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Joint Carrier Frequency Offset and Fast Time-varying Channel Estimation for MIMO-OFDM Systems

In this paper, a novel pilot-aided iterative algorithm is developed for MIMO-OFDM systems operating in fast timevarying environment. An L-path channel model with known path delays is considered to jointly estimate the multi-path Rayleigh channel complex gains and Carrier Frequency Offset (CFO). Each complex gain time-variation within one OFDM symbol is approximated by a Basis Expansion Model (BEM) representation. An auto-regressive (AR) model is built for the parameters to be estimated. The algorithm performs recursive estimation using Extended Kalman Filtering. Hence, the channel matrix is easily computed and the data symbol is estimated with free intersub-carrier-interference (ICI) when the channel matrix is QRdecomposed. It is shown that only one iteration is sufficient to approach the performance of the ideal case for which the knowledge of the channel response and CFO is available.

I. INTRODUCTION

Multiple-Input-Multiple-Output (MIMO) antennas with Orthogonal Frequency Division Multiplexing (OFDM) provide high data rates and are robust to multi-path delay in wireless communications. Channel parameters are required for diversity combining, coherent detection and decoding. Therefore, channel estimation is critical to design MIMO-OFDM systems. For MIMO-OFDM systems, most of the channel estimation schemes have focused on pilot-assisted approaches [START_REF] Li | Simplified Channel Estimation for OFDM Systems with Multiple Transmit Antennas[END_REF][2] [START_REF] Wang | MIMO-OFDM Channel Estimation via Probabilistic Data Association Based TOAs[END_REF], based on a quasi-static fading model that allows the channel to be invariant within a MIMO-OFDM block. However, in fast-fading channels, the time-variation of the channel within a MIMO-OFDM block results in the loss of subcarrrier orthogonality, and consequently intercarrier interference (ICI) occurs [START_REF] Hijazi | Polynomial estimation of time-varying multi-path gains with intercarrier interference mitigation in OFDM systems[END_REF] [START_REF] Kim | MAP-Based Channel Estimation for MIMO-OFDM Over Fast Rayleigh Fading Channels[END_REF]. Therefore, the channel time-variation within a block must be considered to support high-speed mobile channels.

On the other hand, similarly to the single-input single-output (SISO) OFDM, one of the disadvantages of MIMO-OFDM lies in its sensitivity to carrier frequency offset (CFO) due to carrier frequency mismatches between transmitter and receiver oscillators. As for the Doppler shift, the CFO produces ICI and attenuates the desired signal. These effects reduce the effective signal-to-noise ratio (SNR) in OFDM reception such that the system performance is degraded [START_REF] Pollet | BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise[END_REF] [START_REF] Steendam | Sensitivity of Orthogonal Frequency-Division Multiplexed Systems to Carrier and Clock Synchronisation Errors[END_REF]. Most of the reported work consider that all the paths exhibit the same Doppler shift. Hence, they group together the Doppler shift and CFO due to oscillator mismatchs in order to obtain just one offset parameter [START_REF] Moose | A technique for orthogonal frequency division multiplexing frequency offset correction[END_REF] [START_REF] Roman | Joint Time-Domain Tracking of Channel and Frequency Offsets for MIMO OFDM Systems[END_REF] for each channel branch. However, this model is not sufficiently accurate since separate offset parameters are needed for each propagation path given that the Doppler shift depends on the angle of arrival, which is peculiar to each path. Recently, it has been proposed to directly track the channel paths, which permits to take into account separate Doppler shifts for each path ( [10][11] for SISO and [START_REF] Hijazi | Channel Estimation for MIMO-OFDM Systems in Fast Time-Varying Environments[END_REF] for MIMO). Those works estimate the equivalent discrete-time channel taps ( [START_REF] Tang | Pilot-assisted timevarying channel estimation for OFDM systems[END_REF]) or the real path complex gains ([10] [START_REF] Hijazi | Channel Estimation for MIMO-OFDM Systems in Fast Time-Varying Environments[END_REF]) which are both modeled by a basis expansion model (BEM). The BEM methods are Karhunen-Loeve BEM (KL-BEM), prolate spheroidal BEM (PS-BEM), complex exponential BEM (CE-BEM) and polynomial BEM (P-BEM).

However the CFO due to the mismatch between transmitter and receiver oscillators is not taken into account in those algorithms. In this paper, we propose a complete algorithm capable of estimating this CFO jointly with the time-variation of each channel path in MIMO environment.

Generally, it is preferable to directly estimate the physical channel parameters [START_REF] Yang | Channel estimation for OFDM transmisson in mutipath fading channels based on parametric channel modeling[END_REF] [10] [START_REF] Hijazi | Channel Estimation for MIMO-OFDM Systems in Fast Time-Varying Environments[END_REF] instead of the equivalent discrete-time channel taps [START_REF] Tang | Pilot-assisted timevarying channel estimation for OFDM systems[END_REF]. Indeed, as the channel delay spread increases, the number of channel taps also increases and a large number of BEM coefficients have to be estimated. This requires more pilot symbols. Additionally, estimating the physical propagation parameters means estimating multi-path delays and multi-path complex gains. Note that in Radio-Frequency transmissions, the delays are quasi-invariant over several MIMO-OFDM blocks [START_REF] Simon | Synchronization over Rapidly Timevarying Multipath Channel for CDMA Downlink RAKE Receivers in Time-Division Mode[END_REF] [4] (whereas the complex gains may change significantly, even within one MIMO-OFDM block). In this work, the delays are assumed perfectly estimated and quasi-invariant. It should be noted that an initial, and generally accurate estimation of the number of paths and delays can be obtained by using the MDL (minimum description length) and ESPRIT (estimation of signal parameters by rotational invariance techniques) methods [START_REF] Yang | Channel estimation for OFDM transmisson in mutipath fading channels based on parametric channel modeling[END_REF][10]. To further improve the estimation accuracy, our algorithm uses decision feedback. Hence, the accuracy of the channel estimation, frequency offset estimation and symbol detection are simultaneously enhanced. Note also that, since the pilots are used for both channel and frequency offset estimation, the pilot usage efficiency is greatly improved. Our algorithm is a recursive algorithm based on Extended Kalman Filtering (EKF) combined with QR-equalization for data detection.

This paper is organized as follows: Section II introduces the MIMO-OFDM system and the BEM modeling. Section III describes the state model and the Extended Kalman Filter. Section IV covers the algorithm for joint channel and CFO estimation together with data recovery. Section V presents the simulations results which validate our technique. Finally, our conclusions are presented in Section VI.

The notations adopted are as follows: Upper (lower) bold face letters denote matrices (column vectors). [x] k denotes the kth element of the vector x, and [X] k,m denotes the [k, m]th element of the matrix X. We will use the matlab notation X[k1:k2,m1:m2] to extract a submatrix within X from row k 1 to row k 2 and from column m 1 to column m 2 . I N is a N × N identity matrix and 0 N is a N ×N matrix of zeros. diag{x} is a diagonal matrix with x on its main diagonal and blkdiag{X, Y} is a block diagonal matrix with the matrices X and Y on its main diagonal. The superscripts (•) T , (•) * and (•) H stand respectively for transpose, conjugate and Hermitian operators. Tr(•) and E[•] are respectively the determinant and expectation operations. J 0 (•) is the zeroth-order Bessel function of the first kind. ∇ x represents the first-order partial derivative operator i.e.,

∇ x = [ ∂ ∂x1 , ..., ∂ ∂xN ] T .

II. MIMO-OFDM SYSTEM AND CHANNEL MODELS

A. MIMO-OFDM System Model

Consider a MIMO-OFDM system with N T transmitter antennas, N R receiver antennas, N sub-carriers, and a cyclic prefix length N g . The duration of a MIMO-OFDM block is T = N s T s , where T s is the sampling time and

N s = N + N g . Let x n = x (1) T n , x (2) T n , ..., x (NT ) T n T be the nth transmitted MIMO-OFDM block, where x (t) n = x (t) n [-N 2 ], x (t) n [-N 2 + 1], ..., x (t) n [ N 2 -1]
T is the nth transmitted OFDM symbol by the tth transmit antenna and {x

(t) n [b]} are normalized symbols (i.e., E x (t) n [b]x (t) * n [b] = 1)
. The frequency mimatch between the oscillators used in the radio transmitters and receivers causes a CFO. In multi-antenna systems, each transmitter and receiver typically requires its own Radio Frequency -Intermediate Frequency (RF-IF) chain. Consequently, each transmitter-receiver pair has its own mismatch parameter, yielding separate CFOs. In a N T × N R MIMO system this leads to N T N R different CFOs. However, if transmitter or receiver antennas share RF-IF chains, fewer different CFOs occured. The system model describes the general case where it is necessary to compensate for N T N R CFOs. Assume that the MIMO channel branch between the tth transmit antenna and the rth receive antenna (called (r, t) branch from now on) experiences a normalized frequency shift ν (r,t) = ∆F (r,t) N T s , where ∆F (r,t) is the absolute CFO. All the normalized CFOs can be stacked in vector form as: ν = ν (1,1) , . . . , ν (1,NT ) , . . . , ν (r,1) , . . . , ν (r,NT ) , . . . , ν (NR,NT ) T

(1)

After transmission over a multi-path Rayleigh channel, the nth received MIMO-OFDM block

y n = y (1) T n , y (2) 
T n , ..., y

(NR) T n T , where y (r) n = y (r) n [-N 2 ], y (r) n [-N 2 + 1], ..., y (r) n [ N 2 -1]
T is the nth received OFDM symbol by the rth receive antenna, is given by [4] [11]:

y n = H n x n + w n (2) 
where

w n = w (1) T n , w (2) T n , ..., w (NR) T n ] T with w (r) n = w (r) n [-N 2 ], w (r) n [-N 2 + 1], ..., w (r) n [ N 2 -1]
T a white complex Gaussian noise vector of covariance matrix N T σ 2 I N . The matrix H n is a N R N × N T N MIMO channel matrix given by:

H n =    H (1,1) n • • • H (1,NT ) n . . . . . . . . . H (NR,1) n • • • H (NR,NT ) n    (3) 
where H (r,t) n is the (r, t) branch channel matrix. The elements of channel matrix H (r,t) n can be written in terms of equivalent channel taps [START_REF] Kim | MAP-Based Channel Estimation for MIMO-OFDM Over Fast Rayleigh Fading Channels[END_REF] g

(n,r,t) l (qT s ) = g (r,t) l
(nT + qT s ) or in terms of physical channel parameters [START_REF] Hijazi | Joint Data QR-Detection and Kalman Estimation for OFDM Time-varying Rayleigh Channel Complex Gains[END_REF] (i.e. delays τ (r,t) l and complex gains α

(n,r,t) l (qT s ) = α (r,t) l
(nT + qT s ) ), yielding Eq. ( 4) and ( 5), respectively.

L (r,t) < N g and L (r,t) are respectively the number of channel taps and the number of paths for the (r, t) branch. The delays are normalized by T s and not necessarily integers (τ (r,t) l < N g ). The L (r,t) elements of α (n,r,t) l (qT s ) are uncorrelated. However, the L (r,t) elements of g (n,r,t) l (qT s ) are correlated, unless that the delays are multiple of T s as mostly assumed in the literature. They are wide-sense stationary (WSS), narrow-band zero-mean complex Gaussian processes of variances σ (r,t) g l 2 and σ (r,t) α l

2

, with the so-called Jakes' power spectrum of maximum Doppler frequency f d [START_REF] Jakes | Microwave Mobile Communications[END_REF]. The average energy of each (r, t) branch is normalized to one, i.e.,

L (r,t) -1 l=0 σ (r,t) g l 2 = 1 and L (r,t) -1 l=0 σ (r,t) α l 2 = 1.
In the next sections, we present the derivations for the second approach (physical channel). The results of the first approach (channel taps) can be deduced by replacing L (r,t) by L (r,t) and the set of delays τ (r,t) l by l, l = 0 : L (r,t) -1 .

B. BEM Channel Model

Let

L = NR r=1 L (r) = NR r=1
NT t=1 L (r,t) be the total number of complex gains for the MIMO channel. Since the number of samples to be estimated LN s is greater than the number of observation equations N R N , it is not efficient to estimate the time-variation of the complex gains, using directly the observation model in [START_REF] Wang | A MIMO-OFDM Channel Estimation Approach Using Time of Arrivals[END_REF]. Thus, we need to reduce the number of parameters to be estimated. In this section, our aim is to accurately model the time-variation of α (n,r,t) l (qT s ) from q = -N g to N -1 by using a BEM. Suppose α

(n,r,t) l represents an N s × 1 vector that collects the time-variation of the lth path of the (r, t) branch within the nth MIMO-OFDM block:

α (n,r,t) l = α (n,r,t) l (-N g T s ), ..., α (n,r,t) l (N -1)T s T (6) [H (r,t) n ] k,m = 1 N L (r,t) -1 l=0 e -j2π( m N -1 2 )•l N -1 q=0 e j2π ν (r,t) q N g (n,r,t) l (qT s )e j2π m-k N q (4) = 1 N L (r,t) -1 l=0 e -j2π( m N -1 2 )τ (r,t) l N -1 q=0 e j2π ν (r,t) q N α (n,r,t) l (qT s )e j2π m-k N q (5) 
Then, each α (n,r,t) l can be expressed in terms of a BEM as: represents the corresponding BEM modeling error, which is assumed to be minimized in the MSE sense [START_REF] Leus | On the Estimation of Rapidly Time-Varying Channels[END_REF]. Under this criterion, the optimal BEM coefficients and the corresponding model error are given by:

α (n,r,t) l = α (n,r,t) BEM l + ξ (n,r,t) l = B c (n,r,t) l + ξ (n,r,t) l (7 
c (n,r,t) l = B H B -1 B H α (n,r,t) l (8) ξ (n,r,t) l = (I Ns -S)α (n,r,t) l (9) 
where

S = B B H B -1 B H is a N s × N s matrix.
Then, the MMSE approximation for all BEM with N c coefficients is given by:

MMSE (r,t) l = 1 N s E ξ (n,r,t) l ξ (n,r,t) l H (10) = 1 N s Tr I Ns -S R (0,r,t) α l I Ns -S H (11) 
where R (s,r,t)

α l = E α (n,r,t) l α (n-s,r,t) l H is the N s × N s correlation matrix of α (n,r,t) l
with elements given by: [R (s,r,t)

α l ] k,m = σ (r,t) α l 2 J 0 2πf d T s (k -m + sN s ) (12) 
Various traditional BEM designs have been reported to model the channel time-variations, e.g., the Complex Exponential BEM (CE-BEM)

[B] k,m = e j2π( k-N g Ns )(m-Nc-1 2 
) which leads to a strictly banded frequency-domain matrix [START_REF] Teo | Optimal MMSE Finite Parameter Model for Doubly-selective Channels[END_REF], the Generalized CE-BEM (GCE-BEM)

[B] k,m = e j2π( k-N g av )(m-Nc-1 2 ) with 1 < a ≤ Nc-1
2f d T which is a set of oversampled complex exponentials [START_REF] Leus | On the Estimation of Rapidly Time-Varying Channels[END_REF], the Polynomial BEM (P-BEM) [B] k,m = (k -N g) m [START_REF] Hijazi | Joint Data QR-Detection and Kalman Estimation for OFDM Time-varying Rayleigh Channel Complex Gains[END_REF] and the Discrete Karhuen-Loeve BEM (DKL-BEM) which employs basis sequences that corresponds to the most significant eigenvectors of the autocorrelation matrix R (0,r,t) α l [START_REF] Kannu | MSE-optimal Training for Linear Timevarying Channels[END_REF]. From now on, we can describe the MIMO-OFDM system model derived previously in terms of BEM. Substituting [START_REF] Steendam | Sensitivity of Orthogonal Frequency-Division Multiplexed Systems to Carrier and Clock Synchronisation Errors[END_REF] in [START_REF] Wang | A MIMO-OFDM Channel Estimation Approach Using Time of Arrivals[END_REF] and neglecting the BEM model error, we obtain after some algebra:

y n = K n (ν) • c n + w n ( 13 
)
where the LN c × 1 vector c n and the N R N × LN c matrix K n (ν) are given by:

c n = c (1,1) T n , ..., c (1,NT ) T n , ..., c (NR,NT ) T n T (14) c (r,t) n = c (n,r,t) T 0 , ..., c (n,r,t) T L (r,t) -1 T ( 15 
)
K n (ν) = blkdiag K (1) n (ν (1) ), ..., K (NR) n (ν (NR) ) ( 16)

K (r) n (ν (r) ) = K (r,1) n (ν (r,1) ), ..., K (r,NT ) n (ν (r,NT ) ) (17) 
K (r,t) n (ν (r,t) ) = 1 N Z (n,r,t) 0 (ν (r,t) ), ..., Z (n,r,t) L (r,t) -1 (ν (r,t) ) (18) 
Z (n,r,t) l (ν (r,t) ) = M (r,t) 0 (ν (r,t) ) diag{x (t) n } f (r,t) l , ..., M (r,t) Nc-1 (ν (r,t) ) diag{x (t) n } f (r,t) l ( 19 
)
where ν (r) = ν (r,1) , . . . , ν (r,NT ) T . Vector f (r,t) l

is the lth column of the N ×L (r,t) Fourier matrix F (r,t) whose elements are given by:

[F (r,t) ] k,l = e -j2π( k-1 N -1 2 )τ (r,t) l , (20) 
and M

(r,t) d is a N × N matrix whose elements are given by:

M (r,t) d (ν (r,t) ) k,m = N -1 q=0 e j2π ν (r,t) q N [B] q+Ng ,d e j2π m-k N q .
(21) Moreover, the channel matrix of the (r, t) branch can be easily computed by using the BEM coefficients [START_REF] Hijazi | Polynomial estimation of time-varying multi-path gains with intercarrier interference mitigation in OFDM systems[END_REF]:

H (r,t) n = Nc-1 d=0 M (r,t) d (ν (r,t) )diag{F (r,t) χ (n,r,t) d } (22) where χ (n,r,t) d = c (n,r,t) (d,0) , ..., c (n,r,t) (d,L (r,t) -1)
T .

III. AR MODEL AND EXTENDED KALMAN FILTER

A. The AR Model for c n

The optimal BEM coefficients c (n,r,t) l are correlated complex Gaussian variables with zero-means and correlation matrix given by: R (s,r,t)

c l = E[c (n,r,t) l c (n-s,r,t) l H ] = B H B -1 B H R (s,r,t) α l B B H B -1 (23) 
Hence, the dynamics of c

(n,r,t) l can be well modeled by an auto-regressive (AR) process [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF] [20] [START_REF] Hijazi | Joint Data QR-Detection and Kalman Estimation for OFDM Time-varying Rayleigh Channel Complex Gains[END_REF] . A complex AR process of order p can be generated as:

c (n,r,t) l = p i=1 A (i) c (n-i,r,t) l + u (n,r,t) l (24)
Time Update Equations:

μ(n|n-1) = A μ(n-1|n-1) P (n|n-1) = AP (n-1|n-1) A H + U (37) 
Measurement Update Equations:

K n = P (n|n-1) G H n G n P (n|n-1) G H n + N T .σ 2 I NRN -1 μ(n|n) = μ(n|n-1) + K n y n -g μ(n|n-1) P (n|n) = P (n|n-1) -K n G n P (n|n-1) (38) 
where K n is the Kalman gain. The Time Update Equations are responsible for projecting forward (in time) the current state and error covariance estimates to obtain the a priori estimates for the next time step. The Measurement Update Equations are responsible for the feedback, i.e., for incorporating a new measurement into the a priori estimate to obtain an improved a posteriori estimate. The Time Update Equations can also be thought of a predictor equations, while the Measurement Update Equations can be thought of a corrector equations.

IV. JOINT DATA DETECTION AND EKF

In the iterative algorithm for joint data detection, channel and CFO extended Kalman estimation, the N p pilots subcarriers are evently inserted into the N subcarriers at the positions P = {p r | p r = (r -1)L f + 1, r = 1, ..., N p }, where L f is the distance between two adjacent pilots. We use the the QR-equalizer [START_REF] Hijazi | Joint Data QR-Detection and Kalman Estimation for OFDM Time-varying Rayleigh Channel Complex Gains[END_REF] for the data detection. The QRequalizer allows us to estimate the data symbol with free ICI by performing a so-called QR-decomposition. The algorithm proceeds as follows: initialization: where i represents the iteration number.

• μ(0|0) = 0 LNc+N R N T ,

V. SIMULATION

In this section, the performance of our recursive algorithm is evaluated in terms of Mean Square Error (MSE) for joint channel and CFO estimation and in terms of Bit Error Rate (BER) for data detection.

We assume that all the (r, t) channel branches, r = 1, . . . , N R , t = 1, . . . , N T have the same path delays and fading properties (i.e., the same number of paths, of σ ). This is understood when the antennas are very close to each other, which is typical in practice. The Rayleigh channel model given in [START_REF] Hijazi | Joint Data QR-Detection and Kalman Estimation for OFDM Time-varying Rayleigh Channel Complex Gains[END_REF] [12](L (r,t) = 6 paths and maximum delay τ max = 10T s ) was chosen. A normalized 4QAM MIMO-OFDM system, with N T = N R = 2, N = 128 subcarriers, N g = N 8 , N p = N 4 pilots (i.e., L f = 4) and 1 Ts = 2M Hz was used. The MSE and the BER were evaluated under a rapid time-varying channel with f d T = 0.1 (corresponding to a vehicle speed of 600km/h at f c = 2.5GHz).

A GCE-BEM with N c = 3 was chosen to model the path complex gains of the channel. Most advanced technologies have an oscillator frequency tolerance less than 1 ppm (i.e. ν = 0.16 in normalized units with the given parameters).

For the simulation, we chose the configuration where each transmitter and receiver requires its own RF-IF chain, which is the configuration discussed in this article. For this scenario, the number of CFO parameters to be estimated (N T N R = 4) is the largest. Therefore, this is the most pessimistic configuration. The CFO values were arbitrarily chosen as ν (0,0) = 0.1, ν (0,1) = -0.1, ν (1,0) = 0.05 and ν (1,1) = -0.07. Fig. 1 shows the MSE of the channel complex gain and the MSE of the normalized CFO as a function of E b /N 0 . Seven iterations have been carried out. For reference, the MSEs obtained in Data Aided (DA) mode (knowledge of the data symbols) have been plotted. As expected, the MSEs obtained in Data Aided mode are lower than the MSEs obtained with just the pilots, especialy at low E b /N 0 where the detection errors are the most important. However, for E b /N 0 ≥ 20 dB, the MSE has a floor (especially the channel complex gain MSEs). This is due to the fact that beyond 20 dB, the matrix to be inversed in Eq. (38) becomes badly scaled.

Fig. 2 gives the BER performance of our proposed iterative algorithm. For reference, we also plotted BERs obtained with perfect knowledge of channel response and CFO. It is shown that one iteration is sufficient to approach the reference curve with perfect knowledge of channel response and carrier frequency offset.

VI. CONCLUSION

A new iterative algorithm which jointly estimates multipath complex gain and CFO in MIMO environment has been presented. The algorithm is based on a parametric channel model. Extended Kalman filtering is used for parameter estimation and the data recovery is carried out by means of a QR-equalizer. Simulation results show that by estimating and removing the ICI at each iteration, the BER is greatly improved, especially after the first iteration. Our algorithm needs only one iteration to approach the performance of the ideal case for which the knowledge of the channel response and CFO is available. 
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where A (1) , ..., A (p) are N c × N c matrices and u (n,r,t) l is a N c ×1 complex Gaussian vector with covariance matrix U (r,t) l . From [START_REF] Hijazi | Joint Data QR-Detection and Kalman Estimation for OFDM Time-varying Rayleigh Channel Complex Gains[END_REF], it is sufficient to choose p = 1 to correctly model the path complex gains. The matrices A (1) = A and U (r,t) l are the AR model parameters obtained by solving the set of Yule-Walker equations defined as:

Using (24), we obtain the AR model of order 1 for c n :

where

B. The AR Model for ν n

Let us write the AR model for ν n as follows:

where the state transition matrix is of size

Since the CFOs can be assumed as constant during the observation interval, A ν is considered to be close to the identity matrix A ν = aI NRNT , a = 0.99. The N R N T × 1 state noise vector u νn is assumed to be zero-mean complex Gaussian. The state noise covariance matrix is U ν = σ 2 ν I NRNT where σ 2 ν is the variance of the state noise associated with CFOs.

C. State equation

Now, let us write the state-variable model. The state vector at time instance n consists of the BEM coefficients c n and the vector of CFOs ν n :

There are LN c BEM coefficients and N T N R CFO values in the state vector of dimension LN c + N T N R × 1. Then, the linear state equation may be written as follows:

where the state transition matrix is defined as follows:

The

D. Extended Kalman Filter (EKF)

The measurement equation ( 13) can be reformulated as:

where the nonlinear function g of the state vector µ n is defined as g (µ n ) = K n (ν) • c n . Nonlinearity of the measurement equation ( 32) is caused by CFOs. The BEM coefficients are still linearly related to observations. Since the measurement equation is nonlinear, we use the Extended Kalman filter to adaptively track µ n . Let μ(n|n-1) be our a priori state estimate at step n given knowledge of the process prior to step n, μ(n|n) be our a posteriori state estimate at step n given measurement y n and, P (n|n-1) and P (n|n) are the a priori and the a posteriori error estimate covariance matrix of size

We initialize the EKF with μ(0|0) = 0 LNc+NRNT ,1 and P (0|0) given by:

where R (s,r,t) c l is the correlation matrix of c

(n,r,t) l defined in (23). To derive the EKF equations, we need to compute the Jacobian matrix G n of g (µ n ) with respect to µ n and evaluated at μ(n|n-1) :

Let us define µ . After computation, we find:

where

The elements of the N × N matrix M d (ν) are given by:

q N e j2π ν (r,t) n q N

[B] q+Ng ,d e j2π m-k N q (36) The EKF is a recursive algorithm composed of two stages: Time Update Equations and Measurement Update Equations. These two stages are defined as: