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ON THE DYNAMICS OF BOHMIAN MEASURES

PETER MARKOWICH, THIERRY PAUL, AND CHRISTOF SPARBER

Abstract. We revisit the concept of Bohmian measures recently introduced
by the authors in [19]. We rigorously prove that for sufficiently smooth wave
functions the corresponding Bohmian measure furnishes a distributional solu-
tion of a nonlinear Vlasov-type equation. Moreover, we study the associated
defect measures appearing in the classical limit. In one space dimension, this
yields a new connection between mono-kinetic Wigner and Bohmian measures.
In addition, we shall study the dynamics of Bohmian measures associated to
so-called semi-classical wave packets. For these type of wave functions, we
prove local in-measure convergence of a rescaled sequence of Bohmian tra-
jectories towards the classical Hamiltonian flow on phase space. Finally, we
construct an example of wave functions whose limiting Bohmian measure is
not mono-kinetic but nevertheless equals the associated Wigner measure.

1. Introduction and main results

1.1. Background on Bohmian measures. We consider the time-evolution of
quantummechanical wave functions ψε(t, ·) ∈ L2(Rd;C) governed by the Schrödinger
equation:

(1.1) iε∂tψ
ε = −ε

2

2
∆ψε + V (x)ψε, ψε(t = 0, x) = ψε

0 ∈ L2(Rd),

where x ∈ R
d, t ∈ R, and V ∈ L∞(Rd;R) a given bounded potential (satisfying

some additional regularity assumptions given below). In addition, we have rescaled
all physical parameters such that only one semi-classical parameter 0 < ε ≤ 1
remains. We shall from now on assume that ‖ψε

0‖L2 = 1, which is henceforth
propagated in time, i.e.

(1.2) ‖ψε(t)‖L2 = ‖ψε
0‖L2 = 1.

In addition, we also have conservation of energy, i.e.

Eε(t) :=
ε2

2

∫

Rd

|∇ψε(t, x)|2dx+

∫

Rd

V (x)|ψε(t, x)|2dx = Eε(0).

Throughout this work, we shall assume that

(1.3) sup
0<ε≤1

Eε(0) < +∞.
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In other words, we assume ψε
0 to have bounded initial energy, uniformly in ε. In

view of (1.2), one can define out of ψε(t, x) ∈ C real-valued probability densities
from which one computes expectation values of physical observables. Possibly, the
two most important such densities are the position and the current-density, given
by

(1.4) ρε(t, x) = |ψε(t, x)|2, Jε(t, x) = εIm
(
ψε(t, x)∇ψε(t, x)

)
.

Already in 1926, the same year in which Schrödinger exhibited the eponymous
equation, it has been realized by Madelung [18] that these densities can be used to
rewrite (1.1) in hydrodynamical form. The corresponding quantum hydrodynamic

system reads

(1.5)





∂tρ
ε + div Jε = 0,

∂tJ
ε + div

(
Jε ⊗ Jε

ρε

)
+ ρε∇V =

ε2

2
ρε∇

(
∆
√
ρε√
ρε

)
.

More precisely, it can be proved that under sufficient regularity assumptions on
V (x) and ψε(t, x), each of the nonlinear terms arising in this system is well-defined
in the sense of distributions, see [12, Lemma 2.1]. However, the converse direction,
i.e. reconstructing ψε from the solution of (1.5), is still open so far (see e.g. [2] and
the references given therein).

The quantum-hydrodynamic system (1.5) can also be seen as the starting point
of Bohmian mechanics [4, 5]. In this theory, one defines an ε-dependent flow-map

Xε
t : R× R

d → R
d; x 7→ Xε(t, x)

via the following differential equation

Ẋε(t, x) = uε(t,Xε(t, x)), Xε(0, x) = x ∈ R
d,

where the vector field uε is (formally) given by

uε(t, x) :=
Jε(t, x)

ρε(t, x)
= εIm

(∇ψε(t, x)

ψε(t, x)

)

and the initial data is assumed to be distributed according to ρε0(x) ≡ |ψε
0(x)|2.

It has been rigorously proved in [3] (see also [26]) that Xε(t, ·) is for all t ∈ R

well-defined ρε0 − a.e. and that

ρε(t, x) = Xε
t # ρε0(x),

i.e. ρε(t, x) is the push-forward of the initial density ρε0(x) under the mapping
Xε

t : x 7→ Xε(t, x), see Definition (3.1) below. This can be seen as the Eulerian
viewpoint of Bohmian mechanics.

Bohmian mechanics can be reformulated in its Lagrangian form, by using the
concept of Bohmian measures, recently introduced by the authors in [19]:

Definition 1.1. For ψε ∈ H1(Rd), with associated densities ρε, Jε as in (1.4),
and a given ε > 0, we define the corresponding Bohmian measure βε ≡ βε[ψε] ∈
M+(Rd

x × Rd
p) via

〈βε, ϕ〉 :=
∫

Rd

ρε(x)ϕ

(
x,
Jε(x)

ρε(x)

)
dx, ∀ϕ ∈ C0(R

d
x × R

d
p),

where C0(R
d
x × Rd

p) denotes the space of continuous function vanishing at infinity

and M+(Rd
x × R

d
p) the set of non-negative Radon measures on phase space.
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It has been shown shown in [19] that if ψε(t, x) solves (1.1), then the correspond-
ing Bohmian βε(t, x, p) measure is the push-forward of

(1.6) βε[ψε
0] ≡ βε

0(x, p) = ρε0(x)δ(p − u0(x)),

under the ε-dependent phase space flow

(1.7) Φε
t : (x, p) 7→ (Xε(t, x, p), P ε(t, x, p))

induced by

(1.8)

{
Ẋε = P ε,

Ṗ ε = −∇V (Xε)−∇V ε
B(t,X

ε),

where V ε
B(t, x), denotes the so-called Bohm potential (see [10, 11, 22]).

(1.9) V ε
B(t, x) := −ε

2

2

∆
√
ρε(t, x)√
ρε(t, x)

.

More precisely, under mild regularity assumptions on V , the flow Φε
t is shown to

exists globally in time for almost all (x, p) ∈ R2d, relative to the measure βε
0 and is

continuous in time on its maximal open domain, cf. [19, Lemma 2.5]. Note that the
specific form of the initial data (1.6) implies that Φε

t is projected onto a Lagrangian

sub-manifold of phase space

Lε := {(x, p) ∈ R
d
x × R

d
p : p = uε0(x)},

whose time-evolution is governed by the Bohmian flow (1.8).

The fact that βε(t) = Φε
t #βε

0(x), is usually called equivariance of Bohmian
measures [10] and makes βε(t) a natural starting point for the investigation of
the classical limit as ε → 0+ of Bohmian mechanics. In [19] we gave an extensive
study (invoking Young measure theory) of the possible oscillation and concentration
phenomena appearing in βε as ε → 0+ and compared our findings to the by now
classical theory of Wigner measures, cf. [13, 17, 25]. One thereby associated to any
wave function ψε a phase space function wε[ψε] ≡ wε, defined by

wε(t, x, p) =
1

(2π)d

∫

Rd

ψε
(
t, x− ε

2
y
)
ψε
(
t, x+

ε

2
y
)
eiy·p dy.

This definition yields the so-called Wigner function wε(t) associated to ψε(t) [27].
It is well known that although wε(t, x, p) 6≥ 0 in general, it admits as ε → 0+ a
weak limit w(t) ∈ M+(Rd

x × Rd
p), usually called Wigner measure (or semi-classical

measure). The latter is known to give the possibility to describe in a “classical”
manner the expectation values of physical observables, for all t ∈ R, via

〈ψε(t),Opε(a)ψε(t)〉L2 =

∫∫

R2d

a(x, p)w(t, x, p)dx dp,

where Opε(a) is the Weyl-quantized operator associated to the classical symbol
a ∈ C∞

b (Rd
x × Rd

p).
Similarly to that, we were able to establish in [19] the existence of a limiting

non-negative phase space measure β(t) ∈ M+(Rd
x×Rd

p), such that, after extracting
an appropriate sub-sequence (denoted by the same symbol):

βε ε→0+−→ β in Cb(Rt;M+(Rd
x × R

d
p))w − ∗.
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If, in addition, ψε(t) is ε-oscillatory, i.e.

(1.10) sup
0<ε≤1

(‖ψε(t)‖L2 + ‖ε∇ψε(t)‖L2) < +∞.

one can prove (cf. [19, Lemma 3.2]) that the limiting phase space measure β(t)
incorporates the classical limit of the particle and current density in the sense that

(1.11) ρε(t, x)
ε→0+−→

∫

Rd

β(t, x, dp),

and

(1.12) Jε(t, x)
ε→0+−→

∫

Rd

pβ(t, x, dp).

Hereby the limits have to be understood in M+(Rd
x)w − ∗, uniformly on compact

time-intervals I ⊂ Rt. Note that condition (1.10) is satisfied for all t ∈ R, in view
of (1.2), the conservation of energy and our initial assumption (1.3) (since for any
V ∈ L∞(Rd) we can be assume w.r.o.g. V (x) ≥ 0). This is the reason to impose
(1.2) and (1.3), throughout this work.

In other words, the limiting Bohmian measure β(t) therefore yields the classical
limit of the quantum mechanical position and current densities, by taking the zeroth
and first moment with respect to p ∈ Rd, analogous to the case of Wigner measures.
Other quantum mechanical observable densities, however, might not be described
correctly in the limit ε → 0+. In fact, the limiting β(t) is found to be in general
different from the Wigner measure w(t), cf. the examples given in Section 5 of [19].

1.2. Main results. The main objective of the current work is to analyze the dy-
namics of βε(t). Note that the equivariance property strongly suggests that βε(t)
satisfies the following nonlinear Vlasov-type equation

(1.13)





∂tβ
ε + p · ∇xβ

ε −∇x

(
V − ε2

2

∆x
√
ρε√

ρε

)
· ∇pβ

ε = 0,

ρε(t, x) =

∫

Rd

βε(t, x, dp),

subject to initial data βε
0(x, p) given by (1.6). Note that the system (1.13) can be

written in one line as

(1.14) ∂tβ
ε + p · ∇xβ

ε −∇x


V − ε2

2

∆x

√∫
Rd βεdp

√∫
Rd βεdp


 · ∇pβ

ε = 0,

Due to the strong nonlinear nature of this equation and in particular due to possible
singularities at points x ∈ Rd where ρε(t, x) = 0, it is a non-trivial task to rigorously
prove that βε(t) furnishes a distributional solution to (1.13). It will be one of the
goals of this work to show that this is indeed the case. To this end, we shall derive
appropriate bounds for all terms arising in the weak formulation of (1.13) after
being evaluated at Bohmian measures. This rigorously establishes the existence of
a nonlinear evolution equation for βε(t) in a similar spirit as the results of [12] for
the quantum hydrodynamic system (1.5). More precisely, the first main result of
this work is as follows:
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Theorem 1.1. Let V ∈ C1
b(R

d;R) and ψε
0 ∈ H3(Rd) with corresponding ρε0, J

ε
0

defined by (1.4). Then, for all ε > 0, the Bohmian measure

βǫ(t, x, p) = ρε(t, x)δ

(
p− Jε(t, x)

ρε(t, x)

)
,

is a weak solution of (1.13) in D′(Rt ×R
d
x ×R

d
p) and in D′([0,∞)×R

d
x ×R

d
p) with

initial data (1.6).

In a second step we shall study the classical limit of equation (1.13). To this end,
let us recall, cf. [19, Definition 3.4], that a measure µ ∈ M+(Rd

x×Rd
p) is said to be

mono-kinetic, if there exists a ρ ∈ M+(Rd
x) and a function u(x) defined ρ − a.e.,

such that
µ(x, p) = ρ(x) δ(p− u(x)).

Obviously, such mono-kinetic phase space measures define Lagrangian sub-manifolds
and are thus particularly interesting for our purposes. Clearly βε(t) is mono-kinetic
by definition, its limit however, will not be in general. To get further insight, we
pass to the limit ε → 0+ (after extraction of a subsequence) in the first three lin-
ear terms of equation (1.13). This naturally leads to the following definition of a
possible defect F(t, x, p) ∈ Rd: Along a chosen sub-sequence {εn}n∈N, let

(1.15) F := lim
ε→0+

(divp(∇xV
ε
Bβ

ε)), in D′(Rt × R
d
x × R

d
p),

such that
∂tβ + p · ∇xβ −∇xV · ∇pβ = F ,

A partial characterization of the defect F , will be given in Section 4. In particular,
it yields to the following result:

Theorem 1.2. Let d = 1 and βε(t) solve (1.13). In addition assume that at t = 0,
the limiting measure satisfies

β0(x, p) = w0(x, p) = ρ0(x)δ(p − u0(x)),

where w0(x, p) is the Wigner measure associated to ψε
0(x). Then, on any time-

interval I ⊆ Rt, on which w(t) is mono-kinetic, i.e.

w(t, x, p) = ρ(t, x)δ(p − u(t, x)),

it holds β(t, x, p) = w(t, x, p), in the sense of measures.

In contrast to the results of [19], where we established certain criteria for ψε(t),
yielding mono-kinetic Wigner and/or limiting Bohmian measures, this result di-
rectly gives β(t) = w(t) from the fact that the Wigner measure is mono-kinetic.
It is well known, cf. [12, 25] that the Wigner measure is generically mono-kinetic
before caustics, i.e. before the appearance of the first shock in the (field driven)
Burgers equation

(1.16) ∂tu+ (u · ∇)u +∇V (x) = 0.

Note however, that there are situations in which w is of the form given in Theorem
1.2 (2) even after caustics, see e.g. Example 4 given in [12] and Example 1 in [25],
both of which furnish so-called point caustics, i.e. caustics where all the rays of
geometric optics cross at one point. The result given above therefore shows that
in some situations the limiting Bohmian measure β(t) can indeed give the correct
classical limit (for all physical observables)even after caustics. In addition,Theorem
1.2 (2) generalizes [19, Proposition 6.1], at least in d = 1 spatial dimensions.



6 P. MARKOWICH, T. PAUL, AND C. SPARBER

Remark 1.2. Equation (1.16) can be seen as the formal limit obtained from (1.1)
by means of WKB analysis. One thereby seeks solution to (1.1) in the following
form

ψε(t, x) = aε(t, x)eiS(t,x)/ǫ,

with (real-valued) ε-independent phase S and (possibly complex-valued) amplitude
aε ∼ a0+εa1+ε

2 . . . , in the sense of formal asymptotics. Plugging this ansatz into
(1.1) and neglecting terms of order O(ε2) yields (1.16) upon identifying u = ∇S,
cf. [25] for more details (see also Section 6 of [19] where the connection between
WKB analysis and Bohmian measures is discussed).

Finally, we shall consider the particular case where ψε(t) is a so-called semi-

classical wave packet (or coherent state). The classical limit of Bohmian trajectories
in this particular situation has been recently studied in [9]. There it has been shown
that the Bohmian trajectoriesXε(t, x) converge (in some suitable topology) toX(t),
the classical particle trajectory induced by the Hamiltonian system

(1.17)

{
Ẋ = P, X(0) = x0,

Ṗ = −∇V (X), P (0) = p0.

One should note that the mathematical methods used in [9] are rather different
from ours and that no convergence result for P ε(t) is given, except for p0 = 0 (and,
as a variant, for a class of time-averaged Bohmian momenta). In comparison to
that, the use of βε(t), together with the Young measure theory developed in [19],
allows us to conclude the following result:

Theorem 1.3. Let V ∈ C3
b(R

d). In addition, assume that ψε
0 is of the following

form

ψε
0(x) = ε−d/2a

(
x− x0√

ε

)
eip0·x/ε, x0, p0 ∈ R,

with given ε-independent amplitude a ∈ S(R).
(1) Then, the limiting Bohmian measure satisfies

β(t, x, p) = w(t, x, p) = ‖a‖2L2 δ(x −X(t))δ(p− P (t)),

where X(t), P (t) are the classical trajectories defined by (1.17).
(2) Consider the following re-scaled Bohmian trajectories

Y ε(t, y) = Xε(t, x0 +
√
εy), Zε(t, y) = P ε(t, x0 +

√
εy),

where Xε(t, x), P ε(t, x) solve (1.8) subject to initial data (x, p0) ∈ Lε, i.e.

with constant initial velocity uε0(x) = p0 ∈ Rd induced by ψε
0. Then

Y ε ε→0+−→ X, Zε ε→0+−→ P,

locally in measure on Rt × Rd
x. More precisely, for every δ > 0 and every

Borel set Ω ⊆ Rt × Rd
x with finite Lebesgue measure,

(1.18) lim
ε→0

L
(
{(t, y) ∈ Ω : |(Y ε(t, y), Zε(t, y))− (X(t), P (t))| ≥ δ}

)
= 0,

where L denotes the Lebesgue measure.

Let us compare now our results with the corresponding ones in [9]: Besides the
fact that we are able to infer convergence of the Bohmian momentum P ε(t), the
topology we use is different from the one used there. Rephrased in our notation [9]
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proves that, for all T > 0 and γ > 0 there exists some R < ∞ such that, for all ε
small enough,

(1.19) Pρε
0
({x0 ∈ R

3| max
t∈[0,T ]

|Xε(t, x0)−X(t)| ≤ R
√
ε}) > 1− γ,

where Pρε
0
is the probability measure with density ρε0 = |ψε

0(x)|2. We see clearly
that the comparison between the two results is not straightforward, as (1.19) mea-
sures the “good” points and (1.18) the “bad” ones. Moreover, (1.19) is more precise
for finite times, whereas (1.18) doesn’t require a-priori bounds on the time depen-
dence and additionally implies almost everywhere convergence of sub-sequences, see
Remark 5.3. It would certainly be interesting to study the link between the two
approaches more precisely.

Remark 1.3. In view of Theorem 1.2 and Theorem 1.3 one might guess that w = β
only if both are mono-kinetic phase space distributions. This is consistent with the
examples given in [19] but still wrong in general. Indeed, in the appendix of the
present work, we shall construct a family of wave functions ψε for which w = β is
absolutely continuous with respect to the Lebesgue measure on Rd

p. This henceforth
closes a gap in the case studies given in [19].

The paper is now organized as follows: In the upcoming section we collect some
basic mathematical estimates needed throughout this work. In Section 3 we es-
tablish the fact that βε(t) indeed furnishes a distributional solution of (1.13). In
Section 4 the defect F will be partially characterized, yielding the proof of Theorem
1.2. In Section 5, the particular case of semi-classical wave packets will be studied
including the proof of Theorem 1.3. Finally, in Appendix A we shall present and
example in which w = β but not mono-kinetic.

2. Static estimates

In order to establish the weak formulation of (1.13), we shall heavily rely on the
following static, i.e. time-independent, estimate.

Proposition 2.1. Let ψ ∈ C2(Rd), then it holds:

|div (∇|ψ| ⊗ ∇|ψ|)| ≤ d

(
sup
ℓjk

|∂ℓ∂jψ∂kψ|+
1

2

∣∣∣∣Im
(∇ψ
ψ

)∣∣∣∣ sup
ℓj

|∂ℓψ∂jψ|
)
,

with j, ℓ, k = 1, . . . , d.

Proof. We denote ∂j := ∂xj
and first compute

∂j |ψ| =
ψ∂jψ + ψ∂jψ

2(ψψ)1/2
,

which yields

∂ℓ|ψ| ∂j |ψ| = Re

(
∂ℓψ∂jψ +

ψ

ψ
∂ℓψ∂jψ

)
,

Using this we can write

(2.1) div (∇|ψ| ⊗ ∇|ψ|) =
d∑

k=1

Re ∂k

(
∂ℓψ∂jψ +

ψ

ψ
∂ℓψ∂jψ

)
,
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where each term in this series will be estimated separately (and in the same way).
In order to handle terms in which the partial derivative ∂k acts on ψ/ψ we note
that

∂k

(
ψ

ψ

)
=
∂kψ

ψ
− ∂kψψ

ψ2
=

(
∂kψ

ψ
− ∂kψ

ψ

)
ψ

ψ
,

and we henceforth obtain

∂ℓψ∂jψ∂k

(
ψ

ψ

)
=

1

2
Im

(
∂kψ

ψ

)
∂ℓψ∂jψ

ψ

ψ
.

Using this on the r.h.s. of (2.1) and summing up all terms yields the assertion of
the lemma.

�

In the upcoming analysis, we shall use the established estimate in the following
form, where we denote by ‖f‖Ḣ1 := ‖∇f‖L2 the usual Ḣ1(Rd) semi-norm:

Corollary 2.2. Fix ε > 0. Then for any ψε ∈ H2
loc(R

d) and for any test function

ϕ ∈ D(Rd
x × Rd

p), we have

(2.2)

∣∣∣∣
∫

Rd

div
(
∇
√
ρε ⊗∇

√
ρε
)
ϕ

(
x,
Jε

ρε

)
dx

∣∣∣∣ ≤M ε < +∞,

where ρε, Jε are defined in (1.4). Explicitly, we find

M ε ≤ d

ε
‖ψε‖2

Ḣ1(Ω)
sup
ξ∈Rd

∫

Rd

|ξϕ(x, ξ)|dx

+ εd‖ψε‖Ḣ1(Ω)‖∇ψε‖Ḣ1(Ω) sup
ξ∈Rd

∫

Rd

|ϕ(x, ξ)|dx,

where Ω ⊂ Rd denotes any compact set containing the support of ϕ(., p) for all

p ∈ Rd.

Proof. The proof follows directly from the estimate given in Proposition 2.1 and a
density argument in H2

loc(R
d). �

In order to understand howM ε behaves with respect to ε we first note that due to
the semi-classical scaling of the equation (1.1) ‖ψε(t)‖Ḣ1 is not uniformly bounded
as ε→ 0+. In fact ψε(t) is ε-oscillatory for all t ∈ R and thus each derivative scales
like 1/ε. Invoking the conservation laws of mass and energy, we have to use the
re-scaled semi-norms ‖f‖Ḣ1

ε
:= ‖ε∇f‖L2 in order to writeM ε in terms of uniformly

bounded (w.r.t. ε) expressions. Doing so, we find that M ε = O(1/ε3) as ε→ 0+.

Remark 2.3. Note, however, that if ψε is of WKB type, i.e. ψε(x) = a(x)eiS(x)/ǫ

with real-valued phase S(x) ∈ R and ε-independent amplitude a, then the left hand
side in (2.2) obviously is bounded as ε→ 0, although the right hand side blows up.
In addition, it is easy to check that if one takes a superposition of two WKB states
(such that ∇S1 6= ∇S2), the bound (2.2) is easily saturated.
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3. Bohmian measures as distributional solutions of (1.13)

3.1. Mathematical preliminaries. Let us first note that the assumption V ∈
C1

b(R
d;R) is sufficient to ensure that, for each ε > 0, the Hamiltonian operator

Hε = −ε
2

2
∆ + V (x),

is essentially self-adjoint on D(Hε) = H2(Rd) ⊂ L2(Rd). It therefore generates a
unitary (strongly continuous) group Uε(t) = e−itHε/ε on L2(Rd), which ensures the
global existence of a unique solution ψε(t) = Uε(t)ψ0 of the Schrödinger equation
(1.1), such that

‖ψε(t, ·)‖L2 = ‖ψε
0‖L2 .

Moreover, since ψε
0 ∈ H3 ⊂ D(Hε), standard semi-group theory [23] imply ψε(t) ∈

D(Hε) = H2(Rd), for all t ∈ R. Clearly, this also yields that ρε(t) ∈ L1(Rd;R) as
well as Jε(t) ∈ L1(Rd;Rd), for all t ∈ R and that

Eε(t) = Eε(0) < +∞,

providing a rigorous basis for the conservation of mass and energy. In addition,
since Hε and Uε(t) commute, and we obtain that

‖(Hε)n/2ψε(t)‖L2(Rd) = ‖(Hε)n/2ψε
0‖L2(Rd).

Since V ∈ L∞(Rd) the latter is equivalent to the n-th Sobolev norm

‖f‖Hn := ‖(1 + |ξ|n/2)f̂‖L2 ,

and we immediately infer the following result:

Lemma 3.1. Under the assumptions of Theorem 1.1, ψε(t) ∈ H3(Rd) for all t ∈ R.

With this result in hand, we are sure to be able to apply the estimates established
in Section 2.

3.2. Weak formulation of (1.13). In order to make sense of βε(t) as a weak
solution of (1.13), the main problem is to understand the weak formulation of
∇xV

ε
B · ∇pβ

ε = divp(V
ε
B∇xβ

ε). To this end, consider a class of test-functions
ϕ(t, x, p) = χ(t, x)σ(p) with χ ∈ C∞

0 (Rt × Rd
x), σ ∈ C∞

0 (Rd
p) and compute

∫ ∞

0

∫∫

R2d

∇xV
ε
B · ∇pϕ(t, x, p)dβ

ε(t, dx, dp)dt =

=

∫ ∞

0

∫

Rd

χ(t, x)∇xV
ε
B(t, x) · ∇σ(uε(t, x))ρε(t, dx) dt.

since, by definition, βε(t, x, p) = ρε(t, x)δ(p − uε(t, x)) where denote uε := Jε

ρε , i.e.

the quantum mechanical velocity field. The following lemma then shows that this
weak formulation indeed makes sense.

Lemma 3.2. Let ε > 0. For σ ∈ C∞
0 (Rd

p) and χ ∈ C∞
0 (Rt × Rd

x) we have
∫ ∞

0

∫

Rd

|χ(x, t)| |∇σ(uε(x, t))| |∇xV
ε
B(x, t)|ρε(t, x)dx dt < +∞.

This result is key in proving that Bohmian measures furnishes a distributional
solution of (1.13).
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Proof. A simple computation shows that

ρε∇xV
ε
B =

ε2

2
∇∆ρε − ε2

4
div

(∇ρε ⊗∇ρε
ρε

)

=
ε2

2
∇∆ρε − ε2 div

(
∇√

ρε ⊗∇√
ρε
)
.

Inserting this into the weak formulation of ∇xV
ε
B · ∇pβ

ε, we can estimate
∫ ∞

0

∫

Rd

|χ(x, t)| |∇σ(uε(x, t))| |∇xV
ε
B(x, t)|ρε(x)dx dt

≤ ε2

2

∫ ∞

0

∫

Rd

|χ(x, t)||∇σ(uε(x, t))||∇∆ρε|dx dt+

+ ε2
∫ ∞

0

∫

Rd

|χ(x, t)| |∇σ(uε(x, t))| | div
(
∇√

ρε ⊗∇√
ρε
)
|dx dt

The two terms on the right hand side can the be treated as follows: By Lemma 3.1
we have ψε ∈ H3(Rd) and thus ∇∆ρε is in L1(R), for all t ∈ R. Therefore

∫ ∞

0

∫

Rd

|χ(t, x)| |∇σ(uε(x, t))| |∇∆ρε|dx dt < +∞.

On the other hand, inequality (2.2) directly yields (for any fixed ε > 0)
∫ ∞

0

∫

Rd

|χ(t, x)| |∇σ(uε(x, t))| | div
(
∇√

ρε ⊗∇√
ρε
)
|dxdt < +∞,

and the assertion is proved. �

As a final preliminary step, let us recall the classical notion of the push-forward

for measures : Let µ0 ∈ M(Rd) and f : Rd → Rd a measurable map. Then
µ1 = X#µ0 is called the push-forward of µ0 under f , if for every σ ∈ C0(R

d), it
holds:

(3.1)

∫

Rd

σ(x)µ1(x)dx =

∫

Rd

σ(f(x))µ0(x)dx,

By a straightforward approximation argument this condition can be relaxed in order
to take into account test-functions σ which are (only) integrable with respect to
µ1, but not necessarily C0. In the following we shall use this slightly more general
definition of push-forwards (the reason will become clear in the proof given below).
In particular, we have
∫ ∞

0

∫∫

R2d

ϕ(t, x, p)dβε(t, dx, dp)dt =

∫ ∞

0

∫

Rd

ϕ(t,Xε(t, x), uε(t, x))ρε0(dx)dt,

by using the fact that βε(t, x, p) is the push-forward of the measure ρε0(x)δ(p−u0(x))
under the Bohmian phase space flow Φε

t defined in (1.7).

Proof of Theorem 1.1. Let ϕ ∈ C∞
0 ([0,+∞)×R

d
x×R

d
p) be a test-function such that

ϕ(t, x, p) = χ(t, x)σ(p). Then, the weak formulation of (1.13) reads
∫ ∞

0

∫∫

R2d

((∂tχ(t, x) + p · ∇xχ(p))σ(p)− χ(t, x)∇x(V + V ε
B) · ∇pσ) β

ε(t, dx, dp)dt

First, consider the term involving ∇xV
ε
B : Having in mind the result of Lemma 3.2,

we are allowed to consider χ(t, x)∇xV
ε
B(t, x) · ∇σ(uε(t, x)) as a test-function which
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is integrable with repsect to ρε(t, x). Thus, we can apply the pus-forward formula
3.1 and infer

∫ ∞

0

∫∫

R2d

χ(t, x)∇xV
ε
B(t, x) · ∇σ(p)βε(t, dx, dp) dt =

=

∫ ∞

0

∫

Rd

χ(t,Xε(t, x))∇xV
ε
B(t,X

ε(t, x)) · ∇σ(uε(t,Xε(t, x)))ρε0(dx)dt.

In addition, the fact that Jε = ρεuε ∈ L1(Rd) implies that the “test-function”
σ(uε(t, x))uε(t, x) · ∇χ(t, x) is integrable with respect to ρε (note however, that
uε(t, x) in general is not continuous). Thus we can again apply the (generalized)
push-forward formula 3.1 to obtain

∫ ∞

0

∫∫

R2d

σ(p)p · ∇xχ(t, x)β
ε(t, dx, dp) dt =

=

∫ ∞

0

∫

Rd

σ(uε(t, x))uε(t, x) · ∇χ(t, x)ρε0(dx)dt.

All the other terms appearing in the weak formulation of (1.13) can then be treated
analogously. Having in mind the ODE system (1.8), we consequently arrive at

∫ ∞

0

∫∫

R2d

((∂tχ+ p · ∇xχ)σ(p)− χ∇x(V + V ε
B) · ∇pσ) β

ε(t, dx, dp)dt

=

∫ ∞

0

∫

Rd

d

dt
(χ(t,Xε(t, x))σ(uε(t, x))) ρε0(dx) dt

= −
∫

Rd

χ(t, x)σ(uε0(x))ρ
ε
0(dx).

This proves that the Bohmian measure βε(t) furnishes a weak solution of (1.13) in
D′([0,∞) × Rd

x × Rd
p) with initial data (1.6). The proof for D′(Rt × Rd

x × Rd
p) is

analogous. �

4. Study of possible defects

Having established the fact that βε is indeed a weak solution of (1.13), we first
rewrite the equation in the following form

(4.1) ∂tβ
ε + p · ∇xβ

ε −∇xV · ∇pβ
ε = divp(∇xV

ε
Bβ

ε),

where VB is the Bohm potential defined in (1.9). Using the weak convergence results
given in [19] we can pass to the limit on the left hand side of this equation (up to
extraction of sub-sequences) in order to obtain

(4.2) ∂tβ + p · ∇xβ −∇xV · ∇pβ = F
where the defect F is defined in (1.15) . In order to gain some information on F
(and prove Theorem 1.2), we first derive from (4.2) the following equation for the
first moment of β(t) with respect to p ∈ Rd:

(4.3) ∂tJ + divx

∫

Rd
p

p⊗ p β(t, x, dp)− ρ∇xV = −
∫

Rd
p

pF(t, x, p)dp,

where ρ, J denote the classical limits of ρε, Jε given by (1.11) and (1.12). To proceed
further we need the following result.
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Lemma 4.1. Let µ ∈ M+(Rd
x × Rd

p) be such that
∫

Rd
p

µ(x, dp) = ρ ∈ M+(Rd),

∫

Rd
p

pµ(x, dp) = ρ(x)u(x),

for some function u(x) ∈ Rd defined ρ− a.e.. Then it holds
∫

Rd
p

p⊗ p µ(x, dp) ≥ ρu⊗ u,

with equality if and only if µ(x, p) = ρ(x)δ(p− u(x)).

Proof. The proof follows directly from the Cauchy-Schwartz inequality (see also
Lemma 3.5 in [12]) applied to

d∑

ℓ,j=1

∫

Rd

ρ(x)ϕℓ(x)ϕj(x)uℓ(x)uj(x)dx,

where ϕ ∈ C∞
0 (Rd). Equality then holds if and only if there exists a constant

C ∈ R, such that

∀ϕ ∈ C∞
0 :

d∑

ℓ,j=1

pℓϕj(x) = C

d∑

ℓ,j=1

uℓ(x)ϕj(x), µ− a.e.

which clearly implies that pℓ = Cuℓ(x) and thus for any x ∈ Rd, µ(x, ·) must
concentrate on the set of points {Cuℓ(x)}dℓ=1. �

Using the result of this lemma we can rewrite (4.3) as

(4.4) ∂tJ + divx(ρu⊗ u)− ρ∇xV = −
∫

Rd
p

pF(t, x, p)dp− divx(ρB),

with a defect B(t, x) ≥ 0. In addition we know that

B(t, x) = 0, if and only if, β(t, x, p) = ρ(t, x)δ(p− u(t, x)).

On the other hand, we can can consider the equation for βε(t), take first the moment
w.r.t. p and then pass to the limit ε → 0+: Multiplying (4.1) by p ∈ Rd and inte-
grating yields the equation for the current density in the quantum hydrodynamical
system (1.5), i.e.

(4.5) ∂tJ
ε + div

(
Jε ⊗ Jε

ρε

)
+ ρε∇V = ρε∇V ε

B ,

where we have used the fact that∫

Rd

p⊗ pβε(t, x, dp) =
Jε ⊗ Jε

ρε
,

since βε is mono-kinetic by definition. Using this, we can define a defect C(t, x) ≥ 0
via

(4.6) lim
ε→0+

(
Jε ⊗ Jε

ρε

)
=

∫

Rd

p⊗ pβ(t, x, dp) + C(t, x),

where the limit has to be understood in D′(Rt × Rd
x). In addition, we know that

ρε∇V ε
B =

ε2

2
∇∆ρε − ε2 div

(
∇
√
ρε ⊗∇

√
ρε
)
,
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where the first term tends to zero as ε→ 0+ by linearity. This consequently yields

(4.7) ∂tJ + div(ρu⊗ u) + ρ∇V = − div(A+ ρB + C),

where A(t, x) is defined by

(4.8) ε2 div
(
∇
√
ρε ⊗∇

√
ρε
) ε→0+−→ A in D′(Rt × R

d
x).

In summary, we have the following partial characterization of F .

Lemma 4.2. The defect F defined in (1.15) satisfies

(4.9)

∫

Rd
p

pF(t, x, p)dp = − div(A(t, x) + C(t, x)),

where A, C are given by (4.8), (4.6), respectively.

In a last step, this can now be compared with the classical limit of the quantum
hydrodynamic system (1.5) via Wigner measures. In [12] it has been shown that

Jε(t, x)
ε→0+−→ J(t, x) :=

∫

Rd

w(t, x, dp)

satisfies

(4.10) ∂tJ + div(ρu⊗ u) + ρ∇V = − div ρT ,

with a temperature tensor T (t, x) ≥ 0. The latter is found to be equal to zero, if
and only if w(t, x, p) = ρ(t, x)δ(p − u(t, x)). This can now be used as follows:

Proof of Theorem 1.2. Let d = 1. Having in mind that, by assumption, the initial
limiting Bohmian and Wigner measures are equal β0(x, p) = w0(x, p), the unique-
ness of solutions, together with (4.10) and (4.7), implies

(4.11) ρT = A+ ρB + C, in D′(Rt × Rd
x),

Since all terms on the right hand side are greater or equal to zero, we infer that

w(t, x, p) = ρ(t, x)δ(p− u(t, x)), if and only if, A = B = C = 0.

By definition, this implies that

ρε∇V ε
B

ε→0+−→ 0,

as well as

lim
ε→0+

∫

Rd

p⊗ pβε(t, x, dp) =

∫

Rd

p⊗ pβ(t, x, dp) = ρu⊗ u.

By Lemma 4.1, we conclude β(t, x, p) = ρ(t, x)δ(p − u(t, x)) and the assertion is
proved. �

Remark 4.3. In dimensions d > 1 we can not conclude as before, since identity
(4.11) has to be replaced by

ρT = A+ ρB + C +D,

for some D satisfying divD(t, x) = 0.
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5. Bohmian measures for semi-classical wave packets

The theory of semi-classical wave packets is very well developed, see e.g. [14,
15, 20, 21] and the references given therein (see also [1, 6] for a recent application
in the context of nonlinear Schrödinger equations). It allows to approximate the
solution to (1.1) via

(5.1) ψε(t, x)
ε→0+∼ uε(t, x) = ε−d/2v

(
t,
x−X(t)√

ε

)
ei(P (t)·(x−X(t))+S(t))/ε,

where P (t), X(t) solve the Hamiltonian system (1.17) and S(t) is the associated
classical action, i.e.

S(t) =

∫ t

0

1

2
|P (s)|2 − V (X(s))ds.

The envelope function v(t, y) is thereby found to be a solution of the following
ε-independent Schrödinger equation (see also the proof of Theorem 1.3 below):

(5.2) i∂tv = −1

2
∆yv +

1

2
(Q(t)y, y)v, v(t = 0, y) = a(y),

where Q(t) := HessV (X(t)) denotes the Hessian of the potential V (x) evaluated
at the classical trajectory X(t) and a ∈ S is induced by the initial data ψε

0 given
in Theorem 1.3. In other words, v(t, x) solves a linear Schrödinger equation with
time-dependent quadratic potential.

Under suitable assumptions on V (satisfied by the hypothesis of Theorem 1.3),
one can show, see e.g. [1, 14, 15, 6, 20, 21], that the coherent state uε(t, x) approx-
imates the exact solution ψε(t, x) of (1.1) in the following sense

(5.3) ‖ψε(t, ·)− uε(t, ·)‖L2(Rd) ≤ C
√
εeCt,

provided the initial data ψε(0, x) is of the form given in Theorem 1.3.

Remark 5.1. Note that in contrast to the WKB approximation, the coherent state
ansatz does not suffer from the appearance of caustics (although it is sensitive to
them through equation (5.2) where the caustics are somehow hidden). In addition,
it assumes that the amplitude concentrates on the scale

√
ε. The latter has been

shown to be a critical scaling in the theory of Bohmian measures, cf. [19].

Proof of Theorem 1.3. We first note that the solution to (5.2) satisfies ‖v(t, ·)‖L2 =
‖a‖L2 for all t ∈ R. Thus, the Wigner transformation of uε(t, x) satisfies

wε[uε]
ε→0+−→ w in Cb(Rt;M+(Rd

x × R
d
p))w − ∗,

The corresponding Wigner measure is well known, cf. [17, 19]:

w(t, x, p) = ‖a‖2L2 δ(x−X(t))δ(p− P (t)).

From the estimate (5.3) and the classical results given in [17] we conclude that the
Wigner transformation of the exact solution wε[ψε] converges to the same limiting
measure w, uniformly on compact time-intervals I ⊂ Rt.

In order to prove that w(t) = β(t), we perform the following unitary transfor-
mation

(5.4) ψε(t, x) = ε−d/2vε
(
t,
x−X(t)√

ε

)
ei(P (t)·(x−X(t))+S(t))/ε.
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Using this transformation, equation (1.1) is easily found to be equivalent to

(5.5) i∂tv
ε = −1

2
∆yv

ε + V ε(t, y)vε, vε(t = 0, x) = a(x),

where V ε(t, y) is given by

V ε(t, y) =
1

ε

(
V (X(t) +

√
εy)− V (X(t))−

√
ε∇V (X(t)) · y

)
.

Obviously, for C2 potentials V equation (5.5) converges to (5.2) as ε → 0+. This
together with sufficient a-priori bounds on vε(t) yields the estimate (5.3), cf. [6] for
more details. On the other hand, using (5.4), the Bohmian measure βε(t) of the
exact solution ψε(t) can be seen to act on Lipschitz test-function ϕ ∈ C0(R

d
x ×Rd

p)
via

〈βε(t), ϕ〉 =
∫

Rd

|vε(t, y)|2ϕ
(
X(t) +

√
εy,

√
εIm

(∇vε(t, y)
vε(t, y)

)
+ P (t)

)
dy.

Using the Lipschitz continuity of ϕ we can estimate
∣∣∣ϕ
(
X(t) +

√
εy,

√
εIm

(∇vε(t, y)
vε(t, y)

)
+ P (t)

)
− ϕ(X(t), P (t))

∣∣∣

≤ Cϕ

√
ε

(
|y|+

∣∣∣Im
(∇vε(t, y)
vε(t, y)

) ∣∣∣
)
,

for some positive constant Cϕ > 0. In view of this, we obtain
∣∣∣〈βε(t), ϕ〉 −

∫

Rd

|vε(y, t)|2ϕ(X(t), P (t)) dy
∣∣∣

≤ Cϕ

√
ε

∫

Rd

|y||vε(t, y)|2dy +
√
ε

∫

Rd

|vε(t, y)||∇vε(t, y)|dy

≤ Cϕ

√
ε ‖vε(t)‖L2

(
‖|x|vε(t)‖L2 + ‖∇vε(t)‖L2

)
,

where the last inequality follows from Cauchy-Schwartz. In order to proceed further
we need the following lemma.

Lemma 5.2. Let V ∈ C3
b(R

d). Then the solution of (5.5) satisfies

‖|x|vε(t)‖L2 ≤ C1, ‖∇vε(t)‖L2 ≤ C2, ∀ t ∈ R,

where C1, C2 are some positive constants, independent of ε.

Proof of Lemma 5.2. In [6] it is shown in there that, if V is sub-quadratic, i.e.
∂γV (x) ∈ L∞, for all |γ| ≥ 2, it holds:

(5.6) ‖|x|vε(t, .)‖L2 ≤ C1, ‖|x|3vε(t)‖L2 ≤ C3, ∀ t ∈ R.

It therefore only remains to show the estimate for ∇vε(t). This follows by consid-
ering the energy corresponding to (5.5), i.e.

Eε(t) =
ε2

2

∫

Rd

|∇vε(t, x)|2dx+

∫

Rd

V ε(t, x)|vε(t, x)|2dx,

which satisfies
d

dt
Eε(t) =

∫

Rd

∂tV
ε(t, x)|vε(t, x)|2dx.

Since
|∂tV ε(t, x)| ≤ |Ẋ(t)||y|3

√
ε sup |∂3V (X(t) + s

√
εy)|,

the assumption V ∈ C3
b, together with (5.6), yields the desired bound on∇vε(t). �
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Using the a-priori estimates established in Lemma 5.2 we obtain
∣∣∣〈βε(t), ϕ〉 −

∫

Rd

|vε(y, t)|2ϕ(X(t), P (t)) dy
∣∣∣ ε→0+−→ 0.

In other words, we have that

(5.7) β(t) = ‖v(t, ·)‖2L2δ(x−X(t))δ(p− P (t)),

Having in mind that ‖v(t, ·)‖L2 = ‖a‖L2 this proves assertion (1) of Theorem 1.3.

In order to conclude assertion (2) we recall the following formula, stated in [19,
Remark 3.8]. For all t ∈ R and for all test-functions ϕ ∈ C0(R

d
x × Rd

p), χ ∈ C0(Rt)
it holds∫

R

χ(t)

∫∫

R2d

ϕ(x, p)βε(t, dx, dp)dt =

∫

R

χ(t)

∫

Rd

ϕ(Xε(t, x), P ε(t, x))ρε0(x) dx dt

=

∫

R

χ(t)

∫

Rd

ϕ(Xε(t, x0 +
√
εy), P ε(t, x0 +

√
εy))|a(y)|2dy dt

where in the second equality we set y = (x − x0)/
√
ε and recall that the initial

density is given by

ρε0(x) = ε−d/2

∣∣∣∣a
(
x− x0√

ε

)∣∣∣∣
2

.

Now, let
ωt,y : Rt × R

d
y → M+(Rd

x × R
d
p) ; (t, y) 7→ ωt,y(x, p),

be the Young measure associated to the family of re-scaled Bohmian trajectories

Y ε(t, y) = Xε(t, x0 +
√
εy), Zε(t, y) = P ε(t, x0 +

√
εy),

where we refer to [24] for the definition of Young measures and to [19, 16] for their
application in the context of Bohmian measures. Then, by passing to the limit
ε→ 0+ (after the choice of an appropriate sub-sequence) we find that
∫

R

χ(t)

∫∫

R2d

ϕ(x, p)β(t, dx, dp)dt =

∫

R

χ(t)

∫

Rd

ϕ(x, p))ωt,y(dx, dp)|a(y)|2dy dt.

In other words

β(t, x, p) =

∫

Rd

|a(y)|2ωt,y(x, p)dy

Upon inserting (5.7) with ‖v(t, ·)‖L2 = ‖a‖L2 , this implies

ωt,y(x, p) = ν(t, y)δ(p− P (t))δ(x −X(t)).

Since 0 ≤ ν(y, t) ≤ 1 and
∫

Rd

|a(y)|2dy =

∫

Rd

|a(y)|2ν(t, y)dy,

for all t ∈ R, we conclude ν(t, y) ≡ 1 a.e. and hence

ωt,y(x, p) = δ(p− P (t))δ(x −X(t)).

By a well known result of Young measure theory (see e.g. [16, Proposition 1]),
we know that the fact that ωt,x is concentrated in a point is equivalent to the
convergence of the re-scaled trajectories, i.e.

Y ε ε→0+−→ X, Zε ε→0+−→ P,

locally in measure on Rt × Rd
y. �
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Remark 5.3. In d = 1, assertion (1) of Theorem 1.3 directly follows from Theorem
1.2, since w(t) is obviously mono-kinetic. In addition, one should note that the
established local in measure convergence implies (see e.g. [8, Section 13]) that
there exists a sub-sequence {εn}n∈N, going to zero as n→ ∞, such that

Y εn n→∞−→ X, Zεn n→∞−→ P, a.e. in Ω ⊆ Rt × Rd
y.

Appendix A. An example with non mono-kinetic limiting Bohmian

measure

In [19] we considered several different examples of ψε and computed the corre-
sponding limiting Bohmian measure β and the corresponding Wigner measure w.
We found that in general w 6= β except in rather special situations. In fact, in all
the examples given in [19] we find w = β only in the mono-kinetic case. Together
with the results stated in Theorem 1.2 and Theorem 1.3 this might yield the wrong
impression that w and β can only coincide if they are both mono-kinetic phase
space distributions. The following example will illustrate that this is in general not
the case:

Consider an ε-dependent family of wave functions {uε}0<ε≤1 given by

uε(x) = aε(x)eiS
ε(x)/ε,

where the amplitude aε reads

aε(x) = ε−
d
4 ρ1/2

( |x|
ε1/2

)
,

with some ε-independent profile ρ ∈ S(R;R), satisfying

(A.1)

∫ ∞

0

(ρ′(r))2

ρ(r)
rd−1dr < +∞.

In addition, we assume that Sε ∈ Cb(R
d) ∩ C2

b(R
d/{0}), such that for |x| > ε3/4:

Sε(x) = S(x), with S even and

lim
δ→0

∇S(δω) = χ(ω), ∀ω ∈ S
d−1 ,

with χ ∈ C∞(Sd−1). On the other hand, for |x| ≤ ε3/4 we assume that the phase
function Sε(x) = S(x) is such that

∇Sε(ε3/4tω) = ∇S(ε3/4ω)1 + t

2
+∇S(−ε3/4ω)1− t

2
, −1 ≤ t ≤ 1.

Lemma A.1. Let uε be as given above, then

β(x, p) = w(x, p) =

∫

R

ρ(|y|)dy 1

|Sd−1|

∫

Sd−1

δ(p− χ(ω))dω ⊗ δ(x).

Remark A.2. To our knowledge this is the first example in which β = w is
absolutely continuous with respect to the Lebesgue measure on R

d
p.

Proof. We first note that, by assumption,

|uε(x)|2 = ε−d/2ρ

( |x|
ε1/2

)
ε→0+−→ δ(x)

∫

Rd

ρ(|x|)dx.

In addition, we also have that ∇Sε ∈ W 1,∞(Rd) and |∂ℓ∂jSε| ≤ Cε−3/4, for all
ℓ, j = 1, . . . , d. Thus

ε‖∂xℓ
∂xj

Sε‖L∞(Rd)
ε→0+−→ 0, ∀ ℓ, j = 1, . . . , d.
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Next, we consider ε2|∇uε|2 = ε2|∇aε|2 + ρε|∇Sε|2, where we denote, as usual
ρε := |uε|2. Since |∇Sε(x)| ≤ C, by assumption, we infer

∫

Rd

ρε(x)|∇Sε(x)|2dx ≤ C, uniformly in ε.

On the other hand one easily computes

ε2
∫

Rd

|∇aε(x)|2 =
ε

4

∫

R

ρ′(|y|)2
ρ(|y|) dy

ε→0+−→ 0,

in view of (A.1). Theorem 4.7 of [19] consequently implies β(x, p) = w(x, p) in the
sense of measures.

It remains to explicitly compute the limiting measure. To this end, we consider
the action of βε onto any testfunction ϕ ∈ C0(R

2d), i.e.

〈βε, ϕ〉 = ε−d/2

∫

Rd

ρ

( |x|
ε1/2

)
ϕ(x,∇Sε(x))dx

=

∫

Sd−1

∫ ∞

0

ρ(r)ϕ(ε1/2rω,∇Sε(ε1/2rω)rd−1drdω,

by setting y = rω. It easily follows that as ε→ 0+:

〈βε, ϕ〉 ∼
∫

Sd−1

∫ ∞

0

ρ(r)rd−1ϕ(0,∇Sε(ε1/2rω)drdω.

Keeping r > 0, ω ∈ Sd−1 fixed, we see that for ε sufficiently small,

∇Sε(ε1/2rω) = ∇S(ε1/2rω) ε→0+−→ χ(ω),

since ε1/2 ≫ ε3/4. By dominated convergence, we therefore conclude

〈βε, ϕ〉 ε→0+−→ 1

|Sd−1|

∫

R

ρ(|y|)dy
∫

Sd−1

ϕ(0, χ(ω)dω,

and the assertion is proved. �
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