N

N
N

HAL

open science

Overcompressing JPEG images

Jacques Lévy Véhel, Franklin Mendivil, Evelyne Lutton

» To cite this version:

Jacques Lévy Véhel, Franklin Mendivil,

Evelyne Lutton. Overcompressing JPEG images.

EvolASP2007, Apr 2007, Valencia, Spain. pp.1. hal-00539221

HAL Id: hal-00539221
https://hal.science/hal-00539221

Submitted on 24 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00539221
https://hal.archives-ouvertes.fr

Overcompressing JPEG images
with Evolution Algorithms

Jacques Lévy Véhel!, Franklin Mendivil?> and Evelyne Lutton?

! Tnria, Complex Team, 78153 Le Chesnay, France
jacques.levy-vehel@inria.fr,evelyne.lutton@inria.fr,
2 University of Acadia, Department of Mathematics and Statistics,
Wolfville, Nova Scotia, Canada, B4P 2R6

franklin.mendivil@acadiau.ca>

Abstract. Overcompression is the process of post-processing compres-
sed images to gain either further size reduction or improved quality. This
is made possible by the fact that the set of all “reasonable” images has a
sparse structure. In this work, we apply this idea to the overcompression
of JPEG images: We reduce the blocking artifacts commonly seen in
JPEG images by allowing the low frequency coefficients of the DCT
to vary slightly. Evolutionary strategies are used in order to guide the
modification of the coeflicients towards a smoother image.

1 Statement of the problem

Various compression methods have been devised in view of reducing the size of
image files for purposes of storing and transmission. In order to reach substantial
compression rates, lossy techniques have to be used, i.e. the compressed/decom-
pressed image is a degraded version of the original one. Most such compression
methods allow to tune the size of the compressed file, so as to reach a trade-off
between reduction and quality.

Many people have realized the following fact: The set of all “reasonable”
images is extremely small as compared to the one of all “possible” images. Al-
though the term “reasonable” is vague, the meaning is clear: If one chooses at
random the gray level values of all pixels in a N x N image, where, say, N = 512
and the gray levels are coded on 8 bits, then the probability that the result looks
like a meaningful image is ridiculously small. One may wonder if it is possible to
improve the efficiency of the various compression methods by using this remark.
We term attempts of this kind overcompression. Overcompression is not a new
compression method, nor is it specific to a given compression scheme. Rather,
overcompression tries either to further reducing the size of the compressed file
or to improving of the quality of the decoded image, by taking advantage of the
sparse structure of the set of images.

Although overcompression is by no means an easy task, it may be approached
by a variety of methods. In this work, we propose an overcompression scheme
for the case of JPEG compressed images.

The JPEG compression format [1] is the most popular image compression
method to date. It has served as a standard until recently. Although JPEG has
now been surpassed by a new standard, called JPEG 2000 [1], it is still widely
used for several reasons. A major one is that a huge number of images are stored
in this format, and it does not seem feasible nor desirable to acquire again all
these data in order to process them with the new format. One may also mention
the fact that while JPEG is public domain, JPEG 2000 uses some patented
techniques, which reduces its diffusion.

It thus seems desirable to increase the efficiency of JPEG. As explained be-
low, our overcompression method improves on the quality of JPEG images by
reducing the blocking artifacts classically encountered with this compression
method.

Several methods have already been proposed in view of post-processing JPEG-
compressed images in order to remove the blocking artifacts. See [2] for a com-
prehensive list of references.

2 Overcompressing JPEG images

The general problem of restoring fidelity in a degraded image is almost impos-
sibly difficult. However, since we are assuming that our image is a compressed
JPEG image, we know how the information is lost. Our method is particularly
adapted to the case of medium to high compression ratios, which translates into
noticeable blocking effects.

The basic JPEG compression algorithm decomposes an image into 8 x 8 non-
overlapping blocks and treats each such block independently of all others. The
DCT (Discrete Cosine Transform) of each block is computed and then these
frequency coefficients are quantized. Since the details of this quantization are
important for our methods, we discuss them further below. After the quantiza-
tion, the 8 x 8 table of coefficients is linearly ordered using a zig-zag traversal
of the array, run length encoded and then finally some type of entropy coding is
applied.

The 64 frequency coefficients are quantized individually by dividing by a
quantization value and then rounding to the nearest integer. There are two im-
portant points to notice about this process. The first is that many different
DCT values become quantized to the same integer value. The second is that
these “equivalent” DCT values lie in an interval whose length is the size of the
corresponding quantization value. Thus the higher this quantization value, the
wider the corresponding interval (and the more information which is lost in the
process).

Because of this information loss, many initial images all lead to the same
final JPEG image (all their differences being removed by the quantization). We
call this a JPEG equivalence class of images. Given a compressed JPEG image,
clearly both the initial image and the JPEG image are in this equivalence class
(as are many others).

Table 1. Example of quantization values for JPEG

16{11|10(16] 24 | 40 | 51 | 61
12(12(14(19| 26 | 58 | 60 | 55
14(13|16|24| 40 | 57 | 69 | 56
14(17(22|29| 51 | 87 | 80 | 62
18(22(37|56| 68 {109(103| 77
24|35|55|64| 81 (104|113| 92
49164|78|87|103|121{120|101
72192(95[98(112{100|103| 99

Our basic idea is to move around within this equivalence class to remove the
blocking artifacts. The fact that the original image lies within this class ensures
that there are some images which are visually better than the compressed one.

Searching within an equivalence class mearly necessitates perturbing the
given JPEG DCT coefficients in such a way that each value remains in the given
interval. This is simple to ensure by constraining the size of the perturbations
according to their frequency component.

It is important to mention that we assume that the JPEG is reasonably close
to the image. We cannot recover lost information, we only try to smooth out
the blocking artifacts at the block boundaries without oversmoothing the entire
image.

Each block is represented in the DCT domain by a matrix of 8 x 8 co-
efficients, where the frequency of coefficient (4,j) increases in the = (resp. y
direction) direction as i (resp. j) increases. Thus, low-frequency (resp. high-
frequency) coefficients are the ones with low (resp. high) value of i + j. Since we
are only interested in smoothing the blocking artifacts, and not in recovering the
lost high-frequency content, we need only modify the low-frequency coefficients.
Experiments showed that tuning the 6 coefficients corresponding to the lowest
frequency components (i.e. the ones with ¢ + j < 4 - recall that i and j takes
values in {1,...,8}) allowed to reach our purpose. More precisely, we ran the
following test: We replaced these coefficients in highly compressed JPEG images
with the “correct” coeflicients from the uncompressed images. This resulted in
images which were almost indistinguishable from the non-compressed ones. As
a consequence, correcting these coefficients should be sufficient to restore most
of the image quality.

We thus need to optimize 6 parameters per 8 x 8 block. For a 256 x 256
image, this still means processing 6144 values. This is beyond the capacity of any
reasonable algorithm. However, we can take advantage of the following remark:
JPEG ignores inter-block dependence. As a matter of fact, this is precisely the
reason why blocking artifacts arise. This can be exploited in a very simple way,
resulting in an algorithm which can easily be parallelized (we did not try this
explicitly): Our algorithms decompose the image into a collection of overlapping
“tiles”, which are processed independently. The results for all the tiles are then

blended together by using a convex combination of the various tiles at all places
where the tiles overlapped.

This results in huge savings in computational effort and thus much better
solutions: For a 256 x 256 image, using 24 x 24 tiles and shifting by 8 pixels in
each direction results in 900 tiles, so 900 optimizations with 54 parameters each.
This contrasts to a single optimization with 6144 parameters. The value 24 is
justified by the fact that, with this size, each block is processed once along with
its 8 neighbors, allowing an efficient treatment of the blocking effects.

The optimizations on each tile are very fast and result in good local solu-
tions. The blended global solution was found to be much better than any of the
solutions we obtained to the global problem, even with higher iteration counts.

Even though the solutions obtained this way are probably sub-optimal, the
justification is that the necessary adjustment to the DCT coefficients in disjoint
tiles are approximately independent, with this approximation becoming more
true as the distance between the tiles increases.

3 Fitness Function

As always, the choice of the fitness function is of the utmost importance. This
is particularly crucial in our case, because there is no obvious way to measure
the adequacy of a solution.

Since the aim is to reduce the blocking artifacts of a highly compressed JPEG
image, the fitness function should provide a quantitative measurement of these
artifacts. There are many possible ways of trying to do this, and we discuss
several that were tried, along with some which were tried but then discarded.

As previously mentioned, both the original and the JPEG image are in the
given equivalence class. The fitness function should obviously yield a smaller
(more optimal) value on the original image than on the JPEG image (since
we wish for images which look more like the original image than the JPEG
image). This simple criterion eliminates several candidate fitness functions. In
particular, one might be tempted to use fitness functions that provide a measure
of the smoothness of the image, with the idea that a highly compressed image
will not be as smooth as the original image, due to the blocking artifacts. One
such metric is the total variation norm [3], a commonly used metric in image
processing. However, this metric is rather ill-adapted to our case: Indeed, a
highly compressed JPEG image tends to be almost piecewise constant, because
it consists of large almost flat regions bounded by a comparatively small number
of edges between blocks. This is precisely the type of images that is favored by
total variation. As a consequence, compressed images will often tend to have
smaller fitness values than their original version.

The second type of fitness function is one which explicitly uses the 8 x 8
blocking structure of JPEG. There many possibilities for this as well. Among
those tried were:

1. Summing the absolute differences across all the interior 8 x 8 block bound-
aries.

2. For each interface between two blocks, compute the average value on both
sides of the edge and sum the absolute value of these differences.

3. Same as 2) except normalize by some block measure (like the mean).

4. For each interface between two blocks, compute the vector of differences
along the edge and accumulate the L1 norm of these vector differences di-
vided by the variance of the vector.

In each case, the idea is that one wishes to penalize large inter-block differ-
ences but allow for the fact that blocks may consist of texture regions.

4 Evolutionary Algorithms

To find optimal perturbation of the JPEG coefficients, we tested two algorithms:
a (1+ 1) EA and a genetic algorithm.

If we write the JPEG image as a sum over the blocks, I =)" ; I, we can
represent the individual as a sum of perturbations, § = 3 5 dp. We are looking
for the best §, that is so that I+ 0 has smoothed out the blocking artifacts. Thus
each 65 € R®, with each component appropriately constrained (by the condition
that Ip + dp still lie in the correct quantization interval).

Modifying a component consists of adding a random perturbation (uniformly
distributed in an interval) to that component, wrapping around if the new value
lies outside the particular quantization interval. We use wrap-around rather than
clipping since the former ensures a uniform distribution over the interval (ex-
periments showed that clipping yields lower quality results).

After testing various possibilities, the fitness function used was item 1) from
the list above, simply summing the absolute differences across all (internal) block
boundaries. Because only the lowest frequency coefficients were modified, the re-
sulting images were not too irregular: Since we do not touch the coefficients (4, j)
such that i + 7 > 4 , we have no risk of introducing spurious higher frequencies,
and there is no need to introduce a term measuring this in the fitness function.

4.1 (1+1) EA

We tried a simple (14 1) EA, that is, each generation consists of a single indi-
vidual which produces one mutation which may become the next generation.
We mutate § by independently modifying each component with some prob-
ability p., obtaining §’.
If £(8") < f(9), we always replace § with ¢’. On the other hand, with proba-
bility p, we replace 6 with 6’ even if f(d) < f(&').

4.2 Genetic Algorithm

A classical genetic algorithm was used, with the following parameters: uniform
selection, elite count = 2, crossover fraction = 0.8, uniform mutation with prob-
ability = 0.1 and range two thirds of the quantization bin (i.e. the size of the

Original Images

Compression 5

optimised (EA)

Fig. 1. Compression results, compression factor 5

Original Images

Compression 10

optimised (GA)

Fig. 2. Compression results, compression factor 10

Fig. 3. Lena with compression factor 15 (left), optimized with the GA (rigth)

interval where the uniform perturbation is drawn depends on the quantization
bin, and is equal to two thirds of the length of this bin), population size = 40,
number of generations = 200.

5 Experimental results

We display in figures 1 to 3 results on two images: The well-known lena image,
and an image of a tree. Both images are 256 x 256 with the grey levels coded
on 8 bits. We show optimization with both the (14 1) EA and the genetic algo-
rithm. Three compression ratios have been considered: The compressed images
are obtained by using the quantization values in table 1 multiplied by 5, 10, and
15.

References

1. Home site of the JPEG and JBIG committees: http://www.jpeg.org/

2. Nosratinia, A. Enhancement of JPEG-Compressed images by re-application of
JPEG, Journal of VLSI Signal Processing, 27, (2001), 69-79.

3. Chan, T.F., Shen, J., Zhou, H-M. Total Variation Wavelet Inpainting, Journal of
Mathematical Imaging and Vision, 25-1, (2006), 107-125.

