behavior oW} 5, is a nuisance in our
the fitness at all points; in a small neighbourhood around case: Since we want to focus on the sensitivity of the EA to
From these values, an estimate of the coyplg, a(z)) will  pointwise regularity, we need to get rid of other sources of
be obtained as explained below. Equation (3) is then used tariations, that would perturb our study. We thus deal with a
computes. As the number of generations increases, momnodified version ofGW, ;, where the local oscillations are
points will be investigated, and the estimatéd,,a(xz)) normalized. This is explained in details below.

will get more precise. In particular, since the algorithm is
supposed to visit more often regions of high fitness, the 1
precision will increase preferably exactly at those poimes

are most interested in: The best estimates will be obtained
around maxima off.

To estimate(C,, a(x)) from the values off in a neigh-
bourhood of size of x, we proceed as follows: Assume one
knows f(x;) for all z; such thatlz — x;| < . We compute
the oscillations oscof f defined as:

Generalized Weierstrass Function
T T T

5

0sG, = sup  f(z;)— inf  f(@), 0
wilw—wi| <p witle—i|<p
for p = 1/n,2/n,...,e, wherel/n is the sampling step.
The exponenty(z) and the constanf’, are then obtained
as the slope and the intercept with the ordinate axis of the
linear least square regression of the ve¢iog(0sg,)), with 0 o1 02 03 04 05 06 07 08 09 1

respect to(log(p)),.

IV. TEST FUNCTIONS WITH CONTROLLED POINTWISE
REGULARITY

A. Weierstrass function B. Test functions

In order to precisely and finely investigate the impact of Two test functions have been built with identical features
pointwise regularity on the behavior of an EA, we con£xcept for the pointwise_ regularity profile. For obvious
structed test functions with prescribed Holder expon&m.[ reasons, w;?thave colnstr?me(t:i tge Iutrgctlons to havetihe same
To make sure that no other factor come into play and thdgaxmur? Lnezs value ocge a i € sa:‘jnel pOih be h
interfere with the analysis, these functions have beer ipuil center 0 the domain), an & simiiarunderlying smoot
the following way. (qugdratlc) componen_t. The_lrr_egularlty is considered as a

The basis is a generalized Weierstrass function, which''SY local perturbation of limited amplitude.

provides a convenient way to contr@{z). Let us first recall The . generalized Weierstrass function is oscnlat!on-
the definition of the usual Weierstrass function normalized as follows. The local mean value and maximal

absolute deviation from the mean are computed in a neigh-

Fig. 1. Generalized Weierstrass function witfr) = z.

Wi n(z) = 3372, 0~ sin(b'z) bourhood of widthe around each point of the search space
with b >2and0 < h < 1 [~0.5,0.5]:
The parameteh controls the regularity: The global Holder
exponent ofi; ;, on, e.g.,[0, 1], is equal toh. In addition, pe(z) = 1 Z CWo.p () 4)
a(z) = h for all = ([4]). Weierstrass functions are very wii|es—| <e
irregular for small values of,, and become smoother as De(z) = max  |GWin (@) — pe(2)| (5)
tends to 1. zii|w—z|<e ’
Generalized Weierstrass functions are defined as follows: where N is the number of pointsz; in the
GWy () = S20° b= M@ sin(bix) e—rjeighbourhoo.d Qf xz. The normalised g.eneralized
with b > 2 and0 < h(z) < 1 \é\)/elertrass function is then (dotted curves on figures 2 and

Providedh is differentiable, the pointwise Holder exponent
of GW, p, is h(x) at eachz. ’ D (z
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f(x) = 2-4*x*x + C*W, (x)

1 1 1 1 1 1
-0.4 -0.2 0 0.2 0.4

Fig. 2. N(x): The “n” regularity profile function.

25 T T T T
h(x)=-_

Wh(x) -
f(x) = 2-4*x*x + C*W,,(x)

1 1 1 1 1 1
-0.4 -0.2 0 0.2 0.4

Fig. 3. U(x): The “u” profile regularity function.

The fitness function is finally defined as the smooth trend In the experiments, we consider two profiles:
plus the noisy component with controlled irregularity. #sh 1) Favourable case : irregular areas of the function

the following form: have a low fitness(Figure2)
flx) =2 —42® — [NW;p(2)] h(z)=0.9 if ze[-02,0.2]
The noisy component is included as a local perturbation h(z) =0.1 else
gof small amplitude) that isubtractedto the smopth trend, 2) Unfavourable case : the most irregular points are
in order to be sure to get the same global maximum &at located around the global maximum (Figure3)
0, with the same fitness target value Disince NW} ,(z) )
always equal at z = 0, whateverh). Additionally, each h(z) =01 if z€[-0.2,0.2]

local maximum is located on the smooth trehe- 422 h(z) =0.9 else



0.26

Note that bothh functions are not differentiable at0.2.
At all other points in[—0.5,0.5], however,h is smooth,
and the pointwise Holder exponent of our fithess function -2 f
is indeed equal té(z).

Sigma

V. EXPERIMENTAL ANALYSIS

The analysis in this section aims at evaluating the effi- > [
ciency of the adaptive sigma mutation radius of equation (3)
on the test function& (z) and N (z) defined in section IV. In oz
that view, two (1+1)ES have been compared: One with fixed
radius mutation (referred to as ES) and one with adaptiveo..: -
radius (referred to as ESadapt). Statistics have been done o

100 runs for each parameter setup. 0.2 S S R S S
. . . . -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
As a preliminary experiment, we check thét(z) is
intrinsically more difficult to optimize thanV(z). This is Fig. 5. Sigma profile for N(x) over the search spded.5,0.5].

assessed through a pure random search and is illustrated:s
on figure 4. This result comes as a confirmation to our
experiments in [11]. 025 L
Considering the performance of the random search, it
has been decided to compare the efficiency of the (1+1)ES ,, |
at early stages of the search, i.e. with small numbers of
evaluations (10 or 20). Longer runs are not interesting, as |
all algorithms provide fithess results over 1.99. o

Sigma

Fig. 6. Sigma profile for U(x) over the search spged.5,0.5].

respectively the mutation radius profiles for thé and U
functions based on these parameters settings.

Let us now move to the tuning of for ES. Recall that
1955 o o0 150 o 250 S0 our aim is to compare the efficiency of ES and ESadapt. As
there is no obvious way to decide what the optimdbr ES
Fig. 4. Mean results (100 runs) of a pure random search on&i@)N(x):  js, and in order to perform a fair comparison, we chose to let
Best fitness (ordinateys number of trials (abscissa). o vary. More precisely, we have run the experiments on ES
for values ofo ranging in a given interval: Curves 7 to 12
A delicate point of the experimentation is the tuning oShow the average best fitness values obtained with ES when
either the fixedr (for ES) or then(z), C,, andK parameters o varies betwee.001 and0.1. The upper bound.1 was
(for ESadapt). chosen in view of the fact that the behaviour of a mutation-
Let us first consider the case of ESadapt. We have fixédly-(1 + 1)ES on the search space-0.5,0.5] becomes
K = 0.1. This is a reasonable choice in view of the facfoughly equivalent to a pure random search algorithm for
that K represents the expected mean fitness variation fé¥ger values ob.
a mutation. As explained above,(x) and C, should be In order to get a meaningful comparison between ES and
estimated at each point, using a local sampling. HowevetSadapt, we define a “mean mutation radius” for ESadapt:
our primary aim in this work is to assess the ideal gaiffhis is simply computed as the averageadfr), as given
entailed by using the adaptive rule (3) fer In order to get by equation (3), over alk in [—0.5,0.5]. Since this mean
rid of estimation errors, we have used the known theroreticenutation radius has no reason to range in the same interval
value h(zx) for a(z). As for C,, it has been experimentally as the fixeds of ES, we multiply eachr(x) by a constant
found to be roughly constant for botti(x) and N(z), oo so that the mean mutation radius also takes all values
and approximately equal t0.15. Figures 5 and 6 give in [0.001,0.1]. This rescaling ensures a fair comparison




2

between the two procedures.
Figures 7 to 12 present the best average fithess obtained.. |
after 10, 20 and 50 generation for both algorithms on the
functionsU and N as a function ob, i.e. the fixed mutation 1.9
radius for ES, and the mean mutation radius for ESadapt.

——————— ESadapt

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Fig. 9. Result of a 20 generations (1+1)ES on N(x). Mean bé&stds
(ordinate)vs o (for ES) or mearv (for ESadapt) (abscissa).

2

ES
——————— ESadapt

Fig. 7. Result of a 10 generations (1+1)ES on N(x). Mean béseds
(ordinate)vs o (for ES) or mearv (for ESadapt) (abscissa). 1.85
2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Fig. 10. Result of a 20 generations (1+1)ES on U(x). Mean fgsss
(ordinate)vs o (for ES) or mearv (for ESadapt) (abscissa).

16l : = : . — ) experimental analysis in [11]. In addition, we have pro-

' ' ‘ . ‘ h posed a uniform mutation operator with adaptive radius that
Fig. 8. Result of a 10 generations (1+1)ES on U(x). Mean besess takes into account the local regularity in an (1+1)ES. Our
(ordinate)vs o (for ES) or mearv (for ESadapt) (abscissa). experiments support the claim that the adaptive scheme is
more efficient, and less sensitive to local regularity \téoies.

The advantage of ESadapt on ES is particularly clear druture work on this topic will focus on the following aspects
the 10 and 20 generations runs. For each optimal tuninge From a theoretical viewpoint, we will study the exten-
of o, the average best fitness of ESadapt is better that the sion of this adaptive scheme to Gaussian mutation (i.e.
one of ES. As said above, the difference between the two the classical mutation operator for (1+1)ES). Extension
methods (and also with a pure random search) is less clear Of this analysis to crossover operators seems to be much
for longer runs, due to the small size of the search space. more difficult to investigate.

Finally, a striking difference between the behaviours of ES « From an applicative viewpoint, an estimation routine for

and ESadapt on the favourabi¥gz) and unfavourablé/ (z) C, can be easily embedded in(a+ \) ES with almost
cases is visible on figures 13 and 14: At the optimdtight no loss of computation time. Tests wil be performed in
of figure 13 and near = 0.05 on figure 14), the simple the future. The design of an efficient on-line estimation
ES has worse performances on fiér) function, while the of the irregularity parameteré’, and a(z) inside a
performances remain the same for the adaptive strategy. (1, A) or (u+ A) will also be investigated.

This new regularity adaptive scheme should be also
compared with other adaptive schemes and auto-adaptive

This work is an extension of the results in [10] to theschemes. Each scheme has its proprer balance of calculation
continuous case. Our results are also coherent with tlwest versus efficiency. An experimental analysis will be

VI. CONCLUSION AND FUTURE WORK



ES
——————— ESadapt

Fig. 11. Result of a 50 generations (1+1)ES on N(x). Mean figstss
(ordinate)vs o (for ES) or mearv (for ESadapt) (abscissa).

ES
——————— ESadapt

Fig. 12. Result of a 50 generations (1+1)ES on U(x). Mean figstss
(ordinate)vs o (for ES) or mearv (for ESadapt) (abscissa).

Fig.

13. Comparaison of U(x) and N(x) for the plain (1+1)ES, 10

generation. Mean best fithess (ordinags)o (abscissa).

Fig. 14.

Comparaison of U(x) and N(x) for the (1+1)ES) withapted

mutation radius, in 10 generations. Mean best fitness (argrvs mean
mutation radius (abscissa).

performed in order to estimate the practical efficiency af ou

adaptive scheme in the style of [13].
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