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Abstract

We consider the natural measures associated with a family of con-
formal iterated function systems satisfying the transversality condi-
tion but no separation condition. We provide the exact value of their
generalised Renyi dimensions Dq for q in a certain range.

1 Introduction

Let V be an open and bounded subset of Rd. For each parameter t ∈ V
we consider a conformal iterated function system (IFS) (fi(·, t))ki=1 in Rd

depending on t. We assume this dependence to be smooth (at least C1+β).
We denote by Λt the limit set of the IFS, by νt its natural measure and by
s(t) the similarity dimension, i.e. the solution of the Bowen’s equation

P (s(t)χt) = 0

where χt is the Lyapunov exponent of the IFS and P denotes the topological
pressure. It is well known that

dimH Λt ≤ s(t).
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If, in addition, the IFS satisfies the Open Set Condition (OSC), it is a classical
result (due to Hutchinson [Hu] and Manning and McCluskey [MM]) that the
Hausdorff dimension of the limit set equals s(t). In this paper we assume
that the transversality condition introduced by Pollicott and Simon [PoSi]
(see definition 2.1) holds. We also assume that

s(t) < d

for all t.
A fine analysis of the properties of the natural measure νt of the IFS is

provided by the computation of the so-called generalized dimensions or Dq

spectrum. These are computed as follows. Let, for q ≥ 0 and ε > 0,

Cq(νt, ε) =

∫
(νt(B(x, ε))q−1dνt(x)

(B(x, ε) denotes the closed ball of radius ε centered at x). For q ̸= 1, one
defines the lower and upper q-dimensions as:

D−
q (νt) = lim inf

ε→0

log(Cq(νt, ε))

(q − 1) log(ε)
,

D+
q (νt) = lim sup

ε→0

log(Cq(νt, ε))

(q − 1) log(ε)
.

In case the limit exists, it is called the q-dimension of νt, denoted Dq(νt).
For q = 1, one sets:

D−
1 (νt) = lim inf

ε→0

∫
log(νt(B(x, ε))dνt(x)

log(ε)
,

D+
1 (νt) = lim sup

ε→0

∫
log(νt(B(x, ε))dνt(x)

log(ε)
.

Alternate, equivalent, definitions exist. See in particular [HK, JJ] for
potential-theoretic ones.

Generalized dimensions are extensively used for the study of chaotic
dynamical systems. In addition, the Legendre transform of the function
q 7→ (q− 1)Dq provides an upper bound to the so-called large deviation mul-
tifractal spectrum, with equality in a number of interesting cases (the sim-
plest one being self-similar measures with the OSC, see, e.g. [LVT, LVV]).
In such cases, one says that the weak multifractal formalism holds. Since we
will use the definition later, we recall it now. For each positive integer n, we
consider the partition of the support of the measure µ into dyadic cubes of
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sizes 2−n. For any ε > 0 and any α ∈ R, let Nn(α, ε) denote the number
of cubes with measure between 2−n(α+ε) and 2−n(α−ε). The large deviation
multifractal spectrum is the function ([F, LVV, LVT]):

f(α) = lim
ε→0

lim sup
n→∞

log(Nn(α, ε))

n log 2
.

The existence of the Lq dimension spectrum is known for the natural
measure of the IFS, see [PeSo] for the linear case. This proof works (after
minor changes) in nonlinear case as well, as shown in [R] (the proof in [R] is
given for correlation dimension D2 only, but the general case can be obtained
in the same way). The result of Hunt and Kaloshin [HK] implies that Dq =
s(t) for all q ≤ 2 and for almost all t ∈ V (we explain it in more details in
the third section). They also give an example, showing that the constant 2
is sharp.

The purpose of this work is to prove the following result:

Theorem 1.1. If s(t) < d/2 for all t ∈ V then for almost all t ∈ V the IFS
satisfies the strong open set condition, hence

Dq(νt) = s(t)

for all q.
If s(t) ≥ d/2 for all t ∈ V then for almost all t ∈ V

Dq(νt) = s(t)

for all q ≤ s(t)/(s(t) − d/2) (if s(t) > d/2) or for all q (if s(t) = d/2).

As an immediate corollary, we get:

Corollary 1.2. If s(t) ≥ d/2 for all t ∈ V then for almost all t ∈ V
and for all x ∈ Λt the pointwise dimension of νt at x is at least d/2. In
case s(t) = d/2 the pointwise dimension of νt equals d/2 at every point (for
almost all t ∈ V ).

The results above hold for iterated function systems. They are not true
for general projections of measures. For instance, we have the following
example in R2:

Example 1.3. For any s < 1 there exists a transversal one-dimensional
family of projections of s-dimensional self-similar measure µs such that

Dq(πθ(µs)) < s

for all q > (s + 1)/s and for all values of parameter θ.
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The paper is organized as follows: In the following section we introduce
the notations and describe the local geometry of IFS. There, we also consider
families of IFS. The proof of Theorem 1.1 is contained in the third section.
Finally, in the fourth section, we present the construction of example 1.3.

2 Local geometry of iterated function sys-

tems

For a conformal mapping from Rd into itself we will denote f ′ = | detDf |1/d.
An iterated function system is a finite family (fi)

k
i=1 of contractive dif-

feomorphisms acting from Rd into itself. The limit set of IFS is the unique
non-empty compact set Λ satisfying the equation

Λ =
∪

fi(Λ).

The symbolic space of an IFS is defined as

Σ = {1, . . . , k}N;

its elements will be denoted by ω = (ω1ω2 . . .). The finite sequences of
symbols 1, . . . , k will be denoted by ωn = (ω1ω2 . . . ωn).

On Σ we define some mappings. The left shift σ deletes the first digit of
a sequence:

σ(ω1ω2 . . .) = (ω2ω3 . . .).

The right shift σi (i = 1, 2, . . . , k) adds the symbol i at the beginning of the
sequence:

σi(ω1ω2 . . .) = (iω1ω2 . . .).

We write fωn = fω1 ◦ · · · ◦ fωn , σωn = σω1 ◦ · · · ◦ σωn , Uωn = fωn(U) and
Σωn = σωn(Σ).

We define a projection from Σ into Rd:

π(ω) = lim
n→∞

fωn(0). (2.1)

By [Hu], Λ = π(Σ). When x = π(ω), we will call ω the symbolic expansion
of x (it needs not be uniquely defined).

We demand that all the mappings fi are smooth (at least C1+β for some
positive β) and conformal, at least in some neighborhood of Λ. The latter
assumption is void in the one dimensional case but quite restricting (allowing
only Möbius transformations) when d ≥ 3. We denote by U a neighborhood
of Λ on which these assumptions are satisfied and assume U is bounded and
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open. As fi are C1+β contractions with universally bounded contraction ratio,
all fωn satisfy the following inequality (called Bounded Distortion Property,
BDP):

∃L0∀x,y,z∈U∀ωn L−1
0 ≤ |fωn(x) − fωn(y)|

|x− y|f ′
ωn(z)

≤ L0, (2.2)

see [F], chapter 4.
We can freely demand that Ui ⊂ U for all i (for example, U = Br(Λ)

will satisfy this). It follows that Uωni ⊂ Uωn . The sets Uωn will be called
cylinders.

We denote by λ+ and λ− the maximum and minimum of local contraction
ratios of all the mappings fi over all x ∈ U .

We will use sets Σωn = σωn(Σ) and call them cylinders, too (in symbolic
space). It is easy to see that π(Σωn) ⊂ Uωn ; the cylinders Uωn and Σωn will
be called dual.

We introduce a metric on Σ given by ρ(ω, τ) = |Uωn|, where ωi = τi for all
i ≤ n but not for i = n+1. If ω1 ̸= τ1, then ρ(ω, τ) = |U |. This metric agrees
with the product topology on Σ. It is easy to check that π is a Lipschitz
mapping (with Lipschitz constant 1) in the metric ρ.

We define a family of Hölder-continuous functionals on Σ:

ϕr(ω) = r · log(f ′
ω1

◦ π ◦ σ(ω)).

There exists precisely one value r = s for which the pressure (see, e.g.,
[F]) of ϕr vanishes; it is called the similarity dimension of the IFS. Let µ
be the Gibbs measure (on Σ) for ϕs (see, e.g., [BMP]) and denote by ν the
projection of µ under π. We will call ν the natural measure of the IFS.

¿From the definition of Gibbs measure

µ(Σωn) ≈ exp(
n−1∑
i=0

ϕs(σ
◦i(ω))) ≈ (

|Uωn|
|U |

)s. (2.3)

Hence, µ is equivalent to the s-dimensional Hausdorff measure on (Σ, ρ).
In particular, neither the Hausdorff dimension of Λ nor Dq dimension of ν can
be greater than s (as the Lipschitz mappings cannot increase the Hausdorff
or Dq dimensions).

For all l ≤ |U | we will define Zl as a family of all cylinders Uωn such that

|Uωn| ≤ l < |Uωn−1 |

The cylinders in Zl have diameter between l and λ−l.
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By (2.3), the dual cylinders to those in Zl have measure µ between
L−1

4 (l/|U |)s and L4(l/|U |)s for some L4 for all l. Hence Zl has between
L−1

4 (l/|U |)−s and L4(l/|U |)−s elements.
We define the intersection numbers for cylinders from Zl:

Al = ♯{(Uωn , Uκm) ∈ Zl × Zl : Uωn ∩ Uκm ̸= ∅, ω1 ̸= κ1}.

Let
li = |U |λi

+. (2.4)

For such a sequence every cylinder Uωn belongs to at least one and at most
some L7 of Moran covers Zli , where L7 does not depend on ωn.

We will now consider not a single IFS but a d-dimensional family of IFS,
acting on Rd. We will use t = (t1, . . . , td) as a parameter and write the
dependence on t explicitly; for example, the limit set will be denoted as Λt.
The set of parameters V̄ is assumed to be the closure of a bounded open
subset of Rd. We assume the contractions fi(x; t) to be C1+β for (x, t) ∈
U × V̄ , that is we want all the derivatives ∂fi/∂xj and ∂fi/∂tj to be Cβ with
respect to both x and t.

Denote hω,κ(t) = πt(ω) − πt(κ). The following definition was first intro-
duced (in a one-dimensional situation) in [PoSi].

Definition 2.1. The family of IFS satisfies the transversality condition if
there exists a constant L5 such that for any two sequences ω, κ ∈ Σ with
ω1 ̸= κ1, if |hω,κ(u)| < L5 then | detDthω,κ(t)||t=u > L5.

The following lemma wasn’t explicitly stated in [R] but it was proved
(under the transversality condition) in the course of proof of Theorem 1.1

Lemma 2.2. For any ε > 0 and Lebesgue-almost any t ∈ V there exists
L6(t) such that for all l ≤ |U |

Al(t) ≤ L6l
−2(1+ε)s(t)+d

3 Proof of the Theorem 1.1

As mentioned above, Dq(νt) ≤ s(t) for all q. The result of Hunt and Kaloshin
implies that for almost all t ∈ V the equality holds for all q between 1 and
2. By monotonicity of Dq, the equality must hold for all q ≤ 1 as well. In
what follows we are only interested in q greater than 2.

The first part of Theorem 1.1 is easy to prove. The strong open set
condition is equivalent to the bijectivity of π. Assume πt(ω) = πt(τ) for
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some ω ̸= τ . We may freely assume ω and τ have different first symbols,
otherwise we have πt(σω) = πt(στ) and we repeat this as long as the first
digits are not different. Hence, Uωm(t) and Uτn(t) intersect for all m,n. In
particular, Ali(t) > 0 for all i. This can only happen for a zero measure set
of parameters by Lemma 2.2. A more detailed analysis, based not on Lemma
2.2 but on Proposition 4.6 from [R], shows that this set of parameters has
its upper box dimension not greater than 2 sup s(t).

Assume now that s(t) > d/2 and the assertion of Lemma 2.2 is satisfied
for t. As t is henceforth fixed, we denote s = s(t) etc.

The proof works as follows. We are going to estimate from above the
multifractal spectrum f(α) by estimating maximal possible number of places
where many cylinder sets Uωn meet. The direct estimation by means of
Lemma 2.2 is not enough because it gives us only the number of pairs of
intersecting cylinder sets with different first digits of their symbolic expansion
(i.e. Uωn intersects Uτm and ω1 ̸= τ1). We will perform a more delicate
estimation using the fact that if Uωn and Uτm intersect each other and ω1 = τ1
then the cylinder sets Uσωn and Uστm must intersect each other as well (thus
we get to use Lemma 2.2 on many different scales).

Let δ be a small positive constant. Given l and N , consider a set of all
points belonging to at least N sets Uωn ∈ Zl and let M(l, N) be its maximal
λ−1
− l-distanced subset, i.e. points from M(l, N) are in distance greater than

λ−1
− l from each other, belong to at least N sets Uωn ∈ Zl and no point with

those properties can be further added to M(l, N). Note that two different
points from M(l, N) cannot belong to the same Uωn ∈ Zl.

Given a finite word ωn, let P (l, N, ωn) be the subset of M(l, N) consisting
of the points that belong to at least N(1−δ)n sets Uτm ∈ Zl with the symbolic
expansions beginning with ωn, ie. τm = ωnηm−n. Let also

Q(l, N, ωn) = P (l, N, ωn) \
k∪

i=1

P (l, N, ωni)

Clearly,

M(l, N) =
∪
ωn

Q(l, N, ωn) (3.1)

where the union goes over all finite sequences with |Uωn| > lλ−.

Lemma 3.1.

♯(Q(l, N, ωn)) ≤ L1l
−2s(1+ε)+d(

|U |
|Uωn|

)−2s(1+ε)+d(1 − δ)−2nδ−2N−2
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Proof. Let x ∈ Q(l, N, ωn). The Dirichlet principle easily shows that for any
x there are two different symbols i, j such that among the sets Uτm ∈ Zl that
contain x there are at least N(1−δ)nδ/k such that their symbolic expansions
begin with ωni and the same number beginning with ωnj.

Hence, there are at least N2(1− δ)2nδ2k−2 pairs of sets (Uτm+n+1 , Uηr+n+1)
such that

i) x ∈ Uτm+n+1 ∩ Uηr+n+1 ,

ii) τm+n+1 = ωni(x)ϕm,

iii) ηr+n+1 = ωnj(x)ξr,

iv) both τm+n+1 and ηr+n+1 do not appear again for any y ∈ Q(l, N, ωn).

Hence, we have at least N2(1 − δ)2nδ2k−2♯Q(l, N, ωn) different pairs for all
points in Q(l, N, ωn).

The image under f−1
ωn of any such pair is the pair of intersecting sets

(Uiϕm , Ujξr). Those sets have diameter between lL0|U |/|Uωn| and lλ−L
−1
0 |U |/|Uωn|

by (2.2). For any such pair let g((Uiϕm , Ujξr)) = (Uiϕm0 , Ujξr0 ) be the pair of
their ancestors, belonging to ZlL0|U |/|Uωn |.

The mapping g is uniquely defined. In addition

λ
max(m−m0,r−r0)
+ ≥ λ−L

−2
0 ,

hence g is at most a K to 1 mapping for some uniformly bounded K.
This proves that there are at least N2(1 − δ)2nδ2k−2K−1♯Q(l, N, ωn) dif-
ferent pairs of the form g((Uiϕm , Ujξr)). Those are pairs of intersecting sets
from ZlL0|U |/|Uωn | with different first symbols, hence the number of such pairs
cannot exceed AlL0|U |/|Uωn . The assertion then follows by Lemma 2.2.

Proposition 3.2. For δ small enough,

♯M(l, N) ≤ L2δ
−2s/(2s−d)l−s(1+2sε/(2s−d))N−2s/(2s−d)

where L2 depends neither on l nor on N .

Proof. By (3.1)

♯M(l, N) ≤
∑
ωn

♯Q(l, N, ωn) ≤
∑
i

∑
Uωn∈Zli

♯Q(l, N, ωn) (3.2)

As

n ≤ log(|U |/li) − log λ−

− log λ+

,
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we can estimate

(1 − δ)n ≥ (
liλ−

|U |
)sε (3.3)

for δ small enough. Hence, as the summands in (3.2) are nonnegative integers,
they must be zero for

(
|U |
li

)2s−d > L1λ
−2s(1+2ε)+d
− l−2s(1+ε)+dδ−2N−2. (3.4)

Let I be the maximal i that do not satisfy (3.4). We have

♯M(l, N) ≤
∑
i≤I

♯ZliL1λ
−2s(1+2ε)+d
− l−2s(1+ε)+d(

|U |
li

)−2s+dδ−2N−2 ≤

≤
∑
i≤I

L1λ
−2s(1+2ε)+d
− L4l

−2s(1+ε)+d(
|U |
li

)d−sδ−2N−2

Substituting (2.4) we get an increasing exponential series. Its sum is (up
to a constant) equal to the greatest element, which gives the assertion.

Note that δ depends on ε but nothing else. Substituting N = l−s+α for
d/2 ≤ α < s, we get

♯M(l, l−s+α) ≤ c(ε)ls(2α−d)/(2s−d)−O(ε) (3.5)

The estimation for ♯M(l, N) obtained here will allow us to obtain an
estimation on the multifractal spectrum of ν.

Proposition 3.3.

f(α) ≤ lim sup
l→0

log ♯M(l, l−s+α)

− log l

Proof. We fix l for a moment. The natural measure ν is a projection of mea-
sure µ defined on Σ , which in turn can be presented as union of Σωn over
{ωn;Uωn ∈ Zl}. Hence, ν is a sum of approximately l−s separate measures
π∗(χ(Σωn) · µ) , each supported on a d-dimensional approximate ball of di-
ameter between λ−l and l (by definition of Zl) and each of norm between
L−1

4 (l/|U |)s and L4(l/|U |)s (by (2.3)). Given any set Z ⊂ Rd the following
estimation holds:

L−1
4 (l/|U |)s♯{Uωn ∈ Zl;Uωn ⊂ Z} ≤ ν(Z) ≤ L4(l/|U |)s♯{Uωn ∈ Zl;Uωn∩Z ̸= ∅}

(3.6)
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We will make two claims. Firstly, for any x ∈ M(l, N) we claim that
ν(Bl(x)) ≥ NL−1

4 (l/|U |)s. Let us denote

L10 = inf
ωn

vol(Uωn)

|Uωn|d

(this number isn’t zero because Uωn = fωn(U) and maps fωn have uni-
formly bounded distortion). Our second claim is that for any x ∈ Rd if
ν(Bl(x)) ≥ NL4L

−1
10 (l/|U |)s4dλ−d

− then dist(x,M(l, N)) ≤ (2 + λ−1
− )l. To-

gether those claims mean that ♯M(l, N) is (up to a constant) a number of
separate balls of radius l and measure at least cNls. The assertion then
follows from the definition of multifractal spectrum.

The first claim follows directly from (3.6) because Bl(x) must contain all
Uωn ∈ Zl that contain x. To prove the second claim, consider a ball Bl(x) of
big measure:

ν(Bl(x) ≥ NL4L
−1
10 (l/|U |)s4dλ−d

−

By (3.6), Bl(x) intersects (hence, B2l(x) contains) at least NL−1
10 4dλ−d

−
sets from Zl. The sum of volumes of those sets is not smaller than 4dNld,
i.e. more than N times greater than the volume of B2l(x). Hence, there is
a point y ∈ B2l(x) belonging to at least N of them. Either y belongs to
M(l, N) or there is another point in M(l, N) in distance smaller than λ−1

− l
from y (hence in distance smaller than (2+λ−1

− )l from x), so the second claim
is proved.

Proposition 3.3 together with (3.5) gives us the upper bound for the
multifractal spectrum:

f(α) ≤ s(2α− d)

2s− d

for α < s. Using Legendre transform we get

Dq(ν) = s

for q ≤ s/(s− d/2) and we are done.
The last case that remains to be considered is s(t) = d/2. Proposition

3.2 isn’t working in this case but Lemma 3.1, Proposition 3.3 and formulas
(3.2), (3.3) are. Substituting the formulas into the assertion of Lemma 3.1
and using inequality li ≥ l we get the estimation of the form

♯(Q(l, N, ωn)) ≤ cl−3dε/2δ−2N−2

By (3.4), for M(l, N) to be nonempty Q(l, N, ωn) must be nonempty as
well for at least some ωn and it is only possible when

N ≤ c1/2δ−1l−3dε/4
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It implies that the multifractal spectrum f(α) equals −∞ for all α <
s−3dε/4. As ε can be chosen arbitrarily small, the graph of f must actually
contain only one point (d/2, d/2) and the assertion follows.

4 Example

The example we present can be seen as a generalization of the Hunt and
Kaloshin example.

Let λ = 2−1/s. Let I0 = [0, 1] × {0} be an interval of length 1. We will
construct inductively a family of unions of intervals in the following way. For
every interval I

(i)
n ⊂ In we first remove from I

(i)
n the middle part of length

|I(i)n |(1− 2λ) and then rotate one of the resulting intervals (clockwise) by an
angle 2−n−1π. The union of all the resulting intervals will be denoted In+1.
It is easy to see that In will be an union of 2n intervals of length λn each and
their directions are of the form i2−nπ (see figure).

For any I
(i)
n , let J

(i)
n be the ball of diameter I

(i)
n . Let K

(i)
n be the intersec-

tion of J
(i)
n with the 2λn2−n-neighborhood of I

(i)
n . The sets K

(·)
n are pairwise

disjoint. Moreover, if I
(j1)
n+1 and I

(j2)
n+1 are the two intervals obtained from I

(i)
n

by the induction procedure, K
(j1)
n+1 and K

(j2)
n+1 are contained in K

(i)
n . Hence,

Kn =
∪

j K
(j)
n form a decreasing family of compact sets. We denote the limit

set by K. We distribute a measure ν on K in such a way that ν(K
(j)
n ) = 2−n

for all j.
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The sets I0 (up, solid line), I1 (middle, solid lines), I2 (bottom, solid lines).

Consider a family of all orthogonal projections of ν on lines in R2. We
denote the projection in direction θ by πθ and let νθ = πθ∗ν. For any n and
any direction θ there is some i for which the angle between θ and the direction
of I

(i)
n is smaller than 2−nπ. Hence, the projection of K

(i)
n in direction θ is

an interval of length not greater than (2 + π)λn2−n. At the same time, the
measure νθ of this interval is at least 2−n. Letting n tend to ∞, we will get a
point for which the pointwise dimension of νθ is at most − log 2/ log(λ/2) =
s/(1 + s). Hence, Dq(µθ) < s for all q > (s + 1)/s.

Consider now the standard s-dimensional self-similar measure µ, ie. nor-
malized s-dimensional Hausdorff measure on middle-γ Cantor set, γ = (1 −
2λ). The measure µ is bi-Lipschitz equivalent to ν. Let us denote the conju-
gacy map by h. As the orthogonal projections form a transversal family and
bi-Lipschitz conjugacy preserves transversality, the maps hθ = πθ ◦ h form a
transversal family of projections of a self-similar measure but do not preserve
its Dq dimension for q > (s + 1)/s.
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