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Suppose you have a large volume of an ordinary gas and examined a small sub-
volume within it which contains a mean number of particles N . You would expect
that the variance of that number, δN2, resulting from repeated measurements, is
also equal to N . By “ordinary”, I mean two things. First the gas is ideal, i.e.

composed of particles with negligible interactions, second the gas is “classical”,
i.e. composed of distinguishable particles. We often refer to this behavior of the
variance as shot noise. A common example of this noise is what we hear when rain
drops hit a tin roof, although in that example, N is number of hits within a time
interval, rather than particles within a sub-volume.

But if the particles are quantum mechanically identical (that is, are subject
to quantum mechanical exchange symmetry), the above expectation is incorrect.
Ensembles of identical particles can be either bosons or fermions and their fluctu-
ation properties are very different. Most statistical physics textbooks show that
δN2 = N ± N2/Z, where Z is the number of elementary phase space cells oc-
cupied by the sub-volume Z = ∆x∆y∆z∆px∆py∆pz/h

3, h is Planck’s constant,
and the plus and minus signs refer to bosons and fermions respectively [1]. This
formula, at least for the case of bosons, was already demonstrated by Einstein in
1925 in one of his famous papers on the theory of the ideal quantum gas [2], and
in which he discussed Bose-Einstein condensation. Thus, the number of particles
in a sub-volume of a gas will exhibit fluctuations either above or below shot noise
depending on whether it is composed of bosons or fermions (Fig. 1). Now, two
groups, one at the Eidgenössiche Technische Hochschule (ETH) in Zürich, Switzer-
land [3], and the other at the Massachusetts Institute of Technology in the US [4]
have beautifully demonstrated the statistical properties of fermions by measuring
the fluctuations in ultracold atomic gases..

Most of us heard about this difference in statistical behavior of bosons and
fermions as students. But many of us have forgotten it, partly because the phe-
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Figure 1: A schematic illustration of the relationship between density, density
fluctuations and temperature in a one dimensional Fermi gas. The three grids
represent a 1D phase space, x, px. Each box represents a phase space cell (with
volume = h). At most 1 particle is permitted per box. The density corresponds to
the number of atoms per column. The temperature is related to how the number
of atoms per row decreases with px. A higher temperature means more population
in high momentum states. (a) A cold, dense gas. (b) A cold, but less dense gas.
(c) A dense, but hotter gas. The density fluctuations (that is the variance in the
number of particles per column) are lowest in (a). If the absolute density is known,
a measurement of the density fluctuations gives information about the absolute
temperature. This relationship is embodied in the fluctuation and dissipation
theorem.

nomenon is difficult to observe directly. The reason is that in most circumstances,
the number of phase space cells involved is very large. This suppresses the N2

term and makes the variance look very close to that of a classical gas. In order to
observe such fluctuations in space, it is important to have a very low temperature
since that will reduce the size of ∆px∆py∆pz. Its also favorable to have a high
density because that means that for the sub-volume in question, N will be large
and the N2 term will make itself felt. High density and low temperature mean
approaching quantum degeneracy - a high occupation of the individual phase space
cells. For fermions the highest occupation is unity, and indeed, in a Fermi gas at
zero temperature, the number variance vanishes. The idea is illustrated in Fig. 1.

The work of Torben Müller and colleagues at ETH and Christian Sanner and
colleagues at MIT has come close to this ideal, using trapped degenerate fermi
gases. Thus they have given us a striking illustration of the fluctuation properties
of ideal quantum gases. Both experiments use optically trapped 6Li atoms. After
cooling the cloud to degeneracy, they form an image of the atomic clouds on
CCD cameras using resonant light. The observation volume corresponds to the
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resolution of the imaging system and the thickness of the cloud along the imaging
beam propagation direction. The number of atoms in this volume is related to the
amount of light detected in the corresponding resolution element. To obtain the
variance, the measurement is repeated many times. The experiment is delicate in
part because corrections must be made for other fluctuating quantities, particularly
those due to the photon shot noise - the same number of atoms does not always
scatter the same number of photons during a given exposure. It is also desirable to
absolutely calibrate the number of atoms, as will be shown in the next paragraph.
Both papers show the atomic density as a function of position and of its variance.
(The density varies with position because the clouds are trapped in approximately
harmonic potentials.) For degenerate clouds, the densest parts of the clouds show
a decidedly smaller relative variance δN2/N than the less dense ones. For non-
degenerate clouds the relative variance remains close to unity.

In a slightly more sophisticated interpretation of the data, one can invoke the
fluctuation dissipation theorem, which relates the fluctuations of a given quan-
tity to the temperature and the corresponding susceptibility [5]. The appropriate
suscescptibility for the density is the isothermal compressibility. For an ideal
fermi gas, the compressibility is known and thus, density fluctuation measure-
ments amount to temperature measurements. Absolute fluctuation measurements
give absolute temperatures. This fact may prove extremely useful in the future be-
cause measuring the temperature of a degenerate gas can be difficult. For example,
the momentum profile of a Fermi gas becomes nearly independent of temperature
when the gas is highly degenerate. Fluctuations in a degenerate Fermi gas however,
decrease linearly with temperature.

As can be seen in the list of references of the two papers, other examples of
exploring fluctuation properties of low temperature gases exist – mostly for Bose
gases. Most of these experiments also involved ideal or weakly interacting gases.
An important issue in this field is the understanding of strongly interacting sys-
tems, such as Mott insulators, Tonks-Girardeau gases (dilute 1D Bose gases in
which interactions cause strong anticorrelations), paired superfluids (such as the
BCS superconductor) and other quantum correlated phases. The study of fluctu-
ations in these systems is just beginning, and promises to lead to new insights. As
we begin to understand these more complex phenomena, fluctuation measurements
could very well end up as the thermometer of choice for further studies.
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