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Paths Complex Gain Tracking Algorithms for
OFDM Receiver in Slowly-Varying Channels

Laurent ROS, Hussein HIJAZI and Eric Pierre SIMON

Abstract—This paper deals with channel estimation for Or-
thogonal Frequency Division Multiplexing (OFDM) systems over
time-varying fading channels. In conventional methods, the least-
squares (LS) estimate is obtained over the pilot subcarriers, and
next interpolated over the entire frequency grid. Those methods
only exploit the frequency-domain correlation of the channel. In
this paper, we propose to exploit both the time-domain correlation
and the specific features of the wireless radio channel. Assuming
the availability of delay related information, we propose to track
the variation of the paths complex amplitudes by means of on-
line recursive algorithms. We developed two simple sub-optimal
algorithms based on second-order loops which exhibit a reduced
complexity compared to that of the widely popular Kalman
algorithm. The error signal is based on the LS estimate of the
path complex gains for the first loop, and on the steepest-descent
method of the same LS cost function for the second loop. For
each algorithm, we give derivations to correctly tune the loop
coefficients. Simulation results over slow Rayleigh fading channel
with Jakes’ spectrum show that our algorithms outperform the
conventional methods. Moreover, the Mean Square Error (MSE)
of the first algorithm is closer to the Bayesian Cramer Rao Bound
than that of a Kalman filter based on a first-order AutoRegressive
approximation of the channel.

Index Terms—OFDM, Channel estimation, Tracking Loop,
Rayleigh channel, Complex gains estimation.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is an
effective technique for alleviating frequency-selectivefading
channels effects in wireless communication systems. In this
technique, a wideband frequency-selective channel is con-
verted to a number of parallel narrow-band flat fading sub-
channels which are free of Intersymbol Interference (ISI) and
free (assuming negligible time variations within one OFDM
symbol) of Inter-Carrier Interference (ICI). For coherentdetec-
tion of the information symbols, reliable estimation of thegain
of each subchannel in the OFDM system is crucial. Most of
the conventional methods work in a symbol-by-symbol scheme
by using only the correlation of the channel in the frequency
domain (i.e the correlation between subchannels). Generally,
they consist in estimating the channel at pilot frequencies
and then interpolating the channel frequency response. The
channel estimation at the pilot frequencies can be based on
Least-Squares (LS) criterion, or for better performance on
Linear-Minimum-Mean-Square-Error (LMMSE) criterion [1].
Though the conventional methods can deal with time-varying
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channels, the information of the time-domain correlation is
not exploited. However, we have shown in [2] through on-
line Bayesian Cramer-Rao-Bound (BCRB) analysis, that the
channel estimation process of the current symbol can be
largely improved by using the previous OFDM symbols. Some
works have addressed the time-domain dynamics of the fading
process to obtain an updated channel estimate. Chen and
Zhang proposed in [3] a structure which uses a Kalman-
Filter estimator for each subchannel (exploits the time-domain
correlation) and a linear combiner to refine the estimate of
each subchannel (exploits the frequency-domain correlation).
The complexity of the proposed structure increases with the
number of subcarriers. But in practice, only few subcarriers
can be used. Another interesting approach to address the
problem is to use a parametric channel modeling which
can effectively reduce the signal subspace dimension of the
channel correlation matrix [4]. Hence, channel estimation
can be reduced to the simple estimation of certain physical
propagation parameters, such as multi-path delays and multi-
path complex gains [4] [5] [6] [7]. Thus, the channel frequency
response can be estimated using anL-path channel model.
In [4], the ESPRIT (Estimation of Signal Parameters by
Rotational Invariance Techniques) method is employed to
acquire the initial multi-path time delays. With this informa-
tion, a MMSE estimator is derived to estimate the channel
frequency response. However, the optimal Wiener estimator
remains complex and requires the knowledge of the second-
order statistical properties of the channel. In [5], the delay-
subspace (assumed invariant over several symbols) is tracked
by a subspace-tracking algorithm, and the fast variation ofthe
path amplitudes is tracked separately by a subspace-amplitude
tracking algorithm. In [6] [7], we have addressed the problem
of path complex gains estimation and ICI reduction for the
case of fast-varying Rayleigh channel (normalized Doppler
spreadfdT ≥ 10−2). Based on a polynomial modeling of the
(Jakes process) channel gains variation, we use a polynomial
estimation over a block of OFDM symbols in [6], and Kalman
filtering with Auto-regressive (AR) model for the tracking of
the polynomial coefficients in [7]. In fact, a Kalman-based
method is quite complex and do not ensure to reach the BCRB
in case of mismatch between the AR model and the true
channel.

In this paper, we propose simplified multi-path complex
gains tracking algorithms based on recursive sub-optimal
techniques which closely approach the BCRB in the case of
slowly channel variations (fdT ≤ 10−2). These algorithms
exploit both the time-domain correlation and the specific



features of the wireless channel. In wireless radio channels,
the complex gains show temporal variations while the delays
are quasi-constant over a large number of OFDM symbols.
Assuming the availability of delay related information as in
[6] [7], we propose to track the complex gains variation
by means of on-line recursive algorithms. The two proposed
algorithms are based on a second-order loop. Thus, complex
gains incrementsare also estimated in order to improve the
prediction for the next iteration, exploiting the time-domain
correlation. The error signal of the first loop is based on theLS
estimate of the path complex gains, whereas the error signal
of the second-loop is based on the steepest-descent method
of the same LS cost function. For each algorithm, we give
derivations to correctly tune the loop coefficients. Simulation
results compared to the performance of the Kalman filter-based
algorithm and to the BCRB validate the proposed algorithms.

The paper is organized as follows: Section II describes
the system model. Section III derives the two suboptimal
algorithms, whereas Section IV gives the Kalman algorithm.
Finally, the different results are discussed in Section V.

Notations : [x]k denotes thekth entry of the vectorx, and
[X]k,m the [k,m]th entry of the matrixX (indices begin to 1).
IN is a N × N identity matrix. diag{x} is a diagonal matrix
with x on its diagonal, diag{X} is a vector whose elements
are the elements of the diagonal ofX. J0(·) is the zeroth-order
Bessel function of the first kind.∇x represents the first partial
derivatives operatori.e., ∇x = [ ∂

∂x1

, ..., ∂
∂xN

]T .

II. SYSTEM MODEL

A. OFDM Transmission over multi-path channel

Consider an OFDM system with N sub-carriers, and a
cyclic prefix lengthNg. The duration of an OFDM symbol
is T = vTs, whereTs is the sampling time andv = N + Ng.
Let x(n) =

[

x(n)[−
N
2 ], x(n)[−

N
2 + 1], ..., x(n)[

N
2 − 1]

]T

be thenth transmitted OFDM symbol, where{x(n)[b]} are
normalized 4-QAM symbols. After transmission over a multi-
path channel and FFT demodulation, thenth received OFDM
symboly(n) =

[

y(n)[−
N
2 ], y(n)[−

N
2 + 1], ..., y(n)[

N
2 − 1]

]T
is

given by [4] [6]:

y(n) = H(n) x(n) + w(n) (1)

where w(n) is a N × 1 zero-mean complex Gaussian noise
vector with covariance matrixσ2IN , and H(n) is a N × N
diagonal matrix with diagonal elements given by:

[H(n)]k,k =
1

N

L
∑

l=1

[

α
(n)
l × e−j2π( k−1

N
− 1

2
)τl

]

(2)

L is the total number of propagation paths,αl is the lth
complex gain of varianceσ2

αl
(with

∑L
l=1 σ2

αl
= 1), andτl×Ts

is thelth delay (τl is not necessarily an integer, butτL < Ng).
The L individual elements of{α(n)

l } are uncorrelated with
respect to each other. Using (2), the observation model in (1)
for the nth OFDM symbol can be re-written as:

y(n) = diag{x(n)}F α(n) + w(n) (3)

whereα(n) = [α
(n)
1 , ..., α

(n)
L ]T is a L× 1 vector andF is the

N × L Fourier matrix defined by:

[F]k,l = e−j2π( k−1

N
− 1

2
)τl (4)

Note: the sub-optimal algorithms proposed in this paper
can work without explicita priori random or deterministic
model for the path complex gain variations. However, we recall
that for the very universal “Rayleigh model”, theL complex
gains are wide-sense stationary narrow-band complex Gaus-
sian processes, with the so-called Jakes’ power spectrum [8]
with Doppler frequencyfd. It means thatα(n)

l are zero-means
correlated complex Gaussian variables with correlation coef-

ficients given by R(p)
αl

= E[α
(n)
l .α

(n−p)
l

H
] = σ2

αl
J0(2πfdTp).

B. Pilot Pattern

The Np pilot subcarriers are evenly inserted into theN
subcarriers at the positionsP = {ps | ps = (s − 1)Lf +
1, s = 1, ..., Np} with Lf the distance between two adjacent
pilots. As we will see with equation (26),Np must fulfill the
following requirement:Np ≥ L. The received pilot subcarriers
can be written as the sum of two components:

yp(n) = diag{xp(n)}Fpα(n) + wp(n) (5)

wherexp, yp andwp areNp×1 vectors, andFp is theNp×L
Fourier transform matrix with elements given by:

[Fp]k,l = e−j2π(
pk−1

N
− 1

2
)τl (6)

III. SUBOPTIMAL TRACKING ALGORITHMS

A tracking algorithm can be defined by an imposed struc-
ture, and a specific criteria (or “error signal”) to specify some
elements of the structure [11]. In the following, we use a
second-order recursive structure, and consider two possible
error signals, which will lead to 2 possible algorithms.

A. Structure of the tracking algorithm

1) Structure: The purpose is to estimate the channel
coefficients α. The estimate of α(n), noted α̂(n) (or
α̂(n|n)), is updated at a symbol rate by the computation
of a loop error signalv

ǫ(n), which is next filtered by a
digital loop filter. Inspired by the Phase-Locked-Loop (PLL)
design [12], we use a second-order closed-loop to get the
ability to track potential time linear drifts of the parameters to
be estimated. The general recursive equations or our loop are :

Measurement Update Equations

v
ǫ(n) = function of { yp(n); α̂(n|n−1) } (7)

α̂(n|n) = α̂(n|n−1) + µ1.vǫ(n) (8)

Time Update equations

vLag(n) = vLag(n−1) + v
ǫ(n) (9)

α̂(n+1|n) = α̂(n|n) + µ2.vLag(n) (10)

whereµ1, µ2 are the (real positive) loop coefficients.



The Measurement Update Equations are responsible for the
feedback,i.e., for incorporating a new measurementyp(n)

into the a priori estimateα̂(n|n−1) to obtain an improveda
posteriori estimateα̂(n|n). The Time Update Equations are
responsible for projecting forward (in time) the current state
α̂(n|n) and error estimates to obtain thea priori estimates for
the next time step,̂α(n+1|n). As in a Kalman filter, the Time
Update Equations can also be thought of a predictor equations,
while the Measurement Update Equations can be thought of
a corrector equations. Note that at each iteration, we get in
fact in µ2.vLag an estimate of thespeedof the parameterα,
useful to predict the parameter evolution for the next iteration.

2) General properties:The estimation error of the tracking
algorithm is defined as:

ǫ(n) = α(n) − α̂(n|n) (11)

Combining equations (8) and (10), we have that :

α̂(n|n) = α̂(n−1|n−1) + µ1.vǫ(n) + µ2.vLag(n−1) (12)

The previous equation confirms that in case of linear drift
of the complex amplitudes (i.e. α(n) = α(n−1) + slope), it
is possible to have no steady state error at the convergence
(i.e. vǫ = 0 and vLag = 1

µ2

.slope). By using (9), the
Z-domain transform of (12) leads to :

α̂(z).[1 − z−1] = [µ1 +
µ2.z

−1

1 − z−1
].vǫ(z) (13)

In the following, we noteF (z) = µ1 + µ2.z−1

1−z−1 the first-order
Lead / Lag filter applied to the error signal in order to obtain
α̂(n|n) by increment fromα̂(n−1|n−1), according to equation
(12). The error signal for each pathl = 1, ..., L should be in
average, proportional to the complex amplitude error for this
path in the ideal case1. Then we have :

v
(l)
ǫ(n) = β

(l)
d .{α

(l)
(n) − α̂

(l)
(n|n)} + N

(l)
(n) (14)

whereN
(l)
(n) is a zero-mean disturbance called loop noise. The

real coefficientβ(l)
d is called the gain of the equivalent complex

gain error detector (CGED). In the case where the CGED is
the same for each path, (i.e. β

(l)
d = βd), the equation (14)

leads to the vector formulation :

v
ǫ(n) = βd.{α(n) − α̂(n|n)} + N(n) (15)

So, in the Z-transform domain, assuming linear character-
istic of the CGED (15), equation (13) leads to

α̂(z) = L(z).α(z) +
L(z)

βd

.N(z) (16)

whereL(z) is the closed-loop transfer function defined by:

L(z) =
βd.F (z)

1 − z−1 + βdF (z)
(17)

1else we can define an equivalent to the S-curve used in PLL design [12],
and (14) will stand only for small errors (linear region of theS-curve).
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Fig. 1. (exact) Closed loop transfer functionL(z = ej2πfT ) for normalized
natural frequencyfnT = 2.10−2 (continuous line) andfnT = 2.10−4

(dashed line), for various damping factorζ.

Replacing F(z) by the lead/lag filter expression, we get:

L(z) =
βd(µ1 − µ2).(1 − z−1) + βdµ2

(1 − z−1)2 + βd(µ1 − µ2).(1 − z−1) + βdµ2
(18)

The condition of stability of the causal rational systemL(z)
is obtained when all the roots of the denominator polynomial
are inside the unit circle. For a second-order denominator
polynomialp(z) = (βdµ1+1).[1+c1z

−1+c2z
−2], the stability

conditions (obtained by the Schur-Cohn test [13]) are :

|c2| < 1 and − 1 <
c1

1 + c2
< 1 (19)

with in our case :

c1 =
−2 − βd(µ1 − µ2)

βdµ1 + 1
and c2 =

1

βdµ1 + 1

We can rewriteL(z) in the frequency-domain, by making
z = epT , with p = j2πf , and f is the frequency variable.
Assuming slow reaction of the loop during one OFDM symbol
T , the digital loop transfer function is close (approximation
z−1 ≈ 1 − p.T ) to an analog second-order low-pass transfer
function parametrized by natural pulsationωn (or fn = ωn

2π
)

and damping factorζ, while ωn.T << 1 :

L(epT ) ≈
2ζωnp + ω2

n

p2 + 2ζωnp + ω2
n

(20)

with : (ωnT )2 = µ2βd (21)

2ζωnT = (µ1 − µ2)βd (22)

The error variance can be numerically computed
as σ2

ǫ = σ2
ǫα + σ2

ǫN . According to (16) and (11),

σ2
ǫα =

∫ + 1

2T

− 1

2T

Γα(f).|1−L(ej2πfT )|2df is due to the high-pass

filtering2 of α(n), andσ2
ǫN =

∫ + 1

2T

− 1

2T

ΓN (f). 1
β2

d

.|L(ej2πfT )|2df

is due to the low-pass filtering ofN(n). Fig. 1 gives the

2Γα(f) , ΓN (f) : power spectrum density of
∑

l α(l) and
∑

l N(l).



modulus in frequency-domain of the exact closed-loop filter
L given in (18). The couple (fn, ζ) has to be properly chosen
for a good trade-off between gain tracking ability and loop
noise reduction, for a given SNR andfdT scenario.

Special case of first-order loop:if µ2 = 0, equations are
reduced toL(z) = βdµ1

(1−z−1)+βdµ1

and then approximatively to
a first-order low-pass transfer function :L(epT ) ≈ ωc

p+ωc
with

cut-off frequencyωc such that

(ωcT ) = µ1βd (23)

B. First algorithm :

1) Motivation: for each OFDM symbol, the Squares Error
(SE) for the received pilot subcarriers is defined by :

S(α̂(n)) = ζH
(n).ζ(n) (24)

where theNp × 1 error vector is

ζ(n) = yp(n) − diag{xp(n)}Fpα̂(n) (25)

The LS-estimator ofα(n) is :

aLS(n) = G(n)yp(n) (26)

where

G(n) =
(

FH
p diag{xp(n)}

Hdiag{xp(n)}Fp
)−1

FH
p diag{xp(n)}

H

(27)
And assuming normalized QPSK data, the matrix inversion
should be done only once (independent of the indexn):

G(n) =
(

FH
p Fp

)−1
FH

p diag{xp(n)}
H (28)

Thus, after LS estimation, we obtain :

aLS(n) = α(n) + ǫw(n) (29)

where ǫw(n) is a zero-mean complex Gaussian noise vector

with correlation matrixE{ǫw(n).ǫ
H
w(n)} = σ2.

(

FH
p Fp

)−1

2) Error signal for the first Algorithm:We use the differ-
ence between the LS estimatoraLS(n) for the nth OFDM block
and the predicted vector for this block,̂α(n|n−1). The error
signal vector is then :

v
ǫ(n) = G(n)yp(n) − α̂(n|n−1) (30)

3) Analysis and loop coefficients tuning:Now, for the
specific case of the first error signal defined in (30), we have
from equations (26),(29),(8) that:

vǫ(z) = (α(z) + ǫw(z)) − (α̂(z) − µ1.vǫ(z)) (31)

leading to

vǫ(z) =
α(z) − α̂(z)

1 − µ1
+

ǫw(z)

1 − µ1
(32)

We can conclude than the linear model (15) is strictly valid
for the first algorithm, with a CGED gain given by :

βd =
1

1 − µ1
(33)

and a loop noise equal toN(n) = βd.ǫw(n). For the first
algorithm, the stability conditions (19) are then:

0 < µ1 < 2 and 0 ≤ µ2 < 4 − 2µ1

And from (21) and (22), one given couple (ωn, ζ) of the
second-order low-pass transfer function can be obtained in
tuning (µ1, µ2) as :

µ1 =
(ωnT )2 + 2ζωnT

1 + (ωnT )2 + 2ζωnT
(34)

µ2 =
(ωnT )2

1 + (ωnT )2 + 2ζωnT
(35)

In this way, we finally have :0 ≤ µ2 < µ1 ≤ 1.

Special case of first-order loop :if gain µ2 = 0, the on-
line estimation algorithm is reduced to an order 1 AR low-pass
filtering of the LS estimatoraLS(n):

α̂(n|n) = (1 − µ1).α̂(n−1|n−1) + µ1.aLS(n) (36)

We have from (23) thatµ1 = ωcT
1+ωcT

.

C. Second algorithm

1) Motivation: Instead of computing explicitly the LS
estimator aLS(n) for each OFDM block, we can look for
an iterative steepest descent procedure. In this way, we use
same error signal that for an LMS (Least Mean Squares)
algorithm, but inserted in a second-order loop versus a first-
order loop. This means finally to use the prediction in order to
improve LMS-type adaptive algorithm as in [10]. Applying the
stochastic gradient descent method means to take the partial
derivatives of the SE,S(α̂), defined in (24) with respect to
the individual entries of the vector̂α:

∇α̂(S(α̂)) = 2.∇α̂(ζH).ζ (37)

where theL × Np matrix ∇α̂(ζH) contains in one given
column the partial derivatives (relative to the componentsof
α̂) for the corresponding pilot subcarrier. We obtain

∇α̂(S(α̂)) = −2.FH
p diag{xp}

H .{yp − diag{xp}Fpα̂} (38)

The successive corrections to the weight vectorα̂ must then
be in direction opposite to the gradient vector∇α̂(S(α̂)).

2) Error signal for the second Algorithm:Inserted in the
global structure of the tracking procedure, the error signal for
the nth OFDM symbol is chosen proportional to the negative
of the gradient vector of the SE predicted for this block, from
the (n-1)th observation block:

v
ǫ(n) = K

H
(n).{yp(n) − K(n)α̂(n|n−1)} (39)

where we define theNp × L matrix K(n) = diag{xp(n)}Fp.
So, if µ2 = 0, the second tracking algorithm is exactly an
LMS algorithm, with µ1 as step-size parameter (and with
α̂(n|n−1) = α̂(n−1|n−1)).



3) Analysis and loop coefficients tuning:Using the obser-
vation equation (5), the error signal (39) can be rewritten:

v
ǫ(n) = K

H
(n)K(n){α(n) − α̂(n|n−1)} + K

H
(n).wp(n) (40)

Using (8), the error signal versus the errorǫ(n) becomes :

v
ǫ(n) = [I − µ1.Γ]−1Γ.{α(n) − α̂(n|n)}

+[I − µ1.Γ]−1
K

H
(n).wp(n) (41)

where theL × L Hermitian matrixΓ = K
H
(n)K(n) is inde-

pendent of indexn when assuming normalized data symbols,
with elements defined by[Γ]ll′ =

∑Np

k=1 ej2π(τl−τl′ ). This
elements are identical on the diagonal, equal to[Γ]ll = Np.
Eq. (41) indicates that the CGED output of one given desired
path may be influenced by an interference term depending on
adjacent paths. This “inter-path interference” may increase the
variance of the loop noise if the Hermitian matrixΓ is not a
diagonally dominant matrix. This condition depends only on
the delays distribution. If non-diagonal terms can be neglected,
and if µ1Np << 1, the detector gain is approximatively:

βd ≈
Np

1 − µ1Np

(42)

and according to (21)(22), the tuning of the coefficient of
the second-order equivalent closed loop is given by replacing
(µ1, µ2) by (Npµ1, Npµ2) in equations (34)(35). In this way,
we finally have :0 ≤ µ2 < µ1 ≤ 1/Np.

IV. REFERENCE ALGORITHM: KALMAN FILTER

In order to compare the performance of the previous simple
sub-optimal algorithms, we recall here the Kalman Filter
processing, which can give the optimal performance for a so-
called Linear Gaussian Problem [11]. The Kalman filter is
a recursive algorithm composed of two stages: Time Update
Equations and Measurement Update Equations. In order to
use Kalman filter, we first have to give a linear state-space
representation of the problem. Classically, the flat fading
Rayleigh channel can be well approached [8] by an Auto-
regressive (AR) model. Most often, a first-order AR (AR1)
model is used to model the variation of each path,α

(n)
l as :

α
(n)
l = γ.α

(n−1)
l + u

(n)
l

where γ = J0(2πfdT ) according to the Jakes’ model, and
u

(n)
l is zero mean Gaussian complex circular with a variance

σ2
ul

= σ2
αl

(1 − γ2). Based on the previous AR1 model of the
gains evolution, the two stages of the so calledAR1-Kalman
algorithm are defined as:

Time Update Equations:

α̂(n|n−1) = γ.α̂(n−1|n−1)

P(n|n−1) = γ2 .P(n−1|n−1) + U (43)

Measurement Update Equations:

K (n) = P(n|n−1)K
H
(n)

(

K(n)P(n|n−1)K
H
(n) + σ2INp

)−1

α̂(n|n) = α̂(n|n−1) + K (n)

(

yp(n) − K(n)α̂(n|n−1)

)

P(n|n) = P(n|n−1) − K (n)K(n)P(n|n−1) (44)

where K (n) is the Kalman gain matrix andU =
diag

{

σ2
u1

, ..., σ2
uL

}

. Note that the equations are similar to
those of the second (LMS-based) algorithm withµ2 = 0 by
replacing the Kalman gainK (n) by µ1.K

H
(n), which requires

an additional matrix inversion at each iteration.

V. SIMULATIONS

In this section, the performance of the recursive algorithms
is evaluated and compared to that of reference algorithms (LS
and Kalman algorithms). The normalized channel model is
GSM Rayleigh model [9] [6] withL = 6 paths and maximum
delayτmax = 10Ts. A 4QAM-OFDM system with normalized
symbols,N = 128 subcarriers,Ng = N

8 subcarriers,Np = 16
pilots (i.e., Lf = 8) and 1

Ts
= 2MHz is used. The MSE and

the BER are evaluated under a slowly time-varying channel
with fdT = 10−2 (corresponding to a vehicle speedVm ≈
140 km/h for fc = 1GHz). Table I gives the loop coefficients
used, that yield around the best possible performance for the
proposed algorithms.

SNR 0dB 5dB 10dB 15dB 25dB 35dB
fn (Algo 1) 2fd 2.5fd 3fd 4fd 6fd 15fd

ζ 0.5 0.5 0.5 0.5 0.5 0.3
fn (Algo 2) 7fd 8fd 10fd 15fd 20fd 23fd

TABLE I
LOOP COEFFICIENTS(FIRST / SECONDALGORITHM)

Fig. 2 shows the evolution of MSE versus SNR. First of
all, we observe that the performance of the AR1-Kalman
algorithm, despite its complexity, does not reach the BRCB [2]
in the case of a slowly channel variation withfdT = 10−2.
This may be due to the difference between the real (Jakes)
channel model and approached (AR1) model used in the
Kalman filter (actually AR1-Kalman algorithm would reach
the associated BCRB if the channel was exactly an AR1 based
channel).
Secondly, for the first (LS-based) proposed algorithm, it is
observed that with a first-order loop (withµ1 = 1 andµ2 = 0)
the MSE is very close to the error obtained by the AR1-
Kalman filter, especially for large SNRs. On the other hand,
it is interesting to observe that for a second-order loop with
the best loop parameters (Table I), the MSE is closer to the
BCRB than for AR1-Kalman algorithm. According to Fig.
1, the closed loop transfer function for low SNRs, with the
set of values (ζ = 0.5; fnT = 2fdT ), approaches the Jakes
Doppler spectrum shape. And for high SNRs, the set of values
(ζ = 0.3; fnT = 15fdT ) permits to obtain a very large
loop bandwidth. The corresponding loop coefficients are (µ1

= 0.124; µ2 = 0.0138) for SNR = 0dB, and (µ1 = 0.647;
µ2 = 0.314) for SNR= 35 dB. It is then observed that the
best performance are always obtained with a damping factor
aroundζ = 0.5 (and even less in high SNRs Region). This
point reveals the advantage of a second-order loop versus a
first-order loop (i.e. µ2 = 0). It emphasizes then the benefit
of the integration, that is inherent to the second-order loop,
but not included in the AR1-Kalman algorithm. Of course, in
the Kalman algorithm, larger AR model orders could be used
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Fig. 3. BER vs SNR forfdT = 10−2

to reduce the mismatch with the true channel (in predicting
also the slope) and go toward optimal performance, but at the
expense of the complexity.

Finally, for the second (LMS-based) algorithm, the MSE is
larger than that of the first algorithm but is lower than that
of the AR1-Kalman for low and moderate SNRs. According
to the theoretical analysis, this is due to a non favorable
distribution of the delays for the Rayleigh channel. The non
diagonal dominant property of the matrixΓ for the Rayleigh
channel (ratio between the energy of the main and secondary
diagonal is only around 1.3) yields “interpath interference”
(IPI) which increases the loop noise variance. For high SNRs,
the error variance reaches a floor, since the IPI becomes
dominant with respect to the additive noise. The best choiceof
the natural frequencyfn, according to table I, seems different
than that of the first algorithm, but the computation is also
much less reliable because of the bad linear approximation
(42) in presence of IPI.

Fig. 3 gives the BER performance of our algorithms for
fdT = 10−2 (using a Zero-Forcing Equalizer), compared to
the conventional algorithms of [1] (LS criterion based only
on the current symbol, with low-pass frequency interpolation
(LPI)). For the sake of comparison, we also plotted the BER
obtained with perfect knowledge of the channel. It is obvious
that our algorithms outperform the conventional method, since

we use the previous symbols in estimation process. Moreover,
the BER results of our algorithms, the AR1-kalman and the
reference (perfect knowledge of channel) agree with the MSE
results. The BER performance of the different algorithms is
very close due to the use of QPSK symbols.

VI. CONCLUSION

Sub-optimal path complex gains estimation techniques for
OFDM systems over slow-fading channels have been pro-
posed. The methods are designed for the comb pilot pattern
(i.e. each OFDM symbol carries equi-spaced pilot subcar-
riers) but can easily be generalized to others frequencies-
time grid pilot patterns. Our algorithms require path delay
information, that can be accurately obtained as in [4] [7].
The key is to capitalize on the invariance of the delays of
the channel during a large number of OFDM symbols. When
combined with past estimations through a simple second-
order recursive loop, this allows to improve the tracking of
complex amplitudes from the delays related information. The
performance has been evaluated through simulations in terms
of the MSE and BER, demonstrating the considerable benefits
of the proposed algorithm compared to conventional methods.
Moreover, without using accuratea priori information about
channel statistics, the performance is comparable (and even
better for the first algorithm) to the more complex Kalman
estimator, when the later is based only on a first-order Auto-
regressive approximation of the true channel.
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