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Paths Complex Gain Tracking Algorithms for
OFDM Receiver in Slowly-Varying Channels

Laurent ROS, Hussein HIJAZI and Eric Pierre SIMON

Abstract—This paper deals with channel estimation for Or- channels, the information of the time-domain correlatien i
thogonal Frequency Division Multiplexing (OFDM) systems over not exploited. However, we have shown in [2] through on-
time-varying fading channels. In conventional methods, the least line Bayesian Cramer-Rao-Bound (BCRB) analysis, that the

squares (LS) estimate is obtained over the pilot subcarriers, and h | timati f th ¢ bol b
next interpolated over the entire frequency grid. Those methods channel estimation process o e current symbol can be

only exploit the frequency-domain correlation of the channel. In largely improved by using the previous OFDM symbols. Some
this paper, we propose to exploit both the time-domain correlation works have addressed the time-domain dynamics of the fading
and the specific features of the wireless radio channel. Assuming process to obtain an updated channel estimate. Chen and
the ava_lla_blllty of delay related |nformat|o_n, we propose to track Zhang proposed in [3] a structure which uses a Kalman-
the variation of the paths complex amplitudes by means of on- _. - . . .

line recursive algorithms. We developed two simple sub-optimal Filter e§t|mator for e_ach subcha_nnel (explqts the t|mg}dm1
algorithms based on second-order loops which exhibit a reduced correlation) and a linear combiner to refine the estimate of
complexity compared to that of the widely popular Kalman each subchannel (exploits the frequency-domain coroglpti
algorithm. The error signal is based on the LS estimate of the The complexity of the proposed structure increases with the
path complex gains for the first loop, and on the steepest-desden ,,mper of subcarriers. But in practice, only few subcasrier

method of the same LS cost function for the second loop. For b d. Another int " h t dd th
each algorithm, we give derivations to correctly tune the loop can be used. Another interesting approach (o address ihe

coefficients. Simulation results over slow Rayleigh fading channel pProblem is to use a parametric channel modeling which
with Jakes’ spectrum show that our algorithms outperform the can effectively reduce the signal subspace dimension of the
conventional methods. Moreover, the Mean Square Error (MSE) channel correlation matrix [4]. Hence, channel estimation
of the first algorithm is closer to the Bayesian Cramer Rao Bound can be reduced to the simple estimation of certain physical

than that of a Kalman filter based on a first-order AutoRegressie . .
approximation of the channel. propagation parameters, such as multi-path delays and-mult

Index Terms—OFDM, Channel estimation, Tracking Loop, Path complex gains [4] [5] [6] [7]. Thus, the channel freqogen

Rayleigh channel, Complex gains estimation. response can be estimated using lapath channel model.
In [4], the ESPRIT (Estimation of Signal Parameters by
I. INTRODUCTION Rotational Invariance Techniques) method is employed to

Orthogonal Frequency Division Multiplexing (OFDM) is an@cauire the initial multi-path time delays. With this infoa-
effective technique for alleviating frequency-selectfagling tion, a MMSE estimator is derived to estimate the ch_annel
channels effects in wireless communication systems. I tifféduency response. However, the optimal Wiener estimator
technique, a wideband frequency-selective channel is cdRMains complex and requires the knowledge of the second-
verted to a number of parallel narrow-band flat fading sulgrder statistical properties of the channel. In [5], theagiel
channels which are free of Intersymbol Interference (18K a SUbspace (assumed invariant over several symbols) isetlack
free (assuming negligible time variations within one OFDNPY @ Subspace-tracking algorithm, and the fast variatiotef
symbol) of Inter-Carrier Interference (ICI). For cohereetec- Path amplitudes is tracked separately by a subspace-aniplit
tion of the information symbols, reliable estimation of tain  tracking algorithm. In [6] [7], we have addressed the proble
of each subchannel in the OFDM system is crucial. Most 8 Path complex gains estimation and ICI reduction for the
the conventional methods work in a symbol-by-symbol scherfi@se Of fast-varying Rayleigh channel (normalized Doppler
by using only the correlation of the channel in the frequendPreadfa7 > 107%). Based on a polynomial modeling of the
domain (.e the correlation between subchannels). General%lf)a_keS process) channel gains variation, we use a polyhomia
they consist in estimating the channel at pilot frequenciéstimation over a block of OFDM symbols in [6], and Kalman
and then interpolating the channel frequency response. THEMNNG with Auto-regressive (AR) model for the tracking o
channel estimation at the pilot frequencies can be based B8R Polynomial coefficients in [7]. In fact, a Kalman-based
Least-Squares (LS) criterion, or for better performance (_method is quite complex and do not ensure to reach the BCRB
Linear-Minimum-Mean-Square-Error (LMMSE) criterion [1] IN case of mismatch between the AR model and the true

Though the conventional methods can deal with time-varyifglannel. o .
In this paper, we propose simplified multi-path complex
L. Ros is with GIPSA-Lab, Image and Signal Department, BP 4028 gains tracking algorithms based on recursive sub-optimal
Saint Martin d’'Heres, France (e-mail: laurent.ros@gipsa-lab.grenolplérjn techniques which closely approach the BCRB in the case of
H. Hijazi and E.-P. Simon are with IEMN lab, TELICE group, 5965il- lowl h | - T < 10-2). Th | ith
leneuve d’Ascq, France (e-mail: hijazihussein@yahoo.coim.sénon@univ- SOWY channe Varlatlonsf(i = 0 ) ese algorit ms__
lille1.fr). This work was supported in part by the ANR prdjédJRGA. exploit both the time-domain correlation and the specific



features of the wireless channel. In wireless radio channeiherea,,) = [aﬁn), ...,a(L”)]T is aL x 1 vector andF is the
the complex gains show temporal variations while the delayé x L Fourier matrix defined by:

are quasi-constant over a large number of OFDM symbols. _ jam(Eslolyp
Assuming the availability of delay related information as i [Flri=e v )

[6] [7], we propose to track the complex gains variation Note: the sub-optimal algorithms proposed in this paper
by means of on-line recursive algorithms. The two propose@dn work without explicita priori random or deterministic
algorithms are based on a second-order loop. Thus, comptasdel for the path complex gain variations. However, welteca
gainsincrementsare also estimated in order to improve thenhat for the very universal “Rayleigh model”, the complex
prediction for the next iteration, exploiting the time-daim gains are wide-sense stationary narrow-band complex Gaus-
correlation. The error signal of the first loop is based onltBe sjan processes, with the so-called Jakes’ power spectriim [8
estimate of the path Complex gains, whereas the error Slgmﬁdh Dopp]er frequency“d_ It means thabél(”) are zero-means

0; tEe second-loop is fbased on the steheptlast-dﬁscent metg@flelated complex Gaussian variab}les with correlatioaf-co

of the same LS cost function. For each algorithm, we give.. . . (n) (m-pH, o

derivations to correctly tune the loop coeffic?ents. Sirtiuhag ficients given by B = Eloy" .y 1= 06, Jo2m faTp).
results compared to the performance of the Kalman filteetbasB. Pilot Pattern

algorithm and to the BCRB validate the proposed algorithms.The N, pilot subcarriers are evenly inserted into the
The paper is organized as follows: Section Il describ@gibcarriers at the positior® = {p, | p. = (s — 1)Ls +

the system model. Section Il derives the two suboptimal s —1 .. N,} with L; the distance between two adjacent

algorithms, whereas Section IV gives the Kalman algorithmilots. As we will see with equation (26)y, must fulfill the

Finally, the different results are discussed in Section V. following requirementN, > L. The received pilot subcarriers
Notations :[x]; denotes théith entry of the vectox, and can be written as the sum of two components:

[X]k,m the [k, m]th entry of the matrixX (indices begin to 1). ]

|y is aN x N identity matrix. diagx} is a diagonal matrix Yoy = diagXp(n)}Fp(n) +Wp(n) ®)

with x on its diagonal, d!a@(} is a vectpr whose elementswherexp, y, andw, are N, x 1 vectors, andy is the N, x L

are the elements of the diagonalXf.Jo(-) is the zeroth-order Foyrier transform matrix with elements given by:

Bessel function of the first kindv, represents the first partial o

derivatives operatoi.c., Vy = [52 01T, [Foles = e 27— —2)n (6)

OJx1’ """ Oxn

Il. SYSTEM MODEL
A. OFDM Transmission over multi-path channel

IIl. SUBOPTIMAL TRACKING ALGORITHMS

' . . A tracking algorithm can be defined by an imposed struc-
Consider an OFDM system with N sub-carriers, and tare, and a specific criteria (or “error signal”) to specityse
cyclic prefix lengthN,. The duration of an OFDM symbol elements of the structure [11]. In the following, we use a
is T'= vT,, whereT is the sampling time and = N + N,. second-order recursive structure, and consider two pessib
Let X, = [x(n).[—%],x(n) -4 + 1],...,zm[4 — 1]]°  error signals, which will lead to 2 possible algorithms.
be thenth transmitted OFDM symbol, whergr, [b]} are )~ g ore of the tracking algorithm
normalized 4-QAM symbols. After transmission over a multi- ) .
path channel and FFT demodulation, ité received OFDM 1) Structure: The purpose is to estimate the channel
symboly(n) _ [y(n)[—%},y(n)[—%+1],~~~,y<n)[%—1]} is cAoeff|C|er'1ts a. The estimate ofc(,), noted &g, (or '
. . &(niny), IS updated at a symbol rate by the computation
given by [4] [6]: (nln) ) o .
of a loop error signalv.,), which is next filtered by a
Yy = Hm) X@m) + W) (1) digital loop filter. Inspired by the Phase-Locked-Loop (BLL
gesign [12], we use a second-order closed-loop to get the
ability to track potential time linear drifts of the pararaet to
be estimated. The general recursive equations or our laop ar

wherew(,) is a N x 1 zero-mean complex Gaussian nois
vector with covariance matrix?l 5, and HpyisaN x N
diagonal matrix with diagonal elements given by:

Measurement Update Equations

1 & k11

H n)lk,k = X7 |:a(n) X 67]2TF(T7§)T{| (2)
(Fewl N; : Vetny = function of { Yo(n)} G(njn—1) } @)
L is the total number of propagation paths, is the ith Ann) = Onjn-1) + H1-Ve(n) (8)
complex gain of variance?, (with 3", 02, = 1), andn x T
is thelth delay (; is not necessarily an integer, but < V).
The L individual elements of{a\"} are uncorrelated with Ulag(n) = WYlag(n—1) T Ve(n) 9)
respect to each other. Using (2), the observation model)in (1 A(ntijn) = Qnjn) + H2-Viag(n) (10)
for the nth OFDM symbol can be re-written as:

Yoy = diag{Xm)}F am) + W (3)

Time Update equations

where iy, po are the (real positive) loop coefficients.



The Measurement Update Equations are responsible f 5
feedback,i.c., for incorporating a new measuremeyy,,

into the a priori estimated(,,,,—1) to obtain an improved 0 SIioe
posteriori estimateé,,|,). The Time Update Equations i
responsible for projecting forward (in time) the currerte e

&(n|n) @nd error estimates to obtain thepriori estimates fc
the next time stepé(,,+1),)- As in a Kalman filter, the Tirr
Update Equations can also be thought of a predictor eque
while the Measurement Update Equations can be thoug
a corrector equations. Note that at each iteration, we ¢
fact in us.vag an estimate of thepeedof the parametety,
useful to predict the parameter evolution for the next ttere

| L(expj2rdT )| dB
i i

f T=2107
h

2) General propertiesThe estimation error of the tracki g Te210% 5 |
algorithm is defined as: S5 S
N e 1(1"“ 10"3 10"2\ 10‘"
€(n) = Qn) — G(njn) a1 o
L . . Fig. 1. (exact) Closed loop transfer functidriz = ¢727/T) for normalized
Combining equations (8) and (10), we have that : natural frequencyf,,T = 2.10~2 (continuous line) andf, T = 2.10~*

R R (dashed line), for various damping factor
A(njn) = C(n—1n—1) T H1-Ve(n) + H2.Viagn—1)  (12)

The previous equation confirms that in case of linear drift Replacing F(z) by the lead/lag filter expression, we get:
of the complex amplitudesi.¢. v,y = a(,—1) + slope), it B Ba(pr — p2).(1 — 271 + Bapua 18
is possible to have no steady state error at the convergenc[é 2= (1 — 2712 + By(p1 — p2).(1 — 271) + Bapo (18)
(t.e. ve = 0 and Vg = H%.slope). By using (9), the
Z-domain transform of (12) leads to :

The condition of stability of the causal rational systéif)
is obtained when all the roots of the denominator polynomial
are inside the unit circle. For a second-order denominator
polynomialp(z) = (Bau1+1).[14c127 1 +c2272], the stability
conditions (obtained by the Schur-Cohn test [13]) are :

Zil
Pgleds) (13)

&(2).1 =27 = [ + .

In the following, we noteF(z) = u; + ’fz_'j: the first-order
Lead / Lag filter applied to the error signal in order to obtain leal <1 and —1<
& (n|n) by increment fromé(,,_,),,—1), according to equation o

(12). The error signal for each path= 1, ..., L should be in ~ With in our case :

average, proportional to the complex amplitude error fis th —2 — Balp1 — p2) and ¢ 1
= 2 =

<1 (19)

&1
1+4+co

path in the ideal case Then we have : “ Bapr +1 Bapy + 1
(é)) — C(ll)'{agl Agll }+ N (14) We can rewriteL(z) in the frequency-domain, by making

z = ePT, with p = j2rf, and f is the frequency variable.

where N". is a zero-mean disturbance called loop noise. THsssuming slow reaction of the loop during one OFDM symbol

(n)
real coeﬁicientﬁ’y) is called the gain of the equivalent compleg the digital loop transfer function is close (approximatio
~ 1 — p.T) to an analog second-order low-pass transfer

gain error detector (CGED). In the case where the CGEDjunctmn parametrized by natural pulsation (or f, — )
n — 27

the same for each pathi.4. Bc(ll) = f4), the equation (14) ) ) i
leads to the vector formulation : and damping factog, while w,. T <<1:
2(wnp + wp

N Ty
Ve = Ba-{em) = &mim } + N (15) M)~ o 2ump + o 20
So, in the Z-transform domain, assuming linear character-
istic of the CGED (15), equation (13) leads to with:  (waT)* = p2fa (21)
L(Z) 2<(.U"T = (iu’l - IUQ)/Bd (22)
b (z) = L(z).a(2) + B4 N(2) (16)  The error variance can be numerically computed
2 _ 2 2 H
where L(z) is the closed-loop transfer function defined by: as o +1 co T 0N _Accordlng_ to (16) an.d (1),
8.F(2) 02, = [T3T Lo(f).]1—L(e72™/T)|2df is due to the high-pass
d.F z 2T

L(z) =

. . J’_% o
12T 1 B.F () 17) fllterlng2 of (), ando?y =73 l“l\f(f).ﬂ—lf].JL(eJ2 fT)|2df
is due to the low-pass filtering oiN(,,. Fig. 1 gives the

lelse we can define an equivalent to the S-curve used in PLIgnl¢sR],
and (14) will stand only for small errors (linear region of tBecurve). Ta(f) , v (f) : power spectrum density of, o) andy>, N,



modulus in frequency-domain of the exact closed-loop filt@nd a loop noise equal tN(,y = B4.€w(,). For the first
L given in (18). The coupleft,, ¢) has to be properly chosenalgorithm, the stability conditions (19) are then:

for a good trade-off between gain tracking ability and loop

noise reduction, for a given SNR arfg7" scenario. O<pur <2 and 0<pp <4 -2

Special case of first-order loop:if 1, = 0, equations are And from (21) and (22), one given couple,( () of the
reduced taL(z) = TS ﬁfﬁ‘jrﬁ and then approximatively to Second-order low-pass transfer function can be obtained in
-z~ dp1 ; .
a first-order low-pass transfer functior.(e"”) ~ %= with tning (u1, p2) as :

cut-off frequencyw, such that } (WnT)? + 2¢wnT a4
1 =
(WT) = mpBa (23) 1+ (wnT)? + 2Cw,, T

. . (waT)?
B. First algorithm : = 35

e 'g .r| K2 1+ (wnT1)? + 2w, T (35)

1) Motivation: for each OFDM symbol, the Squares Error )
(SE) for the received pilot subcarriers is defined by : In this way, we finally have 0 < uo < py < 1.
S(ém) = C(Ii)'g'n) (24) Special case of first-order loop :if gain us = 0, the on-

where theN,, x 1 error vector is line estimation algorithm is reduced to an order 1 AR lowspas

filtering of the LS estimator s(n:

= — dia Fp& 25 N .
C(n) yp(n) | g{xp(n)} p&(n) ( ) &(njn) = (1 — Ml)'a(nfﬂnfl) + H1-QLS(n) (36)
The LS-estimator ot is : T
We have from (23) that; = ﬁﬁ
aism) = Gm)Ypm) (26)

C. Second algorithm

_ _ 1 _ 1) Motivation: Instead of computing explicitly the LS

Gy = (Fp'diag{Xp(n) } 7 diag{Xp(n) }Fp)  Fp'diag{Xp(n) }* estimator as(,) for each OFDM block, we can look for
27)  an iterative steepest descent procedure. In this way, we use
And a.SSUming normalized QPSK data, the matrix inV@rSi%me error Signa| that for an LMS (Least Mean Squares)

where

should be done only once (independent of the indjx algorithm, but inserted in a second-order loop versus & first
G — (FIE.) "' FH diaalx H 28 order loop. This means finally to use the prediction in order t
o = (Fy'Fp)  Fp diag{xpinn } (28) improve LMS-type adaptive algorithm as in [10]. Applyingeth
Thus, after LS estimation, we obtain : stochastic gradient descent method means to take thelpartia

(29) derivatives of the SES(&), defined in (24) with respect to
the individual entries of the vectak:
where e,(,) is a zero-mean complex Gaussian noise vector

R ~ _ . H
with correlation matrixE{eW(n).ev{f(n)} =02 (Fprf1 Va(S(&) =2.Va(CT)< (37)

aiLs(n) = CO(p) + €w(n)

where theL x N, matrix V4(¢*7) contains in one given
2) Error signal for the first Algorithm:We use the differ- column the partial derivatives (relative to the componesits
ence between the LS estimatars, for the nth OFDM block 4 for the corresponding pilot subcarrier. We obtain
and the predicted vector for this bloc&,,,,,—1). The error
signal vector is then : Va(S(&)) = —2.F diag{x,}"" {y, — diag{x,}Fp&} (38)

Ve = GonYorrs — G (30) The successive corrections to the weight veéanust then
e(n) = 2 () p(n) = Hnjn—1) be in direction opposite to the gradient vecki, (S(&)).

Analysi I fficients tuningy for th . : .
3) Analysis and loop coefficients tunindilow, for the 2) Error signal for the second Algorithmtnserted in the

;2?'2;; :t?oengf(gg ?;Zt) (zgr)otrh_:?nal defined in (30), we ha\glj?obal structure of the tracking procedure, the error difma
e ' the nth OFDM symbol is chosen proportional to the negative

Ve(2) = (a2) + €w(2)) — (G&(2) — p1.ve(2)) (31) of the gradient vector of the SE predicted for this blockpfro
the (n-1}h observation block:

leading to
N " R
vu(z) = a(z) —&(z) | €w() (32) Vey = Kby = Km)Gnpn-1)} (39)
1- ra L= o where we define théV, x L matrix IC,,y = diag{Xp(,)}Fp.
We can conclude than the linear model (15) is strictly valido, if 1, = 0, the second tracking algorithm is exactly an
for the first algorithm, with a CGED gain given by : LMS algorithm, with 41, as step-size parameter (and with
! d(”|n—1) = d(n—l\n—l))-

Ba

S (33)



3) Analysis and loop coefficients tuningsing the obser- ~ where K, is the Kalman gain matrix andJ =
vation equation (5), the error signal (39) can be rewritten: diag{o2 ,...,c2 }. Note that the equations are similar to
o =K K Gy KK wo 40 those _of the second (LM_S-based) algorithm v_vptfl =0 _by

Ve(n) mFamlem = &} + K Woe) - (40) replacing the Kalman gaii ,,) by u1.KC{",), which requires

Using (8), the error signal versus the eregy,) becomes :  an additional matrix inversion at each iteration.

—1 ~
Ve(n) = [ — . T T {aqy) _Ha(n\n)} V. SIMULATIONS
-1
= TG W) (41) In this section, the performance of the recursive algorghm

where thel, x L Hermitian matrixl’ = ’ng,)’c(n) is inde- is evaluated and compared to that of reference algorithr8s (L
pendent of index when assuming normalized data symbol€ind Kalman algorithms). The normalized channel model is
with elements defined byI'];, = Zgil e2r(n—7v) This GSM Rayleigh model [9] [6] withl = 6 paths and maximum
elements are identical on the diagonal, equa|lth; = N,. delay7y,q, = 107;. A 4QAM-OFDM system with normalized
Eqg. (41) indicates that the CGED output of one given desirédmbols,N = 128 subcarriersN, = £ subcarriersN,, = 16
path may be influenced by an interference term depending Rifts (.., Ly = 8) and 7- = 2M Hz is used. The MSE and
adjacent paths. This “inter-path interference” may insectne the BER are evaluated under a slowly time-varying channel
variance of the loop noise if the Hermitian matilixis not a With f47 = 107> (corresponding to a vehicle speéd, ~
diagonally dominant matrix. This condition depends only obl0 km/h for f. = 1G Hz). Table | gives the loop coefficients
the delays distribution. If non-diagonal terms can be ratght; used, that yield around the best possible performance &or th
and if 1, N,, << 1, the detector gain is approximatively: ~ Proposed algorithms.

By ~ M (42) SNR 0dB | 5dB | 10dB | 15dB | 25dB | 35dB
I — Ny fn (Algo 1) | 2f4 | 25fa | 3fa | 4fa | 6fa | 15fa
and according to (21)(22), the tuning of the coefficient of 0.5 1 05 0.5 0.5 0-5 0-3

¢
n (Algo2) | 7 8 10 15 20 23
the second-order equivalent closed loop is given by repdaci Lo (g0 2) = L TABLEfId . L L

(le_“?) by (prula Npﬂ?) in equations (34)(35). In this way, LOOP COEFFICIENTYFIRST / SECONDALGORITHM)
we finally have :0 < o < 11 < 1/N,,.

IV. REFERENCE ALGORITHM: KALMAN FILTER Fig. 2 shows the evolution of MSE versus SNR. First of
) . all, we observe that the performance of the AR1-Kalman

In Orqer to compare the performance of the previous S'r_n%?gorithm, despite its complexity, does not reach the BREZJB [
sub-optimal algorithms, we recall here the Kalman Filtef, 1o case of a slowly channel variation with7 = 102
processing, which can give the optimal performance for a Spig may pe due to the difference between the real (Jakes)
called Lllnear Gayssmn Problem [11]. The Kalmgn filter iShannel model and approached (AR1) model used in the
a recursive algorithm composed of two stag_es: Time UpdaR‘?;\Iman filter (actually AR1-Kalman algorithm would reach
Equations an(_JI Measur_ement Updatg Equgnons. In orderyfa associated BCRB if the channel was exactly an AR1 based
use Kalman filter, we first have to give a linear State'SpaEﬁannel).

repregentation of the problem. Classically, the flat fadir@econdly, for the first (LS-based) proposed algorithm, it is
Rayleigh channel can be well approached [8] by an Autgysereq that with a first-order loop (with = 1 and s — 0)

regressive (AR) model. Most often, a first-order AR (AR1} o MSE is very close to the error obtained by the AR1-

model is used to model the variation of each paiff, as : Kalman filter, especially for large SNRs. On the other hand,
al(n) — y.al(”’l) + uln) it is interesting to observe that for a second-qrder loogh wit
) , the best loop parameters (Table 1), the MSE is closer to the
V"(t‘fr?V = Jo(2nf4T) according to the Jakes’ model, anGycRg than for AR1-Kalman algorithm. According to Fig.
u, " is zero mean Gaussian complex circular with a variange the closed loop transfer function for low SNRs, with the
o4, = 04,(1— 7). Based on the previous AR1 model of theset of values ( = 0.5; f,T = 2/.T), approaches the Jakes

gains evolution, the two stages of the so calké@ll-Kalman poppler spectrum shape. And for high SNRs, the set of values

algorithm are defined as: (¢ = 0.3;f,T = 15f,7) permits to obtain a very large
] o loop bandwidth. The corresponding loop coefficients arg (
Time Update Equations: = 0.124; 45 = 0.0138) for SNR = 0dB, andu{ = 0.647;
&(njn-1) = V-Bm-1jn-1) p2 = 0.314) for SNR= 35 dB. It is then observed that the
Piafn_1) = -2 Pty + U (43) best perftirmance are always ol_Jta|r_1ed with a dam_pmg fa<_:tor
) around¢ = 0.5 (and even less in high SNRs Region). This
Measurement Update Equations: point reveals the advantage of a second-order loop versus a
Koy = P(n\nq)’Cffl) (IC@)P(n\nfl)K{i) n alep)_l first-order loop {.e. uz = 0). It emphasizes then the benefit

A A ! of the integration, that is inherent to the second-ordepJloo
Gnn)y = Gnn-1) T K (yp(n) — Ky &(njn-1)) but not included in the AR1-Kalman algorithm. Of course, in
Py = Pun—1) — Kn)Kn)Pmjn-1) (44) the Kalman algorithm, larger AR model orders could be used



we use the previous symbols in estimation process. Morgover

10" fﬁj[ztg:ggfthgfl%j =0)W;th Legh the BER results of our algorithms, the AR1-kalman and the
Second a|_golwn_h Lies i reference (perfect knowledge of channel) agree with the MSE
o rBoRBwLIeE I results. The BER performance of the different algorithms is
: very close due to the use of QPSK symbols.
w10 VI. CONCLUSION
Wl
= Sub-optimal path complex gains estimation techniques for
. OFDM systems over slow-fading channels have been pro-
al: posed. The methods are designed for the comb pilot pattern
(i.e. each OFDM symbol carries equi-spaced pilot subcar-
109} riers) but can easily be generalized to others frequencies-
time grid pilot patterns. Our algorithms require path delay
0 5 10 15 20 25 30 35 40 . . . .
SNR information, that can be accurately obtained as in [4] [7].
Fig. 2. MSE vs SNR forf, T = 102 The key is to c_apitalize on the invariance of the delays of
the channel during a large number of OFDM symbols. When
e Frotalgo S 16 1 combined with past estimations through a simple second-
. S Secondagowih Li=8 | order recursive loop, this allows to improve the tracking of
10 "t - g . . .
o i L~ edge | complex amplitudes from the delays related informatione Th

performance has been evaluated through simulations irsterm
of the MSE and BER, demonstrating the considerable benefits
of the proposed algorithm compared to conventional methods
Moreover, without using accurage priori information about
channel statistics, the performance is comparable (and eve
better for the first algorithm) to the more complex Kalman
estimator, when the later is based only on a first-order Auto-
regressive approximation of the true channel.
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