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Abstract—In this paper, a novel pilot-aided iterative algorithm
is developed for MIMO-OFDM systems operating in fast time-
varying environment. An L-path channel model with known path
delays is considered to jointly estimate the multi-path Rayleigh
channel complex gains and Carrier Frequency Offset (CFO).
Each complex gain time-variation within one OFDM symbol is
approximated by a Basis Expansion Model (BEM) representation.
An auto-regressive (AR) model is built for the parameters to be
estimated. The algorithm performs recursive estimation using
Extended Kalman Filtering. Hence, the channel matrix is easily
computed and the data symbol is estimated with free inter-
sub-carrier-interference (ICI) when the channel matrix is QR-
decomposed. It is shown that only one iteration is sufficient
to approach the performance of the ideal case for which the
knowledge of the channel response and CFO is available.

I. INTRODUCTION

Multiple-Input-Multiple-Output (MIMO) antennas with Or-
thogonal Frequency Division Multiplexing (OFDM) provide
high data rates and are robust to multi-path delay in wireless
communications. Channel parameters are required for diversity
combining, coherent detection and decoding. Therefore, chan-
nel estimation is critical to design MIMO-OFDM systems.
For MIMO-OFDM systems, most of the channel estimation
schemes have focused on pilot-assisted approaches [1][2][3],
based on a quasi-static fading model that allows the channel
to be invariant within a MIMO-OFDM block. However, in
fast-fading channels, the time-variation of the channel within a
MIMO-OFDM block results in the loss of subcarrrier orthogo-
nality, and consequently intercarrier interference (ICI) occurs
[4][5]. Therefore, the channel time-variation within a block
must be considered to support high-speed mobile channels.

On the other hand, similarly to the single-input single-output
(SISO) OFDM, one of the disadvantages of MIMO-OFDM
lies in its sensitivity to carrier frequency offset (CFO) due to
carrier frequency mismatches between transmitter and receiver
oscillators. As for the Doppler shift, the CFO produces ICI and
attenuates the desired signal. These effects reduce the effective
signal-to-noise ratio (SNR) in OFDM reception such that the
system performance is degraded [6] [7]. Most of the reported
work consider that all the paths exhibit the same Doppler
shift. Hence, they group together the Doppler shift and CFO
due to oscillator mismatchs in order to obtain just one offset

parameter [8][9] for each channel branch. However, this model
is not sufficiently accurate since separate offset parameters are
needed for each propagation path given that the Doppler shift
depends on the angle of arrival, which is peculiar to each path.
Recently, it has been proposed to directly track the channel
paths, which permits to take into account separate Doppler
shifts for each path ([10][11] for SISO and [12] for MIMO).
Those works estimate the equivalent discrete-time channel
taps ([11]) or the real path complex gains ([10][12]) which
are both modeled by a basis expansion model (BEM). The
BEM methods are Karhunen-Loeve BEM (KL-BEM), prolate
spheroidal BEM (PS-BEM), complex exponential BEM (CE-
BEM) and polynomial BEM (P-BEM).

However the CFO due to the mismatch between transmitter
and receiver oscillators is not taken into account in those
algorithms. In this paper, we propose a complete algorithm
capable of estimating this CFO jointly with the time-variation
of each channel path in MIMO environment.

Generally, it is preferable to directly estimate the physical
channel parameters [13] [10] [12] instead of the equivalent
discrete-time channel taps [11]. Indeed, as the channel delay
spread increases, the number of channel taps also increases
and a large number of BEM coefficients have to be estimated.
This requires more pilot symbols. Additionally, estimating the
physical propagation parameters means estimating multi-path
delays and multi-path complex gains. Note that in Radio-
Frequency transmissions, the delays are quasi-invariant over
several MIMO-OFDM blocks [14] [4] (whereas the complex
gains may change significantly, even within one MIMO-
OFDM block). In this work, the delays are assumed perfectly
estimated and quasi-invariant. It should be noted that an initial,
and generally accurate estimation of the number of paths
and delays can be obtained by using the MDL (minimum
description length) and ESPRIT (estimation of signal param-
eters by rotational invariance techniques) methods [13][10].
To further improve the estimation accuracy, our algorithm
uses decision feedback. Hence, the accuracy of the channel
estimation, frequency offset estimation and symbol detection
are simultaneously enhanced. Note also that, since the pilots
are used for both channel and frequency offset estimation,
the pilot usage efficiency is greatly improved. Our algorithm
is a recursive algorithm based on Extended Kalman Filtering
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(EKF) combined with QR-equalization for data detection.
This paper is organized as follows: Section II introduces

the MIMO-OFDM system and the BEM modeling. Section
III describes the state model and the Extended Kalman Filter.
Section IV covers the algorithm for joint channel and CFO
estimation together with data recovery. Section V presents the
simulations results which validate our technique. Finally, our
conclusions are presented in Section VI.

The notations adopted are as follows: Upper (lower) bold
face letters denote matrices (column vectors). [x]k denotes the
kth element of the vector x, and [X]k,m denotes the [k,m]th
element of the matrix X. We will use the matlab notation
X[k1:k2,m1:m2] to extract a submatrix within X from row k1 to
row k2 and from column m1 to column m2. IN is a N ×N
identity matrix and 0N is a N×N matrix of zeros. diag{x} is a
diagonal matrix with x on its main diagonal and blkdiag{X,Y}
is a block diagonal matrix with the matrices X and Y on
its main diagonal. The superscripts (·)T , (·)∗ and (·)H stand
respectively for transpose, conjugate and Hermitian operators.
Tr(·) and E[·] are respectively the determinant and expectation
operations. J0(·) is the zeroth-order Bessel function of the first
kind. ∇x represents the first-order partial derivative operator
i.e., ∇x = [ ∂

∂x1
, ..., ∂

∂xN
]T .

II. MIMO-OFDM SYSTEM AND CHANNEL MODELS

A. MIMO-OFDM System Model

Consider a MIMO-OFDM system with NT transmitter
antennas, NR receiver antennas, N sub-carriers, and a cyclic
prefix length Ng . The duration of a MIMO-OFDM block is
T = NsTs, where Ts is the sampling time and Ns = N+Ng.
Let xn =

[

x(1)T
n , x(2)

T

n , ..., x(NT )T
n

]T
be the nth transmitted

MIMO-OFDM block, where x(t)n =
[

x(t)
n [−N

2 ], x
(t)
n [−N

2 +
1], ..., x(t)

n [N2 − 1]
]T

is the nth transmitted OFDM symbol by
the tth transmit antenna and {x(t)

n [b]} are normalized symbols
(i.e.,E

[

x(t)
n [b]x(t)∗

n [b]
]

= 1). The frequency mimatch between
the oscillators used in the radio transmitters and receivers
causes a CFO. In multi-antenna systems, each transmitter
and receiver typically requires its own Radio Frequency -
Intermediate Frequency (RF-IF) chain. Consequently, each
transmitter-receiver pair has its own mismatch parameter,
yielding separate CFOs. In a NT × NR MIMO system this
leads to NTNR different CFOs. However, if transmitter or
receiver antennas share RF-IF chains, fewer different CFOs
occured. The system model describes the general case where it
is necessary to compensate for NTNR CFOs. Assume that the
MIMO channel branch between the tth transmit antenna and
the rth receive antenna (called (r, t) branch from now on) ex-
periences a normalized frequency shift ν(r,t) = ∆F (r,t)NTs,
where ∆F (r,t) is the absolute CFO. All the normalized CFOs
can be stacked in vector form as:

ν =
[

ν(1,1), . . . , ν(1,NT ), . . . ,

ν(r,1), . . . , ν(r,NT ), . . . , ν(NR,NT )
]T

(1)

After transmission over a multi-path Rayleigh
channel, the nth received MIMO-OFDM block

yn =
[

y(1)
T

n , y(2)T
n , ..., y(NR)T

n
]T

, where y(r)
n =

[

y(r)n [−N
2 ], y

(r)
n [−N

2 + 1], ..., y(r)n [N2 − 1]
]T

is the nth
received OFDM symbol by the rth receive antenna, is given
by [4] [11]:

yn = Hn xn + wn (2)

where wn =
[

w(1)T
n ,w(2)T

n , ...,w(NR)T
n ]

]T
with w(r)

n =
[

w(r)
n [−N

2 ], w
(r)
n [−N

2 +1], ..., w(r)
n [N2 −1]

]T
a white complex

Gaussian noise vector of covariance matrix NTσ2IN . The
matrix Hn is a NRN × NTN MIMO channel matrix given
by:

Hn =







H(1,1)
n · · · H(1,NT )

n
...

. . .
...

H(NR,1)
n · · · H(NR,NT )

n






(3)

where H(r,t)
n is the (r, t) branch channel matrix. The elements

of channel matrix H(r,t)
n can be written in terms of equivalent

channel taps [5]
{

g(n,r,t)l (qTs) = g(r,t)l (nT + qTs)
}

or in

terms of physical channel parameters [10] (i.e. delays
{

τ (r,t)l

}

and complex gains
{

α(n,r,t)
l (qTs) = α(r,t)

l (nT + qTs)
}

),
yielding Eq. (4) and (5), respectively.
L′(r,t) < Ng and L(r,t) are respectively the number of

channel taps and the number of paths for the (r, t) branch.
The delays are normalized by Ts and not necessarily integers
(τ (r,t)l < Ng). The L(r,t) elements of

{

α(n,r,t)
l (qTs)

}

are

uncorrelated. However, the L′(r,t) elements of
{

g(n,r,t)l (qTs)
}

are correlated, unless that the delays are multiple of Ts

as mostly assumed in the literature. They are wide-sense
stationary (WSS), narrow-band zero-mean complex Gaussian
processes of variances σ(r,t)

gl
2

and σ(r,t)
αl

2
, with the so-called

Jakes’ power spectrum of maximum Doppler frequency fd
[15]. The average energy of each (r, t) branch is normalized

to one, i.e.,
L′(r,t)−1
∑

l=0

σ(r,t)
gl

2
= 1 and

L(r,t)−1
∑

l=0

σ(r,t)
αl

2
= 1.

In the next sections, we present the derivations for the
second approach (physical channel). The results of the first
approach (channel taps) can be deduced by replacing L(r,t) by
L′(r,t) and the set of delays

{

τ (r,t)l

}

by
{

l, l = 0 : L′
(r,t)−1

}

.

B. BEM Channel Model

Let L =
∑NR

r=1 L(r) =
∑NR

r=1
∑NT

t=1 L
(r,t) be the total

number of complex gains for the MIMO channel. Since the
number of samples to be estimated LNs is greater than the
number of observation equations NRN , it is not efficient to
estimate the time-variation of the complex gains, using directly
the observation model in (2). Thus, we need to reduce the
number of parameters to be estimated. In this section, our aim
is to accurately model the time-variation of α(n,r,t)

l (qTs) from
q = −Ng to N − 1 by using a BEM.

Suppose α(n,r,t)
l represents an Ns × 1 vector that collects

the time-variation of the lth path of the (r, t) branch within
the nth MIMO-OFDM block:

α(n,r,t)
l =

[

α(n,r,t)
l (−NgTs), ..., α

(n,r,t)
l

(

(N − 1)Ts
)]T

(6)
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[H(r,t)
n ]k,m =

1
N

L′
(r,t)−1
∑

l=0

[

e−j2π(m
N − 1

2 )·l
N−1
∑

q=0

ej2π
ν(r,t)q

N g(n,r,t)l (qTs)ej2π
m−k
N q

]

(4)

=
1
N

L(r,t)−1
∑

l=0

[

e−j2π(m
N − 1

2 )τ
(r,t)
l

N−1
∑

q=0

ej2π
ν(r,t)q

N α(n,r,t)
l (qTs)ej2π

m−k
N q

]

(5)

Then, each α(n,r,t)
l can be expressed in terms of a BEM as:

α(n,r,t)
l = α(n,r,t)

BEMl
+ ξ(n,r,t)l = B c(n,r,t)l + ξ(n,r,t)l (7)

where the Ns×Nc matrix B is defined as: B = [b0, ..., bNc−1].
The Ns × 1 vector bd is termed as the dth expansion basis.
c(n,r,t)l =

[

c(n,r,t)(0,l) , ..., c(n,r,t)(Nc−1,l)

]T
represents the Nc BEM

coefficients and ξ(n,r,t)l represents the corresponding BEM
modeling error, which is assumed to be minimized in the MSE
sense [16]. Under this criterion, the optimal BEM coefficients
and the corresponding model error are given by:

c(n,r,t)l =
(

BHB
)−1

BHα(n,r,t)
l (8)

ξ(n,r,t)l = (INs − S)α(n,r,t)
l (9)

where S = B
(

BHB
)−1

BH is a Ns × Ns matrix. Then, the
MMSE approximation for all BEM with Nc coefficients is
given by:

MMSE(r,t)
l =

1
Ns

E
[

ξ(n,r,t)l ξ(n,r,t)l

H]

(10)

=
1
Ns

Tr
(

(

INs − S
)

R(0,r,t)
αl

(

INs − SH)

)

(11)

where R(s,r,t)
αl

= E
[

α(n,r,t)
l α(n−s,r,t)

l

H
]

is the Ns × Ns

correlation matrix of α(n,r,t)
l with elements given by:

[R(s,r,t)
αl

]k,m = σ(r,t)
αl

2
J0

(

2πfdTs(k −m+ sNs)
)

(12)

Various traditional BEM designs have been reported to model
the channel time-variations, e.g., the Complex Exponential
BEM (CE-BEM) [B]k,m = ej2π(

k−Ng
Ns

)(m−Nc−1
2 ) which leads

to a strictly banded frequency-domain matrix [17], the Gener-
alized CE-BEM (GCE-BEM) [B]k,m = ej2π(

k−Ng
av )(m−Nc−1

2 )

with 1 < a ≤ Nc−1
2fdT

which is a set of oversampled complex
exponentials [16], the Polynomial BEM (P-BEM) [B]k,m =
(k−Ng)m [10] and the Discrete Karhuen-Loeve BEM (DKL-
BEM) which employs basis sequences that corresponds to
the most significant eigenvectors of the autocorrelation matrix
R(0,r,t)

αl
[18]. From now on, we can describe the MIMO-

OFDM system model derived previously in terms of BEM.
Substituting (7) in (2) and neglecting the BEM model error,
we obtain after some algebra:

yn = Kn(ν) · cn + wn (13)

where the LNc × 1 vector cn and the NRN × LNc matrix

Kn(ν) are given by:

cn =
[

c(1,1)
T

n , ..., c(1,NT )T
n , ..., c(NR,NT )T

n

]T
(14)

c(r,t)n =
[

c(n,r,t)
T

0 , ..., c(n,r,t)
T

L(r,t)−1

]T
(15)

Kn(ν) = blkdiag
{

K(1)
n (ν(1)), ...,K(NR)

n (ν(NR))
}

(16)

K(r)
n (ν(r)) =

[

K(r,1)
n (ν(r,1)), ...,K(r,NT )

n (ν(r,NT ))
]

(17)

K(r,t)
n (ν(r,t)) =

1
N

[

Z(n,r,t)
0 (ν(r,t)), ...,Z(n,r,t)

L(r,t)−1(ν
(r,t))

]

(18)

Z(n,r,t)
l (ν(r,t)) =

[

M(r,t)
0 (ν(r,t)) diag{x(t)

n } f(r,t)l , ...,

M(r,t)
Nc−1(ν

(r,t)) diag{x(t)n } f(r,t)l

]

(19)

where ν(r) =
[

ν(r,1), . . . , ν(r,NT )
]T

. Vector f(r,t)l is the lth
column of the N×L(r,t) Fourier matrix F(r,t) whose elements
are given by:

[F(r,t)]k,l = e−j2π( k−1
N − 1

2 )τ
(r,t)
l , (20)

and M(r,t)
d is a N ×N matrix whose elements are given by:

[

M(r,t)
d (ν(r,t))

]

k,m
=

N−1
∑

q=0

ej2π
ν(r,t)q

N [B]q+Ng ,d ej2π
m−k
N q .

(21)
Moreover, the channel matrix of the (r, t) branch can be easily
computed by using the BEM coefficients [4]:

H(r,t)
n =

Nc−1
∑

d=0

M(r,t)
d (ν(r,t))diag{F(r,t)χ(n,r,t)

d } (22)

where χ(n,r,t)
d =

[

c(n,r,t)(d,0) , ..., c(n,r,t)(d,L(r,t)−1)

]T
.

III. AR MODEL AND EXTENDED KALMAN FILTER

A. The AR Model for cn

The optimal BEM coefficients c(n,r,t)l are correlated com-
plex Gaussian variables with zero-means and correlation ma-
trix given by:

R(s,r,t)
cl = E[c(n,r,t)l c(n−s,r,t)

l

H
]

=
(

BHB
)−1

BHR(s,r,t)
αl

B
(

BHB
)−1

(23)

Hence, the dynamics of c(n,r,t)l can be well modeled by an
auto-regressive (AR) process [19] [20] [10] . A complex AR
process of order p can be generated as:

c(n,r,t)l =
p

∑

i=1

A(i)c(n−i,r,t)
l + u(n,r,t)

l (24)
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where A(1), ...,A(p) are Nc × Nc matrices and u(n,r,t)
l is a

Nc×1 complex Gaussian vector with covariance matrix U(r,t)
l .

From [10], it is sufficient to choose p = 1 to correctly model
the path complex gains. The matrices A(1) = A and U(r,t)

l
are the AR model parameters obtained by solving the set of
Yule-Walker equations defined as:

A = R(1,r,t)
cl

(

R(0,r,t)
cl

)−1
(25)

U(r,t)
l = R(0,r,t)

cl + AR(−1,r,t)
cl (26)

Using (24), we obtain the AR model of order 1 for cn:

cn = Ac · cn−1 + ucn (27)

where Ac = blkdiag {A, ...,A} is a LNc × LNc matrix

and ucn =
[

u(n,1,1)T

0 , ..., u(n,NR,NT )T

L(NR,NT )−1

]T
is a LNc × 1 zero-

mean complex Gaussian vector with covariance matrix Uc =
blkdiag

{

U(1,1)
0 , ...,U(NR,NT )

L(NR,NT )−1

}

.

B. The AR Model for νn

Let us write the AR model for νn as follows:

νn = Aν · νn−1 + uνn (28)

where the state transition matrix is of size NRNT ×NRNT .
Since the CFOs can be assumed as constant during the
observation interval, Aν is considered to be close to the
identity matrix Aν = aINRNT , a = 0.99. The NRNT × 1
state noise vector uνn is assumed to be zero-mean complex
Gaussian. The state noise covariance matrix is Uν = σ2

νINRNT

where σ2
ν is the variance of the state noise associated with

CFOs.

C. State equation

Now, let us write the state-variable model. The state vector
at time instance n consists of the BEM coefficients cn and the
vector of CFOs νn:

µn =
[

cTn , νT
n

]T
(29)

There are LNc BEM coefficients and NTNR CFO values in
the state vector of dimension LNc + NTNR × 1. Then, the
linear state equation may be written as follows:

µn = A · µn−1 + un (30)

where the state transition matrix is defined as follows:

A = blkdiag {Ac, Aν} (31)

The LNc + NRNT × 1 noise vector is such that un =
[

uT
cn, uT

νn

]T
with covariance matrix U = blkdiag {Uc, Uν}.

D. Extended Kalman Filter (EKF)

The measurement equation (13) can be reformulated as:

yn = g (µn) + wn (32)

where the nonlinear function g of the state vector µn is defined
as g (µn) = Kn(ν) · cn. Nonlinearity of the measurement
equation (32) is caused by CFOs. The BEM coefficients are
still linearly related to observations. Since the measurement
equation is nonlinear, we use the Extended Kalman filter
to adaptively track µn. Let µ̂(n|n−1) be our a priori state
estimate at step n given knowledge of the process prior to
step n, µ̂(n|n) be our a posteriori state estimate at step n
given measurement yn and, P(n|n−1) and P(n|n) are the a priori
and the a posteriori error estimate covariance matrix of size
LNc+NRNT ×LNc+NRNT , respectively. We initialize the
EKF with µ̂(0|0) = 0LNc+NRNT ,1 and P(0|0) given by:

P(0|0) = blkdiag
{

R(0)
c , bINRNT

}

(33)

R(s)
c = blkdiag

{

R(s,1,1)
c , ...,R(s,NR,NT )

c

}

R(s,r,t)
c = blkdiag

{

R(s,r,t)
c0 , ...,R(s,r,t)

c
L(r,t)−1

}

where R(s,r,t)
cl is the correlation matrix of c(n,r,t)l defined in

(23). To derive the EKF equations, we need to compute the
Jacobian matrix Gn of g (µn) with respect to µn and evaluated
at µ̂(n|n−1):

Gn = ∇T
µn

g (µn)
∣

∣

µn=µ̂(n|n−1)
=

[

∇T
cng (µn)

∣

∣

µn=µ̂(n|n−1)
, ∇T

νn
g (µn)

∣

∣

µn=µ̂(n|n−1)

]

(34)

Let us define µ(r)
n =

[

µ(r,1)T
n , . . . ,µ(r,NT )T

n

]T
and µ(r,t)

n =
[

c(r,t)
T

n ν(r,t)n

]T
. After computation, we find:

Gn =
[

Kn(νn)|νn=ν̂(n|n−1)
, Vn(µn)|µn=µ̂(n|n−1)

]

(35)

where

Vn(µn) = blkdiag
{

V(1)
n (µ(1)

n ), ...,V (NR)
n (µ(NR)

n )
}

V(r)
n (µ(r)

n ) =
[

v(r,1)(µ(r,1)
n ), . . . , v(r,NT )(µ(r,NT )

n )
]

v(r,t)(µ(r,t)
n ) = K′(r,t)

n (ν(r,t)n ) · c(r,t)n

K′(r,t)
n (ν(r,t)n ) =

1
N

[

Z′(n,r,t)
0 (ν(r,t)n ), ...,Z′(n,r,t)

L−1 (ν(r,t)n )
]

Z′(n,r,t)
l (ν(r,t)n ) =

[

M′
0(ν

(r,t)
n ) diag{x(t)n } f(r,t)l , ...,

M′
Nc−1(ν

(r,t)
n ) diag{x(t)n } f(r,t)l

]

The elements of the N ×N matrix M′
d(ν) are given by:

[

M′
d(ν

(r,t)
n )

]

k,m
=

N−1
∑

q=0

j2π
q
N

ej2π
ν(r,t)
n q
N [B]q+Ng ,d ej2π

m−k
N q

(36)
The EKF is a recursive algorithm composed of two stages:

Time Update Equations and Measurement Update Equations.
These two stages are defined as:
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Time Update Equations:

µ̂(n|n−1) = Aµ̂(n−1|n−1)

P(n|n−1) = AP(n−1|n−1)A
H + U (37)

Measurement Update Equations:

Kn = P(n|n−1)G
H
n

(

GnP(n|n−1)G
H
n +NT .σ2INRN

)−1

µ̂(n|n) = µ̂(n|n−1) + Kn
(

yn − g
(

µ̂(n|n−1)
))

P(n|n) = P(n|n−1) − KnGnP(n|n−1) (38)

where Kn is the Kalman gain. The Time Update Equations are
responsible for projecting forward (in time) the current state
and error covariance estimates to obtain the a priori estimates
for the next time step. The Measurement Update Equations
are responsible for the feedback, i.e., for incorporating a new
measurement into the a priori estimate to obtain an improved
a posteriori estimate. The Time Update Equations can also
be thought of a predictor equations, while the Measurement
Update Equations can be thought of a corrector equations.

IV. JOINT DATA DETECTION AND EKF

In the iterative algorithm for joint data detection, channel
and CFO extended Kalman estimation, the Np pilots sub-
carriers are evently inserted into the N subcarriers at the
positions P = {pr | pr = (r − 1)Lf + 1, r = 1, ..., Np},
where Lf is the distance between two adjacent pilots. We
use the the QR-equalizer [10] for the data detection. The QR-
equalizer allows us to estimate the data symbol with free ICI
by performing a so-called QR-decomposition. The algorithm
proceeds as follows:

initialization:
• µ̂(0|0) = 0LNc+NRNT ,1

• compute P(0|0) as (33)

n← n + 1 :
• execute the Time Update Equations of EKF (37)
• compute the channel matrix by substituting µn with the prediction

parameters µ̂(n|n−1) in (22)
• recursion:i← 1

– remove the pilot ICI from the received data subcarriers
– Detection of data symbols
– execute the Measurement Update Equations of EKF (38)
– compute the channel matrix using (22) with the updated parame-

ters
– i← i+ 1

where i represents the iteration number.

V. SIMULATION

In this section, the performance of our recursive algorithm
is evaluated in terms of Mean Square Error (MSE) for joint
channel and CFO estimation and in terms of Bit Error Rate
(BER) for data detection.

We assume that all the (r, t) channel branches, r =
1, . . . , NR, t = 1, . . . , NT have the same path delays and
fading properties (i.e., the same number of paths, of σ(r,t)

αl

2

and τ (r,t)l ). This is understood when the antennas are very
close to each other, which is typical in practice. The Rayleigh
channel model given in [10] [12](L(r,t) = 6 paths and

maximum delay τmax = 10Ts) was chosen. A normalized
4QAM MIMO-OFDM system, with NT = NR = 2, N = 128
subcarriers, Ng = N

8 , Np = N
4 pilots (i.e., Lf = 4) and

1
Ts

= 2MHz was used. The MSE and the BER were evaluated
under a rapid time-varying channel with fdT = 0.1 (corre-
sponding to a vehicle speed of 600km/h at fc = 2.5GHz).
A GCE-BEM with Nc = 3 was chosen to model the path
complex gains of the channel. Most advanced technologies
have an oscillator frequency tolerance less than 1 ppm (i.e.
ν = 0.16 in normalized units with the given parameters).
For the simulation, we chose the configuration where each
transmitter and receiver requires its own RF-IF chain, which is
the configuration discussed in this article. For this scenario, the
number of CFO parameters to be estimated (NTNR = 4) is the
largest. Therefore, this is the most pessimistic configuration.
The CFO values were arbitrarily chosen as ν(0,0) = 0.1,
ν(0,1) = −0.1, ν(1,0) = 0.05 and ν(1,1) = −0.07.

Fig. 1 shows the MSE of the channel complex gain and the
MSE of the normalized CFO as a function of Eb/N0. Seven
iterations have been carried out. For reference, the MSEs
obtained in Data Aided (DA) mode (knowledge of the data
symbols) have been plotted. As expected, the MSEs obtained
in Data Aided mode are lower than the MSEs obtained with
just the pilots, especialy at low Eb/N0 where the detection
errors are the most important. However, for Eb/N0 ≥ 20 dB,
the MSE has a floor (especially the channel complex gain
MSEs). This is due to the fact that beyond 20 dB, the matrix
to be inversed in Eq. (38) becomes badly scaled.

Fig. 2 gives the BER performance of our proposed iterative
algorithm. For reference, we also plotted BERs obtained
with perfect knowledge of channel response and CFO. It is
shown that one iteration is sufficient to approach the reference
curve with perfect knowledge of channel response and carrier
frequency offset.

VI. CONCLUSION

A new iterative algorithm which jointly estimates multipath
complex gain and CFO in MIMO environment has been
presented. The algorithm is based on a parametric channel
model. Extended Kalman filtering is used for parameter es-
timation and the data recovery is carried out by means of
a QR-equalizer. Simulation results show that by estimating
and removing the ICI at each iteration, the BER is greatly
improved, especially after the first iteration. Our algorithm
needs only one iteration to approach the performance of the
ideal case for which the knowledge of the channel response
and CFO is available.
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