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Abstract

Multifractional Brownian motion is an extension of the well-known

fractional Brownian motion where the Holder regularity is allowed to vary
along the paths. In this paper, two kind of multi-parameter extensions
of mBm are studied: omne is isotropic while the other is not. For each of
these processes, a moving average representation, a harmonizable repre-
sentation, and the covariance structure are given.
The Holder regularity is then studied. In particular, the case of an ir-
regular exponent function H is investigated. In this situation, the almost
sure pointwise and local Holder exponents of the multi-parameter mBm
are proved to be equal to the correspondent exponents of H. Eventually,
a local asymptotic self-similarity property is proved. The limit process
can be another process than fBm.

AMS classification: 62 G 05, 60 G 15, 60G 17, 60 G 18
Key words: fractional Brownian motion, Gaussian processes, Holder regu-
larity, local asymptotic self-similarity, multi-parameter processes

1 Introduction

In many applications, fractional Brownian motion (fBm) seems to fit very well
to random phenomena. Recall that it can be defined by one of the four following
properties. Let H € (0,1) (H is sometimes called the Hurst parameter).

e B is a centered Gaussian process such that

Vs,t € Ry; E [BIYB] = = [*7 + 27 — |t — s|?7]

DO | =



e the process B such that

Vt€R+; BtI{:/

— 00

0

[(t )% (—u)H—%] W(du)+ / (t—u) =% W(du)

0

is a fBm,

e the process B such that

it§_1

Vt € Ry; BY :/ T W(de)

Rg[E
is a fBm,

e B is the unique self-similar Gaussian process with stationary increments.

Its efficiency has already been shown in simulation of traffic on Internet or
in finance. This induced some recent progress such as stochastic integration
against fBm.

However, the main limitation of fBm is that the Holder regularity is constant
along the paths.

Multifractional Brownian motion (mBm) has been independently introduced in
[4] and [13]. This process is a generalization of fractional Brownian motion
where the Hurst parameter H is substituted by a function t — H(t). As a
consequence the Holder exponent is allowed to vary along trajectories.

The different definitions by the two groups of authors provided two different
representations of mBm.

Peltier and Levy-Vehel ([13]) defined the mBm from the moving average
definition of the fractional Brownian motion

X, - /0 [(t _u)HO=% _ (_U)H@)—%] W(du) + /t(t — u)HO=2 W(du)
e 0

where t — H(t) is a Holder function.
Benassi, Jaffard and Roux ([4]) defined the mBm from the harmonizable
representation of the fBm

ztE _ 1 R
Xy = W(dg)
/ r ¢

These two definitions were proved to be equivalent up to a multiplicative
deterministic function ([6]).

Moreover, in [3] the covariance function of this Gaussian process has been
proved to be

E[X,X,] = D (H(s), H(#)) [|s| 10O 4 [y HEIHHO _ g g HOI+AO

where D is a known deterministic function.

The goal of this paper is to study some multi-parameter extension of the mul-
tifractional Brownian motion, ie a stochastic process indexed by Rf , which is
an mBm when N = 1. One extension has already been considered in [4].

2D extension of fractional Brownian motion has been already used in various
applications such as underwater terrain modeling ([14]). It may be more real-
istic to allow local regularity to vary at each point : our extension of mBm in
R? may be used for this kind of application.



2 Multi-parameter extension of the fractional
Brownian motion

Since multifractional Brownian motion is an extension of fractional Brownian
motion, we start with a review of the existing extensions of fBm. Most of the
results in this section are well-known, but we give new proofs based only on the
covariance functions.

In the same way as Brownian motion has two main multi-parameter ex-
tensions: Levy Brownian motion and Brownian sheet, two different multi-
parameter extensions of fractional Brownian motion have been defined.

2.1 Levy fractional Brownian motion
The Levy fractional Brownian motion is defined to be a centered Gaussian

process of covariance function

E[X, X = = [IIsIP2 + [t — ||t — s)|*#] (1)

DN | =

There are several definitions of this process by its trajectories. Among these,
it can be defined as integral against white noise. Lindstrom stated the following
(see [9]).

Proposition 1 The process defined by
o= [ fie= ¥ — ug-¥] widw )
RN

is a Levy fractional Brownian motion up to a multiplicative constant.

The harmonizable representation of fractional Brownian motion can also be
generalized.

Proposition 2 The process defined by

iWtg) _1 .
X, = /R < = L) (3)

N
€

where W is the Fourier transform of white noise in RY,
is a Levy fractional Brownian motion up to a multiplicative constant.

Proof As will be done for multifractional Brownian field, the Fourier trans-
form of the kernel of representation (2) could be directly computed. But as this
representation defines a real centered Gaussian process, it is enough to show
that the covariance function has the form (1).

For all t € RY, let’s denote by f; the function & —

ei<hE>

Y and consider the
2

centered Gaussian process X = {Xt =W(f);te Rf}
First, we remark easily that for all ¢, almost surely, W( ft) € R.



The covariance function of the real process X is

E[X,X] = E [W(fs)W(ft)}
B (ei<s,£> _ 1) (e"'<t’5> - 1)
- [ R “*

ei<sft,§> _ ei<s75> _ €7i<t75> + 1
= /R PN &

Then we have to consider 3 integrals of the form fRN Eﬁ;%'df'

For t € RY fixed, consider the change of variables from RY into itself, u = ¢ €3)
where ¢ is the linear application which maps the canonic basis of R to the

orthonormal basis (61 = ”i—H,eg, . -,€N>-

1 — ei<t€> 1 — eilltlw
/ s 46 :/ sarn -du
ry €]l rylull

After the second change of variables

Then, we get

v =t].u=||t|Id.u
dv = |t||N.du

we get

1 — efi<t,¢> ||t||2H+N 1 — it
- dE = / ‘ .dv
/RN €N+ 11 Jre (ol 25+

Cn,z>0

Proceeding the same way for the 2 other integrals, we can conclude

E[X,Xi] = O [IsIPf + [ = ||t — 5[]

which shows that the process { L_W(f,),te Rf } is a Levy fractional

VON.H

Brownian motion. O

2.2 Fractional Brownian sheet

On the contrary to the Levy fractional Brownian motion, this process is not
isotropic. In particular, we can have different Hurst parameters in each of the
N directions.

The fractional Brownian sheet (fBs) is defined to be a centered Gaussian process
of covariance function

N
1 ) ) 2H,
BIXX] = [[ 5 (57 + 827 = |t — i) (4)
i=1

As in the isotropic case, this process has two different representations by its
trajectories.



Proposition 3 The process defined by
N

Xt:/RNH[|tz—u|H’ |t -]W(du)

i=1
is a fractional Brownian sheet, up to a multiplicative constant.

Remark 1 In [8], Pontier/Leger introduced another moving average represen-
tation of fractional Brownian sheet.

1 1

Xy = /RNilj—[l [(tz - Ui)fi_§ - (—uz)f_E W(du)

Proof This process is obviously Gaussian and centered. Thus, we only need
to show that its covariance function has the expected form. We compute

XXt]—H/ |si — u;

We can see that the factor corresponding to each i, is the covariance of a fBm
with Hurst parameter H; (or a Levy fractional Brownian motion with N = 1).
Then we have

S T e N [ i e PR L ] Y

N
EX.Xq] = [[ K, [l + [t — [t — s 2]
i=1
O

This process also has an harmonizable representation, using the Fourier
transform of the white noise in RY as in the previous paragraph.

Proposition 4 For all t = (t;), consider the function ¢ such that for all £ =

(fl)’

N

P(u) = H

gltmém 1
[
The process defined by

pitmém _ 1 .

W (dr) = /RN H Al

is a fractional Brownian sheet, up to a multiplicative constant.

Proof As in the previous proposition, let’s compute the covariance function
of this process.

(eismém — 1) (e~ itmém —

N 1)
EFX,Xy] = A
R I

H Cl,Hm [|sm|2Hm + |tm|2Hm - |tm - Sm|2Hm]

using the same argument of the previous proposition. O



Remark 2 The processes defined in propositions 3 and j are proved to have
the same law. In fact, as a particular case of proposition 10, they are indistin-
guishable.

2.3 Stationarity of increments and self similarity

Let us start by recalling the notion of increments in Rf .
For a function f : [0,1]¥ — R and h € R, one usually define the progressive
difference in direction €; by

Muafe) = { JEEh) =T W b0

and for h e RY and A = (i1, yi),

Apaf=208n,ifo--0ln uf

Despite the temptation to define the increments by X; — X as in one dimension,
it is better to set

AXsy = A g,...nXs
= Z (_1)N_ZlTlX[SiJrri(ti*Si)]i (5)
re{0,1}N

If there exists i € {1,..., N} such that s; = ¢;, we have AX;; = 0. Then, we
consider
I:{i: ].,...,N; Si #tz}

and
Atfs,IXs = Z (_1)#172l TZX[Si'i"‘i(ti—si)]igI
ref{0,1}#1
2.3.1 Isotropic case
In the isotropic case, the following extension of fBm’s properties are well known

(see [9]).

Proposition 5 Let X = {Xt;t € Rf} be a Levy fractional Brownian motion.
We have the two following properties for all h € Rf and a >0

—
Sy
=

Xiyn — Xn

X; — Xo

—
U
=

Xat aHXt

d
where @ means equality of finite dimensional distributions.
Proposition 5 implies the stationarity of increments (5).

Proposition 6 The increments of Levy fractional Brownian are stationary, ie
for allh € RY

d
AXp t4n @ AXo,



Proof We fix h € Rf and write
AXpopn =, (DN 2" (X, — Xn)
ref{0,1}¥ —{0}

then in the development of E[AX} s4+nAXp t+n], we only have terms of the
form

E [(X[hi-i-?‘isi]i - Xh) (X[hi-ﬁ-mti]i - X’l)] =E [X[Tisi],-X[Piti],-]
using the previous proposition. Therefore we have

E[AXp s nAXpi1n) = E[AX0,sAXq ]

2.3.2 Non-isotropic case

In the non-isotropic case, the properties of self-similarity and stationarity of in-
crements have been stated by Léger/Pontier (cf [8]). Here, we give another proof
based on the covariance function rather than the moving average representation.

Proposition 7 Let X = {Xt;t € Rf} be a fractional Brownian sheet. We
have the two following properties for all h € Rf and a > 0

I
2

AXnt+n AXo,
Xy = axiflix,

—~
N

Proof We consider N independent fBm X, ... X(™) of Hurst parameter H;,
and the process Y = {Yt;t € Rf} such that Y; = Hfil Xt(;). We can see easily

that X and Y have the same covariance function. The same result follows for
the increments § AX}, 11p;t € Rf and § AY}, rypst € Rf . As a consequence,

from
N .
AYpion = Z (_1)N_Z’Tl HX)(L?Jrriti
re{0,1}V i=1
i=1
we get
E[AXh s4nAXp 1] = HE [(Xs(l)Jrh - Xf(fl-)) (Xt(l-)',-h - Xl(zl))]
=1 ~~ d
B[x{x[7]
= FE[AXosAXo4]



For self-similarity, we verify easily that, for all a > 0

EXusXaut] = E [azi He X, a2 M0 X,

O

Therefore, we can conclude that both extensions of fBm satisfy the properties
of self-similarity and stationarity of increments.

3 The multifractional Brownian motion’s case

Once again, we can consider two different kinds of multi-parameter exten-
sion of mBm : isotropic and anisotropic extension. Note, first of all, that
mBm already has a multi-parameter extension. Indeed, the formulation of Be-
nassi/Jaffard/Roux in [4] was done for t € RY. We will see that it can be
considered as an isotropic extension.

3.1 Isotropic extension

To define an isotropic extension of the mBm, the natural way is to substitute
the constant H of the moving average representation of the Levy fractional
Brownian motion, with a function.

Definition 1 Let H : RN — (0,1) be a measurable function. The process
{Xt;t € Rf} such that

o= [ i =l 0¥ a0~ wiau) (©)
RN

is called multifractional Brownian field.

We will show that this process is the same as the process defined by Be-
nassi/Jaffard/Roux. This result generalizes on the equivalence stated in the
case N =1 in [6].

Proposition 8 Let H : RV — (0,1) be a measurable function. The process
defined by

X 9 1 g 7

= [ ey 7@ 7

is indistinguishable, up to a multiplicative deterministic function, from the pro-
cess defined by (6). This formulation is the harmonizable representation of the
multifractional Brownian field.

Proof First of all, let us compute the Fourier transform of the function ||.||*.

(TN 2 (N1, 22

/RN It~ </RN ei<“’7t>cp(w).dw> dt



we consider the change of variables
RYxRY - RYxRY
(w7 t) = (w7 A= Qs(t))

where ¢ is the linear application which maps the canonic basis of RV to the
orthonormal basis (61 = m, €2, .. ,eN). We get

/RN /RN A el (w).dw.dX
dw.du

/ / ||u||a e—iu1<p(,w)
Ry Jra [Jw]]® [Jwl]V

using the change of variables (w, \) — (w,u = ||w||\). Then we have

(T

; 1
Tl = ([ e an) [ e otw)a
TR = ([ o) [ e ot

Aa

Thus,
Do
[Jw][etN

T (w) =

From this result, an elementary computation gives the Fourier transform of
1t —=-l1* = [[-]|*. We get

—i A
Tl =N = [11°] (v) = [e7* <> —1] W
We deduce that Vt € RY, almost surely,
eftg) 1 .

[R = a0 = O ¥ ] W) = gy [ W(de)

R[]0+

using the fact we saw previously that the second integral is almost surely real.
Therefore, by an argument of continuity, the result follows. O

This process is obviously a centered Gaussian process. It is thus of interest
to study its covariance function. The following proposition is an extension of
the case N =1 stated in [3].

Proposition 9 Let {Xt;t € Rf} be a multifractional Brownian field. There

exists a deterministic function DJ’:[ : R — R such that the covariance function
of X can be written

E[X,X)] = DY (H(s) + H () [lls]| IO 4 | HOHH0 _ g — 5| 0]
(8)



Proof The easiest way to show this result is to use the harmonizable repre-
sentation. By definition of W, we have

(ei<s7£> _ 1) (efi<t75> _ 1)
E[XEXAZZ/;N €A HB N -dS
This integral has already been calculated for a Levy fractional Brownian motion

H(s)+H(t)
2

with a parameter H = . Then we have

1—e™ H(s)+H(t H(s)+H(t H(s)+H(t
B0 = ([ | o de) (IS0 4 e <]

v~

DY, (H(s)+H(t))

iuy
with D fRN HluH‘iJrN w O

3.2 Non isotropic extension

Another way to extend the multifractional Brownian motion for a set of index
included in Rf , is to copy the definition of the Brownian sheet.

Definition 2 Let H : Rf — (0,1)N be a measurable function. The process
{Xt;t € Rf} such that

Hi(0)=3 | W(du)

— |u;

X = / H|t—u

where W is the white noise, is called multifractional Brownian sheet (mBs).

As in the case of the isotropic extension, there also exists a harmonizable
representation of the mBs.

Proposition 10 Let H : Rf — (0,1)N be a measurable function. For all
t= (ti)ie{l;...;N}’ we consider the function ¢, such that for all £ = (&),

eltm&m _ 1

N
o) = 11— weg
m=1 I5m

The process defined by

eltmém _ 1

W (4r) = /RNHW - W(dg)

is indistinguishable, up to a multiplicative deterministic function, from the pro-
cess defined previously. This formulation is the harmonizable representation of
the multifractional Brownian sheet.

10



Proof We have already seen that for each m € {1,...,N}

o o ettmém — 1
T |:|tm - -|Hm(t) 2 - |'|Hm(t) 2] (fm) = )‘Hm(t) <|€ |Hm(t)+é>
m

By an easy computation

N N
T (H [l — =4 |-|H7"“)§D (&) = [T 7 [itm — 105 — im0

m=1 =l
Therefore
N Am (1) W ﬁ eitm'i_l - W N [|t _ |Hm(t)—% | |Hm(t)—%]
[ ey ) =W L [l = -
= m=1 T m=1
;,—/

At)

We use the same arguments as in proposition 8 to conclude. O

The following proposition shows that the covariance structure of multifrac-
tional Brownian sheet, is a generalization of the fBs’s one.

Proposition 11 Let {Xt; te Rf} be a multifractional Brownian sheet. There

exists a deterministic function D* : RN — R such that

N

m=1

(9)
Proof As usually, we use the harmonizable representation of the process
zsmfm _ 1 ( —itmEm 1)

E[XXi] = H/ (€ | Hrm (3)+ Hon ()41 AEm

We remark that the factor corresponding to each m, is the covariance of a
multifractional Brownian motion, with has already been calculated. Therefore
we have

N

EIX,X,] = [] D] (Hu(s) + Hyn(0)) [l HIO g, [+ O g,

m=1

O

Remark 3 The form of the previous covariance function gives the idea to con-
sider the process Y = {Yt; te Rf} defined from N independent multifractional

Brownian motions X9 with parameter H; by

1 N
Y= X0 X

Although Y is not a Gaussian process, it is easily seen that it has the same
covariance function as a multifractional Brownian sheet. This remark will be
often used in the following.

11

1
2

| )

|Hm (s)+Hm (t)]

Sm|Hm(s)+Hm(t)]



4 Regularity

A lot of properties are known about the regularity of the trajectories of Brownian
motion and fractional Brownian motion. As we will see, in the case of the multi-
parameter extension of the mBm, we have to make some assumptions about the
regularity of H before studying the continuity of trajectories. In the definitions
of mBm (cf [1] and [4]), the function H is supposed to be Holder continuous.

4.1 Existence of a continuous modification

As usually, the quantity E [|Xt — Xs|2] is studied for s,t € [a,b] where a < b
to use Kolmogorov’s criterion (cf [12]). The following paragraphs show that in
both isotropic and anisotropic cases, under Holder regularity assumptions for

H, we have
B[X, - X,* < Kllt - s]®

As usual, in the Gaussian case, we can write, for each integer n
E[X; — X" < MK ||t — 8™

and choose n such that n.a > N.
Then, a classical patching argument is used to extend to Rf the existence of a
continuous modification of the two processes.

4.1.1 Isotropic case

Lemma 1 For all n and p such that 0 < n < p < 1, the multiplicative fac-
tor DJ’:, of covariance function in (9), is positive and belongs to C*° ([n, pu]).
Moreover, the order n derivative is given by

(n) 1 —ein 1
Di " (z) = / — _In"—.du (10)
N ry [l |

Proof As the integral of a positive function, DJ’:, is positive. By an argument
of uniform convergence of integrals (10) on [n, u], Df\, is C* ([n,u]). O

Proposition 12 For all s,t € [a,b], we have

%E[Xt ~X,J? = DI[H(s)+ H(t)] x ||t — s|| 7 TH®
% ng(H() H(t); [lsll) + a<p( (s) + H®); lItl)| x (H () — H(s))’

+0a [(H (1) — H(s)) (el = lIsl])] + 00 (H(t) — H(s))” (11)

where p(x,y) = D(x)y*.

12



Proof Using the covariance function of the multifractional Brownian field, we
have

SE(Xo = XiP] = DRHE)] [0~ DIH(s) + Ho) o]0

+D2H(t)] [[t*#© — D [H(s) + H(t)] ||t|F1&+H®
+D[H(s) + H(t)] ||t — s/ +H® (12)

We have to get a second order expansion of this expression.
We introduce the function ¢ defined by

p(z,y) = D(2)y"
We can write

%EHXS_XtF] = @(2H(s), llsll) — o(H(s) + H (@), llsl)

+p(2H (1), |[tll) — ¢ (H(s) + H(t), [|£]])
+D[H(s) + H(t)] ||t — || T+ (13)

We use the second order expansion

P(RH(S), sl — o(H () + HE) Isl) = (H(s) ~ HO) x 22 (H(s) + H(), )
G IO 2 (4s) 4 1) sl
+0u (H(s) = H(1))’

An inversion of roles between s and ¢ provides the expansion of

P(2H (1), [[t]]) — o (H (s) + H(2), [|#]])
Then (13) becomes

3E[X,~ X = (HO — H) x |32 () + @), ld) - 52 (H) + 1) o))
# ST o [ T2 0) + HO 1) + G5 (H) + H@, )|

+D[H(s) + H(t)] ||t — s|"OTHO 10, (H(t) - H(s))”
Since
(1) = H() x| 52 () + 10 ) = 52 (106) + H (0, )

is O [(H(t) — H(s)) (It]l - [Is]])], the result follows. O

Corollary 1 For all s,t € [a,b], we have
SE[X - X = DIRH() x [l — [P
¥ (2H (1); 4l % (H (1) ~ H(s))?
000 (H(t) = H(3)) + 0 (IIt = s[P1®)  (14)

where p(x,y) = D(x)y®.

13



Proof Using the expansion of D [H(s) + H(t)] and
[t = s IO = ||t — PO — (H () — H(s)) |t = s ln ||t = s]| + 00, (H(t) = H(s))”
we get
D[H(s) + H(®)] x ||t = s||TOTTO = D[2H(B)] x ||t - 5| (15)

oup (It = 52V) + 04 (H(t) = H(s))”
Moreover as H(t) < 1 for all ¢t € [a,b], we have e =1 — H(t) > 0 and

2(H(t) = H(s)) (el = [lslD) 2 (H () — H(s)) (1t = [IsD* x (lell = llsll)' 2
(H(t) = H(s))” (] = s + (el = sl

IN

that implies
(H ()~ H5)) (1] = l1s1) = 00 (H(t) ~ H(s)? +00s (It = s[P7®)  (16)

We conclude by (11), (15) and (16) using first order expansion of gQTf in z and
y. O

Using the continuity of D, D’ and D", we can state from the previous propo-
sition

Corollary 2 There exist positive constants K and L such that
Vs,t € [a,b]; E[X; — X,° <K ||t — s + L |H(t) — H(s)|” (17)

Corollary 3 Suppose H is -Holder continuous. There exists a constant M
such that _
Vs,t € [a,b]; E[X; — X, < M ||t — s]]2BNE®) (18)

4.1.2 Non-isotropic case

Lemma 2 There exists positive constants K and L such that

Vst € [a,b]; B [| X = X,|*] < K ||t —s|*™ O+ L || H(t) — H(s)|* (19)

Proof By remark 3, we have

‘ N . N 17
E[Xs_Xt]2 = E HXS(Q)_HXE(?)]
i=1 i=1
N
' 1 ] 1 2
_ (HX;:) x;uznx;:z) (xas)nx;:z— tmx;znx;:z)
i=1 >1 >1 >2

o) v TT v :
. N .
+oe 4 (( || Xt(’i)>X(N) IIXt(’i)>]
i=1 i=1

14



Then

2
. . 2 2
EX. - X <NJ{E|[[X0)| B |:X,§(11)) - Xt((ll))] tot+E |:X,§(I>TV)) - Xt((IIVV))] E

i>1

N-1 1?2
I XS%]
i=1

and
N . (12
ElX,- X' <NM"'Y B [X - Xf(?)] (20)
i=1
. _ _ (1
with M = M, =sup;, F [Xt(i)] .
Using
) 12 . : :
B[X{) = x0] < Kils® —tOPHO 4 L (Hy(s) - Hi(#)*; ¥i = 1,...,N
(20) implies

N N
E[X; - X" < NM" KZ K@-> [¢ = o] mine Hi0) (Z Ll-) |H(t) - H (s)||2]

i=1
a

Corollary 4 Suppose H is B-Hélder continuous. There exists a positive con-
stant M such that

Vs, t € [a,b]; E[X; — X,]> < M|t — 5?8 mini H:() (21)

4.2 Holder exponents

The notion of Holder function is well known. It is interesting to consider a
localized version of this notion.
For the paths of a process X, one usually define two kinds of exponent (see

[1], [2]):
e the pointwise Holder exponent
. |Xt0+h — Xt0|
= N 1 _— =
a(to) sup{a,hlg% e 0

. sup X, — X
= Sup {Oé; lim sup 5,t€B(to,p) | Xe s < oo}
p—0 pa

e the local Holder exponent

v — . H |Xt - Xs|
a(to) =sup a; limsup  sup ——— <00
p—0  s,t€B(to,p) It — sl|

We can see easily that for all ¢y, we have
a(to) < alto) (22)

A study of these exponents, in the case of 1D mBm, is made in [2].
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Remark 4 If H is f-Hélder continuous, then the local Hélder exponent B(t) of
H at every point is not smaller than (.

Conversely, suppose that the local Hélder exponent of H at every point of
a compact [a,b] is positive. Then H is 3-Hélder continuous on [a,b] with 3 =
infiea,0) B(1)-

In the same way, one may define directional pointwise and local Hdélder
exponents in the direction u € U = {u e RY;||ul| = 1} by

Xig+pu — X
a,(tp) = sup {a; lim Xtotpu = Xto] = 0}

p—0 pe

and

|Xt_XS|

@y (to) = sup { @; limsup ~ sup  ————— < 0
p—0  steB(to,p) |1t — 5l
s,t€to+R.u

As previously, for all u € U, we have
A (to) < au(to) (23)
Moreover, we can see easily that for all u € U, we have
a(ty) < ay(ty) and a(ty) < ay(to) (24)

_ In the following, we suppose that H admits positive local Holder exponent
B(to) at every point ¢.

Proposition 13 Let X = {Xt;t € Rf} be a multifractional Brownian field

(resp. sheet). For all ty € Rf, the local Holder exponent of X at tog is almost
surely given by

G(to) = B(to) A H{(to) (resp. B(to) A min Hi(to)) (25)
and the pointwise Hélder exponent of X at ty satisfies almost surely

a(ty) = B(to) AN H(to) (resp. B(to) A miin H;(t)) (26)

where B(to) and B(to) denote the pointwise and local Holder exponents of H at
to-

As a consequence of this result, if H satisfies
vi e RY; B(t) < H(t)

the Holder regularity of multifractional Brownian field of parameter function
H is given by the regularity of H (and not by the value of H). This point is
developed in [7].

The proof of proposition 13 is detailed in the three following paragraphs.
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4.2.1 Lower bound for the local Holder exponent

A lower bound for the local Holder exponent is directly given by Kolmogorov’s
theorem. Indeed, for X a multifractional Brownian field or a multifractional
Brownian sheet indexed by [a, b], by corollaries 3 and 4, Kolmogorov’s theorem
states that there exists a modification of X, which is ¢g-Holder continuous for
all ¢ € (0,a), with a = H(t) A inf[w)]ﬁ~ or a = min; H;(t) Ainf[, p) A.

Then, localizing this result, we get

e in the isotropic case, R
a(to) > B(to) A H(to) (27)

e in the non-isotropic case,

a(to) > B(to) A min Hj(to) (28)

4.2.2 Lower bound for the pointwise Holder exponent

By (22), paragraph 4.2.1 provides a lower bound for the pointwise Holder expo-
nent. However, it can be improved in the case 3(ty) < B(to)-

Let X = {Xt;t € Rf} be a multifractional Brownian field. By corollary 2,

there exist positive constants K and L such that for all s, € Rf,
E[X; = X" <K |[t = s|*" ™ + L |H(t) — H(s)|*

For all € > 0, there exists pg > 0 such that
€

Vt € B(to,po); [H(t) — H(to)| < 5

and M > 0 such that for all p < pp and all s,t € B(tg, p)

X -X, |’ .
E |:p,8(to)/\H(to)—e:| <Mp

Then, setting v = B(to) A H(to) — €,

X, - X,1?
ti} < M
p’Y

P{Xi - X > ) <B|
Let p =27" and for all m > n,
D,, = {to + k27" ke {0,41,.. .,i2m—n}N}

In particular, consider D1 and let us compute

P [Hax | Xtpth2-tn — Xy qro-an| > 277"
kile{-2,—1,0,1,2}"
[k—t][=1
L PilX X. 92— 10N M 2—€n
S 5 Z {| to+k.2—(n+1) — t0+l.2—(n+1)| > } S T
kle{—2,—1,0,1,2}N
[k—t][=1
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By the Borel-Cantelli lemma, there exists a finite random variable n* such that
almost surely,

Vn Z n*; max ~ |Xt0+k.2—(n+1) — Xt0+l.2—(n+l)| S 2—fyn (29)
kJle{—2,—1,0,1,2}
ll=t]|=1
By recurrence, we show that, almost surely, for all m > n, we have

m—1
Vs,t € Dy st [[t—s]| <2775 | X, = X[ <2) 277 (30)

j=1
e for m =n + 1, (30) follows directly from (29)

e assume that (30) is valid for m, let us show that it still holds for m + 1.
For s,t € D41 such that ||t — s|| < 277, let

Cj:tl = {ZL“ € D3 Vi,si Nt < x; < 55 Vti}
Then consider § € B(s,2=(mtY)NC™ and { € B(t,2=(m+t))nCm.
As s,t,8,t belong to D41, by (29), we have
1X; — X,| <27 and |X; — X;| <277

and by assumption,
m—1

1X;— X[ <2) 277
j=n

Using the triangular inequality, the result follows.

Therefore, (30) leads to

V> n; Vs, t € Dy |t —s|| <277

- 2
— -vi — —n
|X; — X, 3222 =T 2
j=n
Using the continuity of X and m — +o00, we get
2
sup | X — X, < — 27"
s,t€B(tg,2- ™) 1-2=7
and therefore, almost surely,
Xy — X
limsup  sup [Xe = X < 400 (31)

p—=0  s.teB(tg,p) p7
By (31), for all € > 0, almost surely
a(to) > B(to) A H(to) — €
Taking € € Q. , we have almost surely
a(to) > B(to) A H(to) (32)

For a multifractional Brownian sheet X, by lemma 2, we get in the same way
that, almost surely

a(to) > B(to) A Hi(to) (33)
foralli=1,...,N.
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4.2.3 Upper bound for the pointwise Holder exponent

The main result getting the upper bound for the Holder exponents, is the fol-
lowing lemma, a direct consequence of proposition 12 using continuity of D, D’
and D".

Lemma 3 Let X = {Xt;t € Rf} be a multifractional Brownian field. For all
[a,b] C Rf, there exist positive constants ki, ko, l1, lo such that

Vs,t € [a,b];  E[Xy — X,)° > ky ||t —s|[*7D — 1, (H(t) — H(s))® (34)

E[X; = X" > ko (H(t) — H(s))* =2 ||t — o[ (35)

Proof We only have to study the multiplicative factors of ||t — s||*#(®) and

(H(t) — H(s))? in (11). The proof only relies on continuity and positivity of the

two functions ¢t — D [2H (t)] and
t = ||tPHO x {D[2H ()] In” ||¢|| — 2D 2H ()] In||¢|| + D" [2H (¢)]}. O

Lemma 4 Let X = {Xt; te Rf} be a multifractional Brownian sheet. For all
[a,b] C Rf, there exist positive constants ki, ko, l1, lo such that
Vs,t € [a, b]; t—se Ry
E[X; = X" > k||t — s|*"®) — 1y (H,(t) — Hi(s))” (36)
E[X; = X" > ky (Hi(t) — Hi(s))* = Lo ||t — s[> (37)

Proof For all s, t such that t — s € R .¢;, using lemma 3, we have

. . 2 . 2
E[Xt _Xs]2 = E [Xt((i) _Xé(z))] HE |:Xt((JJ')):|
J#i
> k[t — s P50 — 1 (Hi(t) — Hy(s))
and
B[Xy — X? > ks (Hi(t) — Hi(s))? — o |t; — ;21O
O

From this result, the upper bound for the pointwise exponent is a conse-
quence of the following lemma whose proof is the same as the case N =1 (see

(1])
Lemma 5 Let X = {Xt;t € Rf} be a Gaussian process. Assume there exists

p € (0,1) such that for all € > 0, there ewist a sequence (hy),cn of (Rf)

converging to 0, and a constant ¢ > 0 such that
V€ Ny E[Xpyn, — Xi* > cf|hn |

Then we have almost surely

alt) < p
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Let X = {Xt; te Rf } be a multifractional Brownian field (resp. multifrac-

tional Brownian sheet). Let 3(to) be the pointwise Holder exponent of H at to.
We consider the two cases :

o if H(ty) < fB(to) (resp. H;(tg) < B(to)), by definition of 5(tp), we have

o 1H 0+ 1) = H(to)|

O I

Hence, by (34) (resp. (36)), there exists a positive constant C' such that
E [Xigin — Xeo]* 2 C|BH )
Then, by lemma 5

a(to) < H(to) (resp. Hi(to) ) (38)

e if H(to) > S(to) (resp.H;(to) > f(to)), we consider oo € (B(to); H(to))
(resp. a € (B(to); Hi(to))). There exists a positive constant C' and a
sequence (hy), o converging to 0 such that

Vn € N; ||H(to + hn) — H(to)|| > Cllhnll*
Then, by (35) (resp. (37))

¥n € Ni E[Xigin = Xeol© > kaCllhal** = Lol )

> 'kl
hence, by lemma 5
a > ato)
and therefore
a(to) < B(to) (39)

We can restate the upper bounds (38) and (39) of the pointwise Holder exponent
of X at tg

a(to) < B(to) A H(to) (resp. B(to) A Hi(to) ) (40)

4.2.4 Upper bound for the local Holder exponent

By (22), any upper bound for the pointwise Holder exponent is an upper bound
for the local Holder exponent. But we can improve on this result in the case

B(to) < H(tp). We first give an analogous of lemma 5 for the local expo-
nent,whose proof is very similar

Lemma 6 Let X = {Xt;t € Rf} be a Gaussian process. Assume there exists

p € (0,1) such that for all € > 0, there exist two sequences (hy,),cn and (In),cn

of (Rf) converging to 0, and a constant ¢ > 0 such that

Vn € N; E[Xtgin, — Xtgr1,]° > cllhn — L]+

Then we have almost surely
a(to) < p
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Let a € (B(to); H(to)) (resp. o € (B(to); Hi(to))). As

H(t)—-H
limsup sup M

= 400
p—0  s,tEB(to,p) It — s[|*

for all M > 0, there exists pp > 0 such that
Vo < po; 35,1 € Blto, p); [H(t) — H(s)| > Mt — s]|°

Therefore we can construct two sequences (hy) and (I,,) converging to 0 such
that

Vn € N |H(to + hn) — H(to + 1n)| > M||hn — 1n||*

By lemma 6, we can deduce

a(to) < Blto) (41)

5 Locally asymptotic self-similarity

Extending fBm into multifractional Brownian motion implies the loss of the two
properties of self-similarity and stationarity of increments. However, a weak
form of self-similarity remains, called locally asymptotic self-similarity (see [1],
[4]). As we will see, this property still holds for the two kinds of extension of
mBm in RY.

Theorem 1 Let X = {Xt;t € Rf} be a multifractional Brownian field.
For allty € RY, the law of the process Y (p) = {Yuo‘(p) = Moteu=Xig ) ¢ Rf}

e
converge weakly if one of the following two conditions holds

1. a= H(to) and H(to) < infuﬂ, 61“)(750)
|H(to+pu) —H(to+pv)| _
0 oo =0r.
Then, the limit measure is the law of a fractional Brownian field with

parameter H(to).

where By, (to) = sup {a; lim,_,

2. o = infy 4 Buu(to), H(to) > infy ., Buv(to) and for all u,v € Rf, the
following limit exists

lim |H (to + pu) — H(to + pv)|
p—0 pinfu,v Buv (tO)

=I'(u,v)

with (u,v) — HZ(_I;}"Q@B bounded on [a,b]* for some 3 > 0.

The limit measure is the law of a Gaussian process Y "fuv Buv(to) sych that

) . 2
E [Y&nfu.v Buv(to) _ lenfu,v Buv(to)] = Ktor(u, U)

Remark 5 As in the Levy fBm’s case in proposition 6, the same result as
theorem 1 can be stated for the increments AX defined in section 2.3. The law

of the process Y*(p) = {Yuo‘(p) = %;u € Rf} converge weakly under
the same assumptions.
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In the case N = 1, for all u,v € Ry, we have B, (to) = S(to). Therefore,
theorem 1 has a simpler statement. The two cases to be considered, depend of
the comparison between H (tp) and the pointwise exponent () of H.

The following example shows that the limit considered in the second case,
can be non trivial.

Example 1 In the case N =1, let H(t) = 3 +t* for t € [0, 1].
For tg = 0, we compute, for all u,v and p >0
H(p.u) — H(p-v)
p

=u® —0°

The limit measure is the law of a Gaussian process Y such that
E[Y, =Y, = Ko [u® —v°|

Theorem 2 Let X = {Xt;t € Rf} be a multifractional Brownian sheet.

The law of the process Y *(p) = {Yu“(p) = %;u € Rf} converge weakly

if for alli € {1,...,N}, one of the following two conditions holds

1. a; = H,'(to) and Hi(to) < infuﬂ, Bfw(to)

o ittt _Hittutpul _ o).

where BL,(ty) = sup {a; lim,_,
2. a; = infy, 8%, (to), Hi(to) > inf,, B, (to) and

lim |H;(to + pu) — H;(to + pv)|
P Dt B (ko)

=T;(u,v)

with (u,v) = % bounded on [a,b)* for some 3; > 0.

As usually, the proof of weak convergence proceeds in two steps. First, we
need to show finite dimensional convergence, and then, use a tightness argument.
Lemma 14.2 and theorem 14.3 in [10], for instance, allow then to conclude.

5.1 Finite dimensional convergence

As the considered processes are Gaussian, we only have to show the convergence
of covariance functions.

The only case considered is the multifractional Brownian field’s one. For the
multifractional Brownian sheet, we proceed in the same way.

By (11), we compute

PUEIYE () =Y = ElXitpu = Xiorpl
= DI[H(to + pu) + H(to + pv)] x ||p-(u — v)||Ttotrw)+Hlto+pv)
82
+ 55 (2H (to + pu)s llto + pull) x (H(to + pu) = H(to + pv))”

o (lp-(u—v)[12) + 0 (H(to + pu) — H(to + pv))?
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We can show that pfl(totew)+H(totpv) o p2H(to) ip the neighborhood of p = 0.
For this, we study for a < S(to)

H(to + pu) — H(to)

[H(to + pu) + Hito + pv) — 2H(ts)] lnp = L) e Ing
H(tg + — H(t
Hlo +po) = Hllo) oy, et
ol

H(to+pu)—H(to) =0

As (u; p) = ||p-u||*1n p is bounded on [a, b] %[0, 1] and lim,_,o ol

for all u € [a,b], we have
[H(to + pu) + H(to + pv) — 2H (to)] Inp 220
Therefore, in the neighborhood of p = 0, the first term of (42) is equivalent to
D [2H (to)] [lu — v][?11) x p*H0)
and the second to
0%y

=2 (2H (to); tol}) % (H(to + pu) — H(to + pv)”

Let Buv(to) = sup {a;limpHO ‘H(toﬂu)p:H(tﬁpv)l = 0}. We have to distinguish

the two following cases

o if H(ty) < infy , Buv(to), by definition of By, (o),

H —H

p—0 pH(to) =0

Therefore

2
Vu,0 € RY; B [VH09) () = V) (p)] " 228 D [R2H ()] fu = ol

~ >l
'

E[Bf(tO)fo(tO)]2

where B (%) denotes fractional Brownian field of parameter H (to).

[ ] lf H(to) > infuw ﬁuv (to),
for all @ < inf,, ,, Buy(to), as

| (t + pu) — H(to + p)|
pe

Vu,v € RY: lim =0
’ < + p—0

we have

1 0
Yu,v € Rf; pz_“E [Xto+pu — Xt0+PU]2 250

Moreover, since there exists u,v € Rf such that H(tg) > Buv(to), we can
consider a € (Byy(to); H(to)). The limit

Hi(t — H(t
limsup| (to + pu) — H(to +pv)| _
p—0 pa
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implies

1 .
E [Xto+pu - Xtoerv]2 = +o00

Yu,v € Rf; lim sup ——
p—0 P

Therefore E [V (p) — Y.%(p)]* admits a limit for all u,v € Rf when p = 0
if and only if o = inf,, , By, (o) and

|H (to + pu) — H(to + pv)|

‘l)ig%) P Y =T'(u,v) € Ry
Remark 6 We can see easily that
B (to) A Bz (to) < Buv(to) (43)
hence
érelg Bu(to) < lung Buv(to) (44)

Conversely, assume there exist u,v € U such that By (to) < Bu(to), and let
a € (Bu(to); Bu(to)). By the triangular inequality, we get
|H (to + pu) — H(to + pv)|

lim sup = +00
p—0 pe

and therefore o > Buy(to). Then infy , Buv(to) < infyecy Bulto), which
gives
inf Buy(to) = inf By (to) (45)
u,v ueU

5.2 Tightness of laws

The study of weak convergence is well-known for stochastic processes indexed by
R;. A comprehensive review was made by Billingsley (cf [5]) for a compact set
of index ([0, 1]). In ([11]), Karatzas and Shreeve stated the same kind of results
for the whole R;. The case of Rf can be found in ([10]) whose corollary 14.9
provides

Proposition 14 Consider a sequence of continuous processes (X(”))neN with

Y — {X§”>;t c Rf} on (Q, F, P) such that

1. there exists a positive constant v such that

sup B ‘Xén) < 00

n>1

2. for all T > 0, there exist positive constants a, § and Cp such that

«
Vs, t € [0,T]N; sup E ‘Xt(n) - XM <Ot —s| NP

n>1

Then the probability measures P, 2p (X(”))_1 on (C’ (Rf) ,B (C’ (Rf)))

form a tight sequence.
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We verify the conditions of proposition 14, in the case of mBm. As for finite
dimensional convergence, we only consider the multifractional Brownian field’s
case.

By (17), there exist positive constants K7 and Ly such that for all u, v in
0.7]%

PPEY ) =Y () = ElXrpu — Xeorpol
K ||p.(u — v)|Poew)

+Lg |H(to + pu) — H(to + pv)|*

IN

Therefore,

|H (to + pu) — H(to + pv)|*

E[Y(p) = Y (o) < K pPT07 | (u— )P0 + Ly

uw p2a
e In the case H(ty) < inf, , Buv(to), there exists My > 0 such that
2
E [V (p) = Y ()] < My flu = w27

e In the case H(tg) > infy, » Buy(to), under the assumption

iy (o + pu) — H(to + pv)|?

p—0 p2 infu,o Buw(to) - F(u’v)

lllfﬂ“;ﬁgﬁ bounded on [a, b]?, there exists My > 0 such that

with (u,v) —
B [anfu,v Buv(to)(p) _ Yz;lnfu.v Bw(to)(p) ? < My ||u— 7J||2(BAH(to))

Since the process Y is Gaussian, we get an exponent greater than N in the
usual way. Then we can conclude by proposition 14 that the laws of Y are
tight.
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