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Abstract—A channel estimation algorithm for MIMO-OFDM  static fading channels. Therefore, in single antenna syste
systems in Fast Time-Varying Environments is proposed. The many existing works resort to the basis expansion model
channel estimation function is based on the equivalent discrete- (BEM) in order to estimate the time-variation of the channel

time channel taps or on the physical propagation channel . . o
parameters. To handle rapid variations of channels within a @PS Of the multi-path complex gains within a block [14] [8].

transmission block, we approximate the channel by a basis expan- 1The BEM methods are discrete Karhunen-Love BEM (DKL-
sion model (BEM). Based on the Jakes process, an auto-regrass BEM), discrete prolate spheroidal BEM (PS-BEM), complex-
(AR) model of the BEM coefficients dynamics is built, making it exponential BEM (CE-BEM), generalized CE-BEM (GCE-
possible to estimate and track the BEM coefficients using Kalman BEM) and polynomial BEM (P-BEM).

filter . Hence, the channel matrix is easily computed, and the data
symbol is detected with free ICI . Our claims are supported by
theoretical analysis and simulation results, which are obtained
considering Jakes’ channels with high Doppler spreads.

In this paper, we present a new iterative algorithm for joint
Rayleigh channel (taps or complex gains) estimation and dat
recovery in fast time-varying environments. After approxi
mated the time-variation of the channel by a BEM, an auto-
regressive (AR) model of the BEM coefficients dynamics is
built based on the Jakes process. Hence, the BEM coefficients

I. INTRODUCTION are estimated and tracked by using the Kalman filter. In order

Multiple-Input-Multiple-Output (MIMO) antennas with Or- to perfo.rm BEM coefficient; estimation, we use the estimate
thogonal Frequency Division Multiplexing (OFDM) providealong with the channel matrix output to recover the trari'samt.
high data rates and are robust to multi-path delay in wigele@at@. One can, in turn, use the detected data along witfspilot
communications. Channel parameters are required for -divf €nhance the BEM coefficients estimate giving rise to an
sity combining, coherent detection and decoding. Theegfofi€rative technique for channel estimation and data regove
channel estimation is essential in MIMO-OFDM system de.N€ data detection is performed by using the MMSE-equalizer
sign. Various OFDM channel estimation schemes have bdél OF the QR-equalizer [8] [7].
proposed in the literature, mostly for single antenna $yste  ris naner is organized as follows: Section Il introduces

[8] [12] [14] [9] [10]. For MIMO-OFDM systems, most of e \iMO-OFDM system and the BEM modeling. Section
the channel estimation schemes have focused on pilot@dsi); qescribes the AR model for the BEM coefficients and

approaches [1] [3] [4], based on a quasi-static fading modgls kaiman filter. Section IV covers the algorithm for joint

that allows the channel to be invariant within @ MIMO-OFDManne| estimation and data recovery. Section V preseats th
block. However, in fast fading channels, the time-variatio

o ““Fsimulations results which validate our technique. Finadyr
of the channel .Wlthln a MIMQ—OFI?M block res.ults_m aconclusions are presented in Section VI.
loss of subcarrrier orthogonality which leads to interigairr
interference (ICI) [8] [2]. To support high speed mobile The notations adopted are as follows: Upper (lower) bold
channels, the channel time-variation within a block must Hace letters denote matrices (column vectops), denotes the
considered. Channel estimation can be summarized by tiih element of the vectox, and[X] ,,, denotes thék, m]th
approaches. The first one is to estimate the equivalentadéscr element of the matrixX. We will use the matlab notation
time channel taps [2] [12] whereas the second approach isX@;:k,,m,:m.] t0 extract a submatrix withiixX from row &, to
directly estimate the physical propagation channel paramse row ko and from columnm; to columnms. Iy isaN x N
such as multi-path delays and multi-path complex gains [liglentity matrix andy is a N x N matrix of zeros. diafx} is a
[8]. In Radio-Frequencies transmission, the delays aresiqudiagonal matrix withx on its main diagonal and blkdid¥, Y}
invariant over several MIMO-OFDM blocks [11] [9] whereass a block diagonal matrix with the matrices and Y on
the complex gains may change significantly, even within oriis main diagonal. The superscriptg”, (-)* and (-)? stand
MIMO-OFDM block. Exploiting the channel nature and asrespectively for transpose, conjugate and Hermitian apesa
suming the availability of delay information, a lot of metteo Tr(-) and B:] are respectively the determinant and expectation
estimate the multi-path complex gains [8] [10] [9]. There aroperations.Jy(-) is the zeroth-order Bessel function of the first
more channel parameters in fast fading channels than iri-quésnd.

Index Terms—MIMO systems, OFDM, time-varying Rayleigh
channels, channel estimation, Kalman filter.
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Il. MIMO-OFDM SYSTEM AND CHANNEL MODELS fa [18]. The average energy of each channel approach is
) Lrb)

A. MIMO-OFDM System Model normalizedtoonee., » op =tland) o) =
Consider a MIMO-OFDM system witlv; transmit anten-
nas, Ny receive antennasy sub-carriers, and a cyclic prefix
lengthN,. The duration of a MIMO-OFDM block i§" = v T,
whereT; is the sampling time and = N + N,. Let x(,,) =

T .
(X( oy X(amys s X{npmy)] - b€ thenth transmitted MIMO-

OFDM block, wherexq .y = [zun[-5lz@nl-5 + 5. BEM Channel Model
1, . em 5 — 1]]T is the nth transmitted OFDM symbol Nr Nr
by the ith transmit antenna andi(, .)[b]} are normalized | et 1 = ZL(T) — ZZL(T’U be the total number of
symbols {.c., E[z(; n[b]a7, ,\[b]] = 1). After transmission = ==
over a multi-path Rayleigh channel, théh received MIMO- complex gains for the MIMO channel and designate(by)
OFDM block y = [yT yo oLyE ]]T where the branch between thih transmit antenna and théh receive
(n) (1,n)’Y(2,n ’»Y(Ngr,n) ! . . .

antenna. Since the number of samples to estirhatis greater
than the number of observation equatiavig NV, it is not effi-
cient to estimate the time-variation of the complex gaisigl
directly the observation model in (1). Thus, we need to reduc

In the sequel, we Wili?rltake the calculus lt?ased on the second
approach (physical channel) and we can deduce the results of
the first approach (channel taps) by replacing ;) by LGt)
and the set of delay$r ..} by {{ -1, I =1: L’W)}.

T .
y(r,n) = [y(r,n)[_%]vy(r,n) [_% + 1}? ay(’r,n)[% - 1]} IS
the nth received OFDM symbol by theth receive antenna, is

given by [9] [12]:

— Hu Xy +W (1) the number of parameters to estimate. In this section, oar ai
Yn) (n) A(n) (n) n)
is to accurately model the time-variation 0, n(qTs) by
wherew,.\ — [WT wl wT ”T with w _using a BEM. Collecting the samples of i path of the
(n) = (1,n)? "% (2,n)? == "Y(Ng,n) ! (rin) —

branch (r,t) within the nth MIMO-OFDM block in av x 1

[0y [= X, Wiy [~ X + 1], ooy wio [X — 1] is & white com- vectora™ . = [a) (“N,T.), ..ol (N - DT.)]"
plex Gaussian noise vector of covariance matix.c?l 5 and wrt) = [y Yt s/

H(.) is a NgN x Ny N MIMO channel matrix given by: ~ We can expressy;, ) as:

Hiin - Hanen E?Z H = aI(BTFLEM(LM> 5&”2«,0 = Q CEZ?«,:&) +5((22-,t) (5)

Huy = : : (2) whereQ = [qy,....qy,] is @av x N, matrix that collects
Hvein)  HveNen) N, orthonormal basis functiorg,; as columns,cgzz_,t) =

whereH ., ,,) is the channel matrix between tith transmit [c ET)l ) Ezr)z rt)]T represent theV. BEM coefficients

antenna and theth receive antenna. The elements of channf' thelth complex %am of the brandr, ¢) of thenth MIMO-
matrix H(Mn) can be written in terms of equivalent channeéPFDM block, and¢, ., represents the corresponding BEM

modeling error, WhICh is assumed to be minimized in the
2 Ts) = T T f
taps [ ]{g(l Tt)(q 2) = 9 (T + 4 S)} or in terms o MSE sense [16] [5]. Under this criterion, the optimal BEM

physical channel parameters [8]: deldys; ..., } and complex cqefficients and the corresponding model error are given by:
gains {a5217t) (qu> = a(l,nt) (TLT + QTS)}: as

(n) o H
¢, = (Q"Q) Qe (6)
Herin)lk,m Sglnit = (I, — )aEZi’t) @)
(r,t)
3 [e‘j?"“(m A Z 9 o (T ] (3) whereS=Q (Q Q) Q" is av x v matrix. It provides the
= MMSE approximation for all BEM containingy,. coefficients,
Lty i b .
1 jam(mot 1. . I given by:
-N [e R Z“El)m (qTo)e’™ q](4) Lofem) o) H
=t MMSE(lvTat) = ;E[é.(lr t)E l \Ty t :| (8)
whereL; ., < N, and L, ,, are respectively the number of 1
(rt) (r,t) - (0) _ gl
channel taps and the number of paths for the branch between i ((l S)R"U >(|” S )) ©)

the tth transmit antenna and theth receive antenna. The ) (mesH] . .
delays are normalized b{, and not necessarily mtegersWhefE‘Ra()Z = E[a(“t)a(lm) ] is thewv x v correlation

(n)
(Try < Ng). The L,y elements Of{o‘ ray (0T )} e matrix ofa(lnz_ ;) With elements given by:
n -

uncorrellated. Howerver, the/, ,, elements o{g(l ) t)(qTS)j}
are correlated, unless that the delays are multipleTpf [R
as mostly assumed in the litterature. They are wide-sense
stationary (WSS), narrow-band zero- mean complex Gaussharious traditional BEM designs have been reported to model
processes of variances? and o2 with the so- the channels time-variations, e.g., the CE-BEMI;, =

9(t,rt « t)! 1
called Jakes’ power spectfun% of maximum Doppler frequenegf”r ) (m— Qlim =

z(;(),’r,t)]k,m = O'i(u,t)JO (27deTs(k —m+ sv)) (10)
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eI2m (P m=1-80) Wwith 1 < o < Y=+ [16], the P- Ug,.,). The matricesA™ ..., A® and U, are the AR
BEM [Qlx.m = (k — Ng — 1)(m=1 [5] and the DKL-BEM model parameters obtained by solving the set of Yule-Walker
which employs basis sequences that corresponds to the n&sitations defined as:

significant eigenvectors of the autocorrelation mang)

t p . .
[17]. From now on, we can describe the MIMO-OFDM systeffA — —V and Ugrsy = RY +Y AUREY (17)
model derived previously in terms of the BEM. Substituting i3 o
(5) in (1) and neglecting the BEM model error, we obtain after T T
some algebra: whereA :/\LA(U ,...,A(”)/\J is pN, x N. matrix,V and T
arepN. x N, andpN, x pN. matrices defined by:
Yoy = K@) Con) + W (11) , ,
. VvV = R(l)T R(P)T (18)
where theL N, x 1 vectorc,, and theNgN x LN, matrix 2 Cltrt)? "0 NGl et
. . A(L,r,t)
IC(,) are given by: ) .. REPD
T 1 Cai,r,t) Ci,r,t)
C(n) = [Ca,l,n)?"'7c,(11,NT,n)7"'7C?NR,NT,n):| T = = (19)
()™ ™ 7 ferof RE-D L RO
Cortn) = |:C(1,r,t)’ =0 G, t),r,t)] Sy St
. ’ Using (16), we obtain the AR model of ordgrfor c,,:
’C(n) = blkdlag{IC(Ln),...,KJ(NRJL)} 9 ( ) £ (n)
K:r,n = ’Cr,l,n 7---7K:7‘,N n -
) [1 ( (n)) ( (n)T ) Cny = —ZA@)%J) TUm (20)
’C(r,tﬁn) = N [Z(l,r,t)’ -~-aZ(LM),r,t)} =1
ZEl,Zﬂ,t) = [Mydiag{X(s.m) Htre)s s M (v diaGX ) Hir)] where Ag;) = blkdlag{A e A } is a LN, >; LN,
. n)T n)T .
wheref ; .., is thelth column of theN x L, ,y Fourier matrix matrix andug,) = [UEL)Ll)w")uEL)(NR’N %NR,NT)} Is a
Frp andM g is a N x N matrix given by: LN. x 1 complex Gaussian vector with covariance matrix
Feolkt = e I2m (PR =) T (12) U= blkdlag{u(l’l’l)’ ""U(L(NRYNT%NR’NT)}'
N-1
. m—k 1
M (d)}k,m _ Z[Q]quNgH,d ed2m Mg (13) B. The Kalman Filter | _
Py Based on the AR model of,, in (20), we define the
Moreover, the channel matrix of the branght) can be easily st?te space modTeI :_c}:r the MlMOZ'(;)FDZI i{stem g’fit)) -
computed by using the BEM coefficients [9]: [C(n)’ ""C(nfp+1)] - Thus, using (20) and (11), we obtain:
N. o Iy = Si9m-1) + SUw) (21)
Howm = D M@diag{Fooxg, ) (14) Yoy = S89(m) +Win) (22)

d=1
) whereS, = [I1n,,0rn,,(p—1)2n.]" is @pLN, x LN, matrix,

n n n T H . . .
where x ;. ) = [CEd,)l,r,t)’""ng,)L(,,,,t,),r,t)} - The matrices s, = [KC(,,),0n (,—1)2n.] IS @ N x pLN, matrix and$; is a

M4 can be computed and stored. pLN,. x pLN, matrix defined as:
-A -A -A e —A
I11. AR M ODEL AND KALMAN FILTER |L]\§1) Ouf) OL]\(/P)) OL]\(IP)
A. The AR Model foc(™ S = Orn, lzn, Oy, -+ Opn, (23)
The optimal BEM coefficientsE?ZA_ , are correlated complex : : : :
Gaussian variables with zero-means and correlation matrix OLn 01N I,n.  Opn
given by: ¢ _ ‘ - ‘
" The state and the observation models (21) (22) allow us to use
gfz),r,ﬂ — E[Cﬁﬁi,wcﬁflff ] Kalman filter to adaptively track the BEM coefficiers,) . Let

N o\l g(n) be our a priori state estimate at steggiven knowledge
= (Q Q) Q R,(f()l,r_t)Q (Q Q) (15)  of the process prior to step, §,,,., be our a posteriori state
_ ' estimate at step given measurement,,) and,P,,) andP,,,
Hence, the dynamics Off(lrfzqyt can be well modeled by anare the a priori and the a posteriori error estimate coveeian
auto-regressive (AR) process [19] [20] [8] . A complex ARmatrix of sizepLN, x pLN., respectively. We initialize the

process of ordep can be generated as: Kalman filter with g0y = O,zn,,1 andP(gjoy given by:
p
(n) — () (nil) (n) s—s’
Cimny = — 2 AYCEy + Uiy 16) P juuieny Re™ (24)
= R = blkdiag{R(),,..RY, 1
where A AP are N, x N, matrices andugfi y s " _ ((1)’1) (i?‘NT)
a N. x 1 complex Gaussian vector with covariance matrix Rcﬁ,.,t) = b”‘d'ag{Rcu,r,w~-~’RCELW),T,t>}
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whereu(s) =1+ LN, : (s+ 1)LN, with s € [0,p — 1] and B. Mean Square Error (MSE) Analysis
R, is the correlation matrix on‘,El”Z , defined in (15). The

Cii,rt

S . NG The error between th&h exact complex gain and théh
Kalman filter is a recursive algorithm composed of two stages

Time Update Equations and Measurement Update Equatio%%?'mated polynomlaﬁBEM(l’m is given by:
These two stages are defined as:
Time Update Equations: eﬁﬁfl@ _ O‘E?’l,t) _ dé’é’ma,m _ 5827” +Qeé2?m> (27)
g = S0 A(r o
) Sy . whereel? | =i & andg(, is the BEM model
Py = SiPu-1n-1)SI + SUS; (25) error defined in (7). Neglecting the cross-covariance terms
betweenﬁE,”?ﬁ " and eé:’l),,,t), the mean square error (MSE)
Measurement Update Equations: (n) (n) I .
betweena; ;. ,, and aggy, is given by:
T (1,7,t)
-1
Ko = PwSy (SsPw S + Nr-o®lwaw) MSE Lefem” gm 1
A A P L,r, = - r T
Oty = 8y + Ky Vin) = $o8(m)) ) vt
Py = Piy — K SsPny (26) = MMSE(,..) + - Tr (Q MSE., M)QH)(zs)
0 s

whereK,,) is the Kalman gain. The Time Update Equations ) H )

are responsible for projecting forward (in time) the cutrefvhere MSEc, = E[eg e’ |. Notice that, at the
state and error covariance estimates to obtain the a pripnvergence of the Kalman filter, we have:

estimates for the next time step. The Measurement Update

Equations are responsible for the feedbatk,, for incor- MSEc, , .,
porating a new measurement into the a priori estimate to _
obtain an improved a posteriori estimate. The Time Updapgovided that the data symbols are perfectly estimated
Equations can also be thought of a predictor equationsewhif-¢-» data-aided context), where the sequence of indices

the Measurement Update Equations can be thought of/H:7:%) - }_T (I =1+ a@y)Ne = (I + a@)Ne with

corrector equations.
Aty = D > L)

r'=1t'=1
The on-line Bayesian Cramer-Rao Bound (BCRB) is an im-

IV. JOINT DATA DETECTION AND KALMAN ESTIMATION  portant criterion for evaluting the quality of the compleairs
Kalman estimation. The on-line BCRB for the estimation of

A. lterative Algorithm aE?i.t)- in data-aided (DA) context, is given by:

P (29)

PR [f (1), f (Lr,t)]

In the iterative algorithm for joint data detection and ahein

Kalman estimation, theN, pilots subcarriers are eVent'YBCRB(aEf?t)) _ MMSE(lJ.‘t)JrlTr (QBCRB(CEﬁ)t))QH)
A . /l] b

inserted into the N subcarriers at the positidhs- {p, | p. = (30)

(r=1L;+1, r =1,.,Ny}, where L; is the distance \ynare BCRB(c(}"/,) is the on-line BCRB associated to the
between two adjacent pilots. We test two channel equalizers, . (K’{’ L ]
for the data detection: the MMSE equalizer [13] and the QF?—S'"mat'On Ofc(l,'r.,t) which is given by:

equalizer [8] [7]. The first one is based on the noise variance

Nr.o2 whereas the second equalizer allows us to estimate BCRB(CEf;),t)) = BCRB(C)is(,re),rarme)  (31)
the data symbol with free ICI by performing a so-called QR-
decomposition. The algorithm proceeds as follows: BCRB(c) is the on-line BCRB for the estimation af =

T
[C(TK), ...,Ca)} in DA context which is given by:

initialization:

-1

* Yoo = Oprnes BCRB(c) = (blkdiag{J ). R:') (32

o computeP o) as (24) (c) 9{Jx): - d2 I +Re (32)

e n<n+1

« execute the Time Update Equations of Kalman fi(28) whereR. is calculated in the same way Bg o) with s,s" €

» compute the channel matrix usiig4) 0, K — 1], andJ,,) is a LN, x LN, matrix given by [5]:
recursion: Iy = blkdiag{J(l’n), ceny .J(NR,n)} (33)

1) remove the pilot ICI from the received data subcarriers J L J

2) Detection of data symbols (r1,1,n) (r,1,N7n)

3) execute the Measurement Update Equations of Kalman (R&y J (rn) = : .. : (34)

4) compute the channel matrix usiri4) ’ ) ’ )

5) i< i+l JorNeim) 0 I No,Non)

1
L I s F i yMF (i 35

wherei represents the iteration number. (rit,¥'sm) N2Npg2~ (mtm) (o) (35)
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= <+ = prediction (MMSE)
1074 - © - after one iteration (MMSE)
- A - after two iterations (MMSE)
=W/ - after three iterations (MMSE)
after nine iterations (MMSE)
H —h erfect channel knowledge
10 gnd QR equalizer ¢
k- perfect channel knowledge
and MMSE equalizer
T T

-5
10 I I 1 |
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
SNR SNR

Fig. 1. MSE vs SNR forfy 7' = 0.5 and GCE-BEM withN, = 4 Fig. 2. BER vs SNR forf;7" = 0.5 and GCE-BEM withN, = 4

where M and F,, ,y are aNN. x NN. and aNN. x MSE with DA, particularly in regions of moderate and high
L+ N. matrices, respectively, defined as: SNR. In Fig. 2, we plotted, as reference, the performance
obtained with perfect channel knowledge. After three ame ni

MOMa - MHMvy iterati ignificant i .
° iterations, a significant improvement occurs; the perforoea
M = : . (36) of our algorithm and the performance obtained with perfect
MZVC)M(U MZVC)M(NC) channel knowledge are very close, particularly in regiohs o
low and moderate SNR. At very high SNR, it is normal to not
Foam = [ Farem - Fgonen ] G roach the reference because we have a small error floor due
where theN N, x N, matrix F .. ,,) is given by: to the data symbol detection error. It sould be noted that the
error floor with QR-equalizer is larger than that of the MMSE
Farem = (38) equalizer.

blkdiag{diag{x(m) }f(l,r,t)a . diag{x(t,n) }f(l,'r,t)}
VI. CONCLUSION

In this paper, we have presented a new iterative algorithm
In this section, we verify the theory by simulation andor joint multi-path Rayleigh channel estimation and data
we test the performance Of the iterative algorithm based %bovery in fast time-varying environments_ The rapid t.ime
the second approachi.{., estimation ofa assuming the yariation of the channel within one MIMO-OFDM block
avallablllty of dE|ay information).We assume that the aieln are approximated by a BEM model. The BEM coefficients
from different transmitters to the different receivers e&dke are tracked and estimated using the Kalman filter. The data
same delay and fading property«, same number of paths,symbols are estimated by performing a QR-decomposition of
0o, @nd7g ) and we use the Rayleigh channel modehe channel matrix or by using a MMSE equalizer. Theoretical

given in [8] [5]. It is reasonable because the transmittefmalysis and simulation results show that our algorithméas
and the receivers are very close to each other in practice.gfod performance for high Doppler spread.

normalized 4QAM MIMO-OFDM system, with two transmit

and two receive antennad] = 256 subcarriers,N, = &, VII. A CKOWLEDGEMENT

_ N pi : _ 1 _ i

fzpt_SNA‘Rrﬂlo}S (Z-'reﬁ L,&SE4) Zn?hTSBE;MHZ |s|us;add(no;e This work has been carried out in the framework of the
a'd i N F)'. eh ?n he T 7a(;e5eva uate '“ér.] CréisiT (Campus International sur la&&urieé et Intermodal@é

rapid time-varying channel such gsT" = 0.5 corresponding des Transports) project and funded by the French Ministry of

to a vehicle speett, = 490km/h for fe = 10_GHZ' In order Research, the Region Nord Pas de Calais and the European
to decrease the complexity of the Kalman filter, we choose o mmission (FEDER funds)

AR model of orderp = 1.

Fig. 1 and Fig. 2 show respectively the evolution of MSE
. . . REFERENCES

and BER versus SNR, with the iterations, fé§7" = 0.5

and GCE-BEM. We selectv. = 4 in order to reduce the [l Z.J. Wang and Z. Han, "A MIMO-OFDM Channel Estimation Apgich

. - C . Using Time of Arrivals” inlEEE Trans. Wirel. Commvol. 4. no. 3, May

impact of the BEM modeling error. The equalizers used for 50

data detection are: the MMSE equalizer [13] and the QRY J.-G KIM and J.-T LIM, “MAP-Based Channel Estimation forIMO-

equanzer [8] [7] Erom Fig. 1. it is shown that. with DA OFDM Over Fast Rayleigh Fading Channels” IBEE Trans. Vehic.

he MSE obtained by simul ! ith h, h .’ Techno, vol. 57. no. 3, May 2008.

the 0 tame y simulation agrees with the t eOI’etI.OE] Y. Li,“ Simplified Channel Estimation for OFDM Systems withWiple

value of MSE given by (29). We also observe that MSE with  Transmit Antennas” iIHEEE Trans. Wireless Commvol. 1. no. 1, Jan.

DA is very close to the on-line BCRB. This means that the 2002 _

Kal fil K Il Af h d ni . . [4] Z. Jane Wang, Zhu Han, and K. J. Ray Liu,* MIMO-OFDM Chahne
aiman ) liter works Ve_ry we N ter three an nlne iteratson Estimation via Probabilistic Data Association Based TOA:"IEEE

a great improvement is realized and the MSE is close to the GLOBAL COMMUNICATIONS Confpp. 626-630, Dec. 2003.

V. SIMULATION



ISCCSP 2010

[5] H. Hijazi and L. Ros, “ Analytical Analysis of Bayesian &ner-Rao
Bound for Dynamical Rayleigh Channel Complex Gains Estimation
OFDM System "IEEE Trans. Signal Processcol. 57, No. 5, May 2009.

[6] H. Hijazi and L. Ros, “OFDM High Speed Channel Complex Gain
Estimation Using Kalman Filter and QR-Detector”"IllBEE ISWCS Conf.
Reykjavik, Iceland, October 2008.

[7] H. Hijazi and L. Ros, “ Joint Data QR-Detection and Kalmastitation
for OFDM Time-varying Rayleigh Channel Complex Gains” lBEE
Trans. Comm.appeared in 2010.

[8] H. Hijazi and L. Ros, “ Polynomial Estimation of Time-vargrMulti-
path Gains with Intercarrier Interference Mitigation in D Systems”
in IEEE Trans. Vehic. TechnoVol. 57, No. 6, November 2008.

[9] H. Hijazi and L. Ros, “ Rayleigh Time-varying Channel Cormpl
Gains Estimation and ICI Cancellation in OFDM Systems’European
Transactions on Telecommunicatiodsine 2009.

[10] E. Simon, L. Ros and K. Raoof," Synchronization over RipiTime-
varying Multipath Channel for CDMA Downlink RAKE Receiveiia
Time-Division Mode” inlEEE Trans. Vehic. Technovol. 56. no. 4, Jul.
2007

[11] Z. Tang, R. C. Cannizzaro, G. Leus and P. Banelli, “Péssisted Time-
varying Channel Estimation for OFDM Systems” iIBEE Trans. Signal
Process. vol. 55, pp. 2226-2238, May 2007.

[12] L. Rugini, P. Banelli and G. Leus, “ Block DFE and windawi for
Doppler-affected OFDM systems” lEEE Signal Process. Adv. Wireless
Commun. (SPAWCPpp. 470-474, Jun. 2005.

[13] B. Yang, K. B. Letaief, R. S. Cheng and Z. Cao, “Channéiriation for
OFDM Transmisson in Mutipath Fading Channels based on Pariamet
Channel Modeling” inEEE Trans. Communvol. 49, no. 3, pp. 467-479,
March 2001.

[14] K. D. Teo and S. Ohno, “ Optimal MMSE Finite Parameter Model
for Doubly-selective Channels " iRroc. IEEE GLOBAL COMMUNICA-
TIONS Conf. pp. 3503-3507, Dec.2005.

[15] G. Leus, “ On the Estimation of Rapidly Time-Varying Chafs” in
Euro. Signal Process. Conf. (EUSIPCQJienna, Austria, Sept. 2004.

[16] A. R. Kannu and P. Schniter, “* MSE-optimal Training fomkeiar Time-
varying Channels " inEEE ICASSP Confpp. 789-792, Mar. 2005.

[17] W. C. JakesMicrowave Mobile CommunicationtEEE Press, 1983.

[18] K. E. Baddour and N. C. Beaulieu, “Autoregressive mautglior fading
channel simulation” ifEEE Trans. Wireless Commumwol. 4, no. 4, pp.
1650-1662, July 2005.

[19] B. Anderson and J. B. Moor®ptimal filtering, Prentice-Hall, 1979.



