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Abstract—A channel estimation algorithm for MIMO-OFDM
systems in Fast Time-Varying Environments is proposed. The
channel estimation function is based on the equivalent discrete-
time channel taps or on the physical propagation channel
parameters. To handle rapid variations of channels within a
transmission block, we approximate the channel by a basis expan-
sion model (BEM). Based on the Jakes process, an auto-regressive
(AR) model of the BEM coefficients dynamics is built, making it
possible to estimate and track the BEM coefficients using Kalman
filter . Hence, the channel matrix is easily computed, and the data
symbol is detected with free ICI . Our claims are supported by
theoretical analysis and simulation results, which are obtained
considering Jakes’ channels with high Doppler spreads.

Index Terms—MIMO systems, OFDM, time-varying Rayleigh
channels, channel estimation, Kalman filter.

I. I NTRODUCTION

Multiple-Input-Multiple-Output (MIMO) antennas with Or-
thogonal Frequency Division Multiplexing (OFDM) provide
high data rates and are robust to multi-path delay in wireless
communications. Channel parameters are required for diver-
sity combining, coherent detection and decoding. Therefore,
channel estimation is essential in MIMO-OFDM system de-
sign. Various OFDM channel estimation schemes have been
proposed in the literature, mostly for single antenna systems
[8] [12] [14] [9] [10]. For MIMO-OFDM systems, most of
the channel estimation schemes have focused on pilot-assisted
approaches [1] [3] [4], based on a quasi-static fading model
that allows the channel to be invariant within a MIMO-OFDM
block. However, in fast fading channels, the time-variation
of the channel within a MIMO-OFDM block results in a
loss of subcarrrier orthogonality which leads to intercarrier
interference (ICI) [8] [2]. To support high speed mobile
channels, the channel time-variation within a block must be
considered. Channel estimation can be summarized by two
approaches. The first one is to estimate the equivalent discrete-
time channel taps [2] [12] whereas the second approach is to
directly estimate the physical propagation channel parameters
such as multi-path delays and multi-path complex gains [14]
[8]. In Radio-Frequencies transmission, the delays are quasi
invariant over several MIMO-OFDM blocks [11] [9] whereas
the complex gains may change significantly, even within one
MIMO-OFDM block. Exploiting the channel nature and as-
suming the availability of delay information, a lot of methods
estimate the multi-path complex gains [8] [10] [9]. There are
more channel parameters in fast fading channels than in quasi-

static fading channels. Therefore, in single antenna systems,
many existing works resort to the basis expansion model
(BEM) in order to estimate the time-variation of the channel
taps or the multi-path complex gains within a block [14] [8].
The BEM methods are discrete Karhunen-Love BEM (DKL-
BEM), discrete prolate spheroidal BEM (PS-BEM), complex-
exponential BEM (CE-BEM), generalized CE-BEM (GCE-
BEM) and polynomial BEM (P-BEM).

In this paper, we present a new iterative algorithm for joint
Rayleigh channel (taps or complex gains) estimation and data
recovery in fast time-varying environments. After approxi-
mated the time-variation of the channel by a BEM, an auto-
regressive (AR) model of the BEM coefficients dynamics is
built based on the Jakes process. Hence, the BEM coefficients
are estimated and tracked by using the Kalman filter. In order
to perform BEM coefficients estimation, we use the estimate
along with the channel matrix output to recover the transmitted
data. One can, in turn, use the detected data along with pilots
to enhance the BEM coefficients estimate giving rise to an
iterative technique for channel estimation and data recovery.
The data detection is performed by using the MMSE-equalizer
[13] or the QR-equalizer [8] [7].

This paper is organized as follows: Section II introduces
the MIMO-OFDM system and the BEM modeling. Section
III describes the AR model for the BEM coefficients and
the Kalman filter. Section IV covers the algorithm for joint
channel estimation and data recovery. Section V presents the
simulations results which validate our technique. Finally, our
conclusions are presented in Section VI.

The notations adopted are as follows: Upper (lower) bold
face letters denote matrices (column vectors).[x]k denotes the
kth element of the vectorx, and [X]k,m denotes the[k,m]th
element of the matrixX. We will use the matlab notation
X[k1:k2,m1:m2] to extract a submatrix withinX from row k1 to
row k2 and from columnm1 to columnm2. IN is aN ×N
identity matrix and0N is aN×N matrix of zeros. diag{x} is a
diagonal matrix withx on its main diagonal and blkdiag{X,Y}
is a block diagonal matrix with the matricesX and Y on
its main diagonal. The superscripts(·)T , (·)∗ and (·)H stand
respectively for transpose, conjugate and Hermitian operators.
Tr(·) and E[·] are respectively the determinant and expectation
operations.J0(·) is the zeroth-order Bessel function of the first
kind.



ISCCSP 2010 2

II. MIMO-OFDM SYSTEM AND CHANNEL MODELS

A. MIMO-OFDM System Model

Consider a MIMO-OFDM system withNT transmit anten-
nas,NR receive antennas,N sub-carriers, and a cyclic prefix
lengthNg. The duration of a MIMO-OFDM block isT = vTs,
whereTs is the sampling time andv = N +Ng. Let x(n) =
[

xT(1,n), x
T
(2,n), ..., x

T
(NT ,n)]

]T
be thenth transmitted MIMO-

OFDM block, where x(t,n) =
[

x(t,n)[−
N
2 ], x(t,n)[−

N
2 +

1], ..., x(t,n)[
N
2 − 1]

]T
is the nth transmitted OFDM symbol

by the tth transmit antenna and{x(t,n)[b]} are normalized
symbols (i.e.,E

[

x(t,n)[b]x
∗
(t,n)[b]

]

= 1). After transmission
over a multi-path Rayleigh channel, thenth received MIMO-
OFDM block y(n) =

[

yT(1,n), y
T
(2,n), ..., y

T
(NR,n)]

]T
, where

y(r,n) =
[

y(r,n)[−
N
2 ], y(r,n)[−

N
2 + 1], ..., y(r,n)[

N
2 − 1]

]T
is

thenth received OFDM symbol by therth receive antenna, is
given by [9] [12]:

y(n) = H(n) x(n) + w(n) (1)

where w(n) =
[

wT
(1,n),w

T
(2,n), ...,w

T
(NR,n)]

]T
, with w(r,n) =

[

w(n)[−
N
2 ], w(n)[−

N
2 +1], ..., w(n)[

N
2 − 1]

]T
is a white com-

plex Gaussian noise vector of covariance matrixNT .σ
2IN and

H(n) is aNRN ×NTN MIMO channel matrix given by:

H(n) =







H(1,1,n) · · · H(1,NT ,n)

...
. . .

...
H(NR,1,n) · · · H(NR,NT ,n)






(2)

whereH(r,t,n) is the channel matrix between thetth transmit
antenna and therth receive antenna. The elements of channel
matrix H(r,t,n) can be written in terms of equivalent channel

taps [2]
{

g
(n)
(l,r,t)(qTs) = g(l,r,t)(nT + qTs)

}

or in terms of

physical channel parameters [8]: delays
{

τ(l,r,t)
}

and complex

gains
{

α
(n)
(l,r,t)(qTs) = α(l,r,t)(nT + qTs)

}

, as:

[H(r,t,n)]k,m

=
1

N

L′

(r,t)
∑

l=1

[

e
−j2π(m−1

N
− 1

2
)(l−1)

N−1
∑

q=0

g
(n)

(l,r,t)(qTs)e
j2π m−k

N
q
]

(3)

=
1

N

L(r,t)
∑

l=1

[

e
−j2π(m−1

N
− 1

2
)τ(l,r,t)

N−1
∑

q=0

α
(n)

(l,r,t)(qTs)e
j2π m−k

N
q
]

(4)

whereL′
(r,t) < Ng andL(r,t) are respectively the number of

channel taps and the number of paths for the branch between
the tth transmit antenna and therth receive antenna. The
delays are normalized byTs and not necessarily integers
(τ(l,r,t) < Ng). The L(r,t) elements of

{

α
(n)
(l,r,t)(qTs)

}

are

uncorrellated. Howerver, theL′
(r,t) elements of

{

g
(n)
(l,r,t)(qTs)

}

are correlated, unless that the delays are multiple ofTs

as mostly assumed in the litterature. They are wide-sense
stationary (WSS), narrow-band zero-mean complex Gaussian
processes of variancesσ2

g(l,r,t)
and σ2

α(l,r,t)
, with the so-

called Jakes’ power spectrum of maximum Doppler frequency

fd [18]. The average energy of each channel approach is

normalized to one,i.e.,

L′

(r,t)
∑

l=1

σ2
g(l,r,t)

= 1 and

L(r,t)
∑

l=1

σ2
α(l,r,t)

= 1.

In the sequel, we will make the calculus based on the second
approach (physical channel) and we can deduce the results of
the first approach (channel taps) by replacingL(r,t) by L′

(r,t)

and the set of delays
{

τ(l,r,t)
}

by
{

l − 1, l = 1 : L′
(r,t)

}

.

B. BEM Channel Model

Let L =

NR
∑

r=1

L(r) =

NR
∑

r=1

NT
∑

t=1

L(r,t) be the total number of

complex gains for the MIMO channel and designate by(t, r)
the branch between thetth transmit antenna and therth receive
antenna. Since the number of samples to estimateLv is greater
than the number of observation equationsNRN , it is not effi-
cient to estimate the time-variation of the complex gains, using
directly the observation model in (1). Thus, we need to reduce
the number of parameters to estimate. In this section, our aim
is to accurately model the time-variation ofα(n)

(l,r,t)(qTs) by
using a BEM. Collecting the samples of thelth path of the
branch(r, t) within the nth MIMO-OFDM block in a v × 1

vectorα(n)
(l,r,t) =

[

α
(n)
(l,r,t)(−NgTs), ..., α

(n)
(l,r,t)

(

(N − 1)Ts

)]T
,

we can expressα(n)
(l,r,t) as:

α
(n)
(l,r,t) = α

(n)
BEM(l,r,t)

+ ξ
(n)
(l,r,t) = Q c(n)(l,r,t) + ξ

(n)
(l,r,t) (5)

where Q = [q1, ...,qNc
] is a v × Nc matrix that collects

Nc orthonormal basis functionqd as columns,c(n)(l,r,t) =
[

c
(n)
(1,l,r,t), ..., c

(n)
(Nc,l,r,t)

]T
represent theNc BEM coefficients

for the lth complex gain of the branch(r, t) of thenth MIMO-
OFDM block, andξ(n)(l,r,t) represents the corresponding BEM
modeling error, which is assumed to be minimized in the
MSE sense [16] [5]. Under this criterion, the optimal BEM
coefficients and the corresponding model error are given by:

c(n)(l,r,t) =
(

QHQ
)−1

QHα
(n)
(l,r,t) (6)

ξ
(n)
(l,r,t) = (Iv − S)α(n)

(l,r,t) (7)

whereS= Q
(

QHQ
)−1

QH is av×v matrix. It provides the
MMSE approximation for all BEM containingNc coefficients,
given by:

MMSE(l,r,t) =
1

v
E
[

ξ
(n)
(l,r,t)ξ

(n)
(l,r,t)

H]

(8)

=
1

v
Tr

(

(

Iv − S
)

R(0)
α(l,r,t)

(

Iv − SH
)

)

(9)

whereR(s)
α(l,r,t)

= E

[

α
(n)
(l,r,t)α

(n−s)
(l,r,t)

H
]

is thev×v correlation

matrix of α(n)
(l,r,t) with elements given by:

[R(s)
α(l,r,t)

]k,m = σ2
α(l,r,t)

J0

(

2πfdTs(k −m+ sv)

)

(10)

Various traditional BEM designs have been reported to model
the channels time-variations, e.g., the CE-BEM[Q]k,m =

ej2π(
k−Ng−1

v
)(m−1−Nc−1

2 ) [15], the GCE-BEM [Q]k,m =
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ej2π(
k−Ng−1

av
)(m−1−Nc−1

2 ) with 1 < a ≤ Nc−1
2fdT

[16], the P-
BEM [Q]k,m = (k − Ng − 1)(m−1) [5] and the DKL-BEM
which employs basis sequences that corresponds to the most
significant eigenvectors of the autocorrelation matrixR(0)

α(l,r,t)

[17]. From now on, we can describe the MIMO-OFDM system
model derived previously in terms of the BEM. Substituting
(5) in (1) and neglecting the BEM model error, we obtain after
some algebra:

y(n) = K(n) c(n) + w(n) (11)

where theLNc × 1 vector c(n) and theNRN × LNc matrix
K(n) are given by:

c(n) =
[

cT(1,1,n), ..., c
T
(1,NT ,n), ..., c

T
(NR,NT ,n)

]T

c(r,t,n) =
[

c(n)
T

(1,r,t), ..., c
(n)T

(L(r,t),r,t)

]T

K(n) = blkdiag
{

K(1,n), ...,K(NR,n)

}

K(r,n) =
[

K(r,1,n), ...,K(r,NT ,n)

]

K(r,t,n) =
1

N

[

Z(n)
(1,r,t), ...,Z

(n)
(Lr,t),r,t)

]

Z(n)
(l,r,t) =

[

M (1)diag{x(t,n)}f(l,r,t), ...,M (Nc)diag{x(t,n)}f(l,r,t)
]

wheref(l,r,t) is thelth column of theN×L(r,t) Fourier matrix
F(r,t) andM (d) is aN ×N matrix given by:

[F(r,t)]k,l = e−j2π( k−1
N

− 1
2 )τ(l,r,t) (12)

[

M (d)

]

k,m
=

N−1
∑

q=0

[Q]q+Ng+1,d ej2π
m−k
N

q (13)

Moreover, the channel matrix of the branch(r, t) can be easily
computed by using the BEM coefficients [9]:

H(r,t,n) =

Nc
∑

d=1

M (d)diag{F(r,t)χ
(n)
(d,r,t)} (14)

whereχ
(n)
(d,r,t) =

[

c
(n)
(d,1,r,t), ..., c

(n)
(d,L(r,t,),r,t)

]T
. The matrices

M (d) can be computed and stored.

III. AR M ODEL AND KALMAN FILTER

A. The AR Model forc(n)

The optimal BEM coefficientsc(n)(l,r,t) are correlated complex
Gaussian variables with zero-means and correlation matrix
given by:

R(s)
c(l,r,t) = E[c(n)(l,r,t)c

(n−s)
(l,r,t)

H

]

=
(

QHQ
)−1

QHR(s)
α(l,r,t)

Q
(

QHQ
)−1

(15)

Hence, the dynamics ofc(n)(l,r,t) can be well modeled by an
auto-regressive (AR) process [19] [20] [8] . A complex AR
process of orderp can be generated as:

c(n)(l,r,t) = −

p
∑

i=1

A(i)c(n−i)
(l,r,t) + u(n)

(l,r,t) (16)

where A(1), ...,A(p) are Nc × Nc matrices andu(n)
(l,r,t) is

a Nc × 1 complex Gaussian vector with covariance matrix

U(l,r,t). The matricesA(1), ...,A(p) and U(l,r,t) are the AR
model parameters obtained by solving the set of Yule-Walker
equations defined as:

TA = − V and U(l,r,t) = R(0)
c(l,r,t) +

p
∑

i=1

A(i)R(−i)
c(l,r,t) (17)

whereA =
[

A(1)T , ...,A(p)T
]T

is pNc×Nc matrix, V andT
arepNc ×Nc andpNc × pNc matrices defined by:

V =
1

σ2
α(l,r,t)

[

R(1)T

c(l,r,t) , ...,R
(p)T

c(l,r,t)

]T

(18)

T =
1

σ2
α(l,r,t)









R(0)
c(l,r,t) · · · R(−p+1)

c(l,r,t)
...

. . .
...

R(p−1)
c(l,r,t) · · · R(0)

c(l,r,t)









(19)

Using (16), we obtain the AR model of orderp for c(n):

c(n) = −

p
∑

i=1

A(i)c(n−i) + u(n) (20)

where A(i) = blkdiag
{

A(i), ...,A(i)
}

is a LNc × LNc

matrix and u(n) =
[

u(n)T

(1,1,1), ...,u
(n)T

(L(NR,NT ),NR,NT )

]T

is a
LNc × 1 complex Gaussian vector with covariance matrix
U = blkdiag

{

U(1,1,1), ...,U(L(NR,NT ),NR,NT )

}

.

B. The Kalman Filter

Based on the AR model ofc(n) in (20), we define the
state space model for the MIMO-OFDM system asg(n) =

[cT(n), ..., c
T
(n−p+1)]

T . Thus, using (20) and (11), we obtain:

g(n) = S1g(n−1) + S2u(n) (21)

y(n) = S3g(n) + w(n) (22)

whereS2 = [ILNc
,0LNc,(p−1)LNc

]T is apLNc×LNc matrix,
S3 = [K(n),0N,(p−1)LNc

] is aN × pLNc matrix andS1 is a
pLNc × pLNc matrix defined as:

S1 =















−A(1) −A(2) −A(3) · · · −A(p)

ILNc
0LNc

0LNc
· · · 0LNc

0LNc
ILNc

0LNc
· · · 0LNc

...
.. .

. . .
. . .

...
0LNc

· · · 0LNc
ILNc

0LNc















(23)

The state and the observation models (21) (22) allow us to use
Kalman filter to adaptively track the BEM coefficientsc(n). Let
ĝ(n) be our a priori state estimate at stepn given knowledge
of the process prior to stepn, ĝ(n|n) be our a posteriori state
estimate at stepn given measurementy(n) and,P(n) andP(n|n)

are the a priori and the a posteriori error estimate covariance
matrix of sizepLNc × pLNc, respectively. We initialize the
Kalman filter withg(0|0) = 0pLNc,1 andP(0|0) given by:

P(0|0)[u(s),u(s′)]
= R(s−s′)

c (24)

R(s)
c = blkdiag

{

R(s)
c(1,1) , ...,R

(s)
c(NR,NT )

}

R(s)
c(r,t) = blkdiag

{

R(s)
c(1,r,t) , ...,R

(s)
c(L(r,t),r,t)

}



ISCCSP 2010 4

whereu(s) = 1 + LNc : (s+ 1)LNc with s ∈ [0, p − 1] and
R(s)

c(l,r,t) is the correlation matrix ofc(n)(l,r,t) defined in (15). The
Kalman filter is a recursive algorithm composed of two stages:
Time Update Equations and Measurement Update Equations.
These two stages are defined as:

Time Update Equations:

ĝ(n) = S1ĝ(n−1|n−1)

P(n) = S1P(n−1|n−1)S
H
1 + S2USH

2 (25)

Measurement Update Equations:

K (n) = P(n)S
H
3

(

S3P(n)S
H
3 +NT .σ

2INRN

)−1

ĝ(n|n) = ĝ(n) + K (n)

(

y(n) − S3ĝ(n)
)

P(n|n) = P(n) − K (n)S3P(n) (26)

whereK (n) is the Kalman gain. The Time Update Equations
are responsible for projecting forward (in time) the current
state and error covariance estimates to obtain the a priori
estimates for the next time step. The Measurement Update
Equations are responsible for the feedback,i.e., for incor-
porating a new measurement into the a priori estimate to
obtain an improved a posteriori estimate. The Time Update
Equations can also be thought of a predictor equations, while
the Measurement Update Equations can be thought of a
corrector equations.

IV. JOINT DATA DETECTION AND KALMAN ESTIMATION

A. Iterative Algorithm

In the iterative algorithm for joint data detection and channel
Kalman estimation, theNp pilots subcarriers are evently
inserted into the N subcarriers at the positionsP = {pr | pr =
(r − 1)Lf + 1, r = 1, ..., Np}, whereLf is the distance
between two adjacent pilots. We test two channel equalizers
for the data detection: the MMSE equalizer [13] and the QR-
equalizer [8] [7]. The first one is based on the noise variance
NT .σ

2 whereas the second equalizer allows us to estimate
the data symbol with free ICI by performing a so-called QR-
decomposition. The algorithm proceeds as follows:

initialization:
• g(0|0) = 0pLNc,1

• computeP(0|0) as (24)
• n← n+ 1

• execute the Time Update Equations of Kalman filter(25)
• compute the channel matrix using(14)
• i← 1

recursion:
1) remove the pilot ICI from the received data subcarriers
2) Detection of data symbols
3) execute the Measurement Update Equations of Kalman filter(26)
4) compute the channel matrix using(14)
5) i← i+ 1

wherei represents the iteration number.

B. Mean Square Error (MSE) Analysis

The error between thelth exact complex gain and thelth
estimated polynomial̂α(n)

BEM(l,r,t)
is given by:

e(n)(l,r,t) = α
(n)
(l,r,t) − α̂

(n)
BEM(l,r,t)

= ξ
(n)
(l,r,t) + Qe(n)c(l,r,t) (27)

wheree(n)c(l,r,t) = c(n)(l,r,t)− ĉ(n)(l,r,t) andξ(n)(l,r,t) is the BEM model
error defined in (7). Neglecting the cross-covariance terms
betweenξ(n)(l,r,t) and e(n)c(l,r,t) , the mean square error (MSE)

betweenα(n)
(l,r,t) andα(n)

BEM(l,r,t)
is given by:

MSE(l,r,t) =
1

v
E
[

e(n)
H

(l,r,t)e
(n)
(l,r,t)

]

= MMSE(l,r,t) +
1

v
Tr

(

Q MSEc(l,r,t)Q
H
)

(28)

where MSEc(l,r,t) = E
[

e(n)c(l,r,t)e
(n)
c(l,r,t)

H]

. Notice that, at the
convergence of the Kalman filter, we have:

MSEc(l,r,t) = P(n|n)[f(l,r,t),f(l,r,t)]
(29)

provided that the data symbols are perfectly estimated
(i.e., data-aided context), where the sequence of indices
f(l, r, t) = 1 + (l − 1 + a(r,t))Nc : (l + a(r,t))Nc with

a(r,t) =
r−1
∑

r′=1

t−1
∑

t′=1

L(r′,t′).

The on-line Bayesian Cramer-Rao Bound (BCRB) is an im-
portant criterion for evaluting the quality of the complex gains
Kalman estimation. The on-line BCRB for the estimation of
α

(n)
(l,r,t), in data-aided (DA) context, is given by:

BCRB(α(∞)
(l,r,t)) = MMSE(l,r,t)+

1

v
Tr

(

QBCRB(c(∞)
(l,r,t))Q

H
)

(30)
whereBCRB(c(K)

(l,r,t)) is the on-line BCRB associated to the

estimation ofc(K)
(l,r,t) which is given by:

BCRB(c(K)
(l,r,t)) = BCRB(c)[f(l,r,t),f(l,r,t)] (31)

BCRB(c) is the on-line BCRB for the estimation ofc =
[

cT(K), ..., c
T
(1)

]T

in DA context which is given by:

BCRB(c) =
(

blkdiag
{

J(K), ..., J(2), J(1)
}

+ R−1
c

)−1

(32)

whereRc is calculated in the same way asP(0|0) with s, s′ ∈
[0,K − 1], andJ(n) is aLNc × LNc matrix given by [5]:

J(n) = blkdiag
{

J(1,n), ..., J(NR,n)

}

(33)

J(r,n) =







J(r,1,1,n) · · · J(r,1,NT ,n)

...
. . .

...
J(r,NT ,1,n) · · · J(r,NT ,NT ,n)






(34)

J(r,t,t′,n) =
1

N2NTσ2
F

H
(r,t,n)MF (r,t′,n) (35)
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Fig. 1. MSE vs SNR forfdT = 0.5 and GCE-BEM withNc = 4

where M and F (r,t,n) are aNNc × NNc and aNNc ×
L(r,t)Nc matrices, respectively, defined as:

M =







MH
(1)M (1) · · · MH

(1)M (Nc)

...
. . .

...
MH

(Nc)
M (1) · · · MH

(Nc)
M (Nc)






(36)

F (r,t,n) =
[

F (1,r,t,n) · · · F (L(r,t),r,t,n)

]

(37)

where theNNc ×Nc matrix F (l,r,t,n) is given by:

F (l,r,t,n) = (38)

blkdiag
{

diag{x(t,n)}f(l,r,t), ...,diag{x(t,n)}f(l,r,t)
}

V. SIMULATION

In this section, we verify the theory by simulation and
we test the performance of the iterative algorithm based on
the second approach (i.e., estimation ofα assuming the
availability of delay information). We assume that the channels
from different transmitters to the different receivers have the
same delay and fading property (i.e., same number of paths,
σ2
α(l,r,t)

and τ(l,r,t)) and we use the Rayleigh channel model
given in [8] [5]. It is reasonable because the transmitters
and the receivers are very close to each other in practice. A
normalized 4QAM MIMO-OFDM system, with two transmit
and two receive antennas,N = 256 subcarriers,Ng = N

8 ,
Np = N

4 pilots (i.e., Lf = 4) and 1
Ts

= 2MHz is used (note
that SNR= 1

σ2 ). The MSE and the BER are evaluated under a
rapid time-varying channel such asfdT = 0.5 corresponding
to a vehicle speedVm = 400km/h for fc = 10GHz. In order
to decrease the complexity of the Kalman filter, we choose an
AR model of orderp = 1.

Fig. 1 and Fig. 2 show respectively the evolution of MSE
and BER versus SNR, with the iterations, forfdT = 0.5
and GCE-BEM. We selectNc = 4 in order to reduce the
impact of the BEM modeling error. The equalizers used for
data detection are: the MMSE equalizer [13] and the QR-
equalizer [8] [7]. From Fig. 1, it is shown that, with DA,
the MSE obtained by simulation agrees with the theoretical
value of MSE given by (29). We also observe that MSE with
DA is very close to the on-line BCRB. This means that the
Kalman filter works very well. After three and nine iterations,
a great improvement is realized and the MSE is close to the
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Fig. 2. BER vs SNR forfdT = 0.5 and GCE-BEM withNc = 4

MSE with DA, particularly in regions of moderate and high
SNR. In Fig. 2, we plotted, as reference, the performance
obtained with perfect channel knowledge. After three and nine
iterations, a significant improvement occurs; the performance
of our algorithm and the performance obtained with perfect
channel knowledge are very close, particularly in regions of
low and moderate SNR. At very high SNR, it is normal to not
reach the reference because we have a small error floor due
to the data symbol detection error. It sould be noted that the
error floor with QR-equalizer is larger than that of the MMSE
equalizer.

VI. CONCLUSION

In this paper, we have presented a new iterative algorithm
for joint multi-path Rayleigh channel estimation and data
recovery in fast time-varying environments. The rapid time-
variation of the channel within one MIMO-OFDM block
are approximated by a BEM model. The BEM coefficients
are tracked and estimated using the Kalman filter. The data
symbols are estimated by performing a QR-decomposition of
the channel matrix or by using a MMSE equalizer. Theoretical
analysis and simulation results show that our algorithm hasa
good performance for high Doppler spread.
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