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1 Introduction

Fractional Brownian Motion (FBM) was introduced in 1940 by Kolmogorov as a way to generate
Gaussian "spirals" in a Hilbert space. But the seminal paper of Mandelbrot and Van Ness (1968)
emphasizes the relevance of FBM to the modelling of natural phenomena : Hydrology, Finance,...
Various properties of FBM such as long range dependence, self-similarity and smoothness of the
sample paths are governed by the Hurst parameter H. During the decades 1970's and 1980's, the
statistical study of FBM has been developed, see for instance the historical notes in Samorod-
nitsky & Taqqu (1994), [16, chap.14] and the references therein. FBM has been more and more
used in several areas during the last decade (internet tra�c, turbulence, image processing...).
Anyway, in many applications the real data do not �t exactly FBM which appears as an ideal
mathematical model : for example, a constant Hurst parameter is a too rigid assumption in many
applications, such as in �nance or in turbulence, see Papanicolaou and Sølna (2002). Therefore
di�erent generalizations of FBM have been proposed these last years to �ll the gap between the
mathematical modelling and real data. One example is the family of model derived from the
Multifractional Brownian Motion (MBM) introduced independently in Peltier and Lévy Vehel
(1996) and Benassi et al. (1997). For the MBM the Hurst parameter H is replaced by a function
depending continuously on the time t 7→ H(t). Finding a good generalization of the FBM en-
hancing the goodness of �t to the di�erent applications has become a fashionable sport, played
by several authors, see for instance the work of Cheridito (2003) motivated by �nancial theory
and empirical econometric evidences; Bardet and Bertrand (2003) motivated by applications in
biomechanics or Ayache and Lévy Véhel (2000) motivated by applications in signal processing
and turbulence .

The MBM was de�ned for a Hurst parameter being a function depending continuously on time
H(.), but in some �elds (image analysis or control of internet tra�c) the interesting information
is the location of the change points of the function H(.). The Step Fractional Brownian Motion
(SFBM) which was introduced in [5], is de�ned as a generalization of the FBM with a piecewise
constant function H(.). It shares some nice properties of FBM , see [5]. A statistical study of
the SFBM has already been performed in [5], namely an almost surely convergent estimator of
its parameters, based on the generalized quadratic variation, has been introduced.

At this stage, we should insist on the following point. In the literature, the generalized
quadratic variation is often used for estimating a Hurst type index because, contrarily to the
usual quadratic variation, it follows a standard Central Limit Theorem, see for instance Guyon
and Leon (1989), Istas and Lang (1997) or Bardet (2000). This result is explained more precisely
in section 3 below. Let us mention that in a rather di�erent setting Davydov and al. (2003)
propose a statistical index for measuring the �uctuations of a stochastic process X. This index
is based on generalization of Lorenz curves and Gini index. Davydov and al. develop a complete
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picture of the asymptotic behaviour and show that the �uctuation indices goes through to a
phase transition at H = 3/4 and they are the �rst to provide results in the critical case H = 3/4.

The almost sure convergence of the estimator of the parameters of the SFBM is a �rst step
of the statistical study. In applications, we would like to test the existence of one change point,
estimate the probability of error of type 1 or 2 and have con�dence intervals for the estimated
parameters. In both case, we need the knowledge, at least asymptotically, of the law of the
estimator and since the estimator is derived from the generalized quadratic variation, we need a
Central Limit Theorem for the generalized quadratic variation.

In this work, we prove a Central Limit Theorem for the generalized quadratic variations of
SFBM. The remainder of the paper is organized as follows; in section 2, we recall the de�nition
of the SFBM and the statistical problem: this process is de�ned as a wavelet series which
is a generalization of the wavelet expansion of the FBM. In section 3, we justify the use of
generalized quadratic variation instead of the usual one: the generalized quadratic variation
follows a standard Central Limit Theorem without any phase transition phenomenon. Then we
state our main result which consists in a standard Central Limit Theorem for the generalized
quadratic variation of SFBM. This result is proved in Section 4 and rely on a deterministic Lemma
related to wavelets given in Appendix A and probabilistic Lemmas established in Appendix B.

2 Description of the problem

2.1 Recall on the FBM and its wavelet series expansion

A fractional Brownian motion BH = {BH(t), t ∈ IR} of parameters H ∈]0, 1[ and σ > 0 is a
real valued centered Gaussian process with stationary increments that satis�es BH(0) = 0 and
IE |BH(s)−BH(t)|2 = σ2 |t−s|2H for every reals s, t. The Hurst parameter H governs di�erent
properties of the FBM : for instance, the rate of correlation of the increments of BH (long range
dependence) ; the self-similarity of the process, i.e. for all λ ∈ IR+,

(BH(λt))t∈IR+

(d)
=

(
λH BH(t)

)
t∈IR

;

the Hölder regularity of the paths. FBM has several representations, see Samorodnitsky & Taqqu
(1994), [16, chap. 7]. Here we use its harmonizable representation,

BH(t) =
∫

IR

(
eitξ − 1

)

|ξ|H+1/2
× Ŵ (dξ) (1)

where W (dx) is a Brownian measure and Ŵ (dξ) its Fourier transform, namely for any function
f ∈ L2(IR) one has almost surely,

∫
IR f(x)W (dx) =

∫
IR f̂(ξ) Ŵ (dξ), with the convention that

f̂(ξ) =
∫
IR e−iξ x f(x) dx when f ∈ L1(IR)

⋂
L2(IR). From the harmonizable representation (1),
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we derive the wavelet expansion of the FBM. Let us recall the de�nition of a Lemarié-Meyer
wavelet basis of L2(IR).

1. The functions ψj,k de�ned as ψj,k(x) = 2j/2 ψ(2j x− k) are generated by dilations and
translations of a unique function ψ called a "mother wavelet". Observe that ψ = ψ0,0 .

2. The family (ψj,k)j∈Z, k∈Z forms an orthonormal basis of L2(IR).

3. The functions ψj,k, and then ψ̂j,k, belong to the Schwartz class S(IR), where S(IR) is the
space of all in�nitely di�erentiable functions f whose derivatives f (n) of any order n ≥ 0

satisfy for all integer m, lim|t|→∞ tm f (n)(t) = 0.

Moreover the support of ψ̂ is contained in the compact domain {ξ ∈ IR, 2π/3 ≤ |ξ| ≤ 8π/3}.
We denote ϕ a corresponding scaling function and for every l ∈ Z we denote ϕl the function
x 7→ ϕ(x − l). We will mainly use the following properties : ϕ̂ has a compact support, ϕ

and ϕ̂ belong to the Schwartz class S(IR) and the family {ϕl, ψj,k, j ∈ IN, k ∈ Z, l ∈ Z}

forms an orthonormal basis of L2(IR). The decomposition of the kernel ξ 7→
(
eitξ − 1

)

|ξ|H+1/2
of the

representation (1) in the basis {ϕ̂l, ψ̂j,k, j ∈ IN, k ∈ Z, l ∈ Z} provides the following expansion
of the FBM

BH(t) =
∑

j∈IN, k∈Z

Φj,k (t,H) ζj,k + B̃H(t), (2)

with

B̃H(t) =
∑

l∈Z

{∫

IR

(eitξ − 1)
|ξ|H+1/2

e−ilξ ϕ̂l(ξ) dξ

}
ηl, (3)

where

• {ηl, ζj,k; j ∈ IN and k, l ∈ Z} is a sequence of independent N (0, 1) Gaussian r. v.

• the functions Φj,k(t, y) are de�ned by

Φj,k(t, y) =
∫

IR

(
ei t ξ − 1

)

|ξ|y+1/2
ψ̂j,k(ξ) dξ. (4)

The terms B̃H(t) and ∑
j∈IN, k∈Z Φj,k (t,H) ζj,k respectively corresponds to the "low frequencies"

and the "high frequencies" components of the wavelet expansion (2) of the FBM.
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2.2 De�nition of the Step fractional Brownian motion.

The Step Fractional Brownian Motion (SFBM) is an extension of FBM in which the Hurst
parameter H has been replaced by a piecewise constant function H(.). More precisely, H(.) is
with values in (0, 1) and can be written for every real number t as

H(t) = ΣK
i=0 ai 1[τi,τi+1[(t) (5)

where τ0 = −∞, τK+1 = ∞ and τ1, . . . , τK is an increasing �nite sequence of (non dyadic) real
numbers.

A SFBM is de�ned like a fractional Brownian motion, where we would have replace the
constant Hurst index H by the function t 7→ H(t) in the random wavelet series representation.
More formally the SFBM is de�ned by the random series

X(t) =
∑

j∈IN, k∈Z

Φj,k

(
t,H

(
k 2−j

))
ζj,k. (6)

where

• ζj,k, j ∈ IN, k ∈ Z is a family of standard centred Gaussian random variables.

• The functions Φj,k(t, y) are still de�ned by (4) associated to the mother wavelet ψ.

• H(.) is the piecewise function given by (5).

The integer K corresponds to the number of change points of the function H(.). In the case
K = 0, H(.) is constant with value a0 and (6) corresponds to the "high frequencies" component
of the wavelet expansion (2) of a FBM with Hurst index a0.

A useful representation

A straightforward calculation, see [5, Formula (5), p.107], shows the equivalence between (6) and
the following representation

X(t) =
∑

j∈IN, k∈Z

{
2−jH(k/2j)

[
ΨH(k/2j)

(
2jt− k

)
−ΨH(k/2j) (−k)

]}
ζj,k. (7)

where
Ψy(t) =

∫

IR
ei t ξ × ψ̂(ξ)× |ξ|−(y+1/2) dξ. (8)

Observe that, as ψ̂ is compactly supported and vanishes in a neighborhood of the origin, the

function ξ 7→ ψ̂(ξ)
|ξ|y+1/2

belongs to the class S(IR). Thus ψy also belongs to the class S(IR).
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2.3 The statistical problem

Let X be a SFBM. We observe one path of the process X at the discrete times ti = i/N for
i ∈ Z. The mesh goes to 0 as N tends to in�nity. In [5], the second author has proposed an
estimator of the change times for abrupt change greater than a threshold η > 0, i.e. |δi| > η

where δi = ai+1 − ai. This estimator is based upon the di�erence between the estimate on a
right box and the corresponding one on a left box, both of size γ where γ is a �xed positive real
number. Thus two successive change points, say τi and τi+1, could be detected separately as
soon as τi+1− τi > 2γ. For this reason and to avoid heavy notations, from now on we restrict to
the case of one change point. Under this assumption, the function H(.) becomes of the form

H(t) = a0 1(−∞,τ1)(t) + a1 1[τ1,∞)(t). (9)

with a0, a1 ∈ (0, 1) and τ1 ∈ IR. The change time τ1 is estimated as the �rst crossing time of
the threshold η by the function DN (t), i.e. τ̂

(N)
1 =

1
N

min {l ∈ Z, tel que |DN (l/N)| ≥ η}. This
function is de�ned as,

DN (t) =
1

2 ln(N−1)

{
ln

(
V

(2)
N (t + γ)

)
− ln

(
V

(2)
N (t)

)}
.

and

V
(2)
N (t) =

[Nt]+Nγ∑

l=[Nt]+1

{
X

(
l + 1
N

)
− 2X

(
l

N

)
+ X

(
l − 1
N

)}2

, (10)

is the 2-variation of step 1/N of the process X onto the box [t, t + γ) for a �xed real number
γ > 0 (for every real number x, we denote [x] its integer part). In [5, Th.2, p.106], the almost
sure convergence of the estimator τ̂

(N)
1 is proved. This result is derived from the almost sure

convergence of 1/2 + ln
(
V

(2)
N (t)

)
/

(
2 ln(N−1)

)
to inf{H(u), u ∈ [t, t + γ[}.

3 Statement of the main result and justi�cation of the use of
Generalized Quadratic Variations

First a word about notations. Let X be a centered Gaussian process. Let d = (d`)`=0,...,p

be a �nite sequence of real numbers whose �rst moment vanishes, that is
p∑

`=0

d` = 0. We call

d-variation of step 1/N the process

V
(d)
N (t) =

[Nt]+Nγ∑

k=[Nt]+1

|YN (k)|2, (11)

where

YN (k) =
p∑

`=0

d` X

(
k + `

N

)
. (12)
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The simplest example is the usual quadratic variation V
(1)
N (t) which corresponds to d = (1− 1)

and YN (k) = X ((k + 1)/N)−X (k/N). This usual quadratic variation presents the following
drawback. Consider the case where X is a FBM with Hurst index H, this is the simplest
one. Even in this case, the asymptotic behaviour of the quadratic variation changes following
H < 3/4 or not, see Formula (14) below. To avoid this phase transition at H = 3/4, one uses
the generalized quadratic variation still de�ned by (11, 12) for a �nite sequence of real numbers
d whose �rst two moments vanish, namely one has

p∑

`=0

d` = 0 and
p∑

`=0

` d` = 0. (13)

A simple example is d = (1, −2, 1) corresponding to the quadratic variation V
(2)
N (t) de�ned by

(10).

A justi�cation for the use of Generalized Quadratic Variation

In this subsection, we restrict ourself to the case of process X being a FBM with a Hurst index
H. For every mesh ∆N > 0, the variogram satisfy IE

(
|X(t + ∆N )−X(t)|2

)
= σ2∆2H

N . Since
the random variables X(t + ∆N )−X(t) are centered, the empirical estimator of the variogram
is

V
(1)
N =

N∑

i=1

[X (ti + ∆N )−X (ti)]
2 ,

which is called the usual quadratic variation. Therefore, one of the most "natural" estimator of

the Hurst index H is ĤN =
ln V

(1)
N

2 ln∆N
. However, the usual quadratic variation does not follow a

standard Central Limit Theorem, and this is a major drawback.
More precisely, Guyon and Leon (1989) have proved that the random variables N2H × V

(1)
N

converge almost surely when N → ∞, but the speed of convergence and the limit law goes
through a phase transition at H = 3/4. Actually, we have the following kind of expansion

V
(1)
N

IEV
(1)
N

= 1 +
εN√
N

+

( p∑

`=0

` d`

)
N−(2−2H) × ζN + OP

(
N−(3−2H)

)
(14)

where the random variables εN converge in law to a Gaussian distribution and the random vari-
ables ζN converge to a centred non Gaussian distribution which belongs to the second Wiener
chaos. This phase transition phenomenon disappears when we replace the usual quadratic vari-
ation by the generalized quadratic variation or equivalently assume that the second moment
p∑

`=0

` d` vanishs. Therefore the generalized quadratic variation follows a standard Central Limit

Theorem, that is converges to a Gaussian limit with the rate of convergence N1/2. We refer for
instance, with slightly di�erent frameworks, to Istas and Lang (1997) or Bardet (2000).
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Statement of the main result

For every integer N ≥ 1, we set

µ
(d)
N (t) = IE

(
V

(d)
N (t)

)
and S

(d)
N (t) =

√
V ar

(
V

(d)
N (t)

)
. (15)

Theorem 3.1 Let X be a SFBM de�ned by (6) and (9) and V
(d)
N (t) be its d-variation given

by (11) and (12). If the sequence d satis�es the conditions (13), then for every real number
t, we have V

(d)
N (t) = µ

(d)
N (t) + S

(d)
N (t) × εN (t) where the random variable εN (t) converges in

distribution to a N (0, 1) Gaussian variable as N →∞ and µ
(d)
N (t), S

(d)
N (t) are given by (15).

The proof of Theorem 3.1 is presented in the following section. It relies on some technical lemmas
about wavelet series which are proved in the appendices.

Remark 3.1 The condition of nullity of the second moment of d, see (13), is crucial to prove
Lemma B.1 (see Remark B.1), which allows to obtain Lemmas B.6 and B.10.

For the sake of simplicity, we set SN (t) = S
(d)
N (t) in the sequel.

4 Proof of the main result

By de�nition, the YN (k) are Gaussian centred random variables. In this Gaussian framework,
see for instance [11], the Central Limit Theorem is implied by the following property

lim
N→∞

λN (t)
SN (t)

= 0, (16)

with λN (t) = max
{
µ forµ an eigenvalue of the covariancematrix cov (YN (i), YN (j))i,j∈IN (t)

}
where

IN (t) = {k ∈ Z, such that [Nt] + 1 ≤ k ≤ [Nt] + Nγ} denotes the set of indices. One often
bound λN (t) by the quantity

βN (t) = max
i∈IN (t)

∑

j∈IN (t)

|cov (YN (i), YN (j))| ,

which is less di�cult to handle. Relation (16) therefore results from

lim
N→∞

βN (t)
SN (t)

= 0. (17)

From now on our goal will be to show that Relation (17) holds. The idea behind our proof is
that the increments of the SFBM are almost the same as that of an FBM except on the vicinity
of the change time. Thus we split the index set IN (t) into three parts : the left of the change
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time, the vicinity of the change time and the right part. More precisely, for any real number
δ ∈ (0, 1), we de�ne

Iδ
1(t,N) =

{
k such that [Nt] < k ≤ [Nt] + Nγ and k/N < τ1 − 3N−δ

}
,

Iδ
2(t,N) =

{
k such that [Nt] < k ≤ [Nt] + Nγ and τ1 − 3N−δ ≤ k/N ≤ τ1 + 3N−δ

}
,

Iδ
3(t,N) =

{
k such that [Nt] < k ≤ [Nt] + Nγ and τ1 + 3N−δ < k/N

}
.

Similarly, we denote

Jδ
1 (t,N) =

[
[Nt]
N

, τ1 − 3N−δ
]

and Jδ
3 (t,N) =

[
τ1 + 3N−δ,

[Nt]
N

+ γ

]
(18)

the convex closure of the sets 1/N × Iδ
1(t, N) and 1/N × Iδ

3(t,N). Since the random variables
YN (i) are centered, we have for every pair of integers i, j

cov (YN (i), YN (j)) = IE (YN (i) YN (j)) .

We denote, for p, q ∈ {1, 2, 3},

Gp,q(N, t) = max
i∈Ip(t,N)

∑

j∈Iq(t,N)

|IE (YN (i) YN (j))| , (19)

and

F (t,N) = max
i∈IN (t)

∑

j∈I2(t,N)

|IE (YN (i) YN (j))| . (20)

We have

βN (t) ≤ F (t,N) + G1,1(t,N) + G3,3(t,N) (21)
+ G2,1(t,N) + G3,1(t, N) + G1,3(t, N) + G2,3(t, N).

From Lemma B.4, we bound F (t,N). From Lemma B.6 , we bound G1,1(t,N) and G3,3(t,N).
From Lemma B.8, we bound G1,3(t,N) and G3,1(t, N). From Lemma B.9, we bound G2,1(t, N)

and G2,3(t,N). Let us precise the notations, from now on we will denote by x ∧ y the in�mum
of the two real numbers x and y. With this notation, we get

βN (t)
SN (t)

=
βN (t)

N1/2−2(a0∧a1)
×

[
SN (t)

N1/2−2(a0∧a1)

]−1

, (22)

Lemma B.10 implies

lim sup
N→∞

SN (t)
N1/2−2(a0∧a1)

≤ C × |τ1 − t|−1/2 when δ ∈
]
1
2
,

7− 4(a0 ∧ a1)
8− 4(a0 ∧ a1)

]
(23)

and Lemmas B.4, B.6, B.8, B.9 induce

lim
N→∞

βN (t)
N1/2−2(a0∧a1)

= 0 when δ ∈
]
1
2
,

7− 4(a0 ∧ a1)
8− 4(a0 ∧ a1)

]
. (24)
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Indeed, Lemmas B.4, B.6 and Lemma B.8 are respectively valid under the conditions

δ > 1/2, δ <
3− 2(a0 ∧ a1)
4− 2(a0 ∧ a1)

and δ <
7− 4(a0 ∧ a1)
8− 4(a0 ∧ a1)

.

But a direct calculation shows that 1
2

<
3− 2a

4− 2a
<

7− 4a

8− 4a
, for every a ∈ (0, 1). Thus (23) and

(24) are true for every t ∈ IR. Combined with (22) this induces that Relation (17) holds and
�nishes the proof of the theorem.

A One deterministic lemma related to wavelets

From now on, for every integers N ≥ 1, j ≥ 0, k ∈ Z and all real x, ∆NΨa,j,k will be the function
de�ned as

∆NΨa,j,k(x) =
p∑

`=0

d` Ψa

(
2j

((
x +

`

N

)
− k

))
. (25)

In the sequel, C > 0 will denote a generic constant that may change from line to line.

Lemma A.1 For every a ∈ (0, 1), every δ ∈ (0, 1) and every β satisfying β + a > 5/2, there
exists a constant C > 0 such that when N (1−δ) > p/2 the inequalities

∑

j∈IN

∑

k∈Z, k/2j≥τ1

{
2−2j a |∆NΨa,j,k(x)|2

}
≤ C ×N δ (2β−1)−4 (26)

and
∑

j∈IN

∑

k∈Z, k/2j≤τ1

{
2−2j a |∆NΨa,j,k(x)|2

}
≤ C N δ (2β−1)−4. (27)

respectively hold when x ∈ Jδ
1 (t, N) and when x ∈ Jδ

3 (t,N).

Proof. The bound (26) means that for any real number x inside the band left to the change
time Jδ

1 (t,N), the contribution of the dyadic numbers k/2j at the right of the abrupt change is
controlled by C ×N δ (2β−1)−4. The bound (27) means that for any real number x at the right of
the change time Jδ

3 (t,N), the contribution of the dyadic numbers at the left is controlled by the
same quantity. Clearly, the two proofs are similar. We just prove the �rst bound.

The key argument is the fast decreasing of the functions Ψa. Since Ψa ∈ S(IR), for all α > 1

there exists a constant C > 0 such that for every x ∈ IR,

|Ψa(x)| ≤ C × (3 + |x|)−α . (28)

We call S(x) the left hand side of (26) and we split it into two series : the high frequencies for
j > j0 denoted S1(x) and the low frequencies for j ≤ j0 denoted S2(x). Thus we have that

S(x) :=
∑

j∈IN

∑

k∈Z, k/2j≥τ1

{
2−2ja |∆NΨa,j,k(x)|2

}
= S1(x) + S2(x). (29)
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The critical index j0 is determined by the inequalities

2−(j0+1) ≤ 1
N

< 2−j0 . (30)

We �rst bound S1(x). Setting

R1(x) =
∞∑

j=j0+1

∑

k∈Z, k/2j≥τ1

{
2−2ja

∣∣∣Ψa(2jx− k)
∣∣∣
2
}

,

we obtain that

S1(x) ≤ 2
p∑

`=0

{
|d`|2 R1

(
x +

`

N

)}
. (31)

Then it follows from (28) and (18) that for all x ∈ Jδ
1 (t,N),

R1(x) ≤ C
∞∑

j=j0+1

∑

k∈Z, k/2j≥τ1

{
2−2ja

(
3 + |2jx− k|

)−2α
}

≤ C ×
∞∑

j=j0+1

∑

l≥3×2j/Nδ

2−2ja (3 + l)−2α

≤ C ×
∞∑

j=j0+1

2−2ja
∫ ∞

3×2j/Nδ
(2 + x)−2α dx

≤ C N2δα

32α (2α− 1)

∞∑

j=j0+1

2−j(2a+2α−1)

= C ×N2δα × 2−(j0+1)(2a+2α−1)

1− 2−2a−2α+1
.

Next, since a > 0, by using (30), we obtain that for every x ∈ Jδ
1 (t, N)

R1(x) ≤ C ×N−2(a+α−δα−1/2).

Next, as the choice of the parameter α remains free, we can impose that a + α − δα − 1/2 ≥ 1

(or equivalently α ≥ (3/2− a) /(1− δ)), and we get that for every x ∈ Jδ
1 (t,N)

R1(x) ≤ C ×N−2.

When x ≤ τ1 − 3N−δ and y = x + `/N where ` ∈ {0, 1, . . . , p}, we get for k/2j ≥ τ1

∣∣∣y − k 2−j
∣∣∣ =

∣∣∣x + `/N − k 2−j
∣∣∣ ≥

∣∣∣x− k2−j
∣∣∣ − `

N
≥ 3N−δ − `

N
.

Thus
2j

∣∣∣y − k 2−j
∣∣∣ ≥ 2j × 3N−δ ×

(
1− `

3N (1−δ)

)
.

11



The same calculation as above leads to

R1

(
x +

`

N

)
≤ C ×

(
1− `

3N (1−δ)

)−2α

×N−2. (32)

The assumption N (1−δ) > p/2 implies that 1− p

3N (1−δ)
≥ 1

3
. Thus we have

[
1− `

3N (1−δ)

]−2α

≤ 9α for all ` = 0, . . . , p.

From (31) and (32) we deduce that for all x ∈ Jδ
1 (t,N)

S1(x) ≤ C ×N−2.

It remains to bound S2(x). By using Taylor Formula it follows that, for every x ∈ IR there exists
a θx ∈ (x, x + p

N ) which satis�es

|∆NΨa,j,k(x)| =
∣∣∣Ψ′′

a(2
j θx − k)

∣∣∣× 22j N−2. (33)

Since Ψa ∈ S(IR), there exists a constant C > 0 (depending on p) such that for all y ∈ IR,
∣∣Ψ′′

a(y)
∣∣ ≤ C × (2 + p + |y|)−β , (34)

which implies that
∣∣∣Ψ′′

a(2
j θx − k)

∣∣∣ ≤ C ×
(
2 + p +

∣∣∣2j θx − k
∣∣∣
)−β

.

Next by (30), we have that 2j p

N
≤ p for all j ≤ j0. Then by using the triangular inequality, we

get ∣∣∣2j x− k
∣∣∣ ≤

∣∣∣2j θx − k
∣∣∣ + 2j p

N
≤

∣∣∣2j θx − k
∣∣∣ + p.

Since β > 5/2− a > 0, we deduce
∣∣∣Ψ′′

a(2
j θx − k)

∣∣∣ ≤ C ×
(
2 +

∣∣∣2j x− k
∣∣∣
)−β

for all x ∈ IR

and then (33) entails that

|∆NΨa,j,k(x)| ≤ 22j N−2
(
2 +

∣∣∣2j x− k
∣∣∣
)−β

for all x ∈ IR.

Thus for every x ∈ Jδ
1 (t,N)

∑

k∈Z, k/2j>τ1

|∆NΨa,j,k(x)|2 ≤ 24j N−4
∑

k∈Z, k/2j>τ1

(
2 +

∣∣∣k − 2j x
∣∣∣
)−2β

≤ 24j N−4
∫ ∞

3×2j/Nδ
(2 + u)−2β du

= C × 24j N−4
(
2 + 3× 2j ×N−δ

)−(2β−1)

≤ C × 2−j(2β−5) N δ(2β−1)−4.

12



At least, we obtain that for every x ∈ Jδ
1 (t,N)

S2(x) ≤
∑

j≤j0

{
2−2ja × C × 2−j(2β−5) N δ(2β−1)−4

}

= C ×N δ(2β−1)−4 ×

 ∑

j≤j0

2−j(2β+2a−5)


 .

By assumption, we have 2β+2a−5 > 0 which implies S2(x) ≤ C ×N δ(β−1)−2 for all x ∈ Jδ
1 (t,N).

This �nishes the proof of Lemma A.1.

B Some probabilistic lemmas

Several terms behave like the corresponding ones for the FBM. We give some de�nitions in force
in this section. Let

Ba(t) =
∑

j∈IN

∑

k∈Z

2−ja
[
Ψa

(
2jt− k

)
−Ψa (−k)

]
ζj,k + B̃a(t) (35)

where B̃ is de�ned by (3). The process (Ba(t), t > 0) is a FBM with Hurst parameter a. For any
a ∈ (0, 1), we denote Ya,N (k), resp. Ỹa,N (k), the increments de�ned by (12) when X is replaced
by Ba, resp. B̃a, that is

Ya,N (k) =
p∑

`=0

d` Ba

(
k + `

N

)
, Ỹa,N (k) =

p∑

`=0

d` B̃a

(
k + `

N

)
for k ∈ Z (36)

and we set Sa,N the quantity de�ned by

Sa,N =

√√√√√V ar




Nγ∑

k=1

|Ya,N (k)|2

. (37)

Eventually, we denote G̃
(0)
p,q(N, t), resp. G̃

(1)
p,q(N, t), the analog of Gp,q(N, t) , when X is replaced

by Ba0 , resp. Ba1 , namely

G̃(i)
p,q(N, t) = max

n∈Ip(t,N)

∑

m∈Iq(t,N)

|IE (Yai,N (n) Yai,N (m))| , for i = 0 or 1. (38)

First, we recall some properties of the FBM

Lemma B.1 Assume that conditions (13) are satis�ed. For every a ∈ (0, 1), we have the
following properties

13



(i) Let Ya,N (k) be de�ned by (36), then for every k ∈ Z, Ya,N (k) is a centered Gaussian r.v.
with variance

IE
(
|Ya,N (k)|2

)
= N−2a×C(a, d) where C(a, d) =

∫

IR

∣∣∣∣∣
p∑

`=0

d` ei`u

∣∣∣∣∣
2

× u−(2a+1) du < ∞.

(ii) Let Sa,N be de�ned by (37) and assume conditions (13) are satis�ed, then there exist two
positive constants C1, C2 such that

C1 ×N1/2−2a ≤ Sa,N ≤ C2 ×N1/2−2a. (39)

(iii) Let G̃
(i)
p,q(N, t) be de�ned by (38), we have

G̃(i)
p,q(N, t) = o

(
N1/2−2ai

)
for i = 0 or 1. (40)

Remark B.1 The condition of nullity of the second moment of d in (13) is crucial to obtain the
upper bound in (39) and derive (40). Indeed, this condition implies that gd(v) = O(v2) where gd

is the function de�ned by (41). This is explained at the end of the proof of part (ii) of Lemma
B.1.

Proof. In this proof, we denote

gd(v) =
p∑

`=0

d` ei`v (41)

where d is the �nite sequence associated to the generalized quadratic variation V
(d)
N . The two

following properties play a key role in both proof of point (i) and (ii).

• The function gd and its derivative g′d are bounded on IR.

• The conditions (13) are equivalent to gd(v) = O(v2) as v goes to 0.

Indeed,
∣∣∣ei`v

∣∣∣ = 1 implies the �rst point. The nullity of the �rst moment of d implies gd(0) = 0

and the nullity of the second one provides g′d(0) = 0, this induces the second point. With this
notation, we have

C(a, d) =
∫

IR
|gd (v)|2 × u−(2a+1) dv

and C(a, d) < ∞ as soon as the �rst moment of d is null, that is ∑p
`=0 d` = 0. We turn us now

to the proof of (i), (ii) and (iii).
i) By using conditions (1, 36), we get

Ya,N (k) =
∫

IR

( p∑

`=0

d` × ei( k+`
N )ξ

)
× |ξ|−(a−1/2)

iξ
Ŵ (ξ). (42)

14



Thus

IE
(
|Ya,N (k)|2

)
=

∫

IR

∣∣∣∣∣

( p∑

`=0

d` × ei( k+`
N )ξ

)
×

(
|ξ|−(a−1/2)

iξ

)∣∣∣∣∣
2

dξ

=
∫

IR

∣∣∣∣∣

( p∑

`=0

d` × ei ` ξ/N

)∣∣∣∣∣
2

× |ξ|−(2a+1) dξ

=
∫

IR

∣∣∣∣gd

(
ξ

N

)∣∣∣∣
2

× |ξ|−(2a+1) dξ

= N−2a × C(a, d),

where the last equality results from the change of variable v = ξ/N . But Conditions (13) imply
that C(a, d) < ∞ for all a ∈ (0, 1). Therefore Ya,N (k) is a Gaussian centered r.v. with variance
N−2a × C(a, d).

ii) Since Sa,N corresponds to the (d) quadratic variation of the FBM Ba which has stationary

increments, the quantities
[Nt]+Nγ∑

k=[Nt]+1

|Ya,N (k)|2 do not depend on the time t. Therefore, we could

set t = 0 as it is done in (37). The proof mimics the one given in Bardet (2000). We just gives
the main lines. Since the Ya,N (k) are centred Gaussian r.v. we have

S2
a,N = V ar




Nγ∑

k=1

|Ya,N (k)|2



=
Nγ∑

k=1

Nγ∑

m=1

Cov
(
Ya,N (k)2, Ya,N (m)2

)

= 2
Nγ∑

k=1

Nγ∑

m=1

Cov (Ya,N (k), Ya,N (m))2

= 2
Nγ∑

k=1

Nγ∑

m=1

IE
(
Ya,N (k)Ya,N (m)

)2
.

By using successively (42) and the change of variable v = ξ/N , we get

IE
(
Ya,N (k)Ya,N (m)

)
=

∫

IR
|ξ|−(2a+1) × ei( k−m

N )ξ ×
∣∣∣∣∣

p∑

`=0

d` × ei( `
N )ξ

∣∣∣∣∣
2

dξ

= 2 N−2a
∫

IR+
v−(2a+1) × cos ((k −m) v)× |gd(v)|2 dv.

We denote ρa(k) =
∫ ∞

0
v−(2a+1) × cos (k v)× |gd(v)|2 dv for k ∈ Z and a ∈ (0, 1). Thus we have

S2
a,N = 4N−4a

Nγ∑

k=1

Nγ∑

m=1

ρa(k −m)2.

15



Remark that ρa(k) is well de�ned since for every k ∈ Z we get |ρa(k)| ≤ C(a, d) < ∞. Moreover
we have ρa(0) = C(a, d). On the one hand, we can bound from below S2

a,N by retaining only the
diagonal terms in the two series. So, we get

S2
a,N ≥ 4N−4a

Nγ∑

k=m=1

ρa(0)2 = C ×N1−4a,

which induces the lower bound of (39). On the other hand, the upper bound follows from
technical and tedious calculations. To put in a nutshell, it results from conditions (13) that
|gd(v)|2 = O(v4) as v goes to 0. By using successively two integration by parts (we integrate
twice the term cos(kv) and derive the product term), we get |ρa(k)| ≤ C/k2 for every k 6= 0.
Thus, we deduce

S2
a,N ≤ 4N−4a




Nγ∑

k=1

ρa(0)2 +
Nγ∑

k=1

Nγ∑

m=1, m6=k

ρa(k −m)2



≤ C ×N1−4a + C ×
Nγ∑

k=1

Nγ∑

m=1, m6=k

1
|k −m|4

≤ C ×N1−4a

which implies the upper bound of (39) and �nishes the proof of the point (ii).

Let us stress that the upper bound of (39) follows from the bound |ρa(k)| ≤ C/k2 for all
integer k ≥ 1, which results from the nullity of the second moment of d, that is ∑p

`=0 `d` = 0.
Indeed, ρa(k) is de�ned as an improper integral both at 0 and ∞. Since cos(kv) and gd(v) are
bounded and a ∈ (0, 1), the term v−(2a+1) insures the convergence at∞. Similarly, the successive
primitives of cos(kv) and the derivatives of gd(v) remain bounded, hence the derivatives of
|gd(v)|2 × v−(2a+1) would still converge at ∞. We focus on the convergence at 0. Set f(v) =

|gd(v)|2 × v−(2a+1). The �rst integration by parts gives
∫ ∞

0
cos (k v)× f(v) dv = −1

k

∫ ∞

0
sin(kv)× f ′(v) dv

since sin(0) = 0 and f(∞) = 0. Then, the second integration provides
∫ ∞

0
cos(kv) f(v) dv = − 1

k2

∫ ∞

0
cos(kv)× f ′′(v) dv +

1
k2

[
cos(kv)× f ′(v)

]∞
0

= − 1
k2

∫ ∞

0
cos(kv)× f ′′(v) dv − 1

k2
f ′(0)

since f ′(∞) = 0 and cos(0) = 1. But gd(v) = O(v2) induces f ′′(v) = v1−2a × (C +O(v))

as v goes to 0. This insures the convergence of the integral
∫ ∞

0
cos(kv)× f ′′(v) dv at 0, since

1 − 2a > −1 for all a ∈ (0, 1). To conclude with, we remark that if ∑p
`=0 `d` 6= 0 then f ′′(v) =
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v−1−2a×(C +O(v)) as v goes to 0 and
∫ ∞

0
cos(kv)× f ′′(v) dv = ∞. In this case, we would have

|ρa(k)| = O(1/k), therefore the upper bound of (39) does not hold.
iii)Denote

βa,N (t) = max
n∈IN (t)

∑

m∈IN (t)

|cov (Yai,N (n), Yai,N (m))| for i = 0 or 1.

From Istas & Lang, we have limN→∞ βai,N (t)/Sai,N = 0. But βai,N ≥ G̃(i)
p,q(N, t) ≥ 0, for all

p, q ∈ {1, 2, 3}. Combined with (39) this induces (40).

Next, we give two Lemmas concerning the regularity in quadratic mean of the high frequencies
and low frequencies component of (35).

Lemma B.2 Let Ỹa,N be de�ned by (36). There exists a constant C > 0 such that for all
a ∈ (0, 1) and for every integers n, m ∈ IN (t),

∣∣∣IE
(
Ỹa,N (n) Ỹa,N (m)

)∣∣∣ ≤ C ×N−4. (43)

Proof. Since ϕ is a Lemarié-Meyer scale function, we have Supp ϕ̂ ⊂ [−4π/3, 4π/3]. For every
integer k, this induces

∫

IR

(eitξ − 1)
|ξ|a+1/2

e−ikξ ϕ̂(ξ) dξ =
∫ 2π

0

( ∞∑

r=−∞

(eit(ξ+2rπ) − 1)
|ξ + 2rπ|a+1/2

ϕ̂(ξ + 2rπ)

)
e−ikξ dξ, (44)

where the sum is a �nite sum, which in fact only contains the terms corresponding to the indices
r = −1 and r = 0. Since ∑p

`=0 d` = 0, we have

Ỹa,N (n) =
∑

k∈Z





∫ 2π

0
e−ikξ




0∑

r=−1

ϕ̂(ξ + 2rπ)
|ξ + 2rπ|a+1/2


×

( p∑

`=0

d` ei(ξ+2rπ)(n+`
N )

)
dξ



 ηk

Combined with the Parseval formula, we get

IE
(
Ỹa,N (n) Ỹa,N (m)

)
=

∑

k∈Z





∫ 2π

0
e−ikξ




0∑

r=−1

ϕ̂(ξ + 2rπ)
|ξ + 2rπ|a+1/2


×

( p∑

`=0

d` ei(ξ+2rπ)(n+`
N )

)
dξ





×




∫ 2π

0
eikξ




0∑

r=−1

ϕ̂(ξ + 2rπ)
|ξ + 2rπ|a+1/2


×

( p∑

`=0

d` e−i(ξ+2rπ)(m+`
N )

)
dξ





=
∫ 2π

0




0∑

r=−1

ϕ̂(ξ + 2rπ)
|ξ + 2rπ|a+1/2


×

( p∑

`=0

d` ei(ξ+2rπ)(n+`
N )

)

×



0∑

r=−1

ϕ̂(ξ + 2rπ)
|ξ + 2rπ|a+1/2


×

( p∑

`=0

d` e−i(ξ+2rπ)(m+`
N )

)
dξ.
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From the other hand, by using Relations (13) and Taylor formula, one obtains that for every
θ ∈ IR ∣∣∣∣∣

p∑

`=0

d` ei`θ

∣∣∣∣∣ ≤
1
2
|θ|2 ×

( p∑

`=0

`2 |d`|
)

which induces
∣∣∣∣∣

p∑

`=0

d` ei(ξ+2rπ)(m+`
N )

∣∣∣∣∣ ≤ 1
N2

× |ξ + 2rπ|2 × 1
2

( p∑

`=0

`2 |d`|
)

.

Since ϕ̂ is a bounded function, we deduce the following upper bound

∣∣∣IE
(
Ỹa,N (n) Ỹa,N (m)

)∣∣∣ ≤ 1
N4

× ‖ϕ̂‖2
L∞ ×

1
4

( p∑

`=0

`2 |d`|
)2

×
∫ 2π

0




0∑

r=−1

|ξ + 2rπ|3/2−a




2

dξ

which implies (43), since 3/2− a ∈]1/2, 3/2[.

Lemma B.3 For every a ∈ (0, 1) we have

∑

j∈IN

∑

k∈Z

2−2ja

∣∣∣∣∆NΨa,j,k

(
n

N

)∣∣∣∣
2

≤ C ×N−2a + C ×N−4.

Proof. From (7, 12, 25, 35, 36), we have

∑

j∈IN

∑

k∈Z

2−2ja

∣∣∣∣∆NΨa,j,k

(
n

N

)∣∣∣∣
2

= IE

(∣∣∣Ya,N (n)− Ỹa,N (n)
∣∣∣
2
)

≤ 2 IE
(
|Ya,N (n)|2

)
+ 2 IE

(∣∣∣Ỹa,N (n)
∣∣∣
2
)

= C ×N−2a + C ×N−4

where the last equality results from Lemma B.1 (i) and Lemma B.2.

We deduce the asymptotic bound on F (t,N) :

Lemma B.4 Let F (t,N) be de�ned by (20). For every δ ∈ (1/2, 1) we have

lim
N→∞

F (t,N)
N1/2−2(a0∧a1)

= 0. (45)

Proof. From (7,9, 12, 25) combined with Lemma B.3, we get

IE
(
|YN (n)|2

)
=

∑

j∈IN

∑

k∈Z, k/2j<τ1

2−2ja0

∣∣∣∣∆NΨa0,j,k

(
n

N

)∣∣∣∣
2
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+
∑

j∈IN

∑

k∈Z, k/2j≥τ1

2−2ja1

∣∣∣∣∆NΨa1,j,k

(
n

N

)∣∣∣∣
2

≤
∑

j∈IN

∑

k∈Z

2−2ja0

∣∣∣∣∆NΨa0,j,k

(
n

N

)∣∣∣∣
2

+
∑

j∈IN

∑

k∈Z

2−2ja1

∣∣∣∣∆NΨa1,j,k

(
n

N

)∣∣∣∣
2

≤ C ×N−2a0 + C ×N−2a1 + C ×N−4.

From Cauchy-Schwarz inequality, we get

|IE (YN (n) YN (m))| ≤
√

IE (YN (n)2)×
√

IE (YN (m)2)

This induces

F (t,N) ≤ CardI2(t,N)×
(
C ×N−2a0 + C ×N−2a1 + C ×N−4

)

By de�nition, we have CardI2(t,N) ≤ 6 N1−δ. By using δ > 1/2, we deduce

F (t,N) ≤ C ×N1−δ−2(a0∧a1) = o
(
N1/2−2(a0∧a1)

)
.

The asymptotic behavior of G1,1 and G3,3 is given by Lemma B.7 which proof needs the following
Lemma:

Lemma B.5 Let Ya0,N and Ya1,N be de�ned by (36). Then for all β such that β + a0 > 5/2

and β + a1 > 5/2, for every δ ∈ (0, 1) there exists a constant C > 0 such that

∀n,m ∈ Iδ
1(t,N) |IE (YN (n) YN (m))− IE (Ya0,N (n) Ya0,N (m))| ≤ C ×N δ(2β−1)−4

∀n,m ∈ Iδ
3(t,N) |IE (YN (n) YN (m))− IE (Ya1,N (n) Ya1,N (m))| ≤ C ×N δ(2β−1)−4.

Proof. The two inequalities can be obtained similarly, so we will only prove the �rst one.
Relations (7, 12, 25) and (9) imply that

IE (YN (n)YN (m)) =
∑

j∈IN

∑

k∈Z, k/2j<τ1

2−2ja0 ∆NΨa0,j,k

(
n

N

)
×∆NΨa0,j,k

(
m

N

)
(46)

+
∑

j∈IN

∑

k∈Z, k/2j≥τ1

2−2ja1 ∆NΨa1,j,k

(
n

N

)
×∆NΨa1,j,k

(
m

N

)

From the another hand, we have that for i = 0 or 1

IE (Yai,N (n) Yai,N (m)) = IE
(
Yai,N (n) Yai,N (m)

)

=
∑

j∈IN

∑

k∈Z

2−2jai ∆NΨai,j,k

(
n

N

)
×∆NΨai,j,k

(
m

N

)

+ IE
(
Ỹai,N (n) Ỹai,N (m)

)
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where Ỹai,N (k) =
p∑

`=0

d` B̃ai

(
k + `

N

)
. Combined with Lemma B.2, we get

|IE (YN (n) YN (m)− Ya0,N (n) Ya0,N (m))| ≤ CN−4 (47)

+
∑

j∈IN

∑

k∈Z, k/2j≥τ1

2−2ja0

∣∣∣∣∆NΨa0,j,k

(
n

N

)
∆NΨa0,j,k

(
m

N

)∣∣∣∣

+
∑

j∈IN

∑

k∈Z, k/2j≥τ1

2−2ja1

∣∣∣∣∆NΨa1,j,k

(
n

N

)
∆NΨa1,j,k

(
m

N

)∣∣∣∣ .

Then Cauchy-Schwarz inequality implies that for i = 0 or 1
∑

j∈IN

∑

k∈Z, k/2j≥τ1

2−2jai

∣∣∣∣∆NΨai,j,k

(
n

N

)
∆NΨai,j,k

(
m

N

)∣∣∣∣

≤

 ∑

j∈IN

∑

k∈Z, k/2j≥τ1

2−2jai

∣∣∣∣∆NΨai,j,k

(
n

N

)∣∣∣∣
2



1/2

×

 ∑

j∈IN

∑

k∈Z, k/2j≥τ1

2−2jai

∣∣∣∣∆NΨai,j,k

(
m

N

)∣∣∣∣
2



1/2

≤ C ×N δ(2β−1)−4,

where the last inequality follows from lemma A.1 and holds for n, m ∈ Iδ
1(t,N) and β+ai > 5/2.

We deduce that all for n,m ∈ Iδ
1(t,N)

|IE (YN (n) YN (m)− Ya0,N (n) Ya0,N (m))| ≤ C ×N δ(2β−1)−4 + C ×N−4.

This �nishes the proof of the �rst bound of Lemma B.5. Mutatis mutandis, the proof of the
second bound is the same.

Lemma B.6 Let G1,1(N, t) and G3,3(N, t) be de�ned by (19).

If δ <
7− 4(a0 ∧ a1)
8− 4(a0 ∧ a1)

, then lim
N→∞

G1,1(N, t)
N1/2−2(a0∧a1)

= 0 and lim
N→∞

G3,3(N, t)
N1/2−2(a0∧a1)

= 0.

Proof. For sake of simplicity, we assume that a0 < a1. The idea behind the proof is that the
covariance of the increments mimics the corresponding one for a FBM when both indices are on
the same part of the change point. More precisely, with the same notations as in (38), we have

G1,1(N, t) ≤ G̃
(0)
1,1(N, t) + max

n∈I1(t,N)

∑

m∈I1(t,N)

|IE (YN (n) YN (m) − Y0,N (n) Y0,N (m))| ,

G3,3(N, t) ≤ G̃
(1)
3,3(N, t) + max

n∈I3(t,N)

∑

m∈I3(t,N)

|IE (YN (n) YN (m) − Y1,N (n) Y1,N (m))| .
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From Lemma B.5, for every β > 5/2− a0, we have

G1,1(N, t) ≤ G̃
(0)
1,1(N, t) + Card Iδ

1(t, N)× C ×N δ(2β−1)−4,

G3,3(N, t) ≤ G̃
(1)
3,3(N, t) + Card Iδ

3(t, N)× C ×N δ(2β−1)−4.

From Lemma B.1, we have G̃(i)
p,q(N, t) = o

(
N1/2−2ai

)
for i = 0 or 1. Moreover as Iδ

p(t,N) ⊂
IN (t), we get that Card Iδ

p(t,N) ≤ Card IN (t) ≤ N γ for p = 1, 2 or 3. This induces

G1,1(N, t)
N1/2−2(a0∧a1)

≤ o(1) + C ×N δ(2β−1)+2a0−7/2,

G3,3(N, t)
N1/2−2(a0∧a1)

≤ o
(
N−2(a1−a0)

)
+ C ×N δ(2β−1)+2a0−7/2.

Since a0 < a1, the �rst term of the right hand side of the second inequality converges to 0.
Therefore Lemma B.6 results from the existence of a real number β satisfying β > 5/2− a0 and
δ(2β − 1) + 2a0 − 7/2 < 0, which is equivalent to the condition δ(4 − 2a0) < 7/2 − 2a0. This
�nishes the proof of Lemma B.6.

The asymptotic behavior of the quantities G1,3(N, t) and G3,1(N, t) is given in Lemma B.8
which will be a consequence of following result :

Lemma B.7 Let YN be de�ned by (12). Then for all β such that β + (a0 ∧ a1) > 5/2, for every
δ ∈ (0, 1) there exists a constant C > 0 such that if (n,m) ∈ Iδ

1(t,N)× Iδ
3(t,N) then

|IE (YN (n) YN (m))| ≤ C ×N δ(β−1/2)−2−(a0∧a1). (48)

Proof. Formula (46) is valid for every pair (n,m) ∈ Z2. From the Cauchy-Schwarz inequality,
a straightforward calculation gives us

|IE (YN (n)YN (m))|

≤

 ∑

j∈IN

∑

k∈Z

2−2ja0

∣∣∣∣∆NΨa0,j,k

(
n

N

)∣∣∣∣
2



1/2

×

 ∑

j∈IN

∑

k∈Z, k/2j<τ1

2−2ja0

∣∣∣∣∆NΨa0,j,k

(
m

N

)∣∣∣∣
2



1/2

+


 ∑

j∈IN

∑

k∈Z, k/2j≥τ1

2−2ja1

∣∣∣∣∆NΨa1,j,k

(
n

N

)∣∣∣∣
2



1/2

×

 ∑

j∈IN

∑

k∈Z

2−2ja1

∣∣∣∣∆NΨa1,j,k

(
m

N

)∣∣∣∣
2



1/2

Since n/N ∈ Jδ
1 (t,N) and m/N ∈ Jδ

3 (t, N), from Lemma A.1, we get

|IE (YN (n)YN (m))| ≤ C N δ (β−1/2)−2

×






 ∑

j∈IN

∑

k∈Z

2−2ja0

∣∣∣∣∆NΨa0,j,k

(
n

N

)∣∣∣∣
2



1/2

+


 ∑

j∈IN

∑

k∈Z

2−2ja1

∣∣∣∣∆NΨa1,j,k

(
m

N

)∣∣∣∣
2



1/2




.
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From Lemma B.3, we get

|IE (YN (n) YN (m))| ≤ C N δ (β−1/2)−2 × {
C ×N−a0 + C ×N−a1

}

which implies (48) and �nishes the proof of Lemma B.7.

Lemma B.8 Let G1,3(N, t) and G3,1(N, t) be de�ned by (19).

If δ <
3− 2(a0 ∧ a1)
4− 2(a0 ∧ a1)

then lim
N→∞

G1,3(N, t)
N1/2−2(a0∧a1)

= 0 and lim
N→∞

G3,1(N, t)
N1/2−2(a0∧a1)

= 0.

Proof. To �x the idea, we suppose a0 < a1. From (39, 48), for all β such that β + a0 > 5/2,
we have

G1,3(N, t) ≤ Card Iδ
1(t,N)× C N δ(β−1/2)−2−a0

and G3,1(N, t) ≤ Card Iδ
3(t,N)× C N δ(β−1/2)−2−a0 .

Since Card Iδ
1(t,N) ≤ Nγ and Card Iδ

3(t,N) ≤ Nγ , we get
G1,3(N, t)
N1/2−2a0

≤ C ×N δ(β−1/2)−3/2+a0 and
G3,1(N, t)
N1/2−2a0

≤ C ×N δ(β−1/2)−3/2+a0 .

Therefore Lemma B.8 follows from the existence of a real number β satisfying
(β − 1/2) > (2 − a0) and δ (β − 1/2) − 3/2 + a0 < 0, which is equivalent to the condition
δ (2− a0) < (3/2− a0) assumed in the assumption of Lemma B.8.

Lemma B.9 Let G2,1(N, t) and G2,3(N, t) be de�ned by (19).

If δ <
3− 2(a0 ∧ a1)
4− 2(a0 ∧ a1)

then lim
N→∞

G2,1(N, t)
N1/2−2(a0∧a1)

= 0 and lim
N→∞

G2,3(N, t)
N1/2−2(a0∧a1)

= 0.

Proof. To �x the idea, we suppose a0 < a1. With the notations de�ned by (38), we have

G2,1(N, t) ≤ G̃
(0)
2,1(N, t) + max

n∈I2(t,N)

∑

m∈I1(t,N)

|IE (YN (n) YN (m) − Ya0,N (n) Ya0,N (m))| ,

G2,3(N, t) ≤ G̃
(1)
2,3(N, t) + max

n∈I2(t,N)

∑

m∈I3(t,N)

|IE (YN (n) YN (m) − Ya1,N (n) Ya1,N (m))| .

The bound (47) is valid for every pair (n,m) ∈ IN (t)2. By using successively Lemma A.1 and
Lemma B.3, we get for i = 0 or 1

|IE (YN (n) YN (m)− Yai,N (n) Yai,N (m))| ≤ CN−4

+ C ×N δ(β−1/2)−2 × [
C ×N−a0 + C ×N−a1

]
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for every β such that β + a0 > 5/2. This induces

G2,1(N, t) ≤ G̃
(0)
2,1(N, t) + CardIδ

1(t, N)×
[
CN−4 + N δ(β−1/2)−2−(a0∧a1)

]

From (40) and CardIδ
1(t,N) ≤ Nγ, we deduce

G2,1(N, t)
N1/2−2(a0∧a1)

≤ o(1) + C ×N δ(β−1/2)−3/2+a0 .

Similar calculations lead to
G2,3(N, t)
N1/2−2a0

≤ o
(
N−2(a1−a0)

)
+ C ×N δ(β−1/2)−3/2+a0 .

Therefore Lemma B.9 follows from the existence of a real number β satisfying
(β − 1/2) > (2 − a0) and δ (β − 1/2) − 3/2 + a0 < 0, which is equivalent to the condition
δ (2− a0) < (3/2− a0) assumed in the assumption of Lemma B.9.

Lemma B.10 If δ <
7− 4(a0 ∧ a1)
8− 4(a0 ∧ a1)

, then there exists a constant C > 0 such that

lim inf
N→∞

SN (t)
N1/2−2(a0∧a1)

≥ C ×
√
|τ1 − t|

Proof. To �x the idea, we assume that a0 < a1. Since YN (n) are Gaussain centered r.v., we
have

SN (t)2 = V ar (VN (t)) =
∑

n∈IN (t)

∑

m∈IN (t)

cov
(
Y 2

N (n) Y 2
N (m)

)

= 2
∑

n∈IN (t)

∑

m∈IN (t)

cov (YN (n) YN (m))2

= 2
∑

n∈IN (t)

∑

m∈IN (t)

IE (YN (n) YN (m))2

≥ 2
∑

n∈Iδ
1 (t,N)

∑

m∈Iδ
1 (t,N)

IE (YN (n) YN (m))2 .

Then

1√
2

SN (t) ≥




∑

n∈Iδ
1 (t,N)

∑

m∈Iδ
1 (t,N)

IE (Ya0,N (n) Ya0,N (m))2




1/2

−




∑

n∈Iδ
1 (t,N)

∑

m∈Iδ
1 (t,N)

IE (YN (n) YN (m)− Ya0,N (n) Ya0,N (m))2




1/2

≥




∑

n∈Iδ
1 (t,N)

IE
(
Ya0,N (n)2

)2




1/2

23



−




∑

n∈Iδ
1 (t,N)

∑

m∈Iδ
1 (t,N)

IE (YN (n) YN (m)− Ya0,N (n) Ya0,N (m))2




1/2

.

Next, by using Lemmas B.1 and B.5, for every β satisfying β + a0 > 5/2, we get

1√
2

SN (t) ≥ CardIδ
1(t,N)1/2 × C ×N−2a0 − C × CardIδ

1(t,N)×N δ(2β−1)−4

By using CardIδ
1(t, N), we deduce

SN (t)
N1/2−2(a0∧a1)

≥
√

N−1 × CardIδ
1(t,N)× C − C ×N δ(2β−1)+2a0−7/2

Since δ <
7− 4a0

8− 4a0
, there exists a β > 5/2 − a0 such that δ(2β − 1) + 2a0 − 7/2 < 0. From

the other hand, when t < τ1 < t + γ we have N−1 × Card Iδ
1(t, N) → |τ1 − t| when N →< ∞.

Therefore, we deduce lim inf
N→∞

SN (t)
N1/2−2(a0∧a1)

≥ C ×
√
|τ1 − t|.
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