
HAL Id: hal-00539093
https://hal.science/hal-00539093

Submitted on 24 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Requirements of the SALTY project
Philippe Collet, Mohammed-Amine Abchir, Thierry Bathias, Mireille

Blay-Fornarino, Filip Krikava, Julien Lenoir, Julien Lesbegueries, Sébastien
Madelénat, Jacques Malenfant, David Manset, et al.

To cite this version:
Philippe Collet, Mohammed-Amine Abchir, Thierry Bathias, Mireille Blay-Fornarino, Filip Krikava,
et al.. Requirements of the SALTY project. [Research Report] ???. 2010. �hal-00539093�

https://hal.science/hal-00539093
https://hal.archives-ouvertes.fr

https://salty.unice.fr/

ANR SALTY
Self-Adaptive very Large disTributed sYstems

Work Package: WP1 - Requirements and Architecture
Coordinator: UNS
Deliverable: D-1.1
Title: Requirements of the SALTY project
Submission date: 2nd August 2010
Project start date: 1st November 2009, duration: 36 months
Revision: 201
Last change: 30.07.2010

SALTY Project (ANR-09-SEGI-012) Rev: 201

D-1.1- Requirements of the SALTY project

Authors

(including authors of appendices, see appendices for detailed authorship)

Author Affiliation Role
P. Collet UNS Lead
M.-A. Abchir Deveryware & Univ. Paris 8 Writer
T. Bathias Deveryware Writer
M. Blay-Fornarino UNS Writer
F. Křikava UNS Writer
J. Lenoir Thales Writer
J. Lesbegueries EBM Petals Link Writer
S. Madelénat Thales Writer
J. Malenfant UPMC Writer
D. Manset MAAT-G Writer
O. Melekhova UPMC Writer
R. Mollon MAAT-G Writer
J. Montagnat UNS Writer
R. Nzekwa INRIA Lille Writer
A. Pappa Univ. Paris 8 Writer
J. Revillard MAAT-G Writer
R. Rouvoy INRIA Lille Writer
L. Seinturier INRIA Lille Writer
I. Truck Univ. Paris 8 Writer

SALTY Project (ANR-09-SEGI-012) 2 Rev: 201

D-1.1- Requirements of the SALTY project

Contents

1 Introduction 5
1.1 Overall Context and Motivations . 5
1.2 Definitions . 6
1.3 Self-Adaptive Systems - Classification and Engineering 10
1.4 Organization . 12

2 Use cases 13
2.1 ”Grid” Middleware Use Case . 13

2.1.1 Context . 13
2.1.2 Summary of the scenarii . 15
2.1.3 Experimental setup . 16

2.2 ”ESB” Middleware Use Case . 17
2.2.1 Context . 17
2.2.2 Summary of the scenarii . 18
2.2.3 Experimental setup . 19

2.3 Geo-tracking Use Case . 19
2.3.1 Context . 19
2.3.2 Summary of the scenarii . 20
2.3.3 Experimental setup . 22

3 Features 25
3.1 F.I. Tackling Very-Large-Scale Environments 25

3.1.1 F.I.A. Supporting the distribution of the managed system and the
managing infrastructure . 26

3.1.2 F.I.B. Supporting the large number and the diversity of managed
entities . 26

3.1.3 F.I.C. Supporting the large number and the diversity of managing
entities . 27

3.1.4 F.I.D. Preserving the level of confidentiality of the managed system 28
3.2 F.II. Supporting the Adaptation of Complex Systems-of-Systems 28

3.2.1 F.II.A. Reflecting feedback control loops as first class entities 29
3.2.2 F.II.B. Supporting the monitoring of heterogeneous and complex

data and their quality attributes . 29
3.2.3 F.II.C. Making decisions over complex situations involving multi-

criteria objectives . 30
3.2.4 F.II.D. Executing reliable reconfigurations across distributed entities 31

3.3 F.III. Building a Versatile Feedback Control Loop Framework 31
3.3.1 F.III.A. Adopting SCA as a uniform paradigm to control SOA systems 31
3.3.2 F.III.B. Reusing and sharing the framework artifacts across differ-

ent domain-specific scenarios . 32
3.4 F.IV. Designing and Involving Models Continuously 32

3.4.1 F.IV.A. Adopting a model-driven methodology for the engineering
of SALTY . 33

SALTY Project (ANR-09-SEGI-012) 3 Rev: 201

D-1.1- Requirements of the SALTY project

3.4.2 F.IV.B. Guaranteeing the propagation and the verification of con-
straints and agreements throughout the life-cycle of the system . . 33

4 Perspectives 35

A Self-Adaptive System Classification 39

B Middleware Scenario Specification 45

C Truck Tracking Scenario Specification 94

SALTY Project (ANR-09-SEGI-012) 4 Rev: 201

D-1.1- Requirements of the SALTY project

CHAPTER

1
Introduction

This document is the first external deliverable of the SALTY project (Self-Adaptive very
Large disTributed sYstems), funded by the ANR under contract ANR-09-SEGI-012. It is
the result of task 1.1 of the Work Package (WP) 1 : Requirements and Architecture.

Its objective is to identify and collect requirements from use cases that are going to
be developed in WP 4 (Use cases and Validation). Based on the study and classification
of the use cases, requirements against the envisaged framework are then determined
and organized in features. These features will aim at guide and control the advances
in all work packages of the project. As a start, features are classified, briefly described
and related scenarios in the defined use cases are pinpointed. In the following tasks
and deliverables, these features will facilitate design by assigning priorities to them and
defining success criteria at a finer grain as the project progresses.

This report, as the first external document, has no dependency to any other external
documents and serves as a reference to future external documents. As it has been built
from the use cases studies that have been synthesized in two internal documents of the
project, extracts from the two documents are made available as appendices (cf. appen-
dices B and C).

1.1 Overall Context and Motivations

The growing complexity of software led to huge costs in distributing it to end-users and
maintaining it. Service Oriented Architectures (SOA) intend to cut down the complexities
and costs of software. As most companies forecast to make larger use of these technolo-
gies at all levels of the software ecosystems, mastering the resulting distributed infras-
tructure at a very large scale is a crucial need. The SALTY project aims at proposing a
new step ahead regarding run-time self-adaptation of very large scale distributed sys-
tems. These adaptations are typically triggered in response to variations of performance
required by the applications or to hardly predictable events (software faults, hardware
failures, mobility, etc.). All of these have an impact onto the systems resources availabil-
ity (memory, processor speed, network bandwidth, etc.).

A lot of work towards software and/or hardware based self-adaptation has been car-
ried out and deployed into the field, with resource reservations in telecoms, task schedul-
ing in operating systems, redundant infrastructures in safety critical applications (e.g.,
transportation, nuclear power plants) and even the Internet that provides reasonable
world-wide network availability. But, none of these solutions is designed to address
successfully run-time self-adaptation of large scale distributed systems, which are consis-
tent systems based on distributed hardware platforms connected through heterogeneous
networks, operating distributed middleware, and supporting collaborating applications.
This challenge is now usually put under the umbrella of Autonomic Computing, which
aims at building software systems in such a way that they are self-managing. Autonomic
computing is a broad research domain, covering a large spectrum of areas (software mod-
eling, reflective models, decision-making, large-scale coordination, etc.). It is very clear
that there is a huge gap to be filled in order to get very large scale distributed systems

SALTY Project (ANR-09-SEGI-012) 5 Rev: 201

D-1.1- Requirements of the SALTY project

able to autonomously decide for adaptations at local and/or global scale, taking into ac-
count trade-offs between cost, performance (sometimes with real-time constraints) and
availability.

1.2 Definitions

This section gathers several definitions that are relevant to the SALTY project, ranging
from terms related to autonomic computing to followed approaches and studied use
cases. It must be noted that the definitions related to the project is maintained on the
internal collaborative web site of the project.

Adaptation: process by which a software system of application is modified during its
execution to match the changes in the current requirements of its users and the
current state of its environment.

Automatic control: the mathematical and engineering theories, models and methods
used to design and implement mechanized control systems that regulate them-
selves by acting upon actuators in order to achieve an objective for the controlled
system.

Autonomic computing: self-managing computing model named after, and patterned on,
the human body’s autonomic nervous system. An autonomic computing system
would control the functioning of computer applications and systems without input
from the user, in the same way that the autonomic nervous system regulates body
systems without conscious input from the individual. The goal of autonomic com-
puting is to create systems that run themselves, capable of high-level functioning
while keeping the system’s complexity invisible to the user. Details on an imple-
mentation of Autonomic Computing following the MAPE-K principles are given in
section 1.3.

Cell-Id: a geo-positioning technique that consists in identifying the cell in which a de-
vice connected to a GSM network is, and to approximate its position given the
geographical locus of this cell. This positioning technique does not involve spe-
cific intervention from the cell-phone or device itself; it is rather a paid-for service
provided by the GSM operator using its infrastructure that continuously tracks the
current cell for all cell phones in order to pass on the calls.

Complex Event Processing: Complex Event Processing (CEP) is the use of technology
to predict high-level events likely to result from specific sets of low-level factors.
CEP identifies and analyzes cause-and-effect relationships among events in real-
time, allowing personnel to pro-actively take effective actions in response to specific
scenarios. CEP is an evolving paradigm originally conceived in the 1990s by Dr.
David Luckham at Stanford University [10].

Component-Based System (CBS): A component-based system relies on two important
topics : Component and System. According to the system, the component concept
corresponds to software parts [13] or physical parts of a system [3]. In any case,
components enable practical reuse of system parts. In a more specific way, ”a soft-
ware component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed
independently and is subject to third-party composition.” [13]. A CBS corresponds

SALTY Project (ANR-09-SEGI-012) 6 Rev: 201

D-1.1- Requirements of the SALTY project

consequently to an assembly of components. The component-based systems ap-
proach potentially overcomes difficulties associated with developing and main-
taining monolithic software applications and increases capability to accommodate
change.

Deployment: General deployment process consists of several interrelated activities (re-
lease, install and activate, deactivate, adapt, update, built-in, version tracking, unin-
stall, retire) with possible transitions between them. These activities can occur at
the producer site or at the consumer site or both. Because every software system
is unique, the precise processes or procedures within each activity can hardly be
defined. Therefore, ”deployment” should be interpreted as a general process that
has to be customized according to specific requirements or characteristics.

Feedback control loop: kind of automatic control system where the controller makes repet-
itive actions upon actuators using information obtained from the controlled system
to tailor its actions to the current state of the latter. Details on the MAPE-K organi-
zation of the feedback control loop are given in section 1.3.

Framework: ”A framework is the skeleton of an application that can be customized by
an application developer” [7].

Framework SALTY: The SALTY framework aims at being a customizable and reusable
skeleton of ”autonomic” feedback control loops, targeting large-scale distributed sys-
tems. The framework rests on SOA and SCA infrastructures and is intended to be
built using Model-Driven Engineering techniques.

Fuzzy logic: is an extension of classical logic meant to reason about imprecise data. In
fuzzy logic, the binary truth values are replaced by a continuous domain [0, 1] of
degree of truth. Based on degrees of membership expressed as membership func-
tions defining fuzzy subsets, fuzzy logic use several variants of generalized modus
ponens as its primary inference rule. Fuzzy logic emerged as a consequence of the
1965 proposal of fuzzy set theory by Lotfi Zadeh [14].

Geotracking: the process by which positioning techniques based on different types of
devices are use to follow mobile entities over a geographical area in order to fulfill
some objective. Geotracking therefore involves two convergent actions repeated
continuously: getting the position of the mobile and relating this position to the
geographical locus to which it belongs.

Global Positioning System: the global positioning system describes in the general sense
a positioning system involving a constellation of satellites orbiting the earth emit-
ting continuously signals from which dedicated devices (namely GPS) can compute
their current position by triangulation. Devices need to receive signals from at least
three different satellites in order to be able to locate itself. More satellites add pre-
cision to the computation, as it is also sensible to the angle between the different
emitters.

Grid computing: Grid computing is a term referring to the combination of computer re-
sources from multiple administrative domains to reach common goal. What distin-
guishes grid computing from conventional high performance computing systems
such as cluster computing is that grids tend to be more loosely coupled, hetero-
geneous, and geographically dispersed. It is also true that while a grid may be

SALTY Project (ANR-09-SEGI-012) 7 Rev: 201

D-1.1- Requirements of the SALTY project

dedicated to a specialized application, a single grid may be used for many different
purposes.

Image Processing: Image processing is any form of signal processing for which the input
is an image, such as a photograph or video frame; the output of image processing
may be either an image or, a set of characteristics or parameters related to the image.

Large-Scale System: Within the SALTY framework, we consider that Large-scale sys-
tems are systems of unprecedented scale in some of these dimensions (extracted
from [12], which defines them as ”Ultra Large-Scale Systems”):

• amount of data stored, accessed, manipulated, and refined

• number of connections and interdependencies

• number of computational elements

• number of system purposes and user perception of these purposes

• number of (overlapping) policy domains and enforceable mechanisms

”These systems are necessarily decentralized in a variety of ways, developed and
used by a wide variety of stakeholders with conflicting needs, evolving continu-
ously, and constructed from heterogeneous parts.” [12]) .

Markovian Decision Processes (MDP): a Markovian Decision Process (MDP) is a math-
ematical framework for a kind of sequential decision making problem where the out-
comes and transitions among states given a decision are partly random and partly
under the control of the decision maker through his sequence of decisions. MDPs
are used to model a wide-spectrum of optimization problems solved either via dy-
namic programming or reinforcement learning.

Model-Driven Engineering (MDE): According to OMG, ”model-driven” stands for ”a
means for using models to direct the course of understanding, design, construction,
deployment, operation, maintenance and modification” [11].

Monitoring: Monitoring is the regular observation and recording of activities taking
place in a system or an application. It is a process of routinely gathering infor-
mation on all aspects of the system. To monitor is to check on how system activities
are progressing. Monitoring also involves giving feedback about the progress of the
system to the users, administrators and owners of the system. Reporting enables
the gathered information to be used in making decisions for repairing or adapting
the system, as well as for improving its performance.

Multi-criteria Decision Making: kind of decision making where several possibly con-
tradictory criteria are used to assess the decisions made and the system on which
these decisions are implemented. In the context of SALTY, quality of service is a typ-
ical multi-criteria context, as it usually encompasses several different dimensions
(latency, availability, performance, precision, etc.). Multi-criteria decision making
leverages utility theory and other models of user preferences in order to build a non-
ambiguous comparison scale among the different criteria.

Preference modeling: elicitation process by which users deal with several possibly con-
tradictory criteria by expressing their preference among them. Arising in the con-
text of multi-criteria decision-making, preference modeling aims at putting tuples of
values from the different criteria under a unique comparison scale, in order to get

SALTY Project (ANR-09-SEGI-012) 8 Rev: 201

D-1.1- Requirements of the SALTY project

a complete order among them. Several models for preference have been proposed
in the past, some of them leveraging properties of preferences, like the general ad-
ditive independence, to express graphically local dependencies among otherwise
independent criteria. GAI-networks and the family of CP-nets formalisms fall into
this category. Other approaches construct utility functions directly, mapping tuples
to utility values in R, from the tuples themselves and inputs from domain experts
(users) who determine their preferences among them, often two by two. These
approaches therefore strive to infer the overall complete order from the set of two-
by-two orders between tuples given by experts.

Quality of Service (QoS): The term of Quality of Service (QoS) originated from the com-
puter networking domain in which it characterized properties of the networks to
deliver service as data flow in a predictable way. QoS attributes often include avail-
ability (uptime), throughput (bandwidth), latency (delay), and error rate. In a SOA
context, QoS usually refers to non-functional properties of services (e.g., Web Ser-
vices), such as availability (possible immediate usage), accessibility (capacity of
serving a request), integrity (capacity to maintain the correction of several interac-
tions), performance (throughput and latency), reliability (maintaining service qual-
ity), regulatory (conformance to rules and standards), security (confidentiality and
non-repudiation). QoS dimensions are usually used inside SLA.

Self-adaptation: process by which a software system or application act upon itself to
perform its own adaptation. Self-adaptation requires that the software has a reflec-
tive architecture in order to be able to perform introspective (examining itself) and
intercession (modifying itself). A classification concerning self-adaptive systems is
given in section 1.3.

Sequential Decision Making Problem: a sequential decision making problem occurs in
decision-making situations where decisions are made over time and trigger changes
in the state on the system upon which these decisions are implemented, so that
the nature and the outcome of further decisions depend upon prior ones. Hence,
sequential decision making usually incurs a trade-off between the short-term out-
comes of the next decision and the long-term overall outcomes of the whole se-
quence of future decisions.

Service Component Architecture (SCA): Relatively new initiative advocated by major
software vendors. Its proponents claim it is more natively suited for the delivery of
applications that conform with the SOA principles. As such, SCA components are
supposedly more technologically agnostic. The value proposition of SCA, there-
fore, is to offer the flexibility for true composite applications, flexibly incorporating
reusable components in an SOA programming style. The overhead of business logic
programmer concerns regarding platforms, infrastructure, plumbing, policies and
protocols are removed, enabling a high degree of programmer productivity.

Service-Level Agreement (SLA): A Service-Level Agreement (SLA) is a representation
of all features a user (human or machine) should expect to receive by a service.
These features encompass both functionality delivered but also the quality experi-
enced by the user, referred as Quality of Service. The SLA is usually a negotiated
agreement between the consumer and the provider of the service. The agreement
usually contains the specified level of service and QoS, some means to measure or
monitor it, as well as penalty provisions and remedial actions in case of failure. It

SALTY Project (ANR-09-SEGI-012) 9 Rev: 201

D-1.1- Requirements of the SALTY project

is sometimes referred as service level contract. In the SOA context, specification
standards have moved from WSLA to Ws-Agreement (Web Services Agreement
Specification).

Service-Oriented Architecture (SOA): This architecture gathers design principles for sys-
tems dealing with services integration. A deployed SOA is composed of services
that are organized in a loosely coupled way. Services are associated each other
thanks to orchestration. This concept consists in a tool able to compose services
in a structured way and build executable processes. Main implementation stan-
dards associated with SOA are the ”Web Services Description Language” (WSDL)
for describing services and the ”Business Process Executable Language” (BPEL) for
orchestrating them.

Stability: the property of a feedback control loop to maintain the system at its nominal
state with minimal deviations. Sources of instabilities are: (1) latency in the evolu-
tion of the system, when decisions are made before the system reaches its nominal
state after a decision, such that a new decision may be mislead by an intermediate
state triggering a unnecessary strong decision, (2) power of the control, when the
power of available decisions to react to some state forces the system away from the
nominal state, thus immediately requiring a corrective action that may again be too
strong and so on, and (3) the variations in the input to the system, when they are
too large for the power of the control, actions cannot compensate for such large
variations that can therefore force the system out of its nominal state at the same
pace.

System: We present the SALTY concepts in terms of some existing or planned systems.
”That system may include anything: a program, a single computer system, some
combination of parts of different systems, a federation of systems, each under sepa-
rate control, people, an enterprise, a federation of enterprises? A model of a system
is a description or specification of that system and its environment for some certain
purpose.” [11]

1.3 Self-Adaptive Systems - Classification and Engineering

This section presents the classification that is used to characterize representative scenarii
in SALTY’s use cases, and the main principles of the MAPE-K feedback control loop that
serves as a general architectural guide for the envisioned framework.

In order to classify and to give elements of comparison between the considered sce-
narios of all use cases, we choose to rely on a recent classification of self-adaptive sys-
tems [5]. This classification defines four modeling dimensions each describing a particu-
lar aspect of the system that is relevant to the self-adaptation:

Goals. Goals are the objectives the system under consideration should achieve. They
are classified based on their evolution, whether they can change within the life-
time of the system; flexibility to express the level of uncertainty associated with
the goal specification; duration to concern the validity of a goal throughout the sys-
tem’s lifetime; multiplicity expressing the number of goals associated with the self-
adaptability of the system and dependency in case the system has multiple goals to
capture how they are related to each other.

SALTY Project (ANR-09-SEGI-012) 10 Rev: 201

D-1.1- Requirements of the SALTY project

Change. Changes are the causes of self-adaptation - whenever the system’s context changes
the system should decide whether it needs to adapt. The context dependable changes
of the self-adaptive systems are classified in terms of the source (place) where the
change has occurred, the type and frequency, and whether it can be anticipated. All
these dimensions are important for identifying how the system should act upon a
change during run-time.

Mechanisms. The dimension associated with the mechanisms to achieve self-adaptability.
This set captures the system reaction towards change, they are related to the adap-
tation process itself. The dimensions refer to the type of self-adaptation that is ex-
pected; the level of autonomy; organization of self-adaptation - centralized, or dis-
tributed amongst several components, the impact of self-adaptation in terms of
scope - local or global; and duration - time in which the system is self-adapting (how
long does the adaptation last; timeliness capturing whether the time period for per-
forming adaptation can be guaranteed; triggering identifying whether the change
initiating the adaption is triggered by time or event.

Effects. Effects indicates what is the impact of adaptation upon the system. It refers to
criticality of the adaptation; predictability of the consequences of self-adaptation (can
be both in value and time), what are the overhead associated with it, and whether
the system is resilient1 in the face of change.

The full overview about the classification is provided in [5] and a summary in A.

Engineering of these systems is a major challenge. What they have in common is
that the design decisions are being moved towards runtime to control dynamic behavior
and that an individual system reasons about its state and environment. In both [5, 4] it
is strongly argued that self-adaptive systems must be based on the feedback principle
taken from control engineering and they advocate that the feedback loops provide the
generic mechanism for self-adaptation. In designing self-adaptive systems, the feedback
loops that control self-adaptation must become first-class entities.

For a system component to be self-managing, it must have an automated method
to collect the details it needs from the system; to analyze those details to determine if
something needs to change; to create a plan, or sequence of actions, that specifies the nec-
essary changes and to perform those actions [1]. In the same white paper IBM presents
an architectural blueprint for autonomic computing. They introduce an autonomic man-
ager, a component that implements an intelligent control loop - MAPE-K control loop (cf.
Fig. 1.1). The name is an abbreviation for Monitor, Analyze, Plan, Execute and Knowledge.
The loop is divided into four parts that share knowledge:

• The monitor function provides the mechanisms that collect, aggregate, filter and
report details (such as metrics and topologies) collected from a managed resource.

• The analyze function provides the mechanisms that correlate and model complex
situations (for example, time-series forecasting and queuing models). These mech-
anisms allow the autonomic manager to learn about the IT environment and help
predict future situations.

• The plan function provides the mechanisms that construct the actions needed to
achieve goals and objectives. The planning mechanism uses policy information to
guide its work.

1it is related to the persistence of service delivery that can be justifiably trusted, when facing changes.

SALTY Project (ANR-09-SEGI-012) 11 Rev: 201

D-1.1- Requirements of the SALTY project

Monitor collets, filters
and aggregate

information from some
of the sensors on

managed resource

Analyze correlates and
models complex

situations

Execute controls the
execution of a plan and
directly interacts with
some of the effectors

on the managed
resource

Plan following high-
level policies constructs
the actions needed to

achieve goals and
objectives

Monitor

Analyze Plan

Execute
Knowledge

Autonomic Manager

Managed resource touchpoint

Managed Resource

Sensors Effectors

Figure 1.1: MAPE-K control loop

• The execute function provides the mechanisms that control the execution of a plan
with considerations for dynamic updates.

The autonomic manager provides sensor and effector interfaces for other autonomic
managers and components in the distributed infrastructure to use. Using sensors and ef-
fectors interfaces for the distributed infrastructure components enables these components
to be composed together in a manner that is transparent to the managed resources [1].

1.4 Organization

The remainder of this document is organized as follows. Chapter 2 is briefly describing
the two use cases that serve both as requirement sources and validation elements. All
representative scenarios are also synthesized and references to complete descriptions in
appendices B and C are given. In chapter 3, envisaged features of the SALTY project
are categorized and synthetically described. Relations to the previously listed scenarios
are also determined. Perspectives and next steps regarding the project are described in
chapter 4. They cover analysis and design of first models and running systems making
up the SALTY framework, as well as advances in the use cases. Appendix A details the
classification that has been previously introduced. In appendix B the scenarii related to
the ”Middleware” use cases are detailed. They are decomposed in scenarii regarding
the gLite Grid middleware, the desktop fusion middleware (these two being referred
as ”Grid”) and the Petals ESB middleware (this one being referred as ”ESB”). Finally,
appendix C describes the scenarii that concern the truck tracking application using multi-
means geo-positioning.

SALTY Project (ANR-09-SEGI-012) 12 Rev: 201

D-1.1- Requirements of the SALTY project

CHAPTER

2
Use cases

Use cases of the SALTY project strive to evaluate to capability of the SALTY architecture
to capture different types of applications and systems, as well as to validate its capability
to manage self-adaptations at different level of granularity. Features sought by the SALTY
architecture will be presented in more details in the next chapter, but the use cases have
been chosen to cover most of them.

The two major use cases of the project concerns on the one hand different middle-
wares and applications dedicated to large distributed systems, and on the other hand,
an application using geotracking. The middleware use cases are presented in the follow-
ing two sections. Section 2.1 describes the scenarios dedicated to grid management for
computation-intensive medical image processing and rendering. In section 2.2, some au-
tonomic scenarios related to a large-scale service bus in the context of SOA are presented.
The geotracking scenarios are more precisely related to a logistic applications making
use of geotracking. They are described in section 2.3. The two main use cases are first
summarized below, and then presented in details, with all scenarios in appendices B and
C.

2.1 ”Grid” Middleware Use Case

2.1.1 Context

Grid infrastructures have become a critical substrate for supporting scientific computa-
tions in many different application areas. Over the last decade, world-wide scale Grids
leveraging the Internet capabilities have been progressively deployed and exploited in
production by large international consortia. They are grounded on new middleware
federating the grid resources and administration frameworks and enabling the proper
operation of the global system 24/7. Despite all efforts invested both in software devel-
opment to achieve reliable middleware and in system operations to deliver high quality
of service, grids encounter difficulties to implement the promise of ubiquitous, seamless
and transparent computing.

The causes are diverse and rather well identified (complexity of middleware stacks,
dependence to many distributed and heterogeneous resources, uncontrolled reliability
of the application codes enacted, incompatibilities between software components, diffi-
culty to identify sources of errors, challenging scale of the computing problems tackled,
etc.). The practice demonstrates that the human administration cost for grids is high, and
end-users are not completely shielded from the system heterogeneity and faults. Heavy-
weight operation procedures are implemented by the grid administrators and users have
to explicitly deal with unreliability issues [9].

neuGRID

In the SALTY project, the grid use case is related to the neuGRID European infrastructure
(http://www.neugrid.eu), which aims at supporting the neuroscience community in

SALTY Project (ANR-09-SEGI-012) 13 Rev: 201

http://www.neugrid.eu

D-1.1- Requirements of the SALTY project

carrying out research on neurodegenerative diseases. In neuGRID, the collection of large
amounts of imaging data is paired with grid-based computationally intensive data anal-
yses. The infrastructure is developed to run neuro-imaging and data-mining pipelines of
algorithms, in particular specializing on Alzheimer’s disease. The neuGRID project is the
first project within the neuroscientific community to use the Grid technology. Pipelines
manipulated in neuGRID are computationally intensive as they enact a mixture of both
short and long running I/O demanding algorithms that are applied over large data sets
containing tens of thousands of images. It thus brings underlying Grid resources to their
limits and highlights technological bottlenecks. neuGRID is utilizing a Grid infrastruc-
ture based on the gLite middleware [8].

gLite Middleware

The gLite middleware has been developed as a part of the European project EGEE which
delivers a reliable and dependable European Grid infrastructure for e-Science. gLite is
architected as a two-levels batch system that federates resources delivered by multiple
computing sites. Each site is exposing its Worker Nodes computing units (WN) through a
Computing Element (CE) gateway. A high-level meta-scheduler called the Workload Man-
agement System (WMS) is used as a front end to multiple CEs. Grid applications are sliced
in smaller computing jobs. Each job is described through a Job Description Language (JDL)
document. When submitted, a job enters the WMS through a simple web service (WM-
Proxy) and it is passed to the Workload Manager (WM) to be queued into a file system-
based Task Queue (TQ).

neuGRID data challenges

A part of the neuGRID project is a set of validation tests that are run within the infrastruc-
ture in order to verify its good performance while meeting user requirements specifica-
tion. These performance tests are executed in form of data challenges in which a very large
data set of medical images is analyzed hence putting a lot of stress onto the underlying in-
frastructure. The second data challenge was running for less than two weeks, and just for
comparison, it would have taken couple of years to accomplish the same using a single
workstation. During the execution, several failures occur and the most representative has
been used to serve as a starting point for identifying scenarios. A power-failure result-
ing in a whole site (CE) going down, had to be recovered. Submitted jobs were pushed
to the other CE where they caused a failure due to an overload. Most of middleware
services suffered overload, e.g. the WMS and CE were not able to handle all submitted
jobs, a memory leak occurred in one of the WMS subcomponent, etc. Some library in-
compatibilities occur on job execution despite the dependencies management system of
the middleware. Some scenarios presented below rely on this real world experiments.

Desktop Fusion

In addition to the execution middleware, the neuGrid infrastructure provides means for
researches to run specialized viewers and to interact with the Grid directly from their
desktop. Desktop Fusion is an integrated new technology which allows for remote execu-
tion of applications. The technology chosen to achieve this is the Open Source version of
NX so call FreeNX. The latter provides encrypted and optimized access to remote appli-
cations. As desktop Fusion provides users with remote access to applications which may
be more of less compute-intensive, several users using Desktop Fusion at the same time

SALTY Project (ANR-09-SEGI-012) 14 Rev: 201

D-1.1- Requirements of the SALTY project

could rapidly result in a poor Quality of Service. This problem is typical of data centers
or cloud infrastructure, and will be used as a basis for one of the scenarios presented in
the next section.

2.1.2 Summary of the scenarii

There are four scenarii related to the gLite middleware and one related to the desktop
Fusion infrastructure.

Scenarii on the gLite middleware are the following:

Scenario 1: WMS overload
As the WMS component is the gateway to the gLite job management system, it
might get easily overloaded, usually by receiving more requests that it can han-
dle or due to a software problem in the component itself. To deal with this kind
of failure, an additional self-healing control loop should be deployed into the in-
frastructure. This loop interacts with the WMS host’s low level operating system
probes and periodically monitors resource usage done by WMS process. We define
two threshold values for the system. When the first one is reached then WMS is
being blocked from all new incoming jobs to be submitted until its resource usage
either goes below this threshold or till it reaches the second threshold. If that hap-
pens the adaptation mechanism will proceed and restart the WMS. From this basic
version, several extensions are expected to be incrementally developed and evalu-
ated: to introduce historical values on resource usage, to make the monitoring of
resource usage self-adaptive itself, to consider tolerance zone over the threshold, to
make the threshold setting automatic, to manage coordination with other loops de-
veloped in the next scenarios, to monitor precisely the effect of the feedback loops,
to apply finer grained loops on the WMS subcomponents.

Scenario 2: CE Starvation
During the data challenge run, when the CE had disappeared because of the power
failure, the WMS correctly detected the situation and rescheduled all jobs to the
other site that remained available. However, the sudden schedule of many jobs
resulted in an complete overload on the other site that had to be restarted in the
end. This could have been fixed by setting a smaller queue size. Nevertheless, this
introduces a different but more severe issue. If the site receiving all rescheduled
jobs was not overloaded and continued to work and the other site appeared again, it
would have no jobs to execute. This would result into the situation when one site is
very busy and the other completely idle, being able to only work on newly arrived
jobs. Therefore, in this scenario, the objective is to keep all computing elements
optimally utilized and prevent them from both extremes: an overload, due to large
number of jobs getting scheduled, on one hand and a starvation, with no job to
process, on the other. The general rule should be to always keep some jobs in the
WMS task queue rather than immediately submit them to corresponding CEs. The
envisaged solution is to have a control loop for each CE that monitors the number
of jobs in the TQ and in the site’s batch queue readjusting the queue size when
necessary.

Scenario 3: Job Failures
Job failures can be divided into two categories: the one where the failure is caused
by an application specific problem and the other where it is due to a problem in the
Grid middleware. The first category includes invalid job descriptions, application

SALTY Project (ANR-09-SEGI-012) 15 Rev: 201

D-1.1- Requirements of the SALTY project

software ”bugs” or invalid input data. The cause related to the middleware may
be for example some unresolved library dependencies that lead to systematic fail-
ures on some jobs. Indeed a job expresses its requirements in a specific JDL file, but
there is no fine-grained manner to express precise library dependencies. Therefore
a job might be scheduled to run on a WN that does not satisfy the actual job library
requirements. Identifying the exact cause of a job failure requires extensive exper-
tise and debugging skills. Furthermore, coordinated investigation over multiple
administrative domains is often needed in Grids. To address this problem without
resorting to a costly human intervention, it is possible to collect statistics to identify
recurring source of failures. A first practical approach consists in building a self-
monitoring subsystem that gathers information relevant to job failures. It can then
be queried to decide some adaptations based on gradual information about failures
as well as statistics such as job executable against failure rate.

Scenario 4: CE Black Hole
Under certain circumstances a CE might malfunction and start to fail all scheduled
jobs for some unknown reason. Since it fails all jobs immediately, it will process its
queues very quickly hence becoming a black hole in the Grid as it will eat all newly
incoming jobs that are matched to its configuration. This scenario is not directly
linked to failures observed during the data challenge, but it is a well-known issue in
the gLite middleware [6]. The self-healing adaptation in this case involves a control
loop that monitors execution time, IO activity using low level operating system
probes and results of job execution using the appropriate log. When it observes the
black hole pattern – a series of jobs with very short execution time and low disk
activity – it will put the CE into a drain mode. Drain mode will be reported back
to the ISM (Information Supermarket) and after several minutes, the WMS will no
longer submit jobs to it. In this scenario there are multiple options on the concrete
loop deployment: one control loop per CE or one master control loop that manages
all CEs in the infrastructure. The different pros and cons of these approaches are to
be further experimented as one of the aims of the SALTY framework is to facilitate
and capitalize such experimentations.

The following last scenario is related to the Desktop Fusion infrastructure management.

Scenario 5: Dynamic Load Balancing

The infrastructure needs to be adapted according to the number of connected users
and applications they are using. Taking into account low level resource usage
(memory, CPU, etc.) is necessary as well in order to have a better idea of cur-
rent load of the system. Thus, when a situation of overload will likely happen,
a new Desktop Fusion server will be deployed. It will be configured as part as the
load-balanced alias, so that it will be completely transparent for users. This could
handle the case where more and more users are connecting to Desktop Fusion, or if
a Desktop Fusion server goes down for some reasons. This scenario has some sim-
ilarities with the first one on WMS overload and parts of the loops, from models to
basic runtime elements, are expected to be shared.

2.1.3 Experimental setup

The initial experimental setup for evaluation of scenarios described below will be done
in the SALTY testing environment at MAAT-G. It is a dedicated environment for testing

SALTY Project (ANR-09-SEGI-012) 16 Rev: 201

D-1.1- Requirements of the SALTY project

and experimenting with the implementation of these scenarios. Part of this environment
is a WMS that is made especially for the testing purposes. However, it is important to
mention that this WMS is connected to the CEs that are part of the production environ-
ment of neuGRID so all the tests should be run carefully, not to put any significant load
to the underlying infrastructure. For some of the tests an extra effort will need to be done
in order to sufficiently test the usability of the approach and of the implementation. This
is described per scenario in the detailed appendix.

Besides the initial proof-of-concept tests, executed in the testing environment, there
are further plans to incorporate experiments during some larger data and analysis chal-
lenges that are part of the future neuGRID project evaluation. Indeed, the latest Data
Challenge 3 will consist in validating and assessing the final neuGRID infrastructure.
To do this, thousand of MRI scans will be analyzed using at least three different toolkits.
This challenge will require a lot of computing power, and the infrastructure will certainly
need to be adapted in order to properly handle it and the Salty solution will certainly be
really useful for it.

As for the The Desktop Fusion system is based on the FreeNX implementation (http:
//freenx.berlios.de/). This later contains already a load-balancing functionality
that will be enhanced by the SALTY add-ons. Moreover, new Desktop Fusion servers will
have to be concretely deployed. All the neuGRID infrastructure will be migrated from
Xen to XenServer soon and proper Desktop Fusion virtual machines will be created. This
will allow the SALTY add-ons to deploy these later contacting the XenServer system.

2.2 ”ESB” Middleware Use Case

The second set of scenarii aims to support continuity of services in an ESB platform.
This continuity is preserved by using the SALTY framework on its services registry and
orchestration engine.

2.2.1 Context

An Enterprise Service Bus (ESB) is a middleware infrastructure that provides message-
based services for complex systems integration. According to features it provides, it is
generally involved in Service-Oriented Architectures (SOA). Petals ESB is an implementa-
tion of an ESB based on the Java Business Integration (JBI) specification, which uses the
WSDL and Web services concepts. It is one of the first SOA ESBs and aims at provid-
ing SOA features, such as service composability, reusability, loose coupling, security,
autonomy, and adaptability. Another feature of Petals ESB is to be built on a natively
distributed architecture. A Petals ESB infrastructure consists in a topology of nodes in
which various services are deployed. These nodes communicate with each other within
a domain, thanks to a dedicated transport layer using a core exchange model. This speci-
ficity allows the Petals ESB architectures to be more efficient in distributed and large
scale systems than the state-of-the-art ESB implementations. The service composability
is performed in Petals ESB by an orchestration engine able to invoke some services in a
structured way.

Self-adaptation of such systems is then a key issue for providing a flexible framework,
able to face new kinds of services integration and orchestration within the context of
dynamic workflows.

In a SOA ESB context, a common issue identified relates to service composition and
orchestration. In particular, a key challenge consists in invoking services within a dynamic

SALTY Project (ANR-09-SEGI-012) 17 Rev: 201

http://freenx.berlios.de/
http://freenx.berlios.de/

D-1.1- Requirements of the SALTY project

context, which requires adaptations at runtime. We consider for the time being a number
of services deployed within a distributed bus and indexed in a distributed registry. Two
scenarios have been developed: the first one deals with adaptability of the distributed
registry, while the second one addresses a concrete use case that illustrates workflow
adaptation needs in the ESB.

2.2.2 Summary of the scenarii

Scenario 1: Self-Organization of the ESB Distributed Registry
In this scenario, we consider a topology of nodes composing the Petals ESB mid-
dleware. We define a node containing the master registry while other ones include
slave registries. Several services are deployed on each node. The service registry
indexes all the available service endpoints and is dynamically updated according
to services (un-)installations occurring in the ESB. This mechanism can be prone to
instability when nodes fail and, in particular, if it occurs to the node containing the
master registry. The SALTY framework can address this weakness by adding an
upper monitoring and control layer, based on Service Component Architecture (SCA)
sensors/effectors, allowing to know the master registry is available in the current
topology of nodes and if not, triggering a recovery process to rebuild a consistent
distributed registry. Different solutions can be investigated in order to perform this
task, either by rebuilding the whole topology of registries and switching a slave
registry to a master one, or by selecting a predefined registry to become the new
master one. The implementation of this scenario will involve monitoring nodes
through a kind of ”Heartbeat” pattern, and some appropriate actions to clean the
crashed ESB node and redeploy every components of the ESB software stack.

Scenario 2: Self-Adaptation of a Crisis Management Workflow
In this use case, we are interested in workflows, which are performed within an
ESB and can be reconfigured at runtime. In such ESBs, a workflow implementa-
tion typically consists in an orchestration of services and a well-known standard
for such orchestrations is WS-BPEL1. It consists in defining activities providing con-
trol structure, invocation and receive mechanisms, correlation and compensation features
able to build an execution graph or workflow. This workflow supports several
services for working together. They are called partners and are defined thanks to
their WSDL interfaces. In our context, an adaptation consists in updating an or-
chestration by changing parts of its execution graph or its partners. Indeed, we
believe that reflective mechanisms can help in facing new orchestration issues com-
ing from the complexity increase of business processes, becoming longer in time
thanks to asynchronous mechanisms and being involved in more and more dy-
namic contexts. We build on a legacy use case in order to illustrate the key issues
of workflow adaptations. It consists in a crisis management for local authorities,
which have to plan for chemical, biological, radiological, and nuclear accident (so
called CBRN crisis). This issue, identified in the former ANR SEMEUSE project had
some results about dynamic workflows implementing thanks to late binding and
semantic match-making extended activities2. In this project, we therefore progress
on this scenario by addressing the reconfiguration of the workflow itself at runtime,
based on non-functional and functional retrieved information.

1WS-BPEL: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
2ANR SEMEUSE Project: http://www.semeuse.org

SALTY Project (ANR-09-SEGI-012) 18 Rev: 201

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.semeuse.org

D-1.1- Requirements of the SALTY project

In this scenario, two adaptations are therefore envisaged. The first one consists in
taking into account the dynamic aspect of a crisis, faced by the dynamic features
of the workflow. Some changes can be reported during a crisis, like an explosion
for instance. At the feedback control loop level, workflow reconfiguration can be
planned in order to add a branch of execution to manage this explosion. A second
adaptation takes into account firemen—reflected as services—functional informa-
tion (e.g., temperature, heart rate) and corresponds to services invocation reconfig-
uration. This particular information allows a feedback control loop to detect that
firemen are not available anymore and must be evacuated.

2.2.3 Experimental setup

For the first scenario, the experimental setup will be initially done on dedicated testing
servers at EBM Websourcing. It will consist in using a set of virtual servers in which
Petals nodes will be installed. JBI components will be used upon these Petals nodes, to
simulate a realistic middleware environment with SOAP components to provide external
Web services to the bus and SCA components to provide execution environment for SCA
services with sensors and effectors. For the second scenario, it will consist in using a set of
virtual servers in which Petals node(s) and WSDM monitoring node(s) will be installed.

2.3 Geo-tracking Use Case

2.3.1 Context

After the military for guidance and unit follow-up, geotracking popularized itself in sev-
eral domains such as transportation and logistics. Recently, it is more and more adopted
in the context of smartphones where numerous applications like route follow-up but also
surrounding services (restaurants, hotels, ...) recommendation become widely available.
Applications of geotracking currently explode in many areas: logistic, transportation,
security, road traffic control, environmental tax collection on vehicles, etc.

In a nutshell, geotracking uses positioning information of mobile (persons, vehicle,
...) to follow them up in time and space so to use this information for application-specific
purposes. Geotracking involves at least two entities: a positioning device and a tracking
system. Positioning devices use different techniques to locate themselves. Under the
global positioning system (GPS), devices triangulate their positions using signals from
satellites. Mobile phones can be located from the geographic locus of the cell to which
antenna it is currently connected. Finally, similar techniques can be used to locate WiFi
cards from their wireless access points.

Positioning devices transmit positions to a tracking system. Most of the time, mobile
phone networks are used for this purpose, but alternatives exist (e.g. satellite networks
or WiFi). The tracking system is responsible for monitoring the position of mobiles (to
which positioning devices are attached) and to trigger reactions when given conditions
are met. Typical conditions are: being near, approaching or moving away from some
point, approaching or moving away from another mobile, crossing a frontier (in the gen-
eral sense), ...

Tracking systems can be directly embedded into end-user applications, such as a truck
follow-up system, or can use dedicated platforms that correlate position information
from several devices to trigger events sent to end-user applications. These platforms act
as complex event processing (CEP) systems, but dedicated to geotracking. GeoHub is De-

SALTY Project (ANR-09-SEGI-012) 19 Rev: 201

D-1.1- Requirements of the SALTY project

veryware geotracking platform, which not only correlates positions but also abstract end-
user applications from the specifics of positioning devices and positioning techniques.

Geotracking faces two difficulties that will be addressed within the SALTY project.
First, sending positions through a mobile phone network incurs a per message cost for
customers which need to be minimized while keeping up with application requirements.
Linked to this, and sometimes crucial, sending positions also requires energy from bat-
teries which governs the autonomy of the device and so must also be minimized. Second,
end-users lack the technical knowledge needed to configure the parameters of the geo-
tracking, like the frequency of position reporting from devices, to catch up with applica-
tion requirements, like notifying the arrival of a truck at a given location fifteen minutes
in advance with a two-minute tolerance. Other points of interest concern fault-tolerance,
i.e. coping with device malfunctions, and the overall workload of the geotracking plat-
form which can’t sustain more than a fixed number of position sendings from all of the
connected devices to match its quality of service objectives in event processing (e.g. 50,000
positions per minute).

The cost minimization issue will be addressed by dynamically adapting the position
reporting, first by modifying its frequency but also by switching back and forth from
time-triggered to location-triggered geotracking when possible. As dynamic adaptation
is the focus of the SALTY project, complementary adaptation scenarii will be provided
by the applications themselves. The geotracking configuration, i.e. defining events to be
notified to applications and the type of adaptations needed at run-time, will be addressed
by developing an intelligent interactive configuration system.

2.3.2 Summary of the scenarii

The geotracking use cases is developed into four scenarii:

Scenario 1: Long distance truck tracking
Long distance truck tracking is concerned with following up trucks which deliver
goods from warehouses to warehouses in a complex network of logistic bases. This
scenario is typical either for general in transportation and large-scale distribution.
Three different geotracking objectives are considered:

1. Notification of arrival at intermediate destinations, where it is required that
trucks arriving at a warehouse notify their arrival enough in advance to let
the warehouse coordinator allocate them a port so to optimize port usage and
the waiting time of trucks. After notification of their arrival, trucks approach-
ing warehouses are still closely tracked in order to take corrective actions if it
appears that they will be too late or way in advance.

2. Imposed corridor, where trucks are forced to stay within a corridor around
their route to make sure they don’t deviate much of this route. When trucks
deviate from their corridor, corrective actions are taken, first to inquire drivers
for the reason of the deviation, and if justified, replanning the rest of their
route. The system will get inputs from traffic control and weather services so
that it may confirm or detect itself conditions justifying a replanning of the
route.

3. Waypoint notification, where the passage nearby some predefined points must
be notified. As corridor enforcement deals with deviation from the planned
route, waypoint notifications are used to keep track of the progress of the

SALTY Project (ANR-09-SEGI-012) 20 Rev: 201

D-1.1- Requirements of the SALTY project

truck, for example by displaying passed waypoints along with their passage
time on a map.

Adaptations are sought to minimize the probability to miss a notification, the power
consumption and the cost of data sendings through the GSM network. In this sce-
nario, they include:

1. frequencies of positioning devices, to increase and decrease them so that low
frequencies are used when the truck is far from all of its points of interests, but
high when approaching these;

2. type of geotracking, either time-based, where positioning devices push data at
planed instant, or location-based, where they push data when passing some
point;

3. positioning devices themselves, to use either the GPS or the mobile phone of
the truck driver when the GPS is malfunctioning;

4. sleep mode, to manage the power consumption of the devices.

Scenario 2: Short distance truck tracking
The short distance truck tracking scenario deals with fast delivery parcel services
where delivery men visit customers either to deliver or pick up parcels. Geotrack-
ing can help to shorten the time windows imposed to customer for delivery by
following more closely the progress of trucks in order to notify customers when the
delivery will be late, and replan the route to deliver most customers on time even by
skipping some when necessary. The goal is to maximize the number of customers
delivered on time, and therefore their satisfaction, even at the expense of a very
late delivery to some of them. This scenario involves the following geotracking
objectives:

1. Notification of late arrival, where trucks must deliver within an time window
(with some tolerance) several destinations. When the truck positions and its
route show that the delivery of a customer cannot be on time, a notification
must be sent to the customer no later than a certain notification delay before
the end of his delivery time frame. If the delivery is forecasted to be late,
a maximum delay is set, such that when the customer cannot be delivered
within this delay, it will be rescheduled later in the day, using route replanning
to get a new round for the delivery man.

2. Imposed corridor, where trucks are forced to stay inside a certain corridor
around their route, otherwise a notification must be sent to the route coordina-
tor. If a route replanning is required, a new corridor will be imposed according
to the new route. This objective is essentially the same as in the long distance
truck tracking use case, so it will not be detailed again here.

Besides the adaptations recalled from the first scenario, this scenario includes a
novel one, the replanning of the round of trucks when clients must be skipped.
Such an adaptation distinguishes itself from previous ones by possibly requiring
some human intervention to decide upon clients to be skipped and replanned in
order to take into account business objectives, like giving priority to the best clients,
etc.

Scenario 3: GeoHub QoS enforcement
Given the large-scale nature of the intended system, this scenario looks forward to

SALTY Project (ANR-09-SEGI-012) 21 Rev: 201

D-1.1- Requirements of the SALTY project

adapt of the overall workload of the GeoHub given its current performance. As the
delay between position receptions on the GeoHub and the notification of events to
applications must be kept under a limit defined by the quality of service offered
to customers, massive adaptations of all positioning device frequencies may be re-
quired when this delay becomes too large. This scenario will show the capability of
the SALTY architecture to cope with large-scale adaptations of distributed systems.
The scenario involves two objectives:

1. Global GeoHub workload management, where a limit on the overall fre-
quency of position sendings to the GeoHub must be maintained under a cer-
tain limit corresponding to Deveryware’s QoS objectives. When the workload
exceeds this limit, all of the connected positioning devices will be required to
lower their frequency, to get a decrease in the overall workload of the GeoHub.

2. Local frequency limits management, where each positioning device and their
autonomic managers will observe an upper bound on the frequency of its posi-
tion sendings. Such limits will be adapted at run-time according to the overall
workload of the GeoHub and the relative importance of the current geotrack-
ing objectives currently driving the use of this device.

Adaptations will mainly concern the frequencies of positioning devices. For the
first objective, the adaptation will itself be large-scale, targeting all of the currently
connected positioning devices. For the second objective, a more local adaptation
is sought, but still requiring care, as heuristics may be used that could potentially
develop into a large-scale exploration of the currently connected devices to find one
that has available resources to share.

Scenario 4: Decision-making Modeling at Design-time
This scenario is of a different nature compared to the previous ones. One of the
goals of the SALTY project is to build an interactive tool, the decision-making mod-
eling at design-time tool, to help non-specialist end-users in eliciting their business
objectives and criteria for adaptation for their geotracking applications. As such a
tool cannot be fully general, the geotracking use case will provide us with a first
context for design exploration. Generality of the tool will be sought through the
use of an adaptable database for parameters such as dictionaries, model-driven in-
teraction patterns (question/answer, menu, etc.), etc.

2.3.3 Experimental setup

Testing and experimenting applications that have at least part of their behavior bound to
real time is inherently difficult. In the case of truck tracking, the real time behavior comes
from the need for real positions sometimes correlated with real geographical positions
and artifacts, such as roads and their speed limits, warehouse positions, waypoints, etc.

Hence, it will not suffice to merely generate input data and run an application on a
standard computer. The experiment will have to take place in the real time frame, posi-
tions and transit times being realistic to some extent. On the other hand, as scalability to
large numbers of geotracked vehicles is a key issue in the SALTY project, it is not realistic
to get thousands of real trucks going on the road for the experiments; they will require
simulated vehicles. Simulated vehicles are pieces of software executing on a computer
and sending positions and receiving commands from the GeoHub, as real vehicles do.

SALTY Project (ANR-09-SEGI-012) 22 Rev: 201

D-1.1- Requirements of the SALTY project

The GeoHub, the application and the adaptation layer used in the experimentation
will be the real ones3. But trucks and their positioning devices will be simulated as
threads on stock computers, executing simulated travels. The idea is to get a planned
route, using planning services such as ViaMichelin, and then plan a per truck simula-
tion scenario to be run around that route. Each truck simulation will exhibit required
notifications, and therefore adaptation scenarii. In some cases, incidents, like device mal-
functions, traffic jams, etc. will be injected into the scenarii to trigger the corresponding
adaptations.

As a large number of such truck simulation scenarii will be required, they will be
generated automatically from the following sub-scenarii and their variants. A machine-
readable description of these will be constructed, and fed into a simulation scenarii gen-
erator that will give an executable scenario in another machine-readable format used by
specifically developed truck and positioning device simulation programs. To our knowl-
edge, no such simulation platform exists to date. It will be a contribution of the SALTY
project that could be reused by Deveryware in the future to test other enhancements of
their platform.

3A copy, for the GeoHub, to avoid service denial to actual customers of Deveryware.

SALTY Project (ANR-09-SEGI-012) 23 Rev: 201

D-1.1- Requirements of the SALTY project

SALTY Project (ANR-09-SEGI-012) 24 Rev: 201

D-1.1- Requirements of the SALTY project

CHAPTER

3
Features

In order to provide key success indicators, the SALTY framework is developed following
a feature-driven approach. This approach consists in an iterative and incremental devel-
opment process, specific to software. It is usually described as an agile method, focusing
on a client-valued functionality (feature) perspective. This process is decomposed into
five activities: overall model development, feature list building, planning by feature, de-
sign by feature, build by feature. The first three activities are usually sequential, whereas
the final two activities are iterative and should iterate on features.

In our context, such a feature may range from a functionality of the autonomic frame-
work to some characteristics on how it is built or some resulting properties of using the
framework itself. We then first determined the set of features based on the study and
classification of the use cases. As the framework architecture will be sketched in the fol-
lowing months, we will determine the success indicators on each feature together with
some priorities. This will enable the classic stages of planning, design and build by fea-
ture.

In the next paragraphs, the features are organized into four categories, each address-
ing a particular point of the project:

I. Large-Scale environment,

II. Self-adaptation,

III. Salty Framework building and architecture,

IV. Model-driven engineering in the construction of very large self-adaptive systems.

Inside each category, we define sub-groups of features focusing on main issues to be tack-
led. For each feature, we briefly present how use cases are related to it. In the description,
UC1 will correspond to the Middleware use case. To precise the platform involved by the
feature demonstration, we note UC1 GRID to reference the scenarii that are related to the
gLite middleware or the desktop fusion bus, and UC1 ESB denotes the scenarii related to
the Petals Enterprise Service Bus (ESB). Finally, UC2 will correspond to the Geo-tracking
use case.

It must be noted that the list of features presented below is maintained on the internal
collaborative web site of the project.

3.1 F.I. Tackling Very-Large-Scale Environments

The following features outline properties induced by self-adaptation of very large sys-
tems. We have identified four main dimensions to be dealt with:

A. the intrinsic distribution of these systems and the necessary distribution of the man-
aging infrastructures themselves,

B. the large number and the diversity of managed entities,

SALTY Project (ANR-09-SEGI-012) 25 Rev: 201

D-1.1- Requirements of the SALTY project

C. the large number and the diversity of managing entities,

D. the confidentiality of the managed system.

3.1.1 F.I.A. Supporting the distribution of the managed system and the man-
aging infrastructure

This feature decomposes into the following ones:

FI.A.1. Supporting the distribution of the managed system.

FI.A.2. Supporting the distribution of the managing infrastructure.

Description

Supporting distribution of the managed system includes, for example, the delays in the
monitoring of remote services, the need to integrate monitoring data from different re-
mote sites, the time-stamping of all monitoring data to correlate them prior to their use
and the coordination of adaptation decisions implying modifications at different remote
sites.
Supporting distribution of the managing infrastructure includes the need to synchronize
distributed adaptations without impacting the performance of the controlled system, and
the need to supervise the adaptation with appropriate means (distributed synchroniza-
tion, multi-agents system approaches, approaches from intelligent and collective robotics
to the planning of adaptations).

Link with use cases

FI.A.1. & FI.A.2. UC1 GRID part involves a distributed middleware (1) and all auto-
nomic elements must be coordinated in a distributed way (2).

FI.A.1. & FI.A.2. UC1 ESB part is itself widely distributed (1) and needs to be controlled
at node level, that is to say, sensors, effectors and MAPE loops must be dissemi-
nated over the ESB topology (2). Thus, UC1 ESB should use scalable architecture as
peer-to-peer for sensors.

FI.A.1. & FI.A.2. UC2 is involved as the geoHub infrastructure is a large distributed
event-based system (1) and all autonomic elements must be deployed and coor-
dinated appropriately on this infrastructure.

3.1.2 F.I.B. Supporting the large number and the diversity of managed entities

This feature set addresses the following dimensions:

F.I.B.1. Large Amount of data stored, accessed and manipulated.

F.I.B.2. Complexity of connections and interdependencies.

F.I.B.3. Number of computational elements.

F.I.B.4. Number of system purposes.

F.I.B.5. Number of (overlapping) policy domains and enforceable mechanisms.

SALTY Project (ANR-09-SEGI-012) 26 Rev: 201

D-1.1- Requirements of the SALTY project

Description

Large scale systems are known as systems of unprecedented scale in some of the previous
dimensions. These systems are then necessarily decentralized in a variety of ways and
constructed from heterogeneous parts. This complexity imposes the need for evolving
continuously with conflicting needs. In the use cases, we address each of these dimen-
sions to validate the adequacy of the Salty framework when applied on such systems.

Link with use cases

F.I.B.1. & F.I.B.3. UC1 GRID part is concerned by these features, as the scenarii will be
applied in the context of the Alzheimer’s disease analysis pipeline, which involves
very large set of data and is deployed on a neuGRID infrastructure involving a large
number of jobs.

F.I.B.2. UC1 GRID part deals with the complexity of connections and interdependencies
between the different elements of the GRID. Some of these interdependencies are
”implicit” and control mechanisms should be applied to evaluate their interactions.

F.I.B.4. UC1 ESB part addresses this feature as the case study corresponds to a Crisis
Management System where the number of alternatives and failures to explore is
a priori unknown. Adaptation to the crisis context should support the need for
unanticipated dynamic adaptation.

F.I.B.5. All the use cases are potentially concerned by this feature as soon as MAPE loops
can interfere in the application itself.

3.1.3 F.I.C. Supporting the large number and the diversity of managing enti-
ties

This feature decomposes into the following ones:

F.I.C.1. Large number of adaptable entities.

F.I.C.2. Large number of loops on the same entity or group of entities.

F.I.C.3. Large number of events triggered through loops.

F.I.C.4. Important variability in the controlled system.

Description

Large-scale means that the architecture and the algorithms will need to scale. The control
system, made of a large number of MAPE loops over large number of entities, trigger-
ing large number of events, must coordinate themselves and implement system-wide
adaptations. Peer-to-peer coordination algorithms as well as multi-agents inspired co-
ordination algorithms, are intended to address this issue for the coordination of MAPE
loops on a large scale. There is thus a large number of possible architectural patterns of
organization between the different involved software entities.

SALTY Project (ANR-09-SEGI-012) 27 Rev: 201

D-1.1- Requirements of the SALTY project

Link with use cases

F.I.C.1. & F.I.C.2. & F.I.C.3. UC2 adaptations have to do with these features, provided
that the GeoHub and the positioning devices are viewed as a complex event pro-
cessing system and probes respectively. Controlling the workload of the GeoHub
implies controlling the frequencies of all the positioning devices sending data.

F.I.C.2. & F.I.C.3. & F.I.C.4. UC1 GRID part is concerned by these features, as coupling
scenarios lead to several complex loops to be coordinated on the same middleware
entities, while triggering a large number of events. Different architectures of the
control system are also envisaged.

F.I.C.4. UC1 ESB needs to implement scalable algorithms and frameworks in order to
manage system-wide adaptations. It should deal with the variability of the archi-
tecture. It is conceivable within the context of a federated architecture with several
domains having their proper configurations, service policies and adaptation rules.

3.1.4 F.I.D. Preserving the level of confidentiality of the managed system

Description

Much of the data manipulated in the SALTY use cases have privacy properties. In the
Salty project our intent is to support risk analysis, through which targets and vulnera-
bilities in the system architecture are identified, and specific security requirements are
derived from general security objectives (e.g. secrecy of information).

Link with use cases

F.I.D. UC1 GRID part should ensure that access WMS and CE runtime information are
restricted to authorized systems.

F.I.D. In UC1 ESB part, security must be managed as one of the main ESB features.

F.I.D. In UC2, positions can be anonymized before being sent to MAPE loops. In some
cases, they can be encrypted (programmable devices). Isomorphic transformations
can also be applied to make impossible their relation to a precise geographic loca-
tion for intruders.

3.2 F.II. Supporting the Adaptation of Complex Systems-of-Systems

The following features concerns self-adaptation. According to self-adaptive system clas-
sification, these features specifically focus on the dimensions ”Change”, ”Mechanisms”
and ”Effects”, as described in section 1.3.
The features are decomposed according to the three following dimensions:

A. Reflecting feedback control loops as first class entities,

B. Supporting the monitoring of heterogeneous and complex data and their quality at-
tributes,

C. Making decisions over complex situations involving multi-criteria objectives.

SALTY Project (ANR-09-SEGI-012) 28 Rev: 201

D-1.1- Requirements of the SALTY project

3.2.1 F.II.A. Reflecting feedback control loops as first class entities

This feature decomposes into the following ones:

F.II.A.1. Being able to coordinate several loops at different levels and scopes (from lo-
cal to large-scale) making decisions over the same controlled entities in order to
produce coherent adaptations.

F.II.A.2. Making the control conscious of its own quality and self-adaptive to achieve
stability and efficiency.

F.II.A.3. Attacking control situations with different temporal constraints from tight tim-
ing constraints to best effort adaptations.

Description

Given the dynamicity and complexity of large-scale systems of systems, their control
loops cannot be defined in advance to implement fixed policies, but rather adapted at
run-time. To achieve such adaptations, a reflective representation must be sought to get
MAPE loops as first-class entities, which one can reason about, modify, compose, and
reuse dynamically. In real-life applications, decisions made by local MAPE loops may
affect each others, at all system scope levels from client-server interactions to global con-
straints. To enforce integrity constraints, such local decisions cannot contradict each oth-
ers, so the loops must coordinate themselves to achieve collaborative decisions. To deal
with a very large set of MAPE loops, we will study coordinated loops based on an hybrid
locally hierarchical and globally peer-to-peer architecture, instead of purely hierarchical
(which would not scale well). Autonomic managers are components with specific needs
in terms of initialization, and meta-control. This can be put under a specific workflow
to manage their life-cycles. Autonomic manager, as components, can also be adapted.
The architecture shall provide for this by adding autonomic managers to them. The sys-
tem being distributed and large-scale, MAPE loops need not be always implemented as
a unique module but shall take into account the latencies and time requirements to de-
ploy itself in such a way to compute good adaptation policies while satisfying the timing
constraints of the control process, (maximum time between triggering conditions and the
corresponding execution of the required adaptation).

Link with use cases

F.II.A.3. UC1 GRID is based on best effort adaptation, when UC2 should deal with tight
timing constraints.

F.II.A.1. & F.II.A.2. All use cases are concerned by these two features as soon as they mix
several adaptations from several scenarii.

3.2.2 F.II.B. Supporting the monitoring of heterogeneous and complex data
and their quality attributes

F.II.B.1. Handling explicitly the quality of information in the configuration of the moni-
toring.

F.II.B.2. Unifying the diversity of probe locations, acquisitions, data types. . .

SALTY Project (ANR-09-SEGI-012) 29 Rev: 201

D-1.1- Requirements of the SALTY project

Description

MAPE loops will impose stringent requirements on monitoring data, such as being de-
livered on time (age) and to be coherent (reporting the same state of the system) when
several data are used jointly for a decision. State-of-the-Art monitoring frameworks al-
low for the use of high level QoI-based requests from which configurations for probes
are automatically derived. These probes will cover various forms of data types, which
will be collected using different protocols from heterogeneous locations (Internet, em-
bedded devices, business processes. . .). (Includes inputs from the SEMEUSE monitoring,
the work on SPACES by INRIA/ADAM, and the work of P8 on smart sensors and fuzzy
logic.)

Link with use cases

F.II.B.1. & F.II.B.2. In some sense, most of UC2 adaptations have to do with this feature,
provided that the GeoHub and the positioning devices are viewed as a complex
event processing system and probes respectively.

F.II.B.1. & F.II.B.2. UC1 will have to deal with monitoring and monitoring QoS because
its adaptation mechanisms rest on monitoring probes and would avoid mistakes
coming from reports integrity issues.

3.2.3 F.II.C. Making decisions over complex situations involving multi-criteria
objectives

F.II.C.1. Handling different types of decision-making problems, from non-sequential to
sequential.

F.II.C.2. Tackling controlled entities which dynamics is known either in advance or dis-
covered at run-time.

F.II.C.3. Implementing decision policies coping with multiple criteria of different natures
that may contradict each others for given control objectives.

Description

The way decisions made over time influence each others depends upon their impact on
the state of the controlled system. In some cases, decisions made at some point change
the impact of future decisions. Such problems are tackled in the framework of sequential
decision making. Furthermore, most of the time, the precise characteristics of the con-
trolled system cannot be known prior to run-time, because they depend directly upon
the deployment context. In these cases, policies cannot be computed statically, but rather
dynamically. Most large-scale systems are multi-faceted and adaptation decisions may
have contradictory impacts on these different facets. In order to choose upon conflicting
decisions, some models will reflect the preferences of the users regarding the conflicting
facets, dealing with them as multi-criteria decision making.

Link with use cases

F.II.C.1. UC1 GRID aims to demonstrate the stability of the MAPE Loops.

SALTY Project (ANR-09-SEGI-012) 30 Rev: 201

D-1.1- Requirements of the SALTY project

F.II.C.1. & F.II.C.2.& F.II.C.3. UC2 adaptations deals with multi-criteria policies accord-
ing to optimization of exchanges number and precision of information.

F.II.C.2. UC1 ESB part on workflow adaptations deals with context evolution that will
be dynamically discovered and will imply dynamic adaptations of control entities
behavior.

3.2.4 F.II.D. Executing reliable reconfigurations across distributed entities

F.II.D.1. Being able to observe the state of the adaptation process taking place in the
control loop.

F.II.D.2. Specifying qualities of service on the adaptation process.

Description

This feature proposes to evaluate the correction and the robustness of the adaptations
by analysis of the results. This supplements feature F.II.A. It also suggests authorizing
corrections of adaptations. The adaptations themselves could thus be monitored to check
their adequacy and to possibly enhance the MAPE-Loop and react by a new adaptation
of the system. In addition, adaptation processes may need to be executed with different
qualities, from best-effort to transactional, if possible.

Link with use cases

F.II.D.1. & F.II.D.2. UC1 GRID part will experiment adding checking mechanisms to
evaluate impacts on MAPE loops integrating such control.

3.3 F.III. Building a Versatile Feedback Control Loop Framework

The features presented here specify paradigms of development that will drive the con-
struction of the Framework itself.
We focus on the following features:

A. component based systems development to produce control systems over service-oriented
systems,

B. reusing and sharing the framework artifacts across different domain-specific scenar-
ios by targeting a characterization of the context of use1.

3.3.1 F.III.A. Adopting SCA as a uniform paradigm to control SOA systems

Description

The control system will be implemented using SCA components, while the controlled
system architecture will range from non-SOA (with SCA touch-points for the control sys-
tem), to SOA and SCA.

1According to ISO 9241 definition of context of use : ” the nature of the users, tasks and physical and
social environments in which a product is used”, here product consists in framework artifacts.

SALTY Project (ANR-09-SEGI-012) 31 Rev: 201

D-1.1- Requirements of the SALTY project

Link with use cases

F.III.A. UC1 GRID part will use both SOA and non-SOA infrastructure for the controlled
system, and SCA components for the control system.

F.III.A. UC1 ESB part will use embedded SCA components to implement a complete
SOA framework, with SCA components both on the controlled and control systems.

F.III.A. In the UC2, both the positioning devices and the GeoHub will be considered as
non-SOA and remain as is.

3.3.2 F.III.B. Reusing and sharing the framework artifacts across different domain-
specific scenarios

Reuse and sharing are intended to be conducted on:

F.III.B.1. Models

F.III.B.2. Components

F.III.B.3. Loops

Description

The architecture must not be tailored to the use cases, but shall apply to various large-
scale distributed autonomic applications.
1) The same model of MAPE loop can be used for several use cases, when different im-
plementations of sensors should be used at deployment time.
2 and 3) In the analysis part of the MAPE loop, the architecture shall allow for the ex-
change of decision-making techniques by simply exchanging the implementations. The
demonstration should come from the ability to interchange a sequential-decision mak-
ing process with a fuzzy decision-making process as transparently as possible, ideally
without changing the interfaces.

Link with use cases

F.III.B.1. & F.III.B.2. & F.III.B.3. Same basic models and control loops should be shared
between several scenarii. Components for monitoring, analysis and planning should
also be shared and reuse among scenarii. Forms and quantities of shared/reused
elements are to be determined as the project progresses.

3.4 F.IV. Designing and Involving Models Continuously

The SALTY project aims at following a model-driven development approach for self-
adaptive systems. We thus have the will to identify the steps where the development
directed by the models is applicable, as well as the limitations encountered. We will
tackle this issue to two points of view:

A. methodology support for the model-driven development of self-adapting systems,

B. consistency management of business requirements all along the lifecycle of the sys-
tem.

SALTY Project (ANR-09-SEGI-012) 32 Rev: 201

D-1.1- Requirements of the SALTY project

3.4.1 F.IV.A. Adopting a model-driven methodology for the engineering of
SALTY

We focus on the following features:

F.IV.A.1. Determining where design-time MDE techniques can be used and applying
them.

F.IV.A.2. Defining a representation of the models at runtime.

F.IV.A.3. Providing guidelines in the usage of MDE within the SALTY framework.

Description

MDE approach means a model representation, accessible or not at run-time and linked
together and with the code through model transformations amenable to round-trip en-
gineering. In the MAPE loop, models for the analysis can be seen at two levels. A
first level concerns only the component architecture at its boundaries (interfaces, mem-
branes, ...) while the second concerns the decision-making processes per se. The latter
are sometimes of a more mathematical nature, and therefore way less amenable to current
MDE approaches and techniques. However, in this case, models can be apprehended as
machine-processable representations stored in the knowledge base of the MAPE-k loop.
Though the SALTY project will make contributions to these, no commitment towards a
full end-to-end MDE approach can be made at this point.

A model of a system is a description of that system and its environment for some
certain purpose. This point has to be taken into account so to design the first level es-
pecially to deal with some kind of large scale infrastructures, such as ISP networks. In
this case, an efficient model may be built using infrastructure discovery technique or the
infrastructure model may be hidden within processing rules.

Consequently, the SALTY project aims at evaluating the interests and limits of model-
driven development in the context of Self-Adaptive very Large disTributed sYstems.
Guidelines will be extrapolated from our experiments. Justifications will be provided
when MDE techniques are not used.

Link with use cases

F.IV.A.1. & F.IV.A.2. All use cases will be finally designed through MDE techniques, but
the project progress aims at defining these models incrementally by combining top-
down and bottom approaches in the realization of use cases.

F.IV.A.2. In UC2, Model-based Q-learning envisaged for the decision-making process
will implement a form of model at run-time, though more mathematically oriented
and dealing with the state and dynamic of the controlled system.

F.IV.A.3. All use cases will feed the guidelines content.

3.4.2 F.IV.B. Guaranteeing the propagation and the verification of constraints
and agreements throughout the life-cycle of the system

Description

In the autonomic part of the architecture, a meta-control layer will enforce the integrity
constraints of the controlled and control system when they correspond to existing and
explicit constraints or Service Level Agreements (SLA).

SALTY Project (ANR-09-SEGI-012) 33 Rev: 201

D-1.1- Requirements of the SALTY project

Link with use cases

F.IV.B. In UC1 GRID, constraints on the control system such as time between WMS re-
boots will be taken into account.

F.IV.B. In UC1 ESB, a scenario explicitly links the control loop to pre-existing SLA.

F.IV.B. In UC2, the GeoHub overall workload and performance constraints, as well as
geotracking components and their autonomic managers will exhibit such constraints.

SALTY Project (ANR-09-SEGI-012) 34 Rev: 201

D-1.1- Requirements of the SALTY project

CHAPTER

4
Perspectives

This document has set the context and necessary definitions concerning the project. It
has also described the requirements of the project use cases, as well as the features that
have been determined from them. These features have been organized in categories, a
description has been provided for each of them together with their coarse-grain relation-
ships with the use cases’ scenarios. The use cases are described in more details in the two
last appendices of this report.

Regarding both the definitions and the features, they are already available in some
specific collaborative web pages on the site of the project (on its private part). They are
going to be maintained all along the project to serve as references. Besides all elements of
this report serve as references or starting points for several ongoing tasks of the project. In
these tasks, the features will facilitate design by assigning priorities to them and defining
success criteria at a finer grain as the project progresses.

• In the work package 2, the refinement of the defined features have begun. Some
analysis tables have been provided to all leading partners of modeling tasks related
to the managed architecture, the monitoring phase, the decision making part and
the execution phase. They are going to be filled to precise the modeling needs in
each scenario, as well as which scenario is able to demonstrate which feature. This
will then enable the partners to determine easily the priority on the features and a
fine grain planning on the design and implementation phases.

• All the previous elements will also drive the overall architecture of the SALTY
framework, which is going to be defined as a first partial but functional version
at month 12 (as an internal deliverable of work package 1).

• In the work package 4, some first small prototypes have already been designed and
implemented on some scenarios. Their incremental developments and experiments
will continue, driven by features.

SALTY Project (ANR-09-SEGI-012) 35 Rev: 201

D-1.1- Requirements of the SALTY project

SALTY Project (ANR-09-SEGI-012) 36 Rev: 201

D-1.1- Requirements of the SALTY project

Bibliography

[1] An architectural blueprint for autonomic computing. http://www-01.ibm.com/
software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.
pdf, June 2006.

[2] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns. Modeling
dimensions of self-adaptive software systems. pages 27–47. 2009.

[3] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language User
Guide, The (2nd Edition) (Addison-Wesley Object Technology Series). Addison-Wesley
Professional, 2005.

[4] Yuriy Brun, Giovanna M. Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,
Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering self-
adaptive systems through feedback loops. pages 48–70, 2009.

[5] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jes-
per Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt
Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu,
Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. Software engi-
neering for self-adaptive systems: A research roadmap. pages 1–26, 2009.

[6] A Duarte, P Nyczyk, A Retico, and D Vicinanza. Monitoring the egee/wlcg grid
services. J. Phys.: Conf. Ser., 119:052014, 2008.

[7] Ralph E. Johnson. Frameworks = (components + patterns). Commun. ACM,
40(10):39–42, 1997.

[8] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M. Barroso,
P. Buncic, Peter Z. Kunszt, A. Di Meglio, A. Aimar, A. Edlund, D. Groep, F. Pacini,
M. Sgaravatto, and O. Mulmo. Middleware for the next generation grid infrastruc-
ture. (EGEE-PUB-2004-002), 2004.

[9] Diane Lingrand, Johan Montagnat, and Tristan Glatard. Modeling user submission
strategies on production grids. In International Symposium on High Performance Dis-
tributed Computing(HPDC’09), pages 121–130, June 2009.

[10] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[11] J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report, Object Manage-
ment Group (OMG), 2003.

[12] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kaz-
man, M. Klein, D. Schmidt, K. Sullivan, and K. Wallnau. Ultra-Large-Scale Systems

SALTY Project (ANR-09-SEGI-012) 37 Rev: 201

http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf

D-1.1- Requirements of the SALTY project

- The Software Challenge of the Future. Technical report, Software Engineering In-
stitute, Carnegie Mellon, June 2006.

[13] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[14] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

SALTY Project (ANR-09-SEGI-012) 38 Rev: 201

D-1.1- Requirements of the SALTY project

APPENDIX

A

Self-Adaptive System
Classification

In this section, the overview of the classification of self-adaptive systems from the section
Overview of Modelling Dimensions from [5] is provided. In depth details about these mod-
eling dimensions together with evaluational uses cases (Traffic Jam Monitoring System
and Embedded Mobile System) can be found in [2].

Goals. Goals are objectives the system under consideration should achieve. Goals could
either be associated with the lifetime of the system or with scenarios that are related
to the system. Moreover, goals can either refer to the self-adaptability aspects of the
application, or to the middleware or infrastructure that supports that application.
Details are provided in table A.1.

Change. Changes are the cause of adaptation. Whenever the system’s context changes
the system has to decide whether it needs to adapt. We consider context as any
information which is computationally accessible and upon which behavioral vari-
ations depend. Actors (entities that interact with the system), the environment (the
part of the external world with which the system interacts), and the system itself
may contribute to the context that may influence the behavior of the application.
Actor-dependent, system-dependent, and environment-dependent variations can
occur separately, or in any combination. We classify context-dependable changes
of a self-adaptive system in terms of the place in which change has occurred, the
type and the frequency of the change, and whether it can be anticipated. All these
elements are important for identifying how the system should react to change that
occurs during run-time. Details are provided in table A.2.

Mechanisms. This set of dimensions captures the system reaction towards change, which
means that they are related to the adaptation process itself. The dimensions asso-
ciated with this group refer to the type of self-adaptation that is expected, the level
of autonomy of the self-adaptation, how self-adaptation is controlled, the impact of
self-adaptation in terms of space and time, how responsive is self-adaptation, and
how self-adaptation reacts to change. Details are provided in table A.3.

Effects. This set of dimensions capture what is the impact of adaptation upon the system,
that is, it deals with the effects of adaptation. While mechanisms for adaptation are
properties associated with the adaptation, these dimensions are properties associ-
ated with system in which the adaptation takes place. The dimensions associated
with this group refer to the criticality of the adaptation, how predictable it is, what
are the overheads associated with it, and whether the system is resilient in the face
of change. Details are provided in table A.4.

SALTY Project (ANR-09-SEGI-012) 39 Rev: 201

D-1.1- Requirements of the SALTY project

Evolution
This dimension captures whether the goals can change within the life-
time of the system. The number of goals may change, and the goals
themselves may also change as the system as a whole evolves. Ranges
between:

• static - changes are not expected,
• dynamic - goals change at run-time, including the number of

goals.

Flexibility
This dimension captures whether the goals are flexible in the way they
are expressed. It is related to the level of uncertainty associated with
the goal specification.

• rigid - a prescriptive goal described as a “the system shall do
this. . . ”

• constrained - there is a flexibility as long as certain constraints are
satisfied, such as, “the system may do this. . . as long as it does
this. . . ”

• unconstrained - the statement provides flexibility for dealing with
uncertainty such as “the system might do this. . . ”

Duration
This dimension is concerned with the validity of a goal throughout the
system’s lifetime. Range between:

• temporary - a temporary goal might be valid for a period of time:
short, medium or long.

• persistent - a persistent goal should be valid throughout the sys-
tem’s lifetime.

Multiplicity
This dimension is related to the number of goals associated with the
self-adaptability aspects of the system.

• single goal - only one goal.
• multiple goals - more than one goal.

Dependency
In the case system has multiple goals, this dimension captures how the
goals are related to each other.

• independent - goals do not affect each other.
• dependent - when the goals are dependent they can either be:

1. complementary with respect to the objectives that should achieve
or they can be 2. conflicting.

Table A.1: Goals modeling dimension classification

SALTY Project (ANR-09-SEGI-012) 40 Rev: 201

D-1.1- Requirements of the SALTY project

Source
This dimension identifies the origin of the change depending on the
scope of the system.

• external - a change originating outside of the system,
• internal - a change originating inside of the system. In this case

it might be worth to identify more precisely where change has
occurred: application, middleware or infrastructure.

Type
This dimension refers to the nature of change.

• functional - the purpose of the system has changed and services
delivered need to reflect this change.

• non-functional - system performance and reliability need to be im-
proved.

• technological - both software and hardware aspects that support
the delivery of the service. For example the version of the mid-
dleware in which the application runs has been upgraded.

Frequency
This dimension is concerned with how often a particular change occurs.
Range between:

• rare
• frequent

Anticipation
This dimension captures whether change can be predicted ahead of
time. Different self-adaptive techniques are necessary depending on
the degree of anticipation.

• foreseen - taken care of
• forseeable - planned for
• unforeseen - not planned for

Table A.2: Change modeling dimension classification

SALTY Project (ANR-09-SEGI-012) 41 Rev: 201

D-1.1- Requirements of the SALTY project

Type
This dimension captures whether adaptation is related to the parame-
ters of the system’s components or to the structure of the system.

• parametric - resulting in parameters adjustment of the system’s
components.

• structural - structural adaptation could also be seen as composi-
tional, since it depends on how components are integrated.

• combinational - a combination of above two.

Autonomy
This dimension identifies the degree of outside intervention during
adaptation. Range between:

• autonomous - at run-time there is no influence external to the sys-
tem guiding how the system should adapt.

• assisted - a degree of self-adaptability when externally assisted,
either by another system or by human participation (which can
be considered another system).

Organization
This dimension captures how the performance of the adaptation is or-
ganized.

• centralized - performed by a single component.
• decentralized - performance is distributed among several compo-

nents. No single component has a complete control over the sys-
tem.

Scope This dimension identifies whether adaptation is localized or involves
the entire system. Range between: local and global.

Duration
This dimension refers to the period of time in which the system is self-
adapting, or in other words, how long the adaptation lasts.

• very short - less than a second.
• short - seconds to hours.
• medium - hours to months.
• long - months to years.

Timeliness This dimension captures whether the time period for performing self-
adaptation can be guaranteed. Range between: best-effort and guaran-
teed. For example, in case change occurs quite often, it may be the
case that it is impossible to guarantee that adaptation will take place
before another change occurs, in these situations best effort should be
pursued.

Triggering
This dimension identifies in what way the change that initiates adap-
tation. Although it is difficult to control how and when change occurs,
it is possible to control how and when the adaptation should react to a
certain change.

• event-trigger
• time-trigger

Table A.3: Mechanisms modeling dimension classification

SALTY Project (ANR-09-SEGI-012) 42 Rev: 201

D-1.1- Requirements of the SALTY project

Criticality
This dimension captures the impact upon the system in case the self-
adaptation fails. There are adaptations that harmless in the context of
the services provided by the system, while there are adaptations that
might involve the loss of life.

• harmless
• mission-critical
• safety-critical

Predictability This dimension identifies whether the consequences of self-adaptation
can be predictable both in value and time. While timeliness is related
to the adaptation mechanisms, predictability is associated with system.
Range between: non-deterministic and deterministic.

Overhead This dimension captures the negative impact of system adaptation
upon the system’s performance. Range between: insignificant and
system-failure - when the system ceases to be able to deliver its ser-
vices due to the high-overhead of running the self-adaptation processes
(monitoring, analyzer, planning, effecting processes).

Resilience
This dimension is related to the persistence of service delivery that can
justifiably be trusted, when facing changes [6]. There are two issues
that need to be considered under this dimension: first, it is the ability
of the system to provide resilience, and second, it is the ability to justify
the provided resilience. Range between: resilient and vulnerable

Table A.4: Effects modeling dimension classification

SALTY Project (ANR-09-SEGI-012) 43 Rev: 201

D-1.1- Requirements of the SALTY project

SALTY Project (ANR-09-SEGI-012) 44 Rev: 201

https://salty.unice.fr/

ANR SALTY
Self-Adaptive very Large disTributed sYstems

Work Package: WP1 - Requirements and Architecture
Coordinator: UNS
Deliverable: D-1.1 - Appendix B
Title: Middleware Scenarios Specification
Submission date: 2nd August 2010
Project start date: 1st November 2009, duration: 36 months
Revision: 209
Last change: 02.08.2010

SALTY Project (ANR-09-SEGI-012) Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Authors

(for this appendix)

Author Affiliation Role
P. Collet UNS Lead
D. Manset MAAT-G Lead
M. Blay-Fornarino UNS Writer
F. Křikava UNS Writer
J. Lesbegueries EBM Petals Link Writer
R. Mollon MAAT-G Writer
J. Montagnat UNS Writer
J. Revillard MAAT-G Writer
R. Rouvoy INRIA Lille Writer

SALTY Project (ANR-09-SEGI-012) B-2 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Contents

1 Introduction B-5
1.1 Context . B-5

1.1.1 Grid and Desktop Fusion Context B-5
1.1.2 ESB Context . B-6

2 Scenario 1 - Grid Self-Management B-7
2.1 Context . B-7

2.1.1 Introduction . B-7
2.1.2 gLite . B-8
2.1.3 neuGRID Data Challenge . B-11

2.2 Overall Experimental Setup . B-13
2.3 Scenario 1.1 - WMS Overload . B-14

2.3.1 Objective . B-14
2.3.2 Classification . B-14
2.3.3 Adaptation . B-16
2.3.4 Experimental Setup . B-17
2.3.5 Extensions . B-18

2.4 Scenario 1.2 - CE Starvation . B-19
2.4.1 Objective . B-19
2.4.2 Classification . B-20
2.4.3 Adaptation . B-21
2.4.4 Experimental Setup . B-21
2.4.5 Remarks . B-22

2.5 Scenario 1.3 - Job Failures . B-22
2.5.1 Objective . B-22
2.5.2 Classification . B-23
2.5.3 Adaptation . B-24
2.5.4 Experimental Setup . B-25

2.6 Scenario 1.4 - CE Black Hole . B-25
2.6.1 Objective . B-25
2.6.2 Classification . B-26
2.6.3 Adaptation . B-28
2.6.4 Experimental Setup . B-28
2.6.5 Remarks . B-28

3 Scenario 2 - Desktop Fusion Self-Configuration B-31
3.1 Context . B-31

3.1.1 Introduction . B-31
3.1.2 Desktop Fusion . B-31

3.2 Scenario 2.1 - Dynamic Load Balancing . B-31
3.2.1 Objective . B-31
3.2.2 Classification . B-32
3.2.3 Adaptation . B-34

SALTY Project (ANR-09-SEGI-012) B-3 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

3.2.4 Experimental Setup . B-34
3.2.5 Open Questions . B-34

4 Scenario 3 - Self-Adaptive Enterprise Service Bus B-35
4.1 Context . B-35

4.1.1 Introduction . B-35
4.1.2 Petals ESB Registry . B-37

4.2 Scenario 3.1: Self-Organization of the ESB Distributed Registry B-37
4.2.1 Scenario Description . B-37
4.2.2 Objective . B-37
4.2.3 Classification . B-39
4.2.4 Adaptation . B-40
4.2.5 Experimental Setup . B-42

4.3 Scenario 3.2: Self-Adaptation on a Crisis Management Workflow B-42
4.3.1 Use Case Description . B-42
4.3.2 Objective . B-45
4.3.3 Classification . B-45
4.3.4 Adaptation . B-47
4.3.5 Experimental Setup . B-47

4.4 Conclusion . B-47

SALTY Project (ANR-09-SEGI-012) B-4 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

CHAPTER

1
Introduction

The objective of this appendix is to analyze middleware use cases and in particular to
validate self-adaptive SALTY features on Grids and Enterprise Service Bus (ESB).

The Grid is used in the context of the Alzheimer’s disease analysis pipeline use case,
which is currently deployed on the neuGRID infrastructure. Scenarios for demonstration
and validation of the SALTY project are to be determined. The ESB is used in a technical
context and in a crisis management use case in order to validate self adaptive features for
the bus integrity and especially the use of services deployed on it. This use case is built
upon the Petals ESB infrastructure.

The remainder of this appendix is organized as follows. The introduction describes
the context. Section 2 describes a family of scenarios related to the self-optimization of
the gLite Grid middleware. Another family of scenarios concerns the self-configuration
of Desktop Fusion application and is described in section 3. Section 4 details ESB scenar-
ios dealing with self adaptive features.

1.1 Context

1.1.1 Grid and Desktop Fusion Context

The neuGRID European infrastructure aims to support the neuroscience community in
carrying out research on neurodegenerative diseases. In neuGRID, the collection of large
amounts of imaging data is paired with grid-based computationally intensive data anal-
yses. The infrastructure is developed to run neuro-imaging and data-mining pipelines of
algorithms, in particular specializing on Alzheimer’s disease1 research with the analysis
of cortical thickness from 3D Magnetic Resonance (MR) brain images. Capitalizing on
the databases acquired in the US2 and Europe3 respectively, up to 13,000 MR scans of
brains should ultimately be archived in the infrastructure, thus constituting the largest
ever standardized database in the field. Expected to complete in early 2011, neuGRID
will provide neuroscientists and potential pharmaceutical industries with a harmonized
framework and powerful distributed environment to seamlessly create, use, combine
and validate algorithm pipelines to process acquired data and thus support clinical trials
activity.

The neuGRID project is the first project within the neuroscientific community to use
the Grid technology. Pipelines manipulated in neuGRID are computationally intensive
as they enact a mixture of both short and long running I/O demanding algorithms that
are applied over large data sets containing tens of thousands of images. It thus brings
underlying Grid resources to their limits and highlights technological bottlenecks which
must be addressed through appropriate scheduling optimization, data replication and
gridification fine tuning. As an example, the formerly cited cortical thickness pipeline

1It is the second most feared disease associated with aging, following cancer, according to the Alzheimer
Society of Canada

2ADNI Project http://www.adni-info.org
3EU-ADNI Project http://www.centroalzheimer.it/E-ADNI_project.htm

SALTY Project (ANR-09-SEGI-012) B-5 Rev: 209

http://www.adni-info.org
http://www.centroalzheimer.it/E-ADNI_project.htm

D-1.1 - Appendix B- Middleware Scenarios Specification

takes approximately 15 hours of CPU time when executed on a regular workstation and
applied to only one brain. In the context of population pattern searching, applying the
cortical thickness over 13,000 scans would simply be a waste of time with a single PC,
bringing it to 22 CPU-years. In the target deployment of the neuGRID project with 4 Eu-
ropean sites, each hosting about 20 quad-core CPUs paired with 5TB of effective storage,
the execution time of the example case could shrink down to matter of weeks. To enable
such a massive amount of data and to adequately service on demand computing power,
neuGRID is utilizing a Grid infrastructure based on the gLite middleware [5].

1.1.2 ESB Context

An Enterprise Service Bus (ESB) is a middleware architecture which provides message-
based services for complex systems integration. According to features it provides, it is
generally involved in Service Oriented Architectures (SOA).

Petals ESB is an implementation of an ESB based on JBI4 specification that uses WS-
DLs and Web Services concepts. It is one of the first SOA ESBs and aims at providing
SOA features such as service composability, reusability, loose coupling, security, auton-
omy and adaptability. It is a part of PetalsLink suite for SOA, that also contains Business
Activity Monitoring and Governance tools.

Another feature of Petals ESB is to be built on a distributed architecture. A Petals ESB
infrastructure consists in a topology of nodes in which various services are deployed.
These nodes communicate between each other within a domain. Domains can consist
in Petals topologies or other middleware architectures that communicate over Internet.
This specificity allows Petals ESB architectures to be more efficient in distributed and
large scale systems. Self-adaptation of such systems is then a key issue for providing a
step forward framework, able to face new kinds of services integration and orchestration
within the context of dynamic workflows.

4Java Business Integration.

SALTY Project (ANR-09-SEGI-012) B-6 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

CHAPTER

2

Scenario 1 - Grid
Self-Management

The first scenario is in the context of Grid Computing. We consider a large Grid infras-
tructure that supports scientific computing, medical image analysis in particular.

2.1 Context

In this section we first introduce the general motivation behind this set of scenarios, the
difficulties in nowadays Grid computing, and by doing that we prepare the foundation
for further presenting the autonomic computing as a mechanism for tacking these issues.
Next we briefly outline the core principles of the gLite Grid middleware in regards to the
job management and in the remaining subsection we describe the details of the neuGRID
project which is the Grid whose operation motivated the scenarios and in which they are
going to be implemented and experimented.

2.1.1 Introduction

Grid infrastructures have become a critical substrate for supporting scientific computa-
tions in many different application areas. Over the last decade, world-wide scale Grids
(e.g. EGEE1, OSG2, PRAGMA3) leveraging the Internet capabilities have been progres-
sively deployed and exploited in production by large international consortia. They are
grounded on new middleware federating the grid resources and administration frame-
works and enabling the proper operation of the global system 24/7. Despite all efforts
invested both in software development to achieve reliable middleware and in system op-
erations to deliver high quality of service, grids encounter difficulties to implement the
promise of ubiquitous, seamless and transparent computing.

The causes are diverse and rather well identified. They notably include i the complex-
ity of middleware stacks, making it extremely difficult to validate code; ii the dependence
of the overall infrastructure to many distributed resources (servers, network) which are
prone to hardware failures and exogenous interventions; iii the heterogeneity of hard-
ware and software operated, leading to almost infinite combinations of inter-dependen-
cies; iv the uncontrolled reliability of the application codes enacted that sometimes has
side-effects on the infrastructure; v the incompatibilities between software components
although they were meant to be interoperable; vi the difficulty to identify sources of
errors in a distributed, multi-administrative domains environment; vii the challenging
scale of the computing problems tackled; etc.

The practice demonstrates that the human administration cost for grids is high, and
end-users are not completely shielded from the system heterogeneity and faults. Heavy-

1Enabling Grids for E-sciencE, http://www.eu-egee.org
2Open Science Grid, http://www.opensciencegrid.org
3Pacific Rim Applications and Grid Middleware Assembly,http://www.pragma-grid.net

SALTY Project (ANR-09-SEGI-012) B-7 Rev: 209

http://www.eu-egee.org
http://www.opensciencegrid.org
http://www.pragma-grid.net

D-1.1 - Appendix B- Middleware Scenarios Specification

weight operation procedures are implemented by the grid administrators and users have
to explicitly deal with unreliability issues [6].

Acknowledging the fact that middleware can hardly achieve complete reliability in
such a challenging context, new operation modes have to be implemented to make grid
systems resilient and capable of recovering from unexpected failures. Recently, there
has been a lot of effort put into considering alternative paradigms and techniques that
are based on principles used by biological system or in control engineering. These ap-
proaches, referred to as Autonomic Computing, aim at realizing computing systems and
applications managing themselves with minimal or none human intervention [9]. Such
systems then provide some self-management properties, mainly self-configuration, self-
healing, self-optimization, self-monitoring and self-protection.

2.1.2 gLite

The gLite middleware has been developed as a part of the European project EGEE which
delivers a reliable and dependable European Grid infrastructure for e-Science. gLite is
architected as a two-levels batch system that federates resources delivered by multiple
computing sites. Each site is exposing its Worker Nodes computing units (WN) through a
Computing Element (CE) gateway. A high-level meta-scheduler called the Workload Man-
agement System (WMS) is used as a front end to multiple CEs.

Grid applications are sliced in smaller computing jobs. Each job is described through
a Job Description Language (JDL) document that describes the executable code to invoke
and specifies the specific requirements associated4. Jobs are submitted from a client User
Interface (UI) to the WMS. The WMS is responsible for resources identification and job
management across Grid resources, in such a way that jobs are conveniently, efficiently
and effectively executed (fig. 2.1). Effectively, the job enters the WMS through a simple
web service base interface (WMProxy) and it is passed to the Workload Manager (WM) to
be queued into a file system-based Task Queue (TQ). A matchmaking operation then takes
place to identify available and suitable resources. The matchmaking is done by interro-
gating the Information Supermarket (ISM), an internal information cache, to determine the
status and availability of computational and storage resources and query the Logical File
Catalogue (LFC) to find locations of any required input files. Once an appropriate CE has
been found the WMS delegates the job processing to the CE batch manager where it is
queued until a WN can process it. The job scheduling policy configured in neuGRID’s
WMS is eager scheduling, where a job is matched against the resources and passed for
execution as soon as possible.

A WMS can be configured to use different policies regarding the job scheduling task.
On one extreme, it can use an eager scheduling where a job is matched against the re-
sources and passed for execution as soon as possible, where, it will very likely end up
in a queue. The other extreme is lazy scheduling, where a job is being held by the WMS
until a resource has become available, at which point the resource is matched against the
waiting jobs (from TQ) and the one which does fits the best is pushed to that resource for
immediate execution. The main difference is that at the match-making level in the for-
mer scheduling the job is matched against multiple resources whereas the latter implies
matching a single resource against multiple waiting jobs in the WMS. At the queue level,
non-matching requests will be retried either periodically (eager) or a soon as an available
resource will appear (lazy) in the ISM.

4These are specified by a user and usable according to the local policies specified by the local system
administrator.

SALTY Project (ANR-09-SEGI-012) B-8 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

UI

WMS

...

...

User

submits
job

LFC

notifies
availability

running jobs

notifies job status changes

queues

CE1
CE2

WN1

WN2

CEn

WNn

executes

Qi

WMProxy

Match
Maker

TQ

ISM

WM L&B

Job
submission

and
monitoring

schedules / monitor

gLite submission process: A user submits a job using UI (User Interface) into WMS (Workload
Management System), where it is put into a TQ (task Queue), before it is matched against avail-
able CEs (Computing Elements) using information from the ISM (Information Supermarket) and
LFC (Logical File Catalog). Once a suitable CE is available a job is submitted into its queue. The
actual execution is performed on a WN (Worker Node). The job can make use of a R-GMA (Re-
lational Grid Monitoring Architecture). All job state transitions are logged by L&B (Logging and
Bookkeeping service).

Figure 2.1: gLite job submission overview (a logical schema)
.

SALTY Project (ANR-09-SEGI-012) B-9 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Similarly, CEs can operate in a push mode, where the job submission is triggered by
other services, in particular by the WMS, and in a pull mode, where the job dispatching is
initiated by CE itself [1]. In push mode, when a job is sent into CE, it gets accepted only if
the CE has an available space in a queue. The job gets then dispatched to a working node
matching these constraints. In the pull model, on the other hand, when CE can receive a
job (for instance the local queue is empty of it is getting empty) it requests it from a well
known WMS.

submitted

waiting

ready

scheduled

running

aborted

done (OK)done (failed)

cleared

done (cancelled)

Figure 2.2: Job state machine

When submitted, a job goes through a series of states (as shown in fig. 2.2). The
change from one state to another as well as other important events in the job life-cycle,
like finding a matching CE, are being tracked by the Logging and Bookkeeping service (L&B).
These events are being gathered by WMS components as well as CEs. Events are passed
to a physically close component of the L&B infrastructure in order to avoid any sort of
network problems. These components are responsible for persisting events and deliver-
ing them to one of the bookkeeping servers 5. This server process them and provides a
higher level view of the job states (submitted, running, done, . . .) together with various
attributes like the job’s JDL6, matched CE, exit code, etc. It is also possible for the user,
instead of querying the L&B service directly, to register itself to be notified on a particular
job state changes - for instance when it finishes.

More information about gLite components is available in [1]. For efficient job submis-
sion it is necessary to adjust the size of a job queue at the CE level accordingly to the type
of jobs that are being submitted into a Grid in order to decrease the time needed for a job
to start executing (time needed to move from submitted state to running in the job state
machine) and to prevent time-outs with potential jobs resubmissions.

5assigned statically to a job upon submission
6Job Description Language - a language for describing a job with all its requirements and dependencies

SALTY Project (ANR-09-SEGI-012) B-10 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

2.1.3 neuGRID Data Challenge

A part of the neuGRID project is a set of validation tests that are run within the infrastruc-
ture in order to verify its good performance while meeting user requirements specifica-
tion. These performance tests are executed in form of data challenges in which a very large
data set of medical images is analyzed hence putting a lot of stress onto the underlying
infrastructure.

During the neuGRID project there are 3 data challenges, two of them have already
been run and one is scheduled. The differs in the aim as described below:

Data Challenge 1 testing the infrastructure in general - to make a test of the entire neu-
GRID gLite middleware stack in an automatic way. It divides the test into five
different areas:

• Security services

• Information system services

• Data management services

• Job management services

Data Challenge 2 testing the performance of the entire neuGRID infrastructure in order
to determine directions for ongoing developments.

Data Challenge 3 validating and assessing the final neuGRID infrastructure (performance,
limitations), in order to comfort technical decisions or to indicate possible alterna-
tives to be chased post projects.

The neuGRID infrastructure (as shown in fig. 2.3) is composed of two levels:

LEVEL 0 represents the ”infrastructure ground truth” level with Grid Core Center (GCC).
It includes Grid central core services for Authentication (MyProxy, CA), Authoriza-
tion (VOMS), LFC, WMS and central Information System Service (top BDII).

LEVEL 1 represents the Data Archiving and Computing Sites (DACS). In other words,
this level encompasses distributed storage (DPM, a Storage Element implementa-
tion) and computing (CE/WNs) resources. Next to them stands another Informa-
tion System Service (site BDII), which is site-specific.

In the rest of this section we will focus on the second data challenge which has been
used to serve as a start point for identifying representative scenarios presented in this
document.

The data challenge consisted in analyzing the entire dataset of the US-ADNI data us-
ing the CIVET pipeline7 that contains 715 patients with 6’235 scans in MINC8 format,
representing roughly 108 GB of data. Each scan is about 10 to 20 MB and contains be-
tween 150 to 250 slices. The experiment was running for less than 2 weeks9 producing
about a 1TB of data and utilizing in the peak 184 cores in parallel.

It was executed as a parametric job that was submitted into the gLite middleware in
the very same way as presented in the section 2.1.2. A parametric job is a job that allows

7CIVET pipeline http://wiki.bic.mni.mcgill.ca/index.php/CIVET
8Medical Image NetCDF http://www.nitrc.org/projects/minc/
9just for comparison, it would have taken couple of years to accomplish the same using a single worksta-

tion

SALTY Project (ANR-09-SEGI-012) B-11 Rev: 209

http://wiki.bic.mni.mcgill.ca/index.php/CIVET
http://www.nitrc.org/projects/minc/

D-1.1 - Appendix B- Middleware Scenarios Specification

maatG
(Archamps, FR)

LFC

KI (Stockholm, SE)

CE WN

VUmc (Amsterdam, NL)

CE WN

FBF (Brescia, IT)

CE WN

WMSWM

L&B

LEVEL 1 LEVEL 0

Figure 2.3: neuGRID deployment

to create a bulk of similar jobs that only differ in arguments and submits them as a single
job. The WMS then breaks the parametric job into respective number of single jobs and
submits them separately into CEs on users behalf, thus significantly reducing the time
needed for the jobs submission.

During the data challenges several problems have been observed that required signifi-
cant intervention from the operating personnel not only resulting in prolonged execution
time but more importantly in higher cost. They vary in nature (hardware/middleware/application)
and severity.

Representative hardware failures encountered are:

• A power-failure resulting in the whole site (CE) going down, had to be recovered.
Submitted jobs were pushed to the other CE where they caused a failure due to an
overload (below).

Representative middleware failures encountered are:

• WMS service overload - not able to handle all submitted jobs, had to be manually
reconfigured and restarted.

• WMS service crashing - due to memory leak in the middleware, had to be manually
restarted and pending jobs rescheduled.

SALTY Project (ANR-09-SEGI-012) B-12 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

• CE service overload - not able to handle all submitted jobs, had to be manually
reconfigured and restarted.

• LFC service overload - not able to handle too many requests from the many services
within the Grid, necessitated a workaround handling timeouts to be developed
because of LFC not responding.

Representative application failures encountered are:

• Library incompatibilities between CIVET pipeline and WN operating system - very
difficult to trace down what is the exact cause, had to be manually rescheduled.

• Bad data - ADNI images not fully quality assessed, manually rescheduled in cases
where the part of work flow that could be recovered.

• Problems in the pipeline itself, had to be manually rescheduled.

All impacts of the described issues are quite significant to the normal operation and
maintenance of the grid. Consequently, managing such problems through additional
autonomic capabilities are likely to bring important benefits on other data challenge runs
and on the normal day-to-day operation of the infrastructure.

The presented scenarios are motivated by middleware related issues from the data
challenge experiment, but also by recurring issues on the EGEE Grid in which the gLite
middleware is also deployed. Consequently, we can define the overall system goal of this
middleware to be the following.

System Goal The system shall allow for stable distribution and management of jobs
across Grid resource in such a way that applications are efficiently executed.

2.2 Overall Experimental Setup

The initial experimental setup for evaluation of scenarios described below will be done
in the SALTY testing environment at MAAT-G. It is a dedicated environment for testing
and experimenting with the implementation of these scenarios. Part of this environment
is a WMS that is made especially for the testing purposes. However, it is important to
mention that this WMS is connected to the CEs that are part of the production environ-
ment of neuGRID so all the tests should be run carefully, not to put any significant load
to the underlying infrastructure.

For some of the tests an extra effort will need to be done in order to sufficiently test the
usability of the approach and of the implementation. These will be discussed in greater
details at the appropriate section of each scenario.

Besides the initial proof-of-concept tests, executed in the testing environment, there
are further plans to incorporate experiments during some larger data and analysis chal-
lenges that are part of the future neuGRID project evaluation. Indeed, as it was describe
in the section 2.1.3, the latest Data Challenge 3 will consist in validating and assessing the
final neuGRID infrastructure. To do this, thousand of MRI scans will be analyzed using
at least tree different toolkits. This challenge will require a lot of computing power, and
the infrastructure will certainly need to be adapted in order to properly handle it and the
Salty solution will certainly be really useful for it.

SALTY Project (ANR-09-SEGI-012) B-13 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

2.3 Scenario 1.1 - WMS Overload

2.3.1 Objective

The WMS component is the gateway to the gLite job management system. Most of the
requests regarding the job submission, status, etc. involve the WMS and therefore it
might get overloaded. The overload is usually caused by receiving more requests that it
can handle or due to a software problem in the component itself, e.g. a memory leak such
as the one encountered during the data challenge.

To deal with this kind of failure, an additional self-healing control loop should be
deployed into the infrastructure. This loop interacts with the WMS host’s low level op-
erating system probes and periodically monitors CPU and memory utilization done by
WMS process. We define two threshold values for the system. When the first one is
reached then WMS is being blocked from all new incoming jobs to be submitted until its
resource usage either goes below this threshold or till it reaches the second threshold. If
that happen the adaptation mechanism will proceed and restart WMS.

Managed Resource

Process restart
effector

Resource usage
sensors

Drain mode
effector

Autonomic Manager

Workload Manager System

Self-Healing Control Loop

Drain mode
sensor

Figure 2.4: WMS overload schema

The reason for establishing two thresholds is to give a chance to WMS to potentially
recover from a high load or at least allow it to schedule as many jobs as possible to the
computation sites before it is taken down so the final impact on the infrastructure is
smaller.

2.3.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. The self-healing subsystem shall lower the impact caused by the WMS overload.

SALTY Project (ANR-09-SEGI-012) B-14 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Evolution: Static
In this scenario only a single goal is considered and it does not change within
the lifetime of the system.

Flexibility Rigid
The goal is prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime.

Multiplicity Single goal
In this scenario we consider a system having only one goal.

Dependency N/A
In this scenario we consider a system having only one goal.

Change. The adaptation is triggered when resource usage of the WMS process reaches
certain thresholds.

Source Internal
The change in resource usage is internal to the system and happens in the
middleware (WMS is apart of the gLite middleware).

Type Non-functional
The change is related to QoS of the job management service.

Frequency Rare - normal operation; Seldom - during data challenge
During the normal grid operation, the system’s resource usage should stay
within specified boundaries. During a data challenge the overload is however
more likely to occur.

Anticipation Foreseen
Although overloads are undesirable, they should be expected hence the over-
load of WMS (during data challenges in particular) should be considered as
foreseen.

Mechanism. In case the system has reached the first (blocking) threshold, the mechanism
should prevent the system from accepting any new job submission requests. In case
of system reaching the other (restarting threshold), the mechanism should restart
the WMS process.

Type Parametric
Both mechanism are parametric, as a contrary to structural. The first adapta-
tion changes the WMS behavior through and in the second adaptation, restart-
ing the WMS can be seen as setting a technical parameter (restart) on it.

Autonomy Autonomous
No outside intervention.

Organization Centralized
The adaptation is performed by a single centralized component.

Scope Local
Adaptation only involves changes in WMS component.

Duration Short
The amount of time required to reconfigure the system should be short. Re-
configuration impacts the availability of (some of) the system’s services.

SALTY Project (ANR-09-SEGI-012) B-15 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Timeliness Best-Effort
Enabling or disabling drain mode is done externally through a file content
which is reread by the system in way that cannot be affected from the outside.
The restart action also might last longer than expected. In any case, there need
to be guarantee that only one adaptation processes at a time.

Triggering Event-trigger
Both adaptations are triggered when resource usage reaches certain value.

Effects. System temporarily stops accepting new jobs or is restart.

Criticality Mission-critical
It is mission-critical as we cannot guarantee that the WMS will come back on-
line after its restart. In case of failing the adaptation mechanism that puts it
into or out of a drain mode the entire job submission mechanism is compro-
mised. The very applies in case of system restart.

Predictability Deterministic
In both cases, there the actions are well determined.

Overhead Reasonable
There should be a mechanism to ensure the system does not constantly recon-
figure itself. This is realized by ensuring that the adaptation is triggered only
if there are significant changes in the monitored data over a pre-specified pe-
riod of time. However, there is a considerable overhead in terms of wasted
resources as during the reconfiguration some of the system’s services might
become unavailable.

Resilience Vulnerable
WMS become temporary unavailable while being restarted and partly un-
available (to new submission requests) while being in the drain mode.

2.3.3 Adaptation

An overload is detected when resource utilization exceeds a certain threshold value (fig. 2.5).
We define two threshold values with associated adaptation mechanisms:

1. blocking threshold T0 and

2. restarting threshold T1, (T0 > T1).

When the loop detects that T0 is exceeded, the adaptation mechanism will block all
incoming jobs from entering the system. It does that by putting WMProxy into a drain
mode that prevents it from accepting any new job submission requests. This should
remove a part of the load and therefore increases a chance for WMS to recover10. It
will also allow the service to process as many already queued jobs from its TQ as it can,
before the resource usage reaches the second threshold T1. At the point when T1 has
been exceeded, the adaptation mechanism will restart the WMS process itself. All the
job management services, together with monitoring will ceased for the duration of the
service restart tr. If the system has recovered and its resource usage dropped below the
blocking threshold T0, the WMProxy will again be enabled to accept new job submission
requests.

10unless the overload is caused by a software defect

SALTY Project (ANR-09-SEGI-012) B-16 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

re
so

ur
ce

us
ag

e

time

WMS

block new jobs

service restart

restarted
WMS

tr

T1

T0

Figure 2.5: WMS overload model

At first, both T0 and T1 are empirical, but the next step is to make them to evolve
during the system life time so they adapt to the current system context (see extensions
2.3.5). The actual adaptation model is subject for further investigation. It is currently
based on automatic threshold setting techniques [3].

The monitoring part of the control loop should also be self-adaptive. Instead of taking
the resource usage samples at a constant rate, it should adapt the rate frequency based on
the load observed in the system. The higher the load is, the shorter the sampling intervals
should be in order to have a very precise information about the system and execute the
adaptation policy on time.

The figure 2.6 illustrates the adaptation of sampling rate according to the resource
utilization. The concrete model of the monitoring adaptation is also to be improved and
simple statistical models are intended to be experimented first [7].

In this section we refer to resource usage as a mean to observe the load of the WMS.
There are few metrics that can be used for that. The major one include memory and CPU
usage. The loop need to keep historical values of these measurements to build its internal
model of resource consumption of the WMS in time for better analysis of the state.

2.3.4 Experimental Setup

The experimental setup will be initially done in the dedicated testing environment at
MAAT-G. The subject of the adaptation in this scenario is WMS and the aim is to verify
that the feedback control loop correctly reacts upon the overload of the WMS. In the
testing environment we cannot submit that many jobs as in the end they will be executed
by the production part of the neuGRID. Therefore we will simulate the load by lowering
the thresholds. In this way we can simulate overload even with only a few jobs. Although
it is not the very same as stressing the WMS to its limits, it should be sufficient to verify
the implementation and get some initial feedback.

SALTY Project (ANR-09-SEGI-012) B-17 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

re
so

ur
ce

us
ag

e

time

T1

T0

monitoring sample rate

WMS

Figure 2.6: WMS resource usage adaptive monitoring

2.3.5 Extensions

We describe here some possible extensions of this first scenario. Each extension leads to
additional complexity in different areas of the feedback control loop architecture and the
overall behavior.

• Taking into an account the other scenarios, we can aggregate probes among differ-
ent feedback control loops and compose them into some hierarchy, where one loop
can controls others, etc. One concrete example is to take a case of CE Starvation
(cf. section 2.4) and add a self-protecting subsystem build on the top that. It will
be responsible to disconnect CE starvation loop when it finds out that it puts too
much load on the WMS.

• Similarly to the previous point, there can be another loop on the top of the one
responsible for the WMS self-healing. This one will on a longer term monitors the
effects of adaptations triggered by the other one and it will try to reason about
whether the overall system performance is actually improved or not. Based on that
it might adjust the other loop properties (e.g. thresholds), etc. Another example
can be a loop that monitors the frequency of adaptations of the self-healing loop
and puts some restrictions on the rate of those adaptations.

• The WMS system is described as a whole in this scenario. However, it can be de-
composed into individual components (i.e. WMProxy, Workload Manager, cf. 2.1).
Then one can introduce managed resources to these components, as well as loops
that coordinate them on the top. In this case one can monitor for example resource
usage of the Workload Manager (WM) and based on that adjust the amount of re-
quests coming from WMProxy.

SALTY Project (ANR-09-SEGI-012) B-18 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

2.4 Scenario 1.2 - CE Starvation

2.4.1 Objective

During the data challenge run (fig. 2.7), when the CE had disappeared because of the
power failure, the WMS correctly detected the situation and rescheduled all jobs to the
other site that remained available. However, the sudden schedule of many jobs resulted
in an complete overload on the other site that had to be restarted in the end. This could
have been fixed by setting a smaller queue size. Nevertheless, this introduces a different
but more severe issue. If the site receiving all rescheduled jobs was not overloaded and
continued to work and the other site appeared again, it would have no jobs to execute.
This would result into the situation when one site is very busy and the other completely
idle, being able to only work on newly arrived jobs. Therefore, in this scenario, the ob-
jective is to keep all computing elements optimally utilized and prevent them from both
extremes: an overload, due to large number of jobs getting scheduled, on one hand and
a starvation, with no job to process, on the other.

time

nu
m

be
r o

f j
ob

s

CE1

CE2

TQ

t0 t1 t2 t3 t4 t5
power failure

overload

back online

Figure 2.7: CE starvation as demonstrated during the data challenge

The general rule should be to always keep some jobs in the WMS task queue rather
than immediately submit them to corresponding CEs. The standard behavior of WMS11

is that it schedules a job as soon as there is a matching CE resource available i.e. when it
has a free slot in its batch queue. So in order to keep jobs in TQ the size of the queue at
CE level must be set to reasonably small number according to the context. On the other
hand, the number should not be too small, because then when the execution time of jobs
is short, the site will be running out of work to do.

11WMS that is configured in eager scheduling mode, like are the ones in neuGRID or EGEE.

SALTY Project (ANR-09-SEGI-012) B-19 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

2.4.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. The self-optimization subsystem shall allow for better distribution of jobs among
the computing sites available in the infrastructure and prevent system from having
some sites overloaded and some sites idle.

Evolution: Static
In this scenario only a single goal is considered and it does not change within
the lifetime of the system.

Flexibility Rigid
The goal is prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime.

Multiplicity Single goal
In this scenario we consider a system having only one goal.

Dependency N/A
In this scenario we consider a system having only one goal.

Change. The adaptation is triggered by the number of jobs in the CE job queue.

Source Internal
We consider the cause of the adaptation to be the fluctuation of the number of
jobs in a job queue at the CE level.

Type Non-functional
The change is related to QoS of the job management service.

Frequency Often
The different kind usage of the grid predicts that the adaptation will happen
often.

Anticipation Foreseen
The Grid is being used by number of users with different requirements there-
fore the variation in execution time of jobs is the norm.

Mechanism. The mechanism for the self-optimization adaptation is modifying the size
of job queues and other relevant properties of the computational site.

Type Parametric
The parameters of the CE are changed.

Autonomy Autonomous
In this use case there is no outside intervention.

Organization Centralized
The adaptation is performed by a single centralized component.

Scope Local
In our case the adaptation only involves changes in CE component.

Duration Short
The amount of time required to reconfigure the system should be short. Re-
configuration impacts the availability of (some of) the system’s services.

SALTY Project (ANR-09-SEGI-012) B-20 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Timeliness Guaranteed
Torque based CE adapts the queue size immediately, albeit it needs to hold in
jobs that we submitted earlier and will now be over the limit.

Triggering Event-trigger
The adaptation is triggered when number of jobs in CE queue reaches certain
threshold.

Effects. System adjusts the number of jobs that it allows to be scheduled in its queue.

Criticality Harmless
The impact upon the system by changing the queue size should be minimal.

Predictability Deterministic
There should be guarantees that the system after adaptation will continue pro-
visioning its services.

Overhead Reasonable
The torque based CE should have a very little overhear associated with the
change of its job queue.

Resilience Vulnerable
The system should remain provisioning of its services during the adaptation.

2.4.3 Adaptation

Our proposed solution is to have a control loop for each CE that monitors the number of
jobs in the TQ and in the site’s batch queue readjusting the queue size when necessary.
The initial model (fig. 2.8) should maintain two thresholds: minimum and maximum
of the queue size. The maximum should be the maximum of jobs that the site is able
to handle before it gets overloaded. As a start, the minimum should be the number of
parallel jobs the site can execute or a reasonable multiple. Both values should be subject
to adaptation and change as the system evolves. Every batch queue size has a directly
proportional tolerance zone associated. When the number of jobs at the site drops below
this zone an adaptation might be triggered and the queue size increased. It should be
also considered the number of jobs in the TQ is considered; a discrete ratio between the
number of jobs to be scheduled and the size of the batch queue. The concrete model is
yet to be experienced at short term.

In case of neuGRID, the CE is LCG-CE12 which is based on torque13. Adjusting the
queue size in torque has very little impact on the running system, hence we can often
modify it. However, there might be different implementations of CE in other gLite de-
ployments, in which queue size change has a more significant impact. In that case a
different approach will be developed, for instance by setting an artificial threshold on the
queue size and by adjusting the WMS job scheduling as well.

2.4.4 Experimental Setup

For the concrete experimentation, as it was said previously, the problem is that the SALTY
test WMS is connected to the CEs that are part of the production environment of neu-
GRID. Nevertheless, a specific queue will be created on these CEs, in order to minimize
the impact of the SALTY experimentations on the production infrastructure. This queue
will have a small value for the maximum queue size threshold.

12https://twiki.cern.ch/twiki/bin/view/EGEE/LcgCE
13http://www.clusterresources.com/products/torque-resource-manager.php

SALTY Project (ANR-09-SEGI-012) B-21 Rev: 209

https://twiki.cern.ch/twiki/bin/view/EGEE/LcgCE
http://www.clusterresources.com/products/torque-resource-manager.php

D-1.1 - Appendix B- Middleware Scenarios Specification

ε
Tmin

Tmax

|Q| njobs

njobs

time

timeCEi

TQ

nu
m

be
r o

f j
ob

s
/ q

ue
ue

 s
iz

e

adaptations

Figure 2.8: CE queue size adaptation model

2.4.5 Remarks

This particular scenario applies mostly in the very specific situation as was the data chal-
lenge described in 2.1.3 - in a small environments with lot of sudden work.

2.5 Scenario 1.3 - Job Failures

2.5.1 Objective

Job failures14 can be divided into two categories: the one where the failure is caused by
an application specific problem and the other where it is due to a problem in the Grid
middleware. The first category includes invalid job descriptions, application software
”bugs” or invalid input data. The cause related to the middleware may be for example
some unresolved library dependencies that lead to systematic failures on some jobs. In-
deed a job expresses its requirements in a specific JDL file, but there is no fine-grained
manner to express precise library dependencies. Therefore a job might be scheduled to
run on a WN that does not satisfy the actual job library requirements. The larger the grid
considered, the more critical this issue is, as heterogeneity and possible incompatible
configurations are more likely in large systems.

Identifying the exact cause of a job failure requires extensive expertise and debugging
skills. Furthermore, coordinated investigation over multiple administrative domains is

14A failed job in gLite context is considered to any finished job with an exit code other than 0.

SALTY Project (ANR-09-SEGI-012) B-22 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

often needed in Grids. To address this problem without resorting to a costly human inter-
vention, it is possible to collect statistics to identify recurring source of failures. Although
it does not provide insight on the exact reason for the failure, it may be sufficient to avoid
situations that are known to fail.

2.5.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. The self-monitoring subsystem shall increase the number of information that are
available in case a job has failed.

Evolution: Static
In this scenario only a single goal is considered and it does not change within
the lifetime of the system.

Flexibility Rigid
The goal is prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime.

Multiplicity Single goal
In this scenario we consider a system having only one goal.

Dependency N/A
In this scenario we consider a system having only one goal.

Change. The adaptation is triggered when a result of job execution is a failure and when
an already failed job is submitted again.

Source Internal
The source of job failure is internal to the system15. The source of already failed
job entering the system is external to the system.

Type Non-functional
The change is related to QoS of the job management service.

Frequency Often
Job failures do occur on a regular basis as well as there are likely to be already
failed jobs retried.

Anticipation Foreseen
Although overloads are undesirable, they should be expected hence the over-
load of WMS (during data challenges in particular) should be considered as
foreseen.

Mechanism. When a job has failed during its executing, all possible context information
are stored into the knowledge base. When a job that is presented in the knowledge
base enters system again its JDL file is extended using some monitoring policies so
more information in case of additional failure can be gathered.

15it is not easily distinguishable whether the failure has been caused by the job itself or by the middleware
so we will consider the source to be the middleware

SALTY Project (ANR-09-SEGI-012) B-23 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Type Parametric
The parameters of either JDL or knowledge base are changed.

Autonomy Autonomous
No outside intervention.

Organization Centralized
The adaptation is performed by a single centralized component.

Scope Local
Adaptation only involves changes the knowledge base and JDL file

Duration Short
The amount of time required for both mechanisms should be rather short.

Timeliness Guaranteed
The time need for performing the adaptation both in JDL manipulation and
failed job interception can be guaranteed.

Triggering Event-trigger
Either by job failure or by already known failed job entering the system again.

Effects. Modified JDL file and or new record in the knowledge base.

Criticality Mission-critical
If the change of the JDL file fails it might prevent the job from the actual exe-
cution. If failed job does not ended up in the knowledge base the scenario will
get compromised.

Predictability Deterministic
There should be guarantees that the system after adaptation will continue pro-
visioning its services.

Overhead Low
The overhead of modifying the JDL file is rather small as well as should be the
getting the notification about job failure and update of the knowledge base.

Resilience Resilient
WMS should not be affected during these adaptations.

2.5.3 Adaptation

A first practical approach consists in building a self-monitoring subsystem (cf. Figure
2.9) that gathers information relevant to job failures and indexes them in a knowledge
database with their job type (i.e. the full value of the Executable directive in the JDL
file). It can then be queried to decide some adaptations based on gradual information
about failures as well as statistics such as job executable against failure rate.

For example, when a job type that is already in the knowledge base is submitted, the
system can adapt the job’s JDL according to some specified policies. Technical studies
show that this can be achieved by developing a plug-in for the request delivery module in
the WMProxy [2]. This allows for experimenting with the job submission and extending
available failure information.

Extensions can be addition of standard output, error and core dump files into the job
output sandbox that is retrieved by the WMS or executable wrapping with some tracing
utility such as strace.

SALTY Project (ANR-09-SEGI-012) B-24 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Job

L&B

Workload
Manager

Job Failure
DB

CEi

self-monitoring
subsystem

notifies

schedules

notifies failure

notifies

gathers
data

adaptation
policies

gLite

notifies

JDL

JDL*

adapts
JDL

WMProxy

delivers

submitted

plugin

Figure 2.9: Job failure self-monitoring subsystem

Another very useful planned experiment is to verify whether the particular job type
fails on all CEs or only on a certain subset. To implement this, an adaptation could modify
the JDL to blacklist one or more CEs.

To populate the database, the self-monitoring system interacts with the L&B service
to get all reported16 failures. Unless explicitly stated in the JDL, there is very little in-
formation available upon job failure when the cause is not properly identified by the
middleware, i.e. usually only the exit code, and that makes root cause analysis very dif-
ficult. Therefore, the other part of the self-monitoring subsystem gathers more relevant
information by interacting with the WMProxy and by monitoring all new incoming jobs.

Further we can envision extending the monitoring subsystem with the ability to clus-
ter failures by input data.

2.5.4 Experimental Setup

The experiments for this scenario will be done in the MAAT-G testing environment. We
will execute a series of jobs with verified behavior: either successful execution of failed
one and experiment with different adaptation polices and JDL modifications. This should
not put too much stress to the underlying environment.

2.6 Scenario 1.4 - CE Black Hole

2.6.1 Objective

Under certain circumstances a CE might malfunction and start to fail all scheduled jobs
for some unknown reason. Since it fails all jobs immediately, it will process its queues
very quickly hence becoming a black hole in the Grid as it will eat all newly incoming
jobs that are matched to its configuration. This scenario is not directly linked to failures

16There might be jobs that disappeared because for some reason the middleware lost track of them. How-
ever, these jobs will not be detected as failed.

SALTY Project (ANR-09-SEGI-012) B-25 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

observed during the data challenge, but it is a well-known issue in the gLite middleware
[4].

WMS

Jobs Jobs Jobs

...CE2 CEn

become idle

consumes all
submitted jobs

black hole

CE1

Figure 2.10: CE black hole

2.6.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. The self-healing subsystem shall put out of operation any computational site that
has been detected as black holes.

Evolution: Static
In this scenario only a single goal is considered and it does not change within
the lifetime of the system.

Flexibility Rigid
The goal is prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime.

Multiplicity Single goal
In this scenario we consider a system having only one goal.

Dependency N/A
In this scenario we consider a system having only one goal.

Change. The adaptation is triggered when a black hole pattern is detected.

Source Internal
The change is internal as it occurs in a CE which is part of the middleware.

SALTY Project (ANR-09-SEGI-012) B-26 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Type Non-functional
The change is related to QoS of the job management service.

Frequency Rare
During the normal grid operation it does not happen very often that a CE will
dysfunction and become a black hole.

Anticipation Foreseen
Although black holes are undesirable, they should be expected.

Mechanism. The mechanism of the adaptation is to eliminate the malfunctioned CE as
soon as possible by putting it to a drain mode.

Type Combinational
On the one hand, the parameters of the CE service are changed. Putting CE to
a drain mode is done in CE it self by changing its configuration. On the other
hand, it is also a structural change to the rest of the system, as the CE will be
finally removed from the available resources at the WMS level (see adaptation
part).

Autonomy Assisted
A system administrator is eventually required to take an action.

Organization Decentralized
It depends at the final implementation, but in general there is no correlation
between CE and therefore it is decentralized.

Scope Global
The adaptation involves putting CE into a drain mode which in consequence
will affect the WMS as well.

Duration Short
The amount of time required to reconfigure the system should be short.

Timeliness Best-Effort
Once a CE is put into a drain mode, it will stay there until a system adminis-
trator does not change it.

Triggering Event-trigger
The adaptation is triggered when a black hole pattern is detected.

Effects. System disables the malfunctioned computational site.

Criticality Mission-critical
If the adaptation fails to disable the malfunctioned CE, it will continue to fail
all the jobs submitted to the infrastructure.

Predictability Deterministic
There should be guarantees that the system after adaptation will stop adver-
tising itself to the ISM.

Overhead Small
Putting CE into drain mode is a quick action that does not require almost any
resources.

Resilience Vulnerable
The CE itself will stop working, but this is actually expected. On the other
hand, the job submission mechanism should continue to work.

SALTY Project (ANR-09-SEGI-012) B-27 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

2.6.3 Adaptation

The self-healing adaptation in this case involves a control loop that monitors execution
time, IO activity using low level operating system probes and results of job execution
using the L&B service or CE’s log. When it observes the black hole pattern – a series of
jobs with very short execution time and low disk activity – it will put the CE into a drain
mode. Drain mode will be reported back to the ISM (Information Supermarket) and after
several minutes, the WMS will no longer submit jobs to it. This will also be propagated to
system administrators who should take a closer look at the problem and are responsible
for bringing the site back up and running.

In this scenario there are multiple options on the concrete loop deployment. For ex-
ample there may be one control loop per CE or one master control loop that manages all
CEs in the infrastructure. In the former option another loop will be required to manage
loops together with CE life-cycles, so when a new CE joins a new properly configured
loop is deployed into the system and vice-versa. The different pros and cons of these
approaches are to be further experimented and one of the aims of the SALTY framework
is to facilitate and capitalize such experimentations.

WMS

Jobs Jobs Jobs

...CE2 CEndetects

black hole

CE1

self-healing
subsystem

put CE into
drain mode

report drain mode
to ISM

Figure 2.11: Self-healing adaptation

2.6.4 Experimental Setup

For this specific case, having a specific queue on the production neuGRID CEs will not
be sufficient. In this particular case, a specific CE will have to be installed and configured
to be a black hole.

2.6.5 Remarks

An extension should be that there are more then one mechanism to disable the CE. Cur-
rently the scenario only includes the one that sets CE into drain mode. This is however
an indirect action as the CE itself needs to propagate it to the ISM. If from some reason

SALTY Project (ANR-09-SEGI-012) B-28 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

the CE is not able to do that, some hard mechanism should be available to guarantee the
effect, even for a price of a system shutdown or a similar action.

SALTY Project (ANR-09-SEGI-012) B-29 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

SALTY Project (ANR-09-SEGI-012) B-30 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

CHAPTER

3

Scenario 2 - Desktop Fusion
Self-Configuration

3.1 Context

3.1.1 Introduction

Scientists’ applications need more and more storage and computing resources. Grid In-
frastructures can provide such facilities. However, installing and configuring all applica-
tions on machines may be seen as a burden, especially for Grid middleware. Providing
easy-to-use applications, with no installation and configuration steps is clearly an advan-
tage, and it’s the goal of Desktop Fusion.

3.1.2 Desktop Fusion

Figure 3.1: Desktop Fusion splash screen
.

Desktop Fusion is an integrated new technology which allows for remote execution of
applications. The technology chosen to achieve this is the Open Source version of NX so
call FreeNX. The latter provides encrypted and optimized access to remote applications
thus allowing researchers to run specialized viewers and to interact with the Grid directly
from their desktop (fig. 3.2).

3.2 Scenario 2.1 - Dynamic Load Balancing

3.2.1 Objective

Desktop Fusion provide users with remote access to applications which may be more of
less compute-intensive. Therefore, several users using Desktop Fusion at the same time

SALTY Project (ANR-09-SEGI-012) B-31 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Figure 3.2: Desktop Fusion screenshot
.

could rapidly result in a poor Quality of Service (QoS).
The infrastructure needs to be adapted according to the number of connected users

and applications they are using. Taking into account low level Operating System infor-
mation such as memory and CPU usage is necessary as well in order to have a better
idea of current load of the system. Thus, when a situation of overload will likely hap-
pen, a new Desktop Fusion server will be deployed. It will be configured as part as the
load-balanced alias, so that it will be completely transparent for users. This could handle
the case where more and more users are connecting to Desktop Fusion, or if a Desktop
Fusion server goes down for some reasons.

3.2.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. The system shall allow for automatic maintenance of some minimal Quality of
Service for the users.

Evolution: Static
In this scenario only a single goal is considered and it does not changes within
the lifetime of the system.

Flexibility Rigid
The goal is prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime.

Multiplicity Single goal
In this scenario we consider a system having only one goal.

Dependency N/A
In this scenario we consider a system having only one goal.

SALTY Project (ANR-09-SEGI-012) B-32 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Change. The adaptation is triggered when system resource usage or number of connect-
ing users reach certain thresholds.

Source External
The change will be the deployment of a Desktop Fusion server on a new ma-
chine.

Type Non-functional
The change is related to QoS of the Desktop Fusion service.

Frequency Occasionally
Although server crashes should happen rarely, the number of connected users
varies in the time, so does the number of required Desktop Fusion servers.

Anticipation Foreseen
Although server crashes are not predictable, the number of connected users
can be easily monitored, and the change can be applied while QoS is still ac-
ceptable.

Mechanism. The mechanism for the self-healing adaptation is to deploy and configure
new Desktop Fusion servers.

Type Deployment
New Desktop Fusion servers need to be deployed.

Autonomy Autonomous
In this use case there is no outside intervention.

Organization Centralized
The adaptation is performed by a single centralized component.

Scope Global
In our case the adaptation involves deployment of a new machine which will
be integrated in the system.

Duration Average
The amount of time required to deploy a new machine in the system has to be
measured, but it should not be that long.

Timeliness Best-Effort
Although the time needed to deploy a new machine is quite constant, some
differences could appear, depending on the network usage during the adapta-
tion.

Triggering Event-trigger
The adaptation is triggered when resource usage or number of connected users
reach certain value.

Effects. Deployment a new machine doesn’t impact the system availability.

Criticality Mission-critical
It is mission-critical as we cannot guarantee the Quality of service if the de-
ployment of the new machine fails.

Predictability Deterministic
There should be guarantees that the system after adaptation will continue pro-
visioning its services.

SALTY Project (ANR-09-SEGI-012) B-33 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Overhead Reasonable
There should be a mechanism to ensure the system does not constantly recon-
figure itself. This is realized by ensuring that the adaptation is triggered only if
there are significant changes in the monitored data over a pre-specified period
of time.

Resilience Resilient
Service availability is not impacted while being reconfigured.

3.2.3 Adaptation

The need of an extra Desktop Fusion server is detected when the number of connected
users, CPU usage (per server) exceed certain threshold values.

When the loop detects that a threshold is exceeded, the adaptation mechanism will
deploy a new machine, with Desktop Fusion, and will integrate it in the load-balanced
alias, so that users can access the new machine in a completely transparent way.

3.2.4 Experimental Setup

The Desktop Fusion system is based on the NX technology 1 and more particularly on
the FreeNX implementation 2. This later contains already a load-balancing functionality:
basically, a list of nodes is maintained on the master FreeNX server. This list will be
modified by the SALTY system.

Moreover, new Desktop Fusion servers will have to be concretely deployed. All the
neuGRID infrastructure will be migrated from Xen to XenServer soon and proper Desk-
top Fusion virtual machines will be created. This will allow the Salty system to deploy
these later contacting the XenServer system.

3.2.5 Open Questions

It is to be investigated whether the list of FreeNX nodes can be modified on the fly with-
out having to restart the master node. Moreover, in this simple version of the scenario,
nothing is specified in the case the number of users decrease and uninstallation of servers
should be expected. As the project progresses, we envisage to port and adapt the simi-
lar solutions that are going to be developed for the WMS overload scenario on the gLite
middleware.

1See http://www.nomachine.com/.
2See http://freenx.berlios.de/.

SALTY Project (ANR-09-SEGI-012) B-34 Rev: 209

http://www.nomachine.com/
http://freenx.berlios.de/

D-1.1 - Appendix B- Middleware Scenarios Specification

CHAPTER

4

Scenario 3 - Self-Adaptive
Enterprise Service Bus

This scenario builds on the Petals Enterprise Service Bus (ESB). Petals is a distributed plat-
form in which services are deployed and invokes each others in the context of integration
processes. Since this ESB is based on a Service-Oriented Architectures (SOA), the controlled
elements of Petals that are going to be involved in the SALTY adaptation processes are
services. These services are involved at different levels: i) for optimizing the Petals plat-
form and ii) for preserving from inconsistencies in service workflows deployed on Petals.

4.1 Context

In this section, we introduce the motivation of the scenarios dealing with Petals ESB
and the issues coming from its distributed nature. Nowadays, the amount of Web ser-
vices available on the Internet is growing continuously and the next challenges consist
in combining them in order to build complex services, while facing services discovery
and matching issues. In a SOA ESB context, a common issue identified relates to service
composition and orchestration. In particular, a key challenge consists in invoking services
within a dynamic context, that requires adaptations at runtime.

We consider for the time being a number of services within a distributed bus, indexed
in a distributed registry. Two scenarios have been developed: the first one deals with
adaptability of the distributed registry, while the second one addresses a concrete use
case that illustrates workflow adaptation needs in an ESB.

These use cases aim at proving that distribution and adaptability challenges identified
in a ESB can be solved thanks to the SALTY framework.

4.1.1 Introduction

Petals ESB is an Open Source (LGPL License) ESB hosted by the OW2 middleware con-
sortium1. It is built on top of agile technologies, such as:

• The Java Business Integration (JBI) v1.0 specification, which is the Java standard for
enterprise application integration. The Petals ESB has been certified by SUN Mi-
crosystems as a valid JBI implementation.

• The FRACTAL software component framework provided by the OW2 consortium2.
Fractal is a modular and extensible component model that can be used with vari-
ous programming languages to design, implement, deploy, and reconfigure various
systems and applications, from operating systems to middleware platforms and
to graphical user interfaces. From the Petals ESB point of view, all the container
services (service registry, message router, message transporter, discovery, etc.) are

1See http://petals.ow2.org.
2See http://fractal.ow2.org.

SALTY Project (ANR-09-SEGI-012) B-35 Rev: 209

http://petals.ow2.org
http://fractal.ow2.org

D-1.1 - Appendix B- Middleware Scenarios Specification

therefore implemented as FRACTAL components. This is a major feature, which
allows core developers to tune a Petals ESB distribution by choosing the software
components to be used for specific needs.

Figure 4.1: The distributed Petals ESB.

The main Petals ESB feature is the extension of the JBI specification to provide a dis-
tributed support for JBI platforms (cf. Figure 4.1). Several Petals containers deployed on
several nodes are equivalent to a single unified Petals ESB container. This transparent
distribution approach ensures that all the services remain accessible just as in a typical
standalone JBI environment. While other JBI implementations provide a distributed ap-
proach by connecting their JBI containers with the use of JBI Binding Components and
complex configurations, Petals ESB natively supports this feature without imposing any
additional configuration. This distributed behavior is enabled by the following software
components:

• The technical registry. The Petals JBI services, endpoints, interfaces, WSDL descrip-
tions, and container location (physical network address) are stored in the technical
registry. This registry is used by the Petals ESB container to register services and
to route the JBI messages to the right endpoint. The registry entries are replicated
among all the Petals ESB nodes using a Distributed Hash Table (DHT) over a multi-
cast channel. This is equivalent to data-flooding between registries—i.e., when an
entry is added to the registry, the data is forwarded to all the network registries.
In this way, all the registries have a complete view of the services hosted by all the
containers.

• The message transporter. This layer is not defined in the JBI specification. Its role is to
exchange JBI messages between containers. In a standard JBI implementation, the
Normalized Message Router (NMR) gets the local endpoint reference from the local
registry and sends the message to local JBI endpoint. In the Petals ESB approach,
once the endpoint is retrieved from the local registry, the message and the endpoint
reference are sent to the transport layer, which is in charge of delivering the message
to the JBI endpoint independently of the container location (local or remote).

Petals ESB is not only a standard JBI container, but in addition provides various
frameworks, components and tools for extension, service integration, management and
monitoring purposes:

SALTY Project (ANR-09-SEGI-012) B-36 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

1. The Component Development Kit (also named CDK) is a software framework which
abstracts all the JBI related API and provides an easy way to develop high perfor-
mance JBI components (Service Engines [SE] and Binding Components [BC]) with a
small set of Java classes.

2. All JBI components are based on the previously cited CDK framework. The actual
collection of Petals JBI components is composed of binding components (provide
connectivity to/from external services), such as SOAP, FTP, JDBC, XMPP and ser-
vice engines (provide internal technical services) like BPEL, BPMN, XSLT, EIP, or
SCA.

3. The WebConsole is a Web GUI used to monitor and manage the Petals ESB con-
tainers. This tool provides a single access point to monitor and manage all the
distributed containers.

Finally, we propose an additional tool for service monitoring that must be enhanced
according to SALTY works. This monitoring bus, based on the WSDM specification3,
should be able to act as a sensor for technical and functional information retrieval, and as
an actuator to reconfigure the deployed services. Therefore, we plan to integrate in the
MAPE loop as dedicated touch-points.

As a summary, the Petals ESB consists in a set of containers (or nodes) within a topol-
ogy that are deployed on the Internet. Each node contains a set of services and hosts its
own registry. The whole architecture, composed of several nodes, provides a distributed
architecture for complex services integration possibly implying their orchestration.

4.1.2 Petals ESB Registry

The actual implementation of the Petals ESB registry consists in a Master/Slaves solution.
One of the nodes contains the unique master registry and other nodes contain slave ones,
that have to request the master registry in order to update their index.

However, this solution can raise some consistencies when the node containing the
master registry falls down. No update can be made anymore and registries become
desynchronized.

4.2 Scenario 3.1: Self-Organization of the ESB Distributed Reg-
istry

4.2.1 Scenario Description

In this scenario, we consider a topology of some nodes composing the Petals ESB mid-
dleware. We define a master registry and deploy several services on each node. Based on
this first architecture, we add a conceptual layer corresponding to the SALTY framework,
implemented thanks to SCA Service Engine (SE), one sensor able to detect the master node
failure, and one effector able to update the role of registries (from slave to master).

4.2.2 Objective

This scenario (cf. Figure 4.2) aims at providing a solution of adaptability for the Petals
ESB distributed services registry.

3Web Services Distributed Management: http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=wsdm

SALTY Project (ANR-09-SEGI-012) B-37 Rev: 209

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

D-1.1 - Appendix B- Middleware Scenarios Specification

!"#

!$%&'(#

!"#

)*$+,'(#
!)-!./#

01%12$3#,'4'5'26#

,'7+84'9%,#

:$,15&##

)%;9('%<$%,#

=$29&,(6#

>0?#

=$29&,(6#

>!?#

=$29&,(6#

>!?#

-#@9%3#01&,$(#($29&,(6#9%#,'4'5'26#

-#AB#%',#B'7%3C#517%+8#($-D79539%2#

,'4'5'26#$*$+,'(#1+E'%#

- !$1(+8#B'(#D$&,#01&,$(#

+1%3931,$&#

- #=$-D7953#,'4'5'26#

=$29&,(6

Figure 4.2: Registry consistency scenario.

The service registry indexes all available service endpoints and is dynamically up-
dated according to services (un-)installations occurring in the ESB.

One of the Petals ESB specificities is its distributed architecture, composed of nodes
disseminated over a large network, configured according to a given topology. Then, the
registry mechanism consists in a master/slaves architecture pattern: one node contains
the master registry and the other ones contains slave registries. The master registry re-
ceives queries from slave ones for updates and thus maintains the current state of the
ESB services.

This mechanism can be prone to instability when nodes fail and, in particular, if it
occurs to the node containing the master registry. The SALTY framework can address this
weakness by adding an upper monitoring and control layer, based on Service Component
Architecture (SCA) sensors/effectors, allowing to know the master registry is available
in the current topology of nodes and if not, launching a recovery process to rebuild a
consistent distributed registry. Some ways can be envisaged in order to perform this
task:

• rebuilding the whole topology of registries and switching a slave registry to a mas-
ter one,

• selecting a predefined registry to become the new master one.

This adaptation task can be engaged if an ESB node crashes. Then, it is no longer in
the running state—i.e., all the components and services that were deployed and run in
this ESB node are also no longer in the running state. The whole software system running
over the Petals ESB can be affected; part or all the services and functionalities provided
to the end-user/customer can be disrupted.

SALTY Project (ANR-09-SEGI-012) B-38 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

4.2.3 Classification

In this first scenario the adaptive task corresponds to a self-healing subsystem which
purpose is to have always a master node with an up-to-date registry.

Goals. The goal is to preserve the services index consistency in cases when Master reg-
istry crashed.

Evolution: Static
The goal consists in keeping the topology consistent and it will not change.

Flexibility Rigid
The goal must be reached. There is no uncertainty associated with this goal.

Duration Persistent
The topology consistency is mandatory throughout the ESB platform’s life-
time.

Multiplicity Single goal

Dependency N/A

Change. The adaptation is triggered when it is detected that no master registry is avail-
able in the topology.

Source Internal-middleware
Since one existing node and the topology is updated, changes occur in the
infrastructure.

Type Technological
The topology of the middleware reflecting the actual physical nodes is changed.

Frequency Rare
Nodes are quite stable and system failures come generally from hardware.

Anticipation Foreseen
Although it does not happen very often that a master node would fail, it can
happen and therefore it is anticipated.

Mechanism. The mechanism consists in reconfiguring the ESB by dynamically changing
the role of a registry and re-synchronizing service indexes.

Type Structural
The mechanism consists in changing the structure of the system.

Autonomy Autonomous
No outside intervention is required during the adaptation task mechanism.

Organization Centralized
We consider a single sensor for the overall architecture. A distributed solution
should be found for a better solution, by managing topology probing thanks
to sensors present on each node of the overall topology.

Scope Global
The whole topology is supposed to change.

SALTY Project (ANR-09-SEGI-012) B-39 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Duration Short
Some minutes can be expected to update topology.

Timeliness Best-Effort
The time to perform this task is depending on the time to find a valid candidate
node or to restart a node.

Triggering Event-trigger
The task occurs when some exchanges in the ESB are not resolved anymore
from some service endpoints. However, we could envisage a time-triggered
solution as a separate process implementing a failure detector and probing for
nodes at a given frequency.

Effects. The topology of the bus changes.

Criticality Mission-critical
There is no guarantee to find an available candidate node. In this case, the sys-
tem will be left without synchronized registry and therefore non-functioning.

Predictability Deterministic
In case of success, nominal activity is expected. In case of failure, the system
can perform exchanges routing for the remaining available services.

Overhead Reasonable
The reconfiguration action should not alter the system.

Resilience Vulnerable
If some registry updates are done during the reconfiguration, these updates
will not be taken into account. However, some solutions should be found in
order to face this issue: either thanks to transactional processes but does not
seem to be suitable for very large distributed systems, either thanks to some
neighborhood probing and step by step synchronization.

4.2.4 Adaptation

According to systems self-management definitions, this adaptation task is related to Self-
Healing [8]. A change is detected thanks to original topology description. If this change
corresponds to master registry disappearing, the effector launches an adaptation process
in order to find an available registry, to change its role and to probe effective endpoints
available on the Petals architecture. Four types of self-repair actions are therefore needed:
monitoring actions, analyzing actions, planning actions, and execution actions.

Monitoring actions The targeted system needs to be monitored in order to collect in-
formation that will be analyzed to detect when the ESB node crashes. This monitoring
can be done, by default, directly by the end-users (they will ask for support if they can
no longer access to their services). This is, of course, insufficient and even inefficient.
Here, an automatic monitoring system is required. This monitoring system must collect
monitoring data related to the ESB node itself (including the NMR), to the JBI compo-
nents, and to the Service Unit (SU) and Service Assembly SA. As a consequence, the Petals
ESB must be equipped in order to provide the needed monitoring probes (i.e., the needed
sensors).

These probes consist in a SALTY SCA framework and can be executed inside or out-
side of the ESB. They could also be implemented in a centralized way (rather outside

SALTY Project (ANR-09-SEGI-012) B-40 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

the bus) or a distributed way (rather inside the bus). We could argue that probes ex-
ecuted outside the ESB would be smarter in order to report crashes without crashing
themselves. However, this implies to envisage meta-probes implementation in order to
verify first-layer probes activity, and so on. Then, we envisage embedded SCA probes
consisting in sensors deployed on each node of a Petals ESB topology, implementing at
least a “Heartbeat” pattern. This pattern implies a time-triggered adaptation. For more
reactivity, we could imagine an event-triggered one by implementing loss of messages
management, implying synchronization issues that can come from master node crash.

Note also that two types of monitoring can be done, either a live one or a post mortem
one. A live monitoring is done when the targeted system is running (when the end-
users use it). We clearly talk here of real-time system. On the other hand, a post mortem
monitoring system can provide off-line monitoring data. A simple post mortem example is
a monitoring system based on logs: the monitoring system processes the logs during the
night and produces monitoring data in the morning. It is obvious that introducing a self-
repair mechanism based on a live monitoring is much more interesting for the targeted
system than introducing the same mechanism over a post mortem monitoring.

Analyzing actions Analyzing actions can be trivial or much more complex. Their com-
plexity depends on the available monitoring information collected from the probes. In-
deed, if all the controlled elements have their own ”Heartbeat” probe then the analyzing
actions only need to check if the controlled elements are (still) alive. This Heartbeat mech-
anism should consist in a event-based notification sent to the control system, in an active
way, or a ping-like operation exposed on each controlled system in order for the control
system to check their availability, in a passive way from the controlled system point of
view.

On the other hand, if only indirect monitoring information is available (e.g., the av-
erage response time during the last day, the number of requests received without any
information on the responses sent) then the analyzing actions will be much more compli-
cated even impossible.

Planning actions In case of an ESB node crashes, the planning process must request the
following execution actions:

1. the cleaning of the computer in which the crashed ESB node was running (checking
that the Java Virtual Machine really stopped, removing the Petalslock file, etc.)

2. the installation and deployment of the corresponding ESB node components (i.e.,
the NMR, the registry, etc.),

3. the installation and deployment of the corresponding JBI components (i.e., the BC
and SE),

4. and the installation and deployment of the corresponding SU and SA.

Note that the planning process produces an ordered list of actions. Also note that if
a ”check ESB node current state/status” mechanism exists, then the planning process must
also request it once the all the ESB elements are installed and deployed.

Execution actions Handling an ESB node crash implies to own effectors at four different
levels:

SALTY Project (ANR-09-SEGI-012) B-41 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

• Computer level: to clean it, to install an ESB node in it, and to launch/start/activate/instantiate
an ESB node,

• ESB node level: to clean its content,

• BC/SE level: to clean their content (i.e., to reset them), and to install/activate JBI
components,

• SU/SA level: to clean their content (i.e., to reset them), and to install/activate SU
and SA.

Note that effectors at computer level should also be able to (statically or dynamically)
update an ESB node, to shutdown/deactivate a running ESB node, and to uninstall an
ESB node. Similarly, effectors at BC and SE components level should also be able to
(statically or dynamically) update, to stop/shutdown/deactivate, and to uninstall JBI
components; while effectors at SU and SA levels should also be able to (statically or
dynamically) update, to stop/shutdown/deactivate, and to uninstall both SU and SA.

4.2.5 Experimental Setup

The experimental setup will be initially done on dedicated testing servers at EBM Web-
sourcing. It will consist in using a set of virtual servers in which Petals nodes will be
installed.

JBI components will be used upon these Petals nodes, to simulate a realistic middle-
ware environment:

• SOAP component: able to provide external Web services to the bus,

• SCA component: able to provide execution environment for SCA services. In par-
ticular, 2 kinds of artifacts will be developed at least for this component (a sensor
and an effector).

4.3 Scenario 3.2: Self-Adaptation on a Crisis Management Work-
flow

4.3.1 Use Case Description

In this use-case, we are interested in workflows, which are performed within an ESB
and can be reconfigured at runtime. In such ESBs, workflow implementation typically
consists in an orchestration of services and a well known standard such orchestrations
is WS-BPEL4. It consists in defining activities providing control structure, invocation and
receive mechanisms, correlation and compensation features, able to build an execution graph
or workflow. This workflow supports several services for working together. They are
called partners and are defined thanks to their WSDL interfaces.

In our context, an adaptation consists in updating an orchestration by changing parts
of its execution graph or its partners. Indeed, we believe that reflective mechanisms can
help in facing new orchestration issues coming from the complexity increase of business
processes, becoming longer in time thanks to asynchronous mechanisms and being in-
volved in more and more dynamic contexts. We build on a legacy use-case in order to
illustrate the key issues of workflow adaptations. It consists in a crisis management for

4WS-BPEL: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

SALTY Project (ANR-09-SEGI-012) B-42 Rev: 209

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

D-1.1 - Appendix B- Middleware Scenarios Specification

local authorities, which have to plan for chemical, biological, radiological, and nuclear ac-
cident (so called CBRN crisis). This issue, identified in the former ANR SEMEUSE project
had some results about dynamic workflows implementing thanks to late binding and se-
mantic match-making extended activities5. In this project, we therefore progress on this
scenario by addressing the reconfiguration of the workflow itself at runtime, based on
non-functional and functional retrieved information.

BC

S FD

Fireman

Emergency
medical service

Environment
authority

Monitor

Analyse Plan

Execute

…

Functional

Endpoint (internal)

Component

Web Service

(external)

Non-functional

Endpoint

Dnf Snf FnfPnfRRS

RRS
Raw Report Service

Raw reports

Statistical reports

SE-BPELP

Reconfiguration

point

Functional layer

WS-DM based
monitoring

Salty framework
(SCA)

Reconfiguration
request

A

Reconfiguration
action

Figure 4.3: Adaptive workflow use case architecture.

The functional architecture depicted in Figure 4.3 describes the involved elements:

• a SOA ESB containing functional services and in particular the orchestration one,

• a monitoring bus based on WSDM, the standard for services management that acts
as sensors and effectors,

• and an implementation of the MAPE feedback control loop based on SCA.

Within the context of a SOA ESB, every partner is represented as a service. Thus,
according to the use case, the ESB contains the following functional services: Fireman
”F”, Emergency medical service ”S” and Environment authority ”D”. It contains also
the orchestration service called ”P” and an administration service called ”A”. Each ser-
vice deployment is intercepted within the bus in order to generate a corresponding non-
functional service within the monitoring bus. Then, exchanges occurring at runtime in
the Petals ESB are intercepted and sent to the corresponding non functional services via
a ”Raw Report Service” (RRS). This RRS acts as a broker for reports sent by interceptors.
These reports contain exchange information: latency, percentage of successful exchanges and
the name of the service associated with these informations. Then, statistical measurements are

5ANR SEMEUSE Project: http://www.semeuse.org

SALTY Project (ANR-09-SEGI-012) B-43 Rev: 209

http://www.semeuse.org

D-1.1 - Appendix B- Middleware Scenarios Specification

made all along the lifetime of the system into each non-functional service. We use WS-
Notification6 mechanisms that allow non-functional services to send computed informa-
tion as notifications. The monitoring part of the MAPE feedback control loop subscribes
to these notifications in order to receive these reports.

The MAPE feedback control loop consists in a SCA implementation of reconfiguration
policies. Each task of the MAPE feedback control loop corresponds to an aggregation of
information retrieved from the services. Chosen reconfiguration is finally executed on
Petals ESB thanks to actuators driven by these policies. They are implemented as BPEL
processes, which are able to reconfigure the functional BPEL process of the crisis and/or
to administrate partners.

Figure 4.4: BPEL process of NRBC use-case.

In the case of our concrete crisis management example, the workflow to adapt and
deployed into the bus is implemented by a BPEL process (cf. Figure 4.4). Partners services
are Firemen, Emergency medical service, and Environment authority. Non-functional
services deployed on the WSDM bus are able to catch technical information such as their
latency and load. However, we are not only interested in retrieving technical information.
Indeed WSDM specification also proposes to catch business information and this feature
could be thought in our use-case. In particular, information, such as firemen heath rate or
temperature, environment authority crisis state report, for instance can be reported in order
to be involved in the adaptation process.

6WS-Notification: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

SALTY Project (ANR-09-SEGI-012) B-44 Rev: 209

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

D-1.1 - Appendix B- Middleware Scenarios Specification

Two adaptations are then possible. The first one consists in taking into account the
dynamic aspect of a crisis, faced by the dynamic features of the workflow. WSDM can
report changes during a crisis like an explosion for instance (reported by the Environment
authority partner). At MAPE level, workflow reconfiguration can be planned in order to
add a branch of execution to manage this explosion. This adaptation is located at ”P”
service.

A second adaptation takes into account firemen functional information (e.g., temper-
ature, heart rate) and corresponds to services invocation reconfiguration. This peculiar
information allow the feedback control loop to detect that firemen are not available any-
more and must be evacuated. The MAPE feedback control loop can trigger a reconfig-
uration process in which firemen partners involved into the workflow are changed: an
evacuation business operation can be invoked and/or administration on Firemen ser-
vices can be used to stop some of them and to start another ones. This adaptation is
located at ”F” service.

4.3.2 Objective

This use-case deals with self-configuring and self-protecting adaptation type. Main aims are
to be able to adapt a workflow of services according to a dynamic context. This adaption
allows us to define a reactive workflow, remaining operational when changes occur.

We want to leverage from SALTY framework in order to validate technical and busi-
ness WSDM based services monitoring within the context of an ESB.

4.3.3 Classification

Goals. The goal of this task is to adapt a business workflow according to new needs
occurring at runtime.

Evolution: Static
The goal remains the same until the crisis is ended, that is to say, the end of
the workflow.

Flexibility Rigid
The goal must be reached. There is no uncertainty associated with this goal.

Duration Temporary
The system continues after the end of the crisis, waiting for a new one.

Multiplicity Multiple goals
Two goals are defined: (i) adapting the workflow according to the crisis evo-
lution and (ii) replacing deficient partners by operational ones.

Dependency Independent
It can be considered that workflow is going to be updated on different parts ac-
cording to the goal. However it can be risky to perform both reconfigurations
at the same time.

Change. The adaptation is triggered when the Environment authority detects a change
in the crisis or when some partners are detected as not operational anymore.

Source Internal
Changes occur within the workflow and already defined and known partners.

SALTY Project (ANR-09-SEGI-012) B-45 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Type Functional
Changes occur on functional aspects of the system (adding a branch to the
workflow, replacing a partner).

Frequency Rare
We are in a long term workflow context where updates can be considered as
rare.

Anticipation Foreseeable
This adaptation task must be planned by authorities.

Mechanism. The mechanism consists in using reconfiguration workflows able to update
functional one and in using administration features provided by the Petals ESB and
the BPEL engine.

Type Parametric
Changing partners or updating the workflow can be performed thanks to con-
figurations.

Autonomy Autonomous
No outside intervention is needed during the adaptation task mechanism.

Organization Decentralized
The WSDM monitoring server is a bus able to be deployed in a distributed
manner. Moreover, several components are involved in the adaptation process
(from sensors in the WSDM bus to actuators performed on the Petals ESB).

Scope Global
The whole architecture is involved in crisis management and the adaptation
of its workflow.

Duration Short
Since the reconfiguration process is automated, a short duration can be ex-
pected (changing or creating new configurations).

Timeliness Best-Effort
Changes can coming during an adaptation process and must be faced.

Triggering Time-trigger
The evolution of the crisis is cached thanks to a background task requesting
regularly for the state of the crisis. Information about functional characteristics
of the firemen are collected thanks to sensors in a same way.

Effects. Effects on the Petals ESB are of administration order. Services are supposed to
be stopped and (re-)started.

Criticality Mission-critical
An adaptation failure can cause critical risks and emergency stop should be
planned for a human intervention.

Predictability Deterministic
Adaptation consequences on the system can be predictable.

Overhead Reasonable
The system is subjected to a low impact during workflow adaptation (stopping
it, restarting it).

Resilience Resilient
The system must be as operational as before the change.

SALTY Project (ANR-09-SEGI-012) B-46 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

4.3.4 Adaptation

According to systems self-management definitions, this adaptation task is related to self-
configuring and self-protecting [8].

Monitoring step consists in aggregating information from sensors located in the WSDM
bus. They consist of non-functional and functional information about partners involved
in the workflow.

Analyze step consists in detecting issues from aggregated information: crisis state
evolution or limitations of a partner reached.

Plan step consists in conceiving a strategy according to the detected issue. For a cri-
sis evolution, a reconfiguration workflow is deployed in order to add a branch on the
functional workflow dealing with crisis management. For a detected deficient partner,
an administrative mechanism is launched in order to stop some services and to replace
them by operational ones.

Execution step controls the workflow execution, the administration invocation and
tries to prioritize adaptations if several ones are requested at the same time.

4.3.5 Experimental Setup

The experimental setup will be initially done on dedicated testing servers at EBM Web-
sourcing. It will consist in using a set of virtual servers in which Petals node(s) and
WSDM monitoring node(s) will be installed.

4.4 Conclusion

This chapter illustrates SALTY framework and proposals in the context of an ESB mid-
dleware. Main features demonstrated thanks to these use cases are to tackle large-scale
environments within a distributed architecture, to support adaptation of complex ser-
vices orchestration by using technical and functional information. In addition of these
features, we validate the use of MDE since adaptation framework will be built upon SCA
models.

SALTY Project (ANR-09-SEGI-012) B-47 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

SALTY Project (ANR-09-SEGI-012) B-48 Rev: 209

D-1.1 - Appendix B- Middleware Scenarios Specification

Bibliography

[1] Egee middleware architecture. http://edms.cern.ch/document/476451, July
2005.

[2] G. Avellino. Flexible job submission using web services: the glite wmproxy experi-
ence. (EGEE-PUB-2006-024), 2006.

[3] David Breitgand, Ealan Henis, and Onn Shehory. Automated and adaptive threshold
setting: Enabling technology for autonomy and self-management. Autonomic Com-
puting, International Conference on, 0:204–215, 2005.

[4] A Duarte, P Nyczyk, A Retico, and D Vicinanza. Monitoring the egee/wlcg grid
services. J. Phys.: Conf. Ser., 119:052014, 2008.

[5] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M. Barroso, P. Bun-
cic, Peter Z. Kunszt, A. Di Meglio, A. Aimar, A. Edlund, D. Groep, F. Pacini, M. Sgara-
vatto, and O. Mulmo. Middleware for the next generation grid infrastructure. (EGEE-
PUB-2004-002), 2004.

[6] Diane Lingrand, Johan Montagnat, and Tristan Glatard. Modeling user submission
strategies on production grids. In International Symposium on High Performance Dis-
tributed Computing(HPDC’09), pages 121–130, June 2009.

[7] Mohammad Ahmad Munawar and Paul A. S. Ward. Leveraging many simple statisti-
cal models to adaptively monitor software systems. In Parallel and Distributed Process-
ing and Applications, 5th International Symposium, ISPA 2007, Niagara Falls, Canada, Au-
gust 29-31, 2007, Proceedings, volume 4742 of Lecture Notes in Computer Science, pages
457–470. Springer, 2007.

[8] Horn P. Autonomic Computing: IBM’s perspective on
the State of Information Technology. In IBM corporation,
http://www.research.ibm.com/autonomic/manifesto/autonomic computing.pdf, 2001.

[9] R. Sterritt, M. Parashar, H. Tianfield, and R. Unland. A Concise Introduction to Au-
tonomic Computing. Advanced Engineering Informatics, 19(3):181–187, 2005.

SALTY Project (ANR-09-SEGI-012) B-49 Rev: 209

http://edms.cern.ch/document/476451

https://salty.unice.fr/

ANR SALTY
Self-Adaptive very Large disTributed sYstems

Work Package: WP1 - Requirements and Architecture
Coordinator: UNS
Deliverable: D-1.1 - Appendix C
Title: Internal truck tracking Scenario Specification
Submission date: 2nd August 2010
Project start date: 1st November 2009, duration: 36 months
Revision: 209
Last change: 02.08.2010

SALTY Project (ANR-09-SEGI-012) Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Authors

(for this appendix)

Author Affiliation Role
J. Malenfant UPMC Lead
I. Truck Univ. Paris 8 Lead
T. Bathias Deveryware Writer
O. Melekhova UPMC Writer
M.-A. Abchir Deveryware & Univ. Paris 8 Writer
A. Pappa Univ. Paris 8 Writer

SALTY Project (ANR-09-SEGI-012) C-2 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Contents

1 Introduction C-5
1.1 Context . C-5
1.2 Technical foundations . C-6

1.2.1 Positioning devices . C-6
1.2.2 Deveryware GeoHub . C-7
1.2.3 Geotracked vehicle and their operation C-9

2 Scenario 1 -
Long distance truck tracking C-11
2.1 Context . C-11

2.1.1 Overall goals of the supporting application C-11
2.1.2 Long distance tracking use cases . C-11
2.1.3 Overall description of the adaptation scenarii C-12

2.2 Overall experimental setup . C-13
2.3 Sub-scenario 1.1 - Notification of arrival at intermediate destinations . . . C-13

2.3.1 Objective . C-13
2.3.2 Classification . C-15
2.3.3 Adaptation . C-17

2.4 Scenario 1.2 - Imposed corridor . C-18
2.4.1 Objective . C-18
2.4.2 Classification . C-19
2.4.3 Adaptation . C-21

2.5 Scenario 1.3 - Waypoint notification . C-21
2.5.1 Objective . C-21
2.5.2 Classification . C-23
2.5.3 Adaptation . C-25

3 Scenario 2 -
Short distance truck tracking C-27
3.1 Context . C-27

3.1.1 Overall goals of the supporting application C-27
3.1.2 Short distance tracking use cases . C-27
3.1.3 Overall description of the adaptation scenarii C-28
3.1.4 Experimental setup . C-28

3.2 Scenario 2.1 - Notification of late arrival at delivery points C-28
3.2.1 Objective . C-28
3.2.2 Classification . C-29
3.2.3 Adaptation . C-31

4 Scenario 3 -
GeoHub QoS enforcement C-33
4.1 Context . C-33

4.1.1 Overall goals of the supporting application C-33

SALTY Project (ANR-09-SEGI-012) C-3 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

4.1.2 GeoHub QoS enforcement use case C-33
4.1.3 Overall description of the adaptation scenarii C-34
4.1.4 Experimental setup . C-34

4.2 Scenario 3.1 - Global workload management C-34
4.2.1 Objective . C-34
4.2.2 Classification . C-35
4.2.3 Adaptation . C-37

4.3 Scenario 3.2 - Local workload management C-37
4.3.1 Objective . C-37
4.3.2 Classification . C-38
4.3.3 Adaptation . C-40

5 Scenario 4 -
Decision-making Modeling at Design-time C-41
5.1 Context . C-41
5.2 Overall description of the tool . C-43
5.3 Scenario 4 - Arrival at warehouse notification definition C-44

5.3.1 Expert role . C-44
5.3.2 Application designer role . C-49
5.3.3 Configurator role . C-49

5.4 Experimental setup . C-50

SALTY Project (ANR-09-SEGI-012) C-4 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

CHAPTER

1
Introduction

1.1 Context

After the military for guidance and unit follow-up, geotracking popularized itself in sev-
eral domains such as transportation and logistics. Recently, it is more and more adopted
in the context of smartphones where numerous applications like route follow-up but also
surrounding services (restaurants, hotels, ...) recommendation become widely available.
Applications of geotracking currently explode in many areas: logistic, transportation,
security, road traffic control, environmental tax collection on vehicles, etc.

In a nutshell, geotracking uses positioning information of mobile (persons, vehicle,
...) to follow them up in time and space so to use this information for application-specific
purposes. Geotracking involves at least two entities: a positioning device and a tracking
system. Positioning devices use different techniques to locate themselves. Under the
global positioning system (GPS), devices triangulate their positions using signals from
satellites. Mobile phones can be located from the geographic locus of the cell to which
antenna it is currently connected. Finally, similar techniques can be used to locate WiFi
cards from their wireless access points.

Positioning devices transmit positions to a tracking system. Most of the time, mobile
phone networks are used for this purpose, but alternatives exist (e.g. satellite networks
or WiFi). The tracking system is responsible for monitoring the position of mobiles (to
which positioning devices are attached) and to trigger reactions when given conditions
are met. Typical conditions are: being near, approaching or moving away from some
point, approaching or moving away from another mobile, crossing a frontier (in the gen-
eral sense), ...

Tracking systems can be directly embedded into end-user applications, such as a truck
follow-up system, or can use dedicated platforms that correlate position information
from several devices to trigger events sent to end-user applications. These platforms act
as complex event processing (CEP) systems, but dedicated to geotracking. GeoHub is De-
veryware geotracking platform, which not only correlates positions but also abstract end-
user applications from the specifics of positioning devices and positioning techniques.

Geotracking faces two difficulties that will be addressed within the SALTY project.
First, sending positions through a mobile phone network incurs a per message cost for
customers which need to be minimized while keeping up with application requirements.
Linked to this, and sometimes crucial, sending positions also requires energy from bat-
teries which governs the autonomy of the device and so must also be minimized. Second,
end-users lack the technical knowledge needed to configure the parameters of the geo-
tracking, like the frequency of position reporting from devices, to catch up with applica-
tion requirements, like notifying the arrival of a truck at a given location fifteen minutes
in advance with a two-minute tolerance. Other points of interest concern fault-tolerance,
i.e. coping with device malfunctions, and the overall workload of the geotracking plat-
form which can’t sustain more than a fixed number of position sendings from all of the
connected devices to match its quality of service objectives in event processing (e.g. 50,000
positions per minute).

SALTY Project (ANR-09-SEGI-012) C-5 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

The cost minimization issue will be addressed by dynamically adapting the position
reporting, first by modifying its frequency but also by switching back and forth from
time-triggered to location-triggered geotracking when possible. As dynamic adaptation
is the focus of the SALTY project, complementary adaptation scenarii will be provided
by the applications themselves. The geotracking configuration, i.e. defining events to be
notified to applications and the type of adaptations needed at run-time, will be addressed
by developing an intelligent interactive configuration system.

1.2 Technical foundations

In this section, we review the major characteristics of the different system and devices
used in the geotracking use case .

1.2.1 Positioning devices

Geotracking relies on positioning devices which characteristics deeply impact costs and
resource usage. Positioning devices first fall into three categories of position means:

1. Global Positioning System (GPS) devices are now well-known; they use informa-
tion and triangulation of signals coming from satellite constellations. Their preci-
sion highly depends upon the number of satellites they can ”see”, the angle be-
tween them and even the ground configuration which can cause some bias. After
computing positions, devices typically push them to a server using data connection
over a GSM network.

2. GSM cell-id uses readily available phone (or similar devices connected to that net-
work) tracking information, i.e. the cell in which the device actually is, to provide
estimated positions. Its precision highly depends upon the density of antennas and
the geographical form of the cell in which the phone is. It needs no specific in-
tervention from the phone itself but is rather a service offered by the cell phone
operator network infrastructure. In summary, upon a call to their API, operators
provide estimated positions from the geographical locus of the cell containing the
phone.

3. WiFi cell-id is similar to GSM cell-id but rather uses WiFi antennas to estimate po-
sitions of devices connected to that network. Again, the precision of the method
depends upon the density of the antennas.

Devices can be fixed or portable. Indeed, specific GPS devices can be attached to
vehicles and be powered by these. Such devices are usually also connected to sensors on
the vehicle (door open/closed, motor temperature and speed, fuel level, ...) and can send
sensor data along with positions. But more and more portable GPS devices are used
for their flexibility, at the expense of running on batteries, which then become a scarce
resource. Mobile phones share characteristics with portable GPS, while WiFi cell-id is
totally dependent on the device to which the WiFi card is connected.

Most GPS devices send positioning (and possibly other data) through a data link over
the GSM network at a frequency that can be dynamically modified by sending them
an appropriate command. GPS devices, for example, always send their current speed
estimated from their successive positions.

More and more programmable devices appear everyday on the market. Such devices
can embed application specific code that can drive the positioning but also adaptations

SALTY Project (ANR-09-SEGI-012) C-6 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

of this process to some extent. Such devices can also group positioning and other moni-
toring data to send them at a less regular frequency. We will therefore distinguish:

measurement frequency: the frequency at which positioning and other monitoring data
are measured on the vehicle;

transmission frequency: the frequency at which positioning and other monitoring data
are transmitted to the geotracking system.

Geotraking hence involves a decision over these frequencies, decisions that are cur-
rently made once and for all, but that we will strive to make and adapt at run-time. The
simplest positioning devices are limited to this end. A variant fosters the use of pro-
grammable devices, capable of deciding on their own when to measure and transmit
data when equipped with appropriate programs. Programmable devices can either be
programmed in advance or dynamically uploaded with new programs.

The standard behavior of positioning devices in geotracking is to send positions reg-
ularly, at a given frequency. We will refer to this behavior as time-triggered geotracking.
However, the flexibility of programmable devices can be leveraged to adopt novel, non-
standard approaches to trigger data transmission. In some cases, devices can be in-
structed to send positions when certain spatial conditions are triggered, like being near
some known location. We will refer to this behavior as location-triggered geotracking. Geo-
tracking will therefore require a decision between two data-transmission modes:

time-triggered mode, where data is transmitted based upon a time condition (frequency,
delay or absolute time), and

location-triggered mode, where data is transmitted upon a location condition (crossing
a frontier, approaching some point, etc.).

As the most prominent mean to transmit the data is the GSM network, devices are
also equipped with a communication subsystem similar to the one of mobile phones.
Hence, positioning devices using the GPS method can also be located using the cell-id
positioning method from the GSM network. This alternative can be used to get more
robustness in the geotracking.

Energy consumption is an important aspect for all mobile positioning devices oper-
ating on batteries. Taking position measurements and transmitting data incur energy
costs, as well as maintaining the link to the GSM antennas. Some positioning devices can
manage their power consumption by selectively powering on and off subsystems such as
the position measurement and the communication subsystems. The device can also put
itself in sleep mode where the wake-up can be planned at a specific time or in reaction
to some event. As the power-up incurs some cost in energy and time delay, a trade-off
must be made when shutting down subsystems or going to sleep mode, as the energy
consumption of the power-up must be amortized by the one saved during the power-off
or sleep.

Devices power management and particularly selectively powering down the GSM
subsystem means that it can be impossible to send them commands at some time.

1.2.2 Deveryware GeoHub

Deveryware GeoHub is the geotracking platform used throughout the experiments. Geo-
Hub is a middleware that can locate mobiles, compute information based upon received
locations and send them to applications using a web service API. Mobiles can be located

SALTY Project (ANR-09-SEGI-012) C-7 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

using a combination of technologies: GPS, wifi, GSM cell-id via network, via mobile or
hybrid. Several network links can be used to send informations: GSM/SMS or GPRS,
wifi, satellites. Computation include storing data, computing reports, displaying maps,
generating alerts (see below). Applications can use all GeoHub functions using XML-
RPC web services with ten’s of functions.

For SALTY, the GeoHub serves essentially two purposes:

• abstract applications away from particular positioning devices and methods by of-
fering them standard positioning interfaces,

• efficiently correlate position information from several positioning devices to detect
more complex events to be notified to applications.

As mediator between applications and positioning devices, GeoHub offers a unified
interface to send commands to devices. Commands are sent using either GPRS or SMS.
Communication latencies in the order of 2 to 3 seconds must be expected from GPRS, but
they reach in the order of one minute for SMS; they must be taken into account in the
decision process.

GeoHub alert service is a mechanism allowing an application to be notified of partic-
ular events. All received data can be used to generate events. This mechanism is used
through the GeoHub API. The following elements are used:

• mobile id to be monitored,

• active date/time to monitor,

• script used for monitoring,

• notification to send when an event is detected.

The mobile id specifies the mobile to monitor. The alert will be active within the time
frame specified for its activation. It can be started immediately if necessary (In this case a
delay of 2 or 3 seconds can be necessary for the alert to become active). An alert can, for
example, be specified active from now until tomorrow, or only on Mondays from 1pm
to 5pm. In any case, the GeoHub will send a specific message to the application at each
beginning of a monitoring period.

The triggering of an alert itself is described by a program that will be executed each
time new data are received from this mobile id. Currently, such programs are written
in Forth and, to guarantee the quality of service for all users, get allocated a limit of
a thousand instructions to be executed each time they are launched by GeoHub. This
program will be provided with the last data just received and the data used at its previous
call (to be able to compare them). The program will also be executed regularly even if no
new data is received. The program have to decide if it need to throw a alert. In this case,
the GeoHub will take care of executing actions attached to this alert: send a message to
the application and send notification to users (SMS, e-mail, fax, phone call with speech
synthesis).

GeoHub also keeps track of other monitoring data sent by the devices, store them in
its own database and provide applications with means to query the database or down-
load them.

SALTY Project (ANR-09-SEGI-012) C-8 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

1.2.3 Geotracked vehicle and their operation

Positioning devices on geotracked vehicle are operated by drivers. At departure, drivers
can notify the start of the geotracking through the device using a trigger available on
most devices. At arrival, they can notify the corresponding end of the geotracking. Each
time they stop voluntarily for some reason (having some rest, eating, ...), drivers can also
notify the stop and restart through the device. This information can then be used by
the geotracking system to interpret positioning data and react accordingly: unnotified
stops can be interpreted as accidents or traffic jams needing intervention or route re-
computation.

SALTY Project (ANR-09-SEGI-012) C-9 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

SALTY Project (ANR-09-SEGI-012) C-10 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

CHAPTER

2

Scenario 1 -
Long distance truck tracking

The first scenario appears in the context of the critical economic area of logistic. Long
distance truck tracking is concerned with following up trucks which deliver goods from
warehouses to warehouses in a complex network of logistic bases. This scenario is typical
either for general in transportation and large-scale distribution.

2.1 Context

2.1.1 Overall goals of the supporting application

Logistics or distribution companies need to track their truck fleets so to optimize the use
of their logistic bases, to minimize the travel time of their trucks, and to minimize their
waiting time when they arrive at logistic bases to download and upload goods.

Coarsely speaking, the application is assumed to be made of four different parts:

• devices attached to vehicles that can at least push data at some updatable frequency,
but some may also be able to have software executing on them that is updatable at
runtime;

• GeoHub used to host and execute triggering code for notifications;

• the application itself, planning the routes, tracking each truck individually, and
reacting to the notifications relating to them;

• the adaptation module, based on autonomic computing principles, that will receive
the necessary information required to make decisions and trigger adaptations upon
all of the other modules.

2.1.2 Long distance tracking use cases

Tracking long distance transportation trucks is founded on the following hypothesis:

• Truck routes are planned in advance, as well as their intermediate and final desti-
nations. The objective of the geotracking is to make sure that trucks follow their
route, pass by the different intermediate destinations as well as other predefined
waypoints, and reach their final destination. Trucks can deviate from their route
to some extent, but if the deviation becomes too large, the reason for this devia-
tion must be established and corrective actions taken, such as ordering the driver
to come back to the planned route or replan the route when necessary (accidents,
traffic jams, unplanned road construction, ...).

• Drivers of tracked vehicles always notify their departure, arrival, stop and restart
using appropriate commands of their positioning devices.

SALTY Project (ANR-09-SEGI-012) C-11 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

• Geotracking lasts from their departure until their final destination.

• The main positioning device for some trucks will have a fallback, namely the mobile
phone of the driver located under cell-id. In some failure scenario, the main posi-
tioning device may itself be its own backup: if only the measurement unit is faulty,
the mobile network transmission subsystem can still be located under cell-id.

This scenario involves three major geotracking objectives:

1. Notification of arrival at intermediate destinations, where it is required that trucks
arriving at a warehouse notify their arrival enough in advance to let the warehouse
coordinator allocate them a port so to optimize port usage and the waiting time of
trucks. After notification of their arrival, trucks approaching warehouses are still
closely tracked in order to take corrective actions if it appears that they will be too
late or way in advance.

2. Imposed corridor, where trucks are forced to stay within a corridor around their
route to make sure they don’t deviate much of this route. When trucks deviate from
their corridor, corrective actions are taken, first to inquire drivers from the reason
of the deviation, and if justified, replanning the rest of their route. The system will
get inputs from traffic control and weather services so that it may confirm or detect
itself conditions justifying a replanning of the route.

3. Waypoint notification, where the passage nearby some predefined points must be
notified. As corridor enforcement deals with deviation from the planned route,
waypoint notifications are used to keep track of the progress of the truck, for exam-
ple by displaying passed waypoints along with their passage time on a map.

Each of the technical parameters and adaptations required for these geotracking objec-
tives are detailed in the following sub-scenarii.

2.1.3 Overall description of the adaptation scenarii

The previous business-oriented objectives of the long distance truck tracking application
can only be achieved if the positioning of trucks is precise and timely enough to match
the desired degree of precision in the different notifications. In traditional geotracking
applications, some statically determined minimal frequencies of measurement and trans-
mission of positions are imposed to devices. The devices are then set to that frequency,
that never changes during the application execution. Such approaches incur a high cost
in position transmission, as the frequency set to get the necessary precision on the most
demanding notifications is used all the time, even when the mobile will not approach
critical points before hours. A smarter use of geotracking is to keep the rate of measure-
ment and transmission as low as possible when no critical point is approaching, but to
progressively augment the frequency when necessary. Another closely related adapta-
tion is the switch back and forth between the time-triggered and the location-triggered
modes.

Precision in the positioning can also be adjusted by choosing among several position-
ing methods the one with the lowest cost for the required precision at any time. Also,
when devices are partly malfunctioning, such as having no position or aberrant ones, a
decision can be made to switch to an alternative positioning method. Finally, to lower
the energy consumption, decisions can be made to power on and off subsystems, when
possible.

SALTY Project (ANR-09-SEGI-012) C-12 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

These adaptations are discussed more thoroughly in the next sections, for each geo-
tracking objectives of the application.

2.2 Overall experimental setup

Testing and experimenting applications that have at least part of their behavior bound to
real time is inherently difficult. In the case of truck tracking, the real time behavior comes
from the need for real positions sometimes correlated with real geographical positions
and artifacts, such as roads and their speed limits, warehouse positions, waypoints, etc.

Hence, it will not suffice to merely generate input data and run an application on a
standard computer. The experiment will have to take place in the real time frame, posi-
tions and transit times being realistic to some extent. On the other hand, as scalability to
large numbers of geotracked vehicles is a key issue in the SALTY project, it is not realistic
to get thousands of real trucks going on the road for the experiments; they will require
simulated vehicles. Simulated vehicles are pieces of software executing on a computer
and sending positions and receiving commands from the GeoHub, as real vehicles do.

The GeoHub, the application and the adaptation layer used in the experimentation
will be the real ones1. But trucks and their positioning devices will be simulated as
threads on stock computers, executing simulated travels. The idea is to get a planned
route, using planning services such as ViaMichelin, and then plan a per truck simula-
tion scenario to be run around that route. Each truck simulation will exhibit required
notifications, and therefore adaptation scenarii. In some cases, incidents, like device mal-
functions, traffic jams, etc. will be injected into the scenarii to trigger the corresponding
adaptations.

As a large number of such truck simulation scenarii will be required, they will be
generated automatically from the following sub-scenarii and their variants. A machine-
readable description of these will be constructed, and fed into a simulation scenarii gen-
erator that will give an executable scenario in another machine-readable format used by
specifically developed truck and positioning device simulation programs. To our knowl-
edge, no such simulation platform exists to date. It will be a contribution of the SALTY
project that could be reused by Deveryware in the future to test other enhancements of
their platform.

2.3 Sub-scenario 1.1 - Notification of arrival at intermediate des-
tinations

2.3.1 Objective

When trucks approach logistic bases, coordinators of these bases need to be notified so to
schedule the truck to a port. Ports are scarce resources, so coordinators need to maximize
their use time, but not at the expense of wasting the time of trucks and drivers waiting
for downloading or uploading.

Parameters: the notification delay and the tolerance in this delay, a time limit at which
the bases must be notified if the vehicle is to arrive in advance and the tolerance in
this limit, a time limit at which the bases must be notified if the vehicle is to arrive
late and he tolerance in this limit. The figure 2.1 shows the different limits towards
the destination.

1A copy, for the GeoHub, to avoid service denial to actual custumers of Deveryware.

SALTY Project (ANR-09-SEGI-012) C-13 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

30 min

20 min

10 min

Destination

Arrival alert Alert limit of
early arrival

Alert limit of
late arrival

Figure 2.1: Arrival at intermediate destinations.

Typical values: 30-minute arrival, 20-minute early arrival and 10-minute late-arrival no-
tifications, each with a two-minute tolerance.

This sub-scenario can develop into several variants, depending upon the exact behav-
ior of the truck approaching the destination. We plan to test particularly the following
variants. In each of them, the truck is assumed to have notified its arrival correctly at the
estimated 30-minute to arrival point. Variants look at different possibilities for the early
arrival and late arrival time limits:

1. The nominal variant, where the truck passes the early arrival and late arrival time
limits while being just in time. Positions of the truck will show this, and the appli-
cation will simply need to notify the arrival at the warehouse.

2. The late arrival variant, where the sequence of positions of the truck will show its
predictable late arrival and the truck will arrive late. The application will be notified
of the arrival and then of the late arrival.

3. The early arrival variant, where the sequence of positions of the truck will show its
predictable early arrival and the truck will arrive in advance. The application will
notify the arrival and then the early arrival.

4. The erroneous position variant, where the positions sent by the positioning device
become unreliable which is detected by the application. In this case, the application
will notify the arrival, but no early nor late arrivals; it will rather notify (internally)
an erroneous positions exception. The detection of erroneous positions is left to
the application, which can use several techniques to do so, such as comparing the
position to the previous ones and consider them erroneous if the estimated time to
reach the new position from the previous one exceeds the capability of the truck.

SALTY Project (ANR-09-SEGI-012) C-14 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

t
30min t 0t

20min
t

10min
Time

Destination

Frequency

Figure 2.2: Expected modifications in the transmission frequency for the intermediate
destinations arrival notification sub-scenario.

5. The network failure variant, where there is a loss of connection with the device. In
this case again, the application will notify the arrival, but no early nor late arrivals;
it will rather notify (internally) a network failure exception.

6. The device failure variant, where the device becomes faulty. In this case again, the
application will notify the arrival, but no early nor late arrivals; it will rather notify
(internally) a device failure exception.

7. The lost truck variant, where the application stops receiving data and the truck
never arrives at destination. In this case again, the application will notify the ar-
rival, but no early nor late arrivals; it will rather notify (internally) a lost truck ex-
ception, which in turn will be treated by the application by issuing an application-
dependent search command.

Each of these variants will lead to a complete behavioral scenario for at least one truck
in the experiments. Expected adaptations that will be triggered during the geotracking
of this truck are presented in the next subsection.

2.3.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. Minimize the overall costs of position sendings, minimize the probability of miss-
ing notifications, minimize the energy consumption of the device.

Evolution: Static
In this sub-scenario, goals do not change within the lifetime of the system.

Flexibility Rigid
The goals are prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime. However, as the truck
passes from intermediate destinations to other intermediate destinations and
to its final destination, the arrival position to be considered passes from one to
the next.

Multiplicity Multiple goals
In this sub-scenario, we consider three different goals.

Dependency Dependent
The three goals are conflicting, as higher frequencies minimizes the probability
of missing notifications, but cost more and consume more energy. Trade-offs
between them must be sought.

SALTY Project (ANR-09-SEGI-012) C-15 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Change. The adaptation concerns the frequency of position measurement and transmis-
sion, the positioning mode and the sleep mode of the device. It is mainly triggered
when the position of the truck is approaching the destination point and its different
limits. Other conditions that influence the adaptation are: the speed of the truck,
the road conditions, the battery level of the positioning device.

Source External and internal
The main source of changes is external, the position of the truck. Others are
internal.

Type Functional and non-functional
Positions are functional, but other sources are non-functional.

Frequency Frequent
As trucks approach destinations and the previous notification limits, the changes
will be made to gradually increase the frequencies.

Anticipation Unforeseeable (mostly)
Positions of trucks are hardly foreseeable, as speed depends upon not only on
the type of road but also from road, traffic, and weather conditions. Hence,
adaptation will be triggered by positions transmitted by the truck.

Mechanism. Changes concern parameters of the positioning devices: which device to
use, frequencies, mode, ...

Type Parametric
Changes concern parameters of the positioning devices: which device to use,
frequencies, mode, ...

Autonomy Autonomous
No outside intervention.

Organization Decentralized
The adaptation is performed by the autonomic manager of the arrival man-
agement component, but has its effect on the positioning device of the truck,
so the latency in the adaptation must be taken into account.

Scope Local
Adaptation only involves changes in the positioning device.

Duration Short to very short
The amount of time required to reconfigure the device should be from seconds
to minutes. Reconfiguration have no impact on the availability of the system.

Timeliness Guaranteed
A time-bound must be observed for this kind of feedback control to be effi-
cient.

Triggering Event-trigger
The main triggering conditions are event-based, by having positions matching
certain conditions or by matching certain conditions at some time.

Effects. Geotracking objectives are matched but with better resource usage and lower
cost.

Criticality Mission-critical
Although geotracking is currently done without adaptation of frequencies or
fault-tolerance mechanisms, no guarantee can be put that no notification will

SALTY Project (ANR-09-SEGI-012) C-16 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

be missed for any given precision. To have such guarantee, to some limit,
adaptation is mission-critical.

Predictability Probabilistic
The result of actions in terms of system guarantees can only be measured as
higher probabilities to match the objectives.

Overhead Insignificant
Parameters reconfiguration takes a small amount of time.

Resilience Resilient
Devices can be adapted without stopping, and the adaptation does not impair
their operation, as the time to adapt is small compared to the typical time
intervals between positioning instants.

2.3.3 Adaptation

In a nutshell, this sub-scenario is concerned with the need to get a position of the truck
within a location interval which bounds depends upon the given notification tolerance.
Time limits must first be translated into locations on the given route, a translation which
depends itself upon the speed and the nature of the route. The different bounds can be
computed during this translation. As devices send positions, the problem is to make
sure to get a position when the truck will be in the interval. From the speed of the truck
within the route segment where the interval is, one can compute the frequency at which
positions must be taken and transmitted to ensure that one will be in the interval. As the
target frequency may be high, and anyway unnecessary when the truck is still far away
from the destination, the basic control to be applied is to use a low frequency as long
as the truck is far away but to raise it to the computed value when it will approach the
notification interval. The figure 2.2 shows how the frequency is expected to evolve. The
frequency is low by default, but when approaching the different intervals it shall gradu-
ally raise to the required level and then switched back to default after the notification is
made.

Expected adaptations for each scenario variant presented in the preceding subsection
are as follows:

1. In variant 1, as shown in the left part of Figure 2.2, a progressive increase in the
transmission frequency is expected to go from the default frequency to the (higher)
frequency that ensures a position transmission within the location interval corre-
sponding to the notification delay and its tolerance. The frequency shall come back
to default after the notification of the arrival.

2. In variant 2, as shown in the right part of Figure 2.2, after the notification of the
arrival, a similar increase-decrease of the frequency is expected to notify correctly
the late-arrival. If the late-arrival is due to traffic jams, an application-specific adap-
tation may call for a re-computation of the route to destination.

3. In variant 3, as shown in the middle part of Figure 2.2, after the notification of the
arrival, a similar increase-decrease of the frequency is expected to notify correctly
the early-arrival.

4. In variant 4, after the adaptation for the arrival notification, the frequency may
increase again if the positions mislead the application to observe an early or late-
arrival but as soon as the positions will be determined as erroneous, the application

SALTY Project (ANR-09-SEGI-012) C-17 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

z

d

z

case 2

case 4

case 3

case 1

Figure 2.3: Main alternative deviations from the planned route.

will inhibit any other adaptation, notify an erroneous position exception, which will
itself trigger a decision to switch to the fallback positioning devices if any.

5. In the variant 5, after the adaptation for the arrival notification, if an alternative
positioning device using another network for transmission is available, a switch to
this device will be triggered.

6. In variant 6, after the adaptation for the arrival notification, if an alternative posi-
tioning device is available, a switch to this device will be triggered.

7. In variant 7, the adaptation for the arrival notification will appear, but no other one.

2.4 Scenario 1.2 - Imposed corridor

2.4.1 Objective

Trucks follow routes from which deviations must be notified to their fleet manager. De-
viations resulting from road construction or repair, or from traffic jams should trigger
the computation of an alternative route, but unjustified deviations requires immediate
intervention especially when highly valuable goods are involved. To detect deviation,
a corridor is allocated around the route, within which the truck must remain. The fig-
ure 2.3 shows the four major cases that can happen: (1) the vehicle follows its nominal
route, (2) the vehicle clearly crosses the corridor, (3) the vehicle approaches the frontier
of the corridor but while it remains inside it, it requires a finer-grain geotracking, and (4)
the vehicle crosses the frontier but within a tolerated distance, hence notification will be
delayed until some time limit if the vehicle does not come back in the corridor.

Parameters: the route to follow, the width of the allocated corridor, the tolerance in dis-
tance from the corridor frontier to detect the crossing, as well as a time tolerance

SALTY Project (ANR-09-SEGI-012) C-18 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

that limits the time the truck can stay outside the corridor but within the distance
tolerance.

Typical values: a route obtained from a mapping service like ViaMichelin, a corridor
spanning 5 kilometers on both sides of this route, a 500-meter tolerance to detect
the crossing and a limit of 10 minutes outside the corridor but within 500 meters
tolerance before notifying the crossing anyway.

Again, this sub-scenario can develop into several variants, depending upon the ex-
act behavior of the truck approaching the destination. We plan to test particularly the
following variants:

1. The nominal variant, where the truck follows the corridor without approaching the
limits of the corridor at a distance less than the tolerance. No notification is done to
the application. This variant corresponds to case 1 in Figure 2.3.

2. The admitted corridor crossing variant, where the truck crosses the limit of the
corridor because of an accident or a traffic jam on the main route and begins to
transmit positions outside the tolerance limit. In this case, the application notifies
this crossing, but after verification will trigger a re-computation of the route. This
variant corresponds to case 2 in Figure 2.3.

3. The rejected corridor crossing variant, where the truck crosses the limit of the cor-
ridor for no good reasons (maybe for bad reasons, like stealing the content of the
truck or passing in another country) and begins to transmit positions outside the
tolerance limit. In this case, the application notifies this crossing and issues a search
and bring back request. This variant also corresponds to case 2 in Figure 2.3.

4. The near-crossing but inside variant, where the truck approaches the limit of the
corridor, but stays inside it. No notification should be issued in this case. This
variant corresponds to case 3 in Figure 2.3.

5. The near-crossing but outside variant, where the truck crosses the limit of the corri-
dor, but stays within the distance tolerance. In this case, a notification will be issued
if the trucks stays in this zone for a time longer than the time limit without going
back to the corridor. This variant corresponds to case 4 in Figure 2.3.

2.4.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. Minimize the overall costs of position sendings, minimize the probability of miss-
ing notifications, minimize the energy consumption of the device.

Evolution: Static
In this sub-scenario, goals do not change within the lifetime of the system.

Flexibility Rigid
The goals are prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime.

SALTY Project (ANR-09-SEGI-012) C-19 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Multiplicity Multiple goals
In this sub-scenario, we consider three different goals.

Dependency Dependent
The three goals are conflicting, as higher frequencies minimizes the probability
of missing notifications, but cost more and consume more energy. Trade-offs
between them must be sought.

Change. The adaptation concerns the frequency of position measurement and transmis-
sion, the positioning mode and the sleep mode of the device. It is mainly triggered
when the position of the truck is approaching the frontier of the corridor. Other
conditions that influence the adaptation are: the speed of the truck, the road condi-
tions, the battery level of the positioning device.

Source External and internal
The main source of changes is external, the position of the truck. Others are
internal.

Type Functional and non-functional
Positions are functional, but other sources are non-functional.

Frequency Frequent
As trucks approach frontiers of the corridor, the changes will be made to grad-
ually increase the frequencies.

Anticipation Unforeseeable (mostly)
Positions of trucks are hardly foreseeable, as speed depends upon not only on
the type of road but also from road, traffic, and weather conditions. Hence,
adaptation will be triggered by positions transmitted by the truck.

Mechanism. Changes concern parameters of the positioning devices: which device to
use, frequencies, mode, ...

Type Parametric
Changes concern parameters of the positioning devices: which device to use,
frequencies, mode, ...

Autonomy Autonomous
No outside intervention.

Organization Decentralized
The adaptation is performed by the autonomic manager of the corridor man-
agement component, but has its effect on the positioning device of the truck,
so the latency in the adaptation must be taken into account.

Scope Local
Adaptation only involves changes in the positioning device.

Duration Short
The amount of time required to reconfigure the device should be from seconds
to minutes. Reconfiguration have no impact on the availability of the system.

Timeliness Guaranteed
A time-bound must be observed for this kind of feedback control to be effi-
cient.

Triggering Event-trigger
The main triggering conditions are event-based, by having positions matching
certain conditions or by matching certain conditions at some time.

SALTY Project (ANR-09-SEGI-012) C-20 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Effects. Geotracking objectives are matched but with better resource usage and lower
cost.

Criticality Mission-critical
Although geotracking is currently done without adaptation of frequencies or
fault-tolerance mechanisms, no guarantee can be put that no notification will
be missed for any given precision. To have such guarantee, to some limit,
adaptation is mission-critical.

Predictability Probabilistic
The result of actions in terms of system guarantees can only be measured as
higher probabilities to match the objectives.

Overhead Insignificant
Parameters reconfiguration takes a small amount of time.

Resilience Resilient
Devices can be adapted without stopping, and the adaptation does not impair
their operation, as the time to adapt is small compared to the typical time
intervals between positioning instants.

2.4.3 Adaptation

In this sub-scenario, expected adaptations are the following:

1. In the variant 1, no adaptation is expected.

2. In variant 2, an increase/decrease schema in the transmission frequency, similar to
the one shown in the arrival notification sub-scenario, is expected when the truck
will approach and then cross the limit of the corridor and its tolerance. After the re-
computation of a new route, though, the route and its corridor will be adapted and
then no further notification of being outside the (original) corridor shall be issued.

3. In variant 3, an increase/decrease schema in the transmission frequency is also ex-
pected, and after the crossing an emergency follow-up frequency will be adopted
at which every new position of the truck will be notified to the application auto-
matically.

4. In variant 4, an increase in the frequency is expected as the truck approaches and
stays within the tolerance zone inside the corridor. The frequency should remain
high as long as the truck stays in this zone, but decrease when it comes back in the
normal zone of the corridor.

5. The variant 5 is similar to variant 4, but ending with a notification and an emer-
gency follow-up as in variant 3.

2.5 Scenario 1.3 - Waypoint notification

2.5.1 Objective

Long distance trucks often follow very long routes that can span over entire continents.
Fleet coordinators need to be kept informed of the progress of the truck along this route
by setting waypoints which crossing shall trigger a notification. An alternative usage

SALTY Project (ANR-09-SEGI-012) C-21 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

r
waypoint

trajectories

tolerance zone

position reporting

case 3

case 2

case 1

case 4

Figure 2.4: Different trajectories against waypoints.

of waypoints is to make them virtual tollbooth to collect environmental taxes (on a pay
per passage basis). When waypoints are used as tollbooth, a single position may not be
sufficient to prove that the vehicle passed the toll; more stringent requirements, such as
having multiple positions within a radius from the point, may be imposed. The figure 2.4
shows these different cases.

Parameters: the position of the waypoints, the radius of the notification area, a tolerance
on this radius and a triggering rule.

Typical values: waypoints as known positions at roads crossing, a 200-meter radius with
a tolerance of 25 meters, the notification being triggered if three positions can be
reported within the radius, from which at least two are not in the tolerance zone.

Many potential problems are raised by waypoint notifications. One of them is the
possibility of passing over the point a second time on some road configurations, like
highway exits. When this second passage happens very rapidly after a first passage, it
should not trigger a second notification. Although such cases should be avoided, putting
waypoints at highway crossings might be a clever choice (especially for toll purposes),
hence requiring to deal with this problem. One possibility is to deactivate the waypoint
for a given vehicle for some time after a passage.

This sub-scenario develops around the following variants:

1. The nominal variant, where the trucks crosses the waypoint area with at least two
positions inside the area over three in the area plus its tolerance zone. The applica-
tion must be notified to the passage. This variant corresponds to case 1 in Figure 2.4.

2. The near-miss variant, where the truck has one position inside the waypoint area
and maybe others in the tolerance zone. The application must be notified to the
near-miss. This variant corresponds to case 2 in Figure 2.4.

SALTY Project (ANR-09-SEGI-012) C-22 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Point de
passage

Figure 2.5: Potential second passage on a waypoint.

3. The miss variant, where the truck has at least one position inside the waypoint
tolerance zone but none inside. The application must be notified to the miss. This
variant corresponds to case 3 in Figure 2.4.

4. The no-passage variant, where no position appear inside the waypoint area nor its
tolerance zone. No notification should occur. This variant corresponds to case 4 in
Figure 2.4.

2.5.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. Minimize the overall costs of position sendings, minimize the probability of miss-
ing notifications, minimize the energy consumption of the device.

Evolution: Static
In this sub-scenario, goals do not change within the lifetime of the system.

Flexibility Rigid
The goals are prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime. However, as the truck
passes from waypoints to waypoints, the waypoint to be considered passes
from one to the next.

Multiplicity Multiple goals
In this sub-scenario, we consider three different goals.

Dependency Dependent
The three goals are conflicting, as higher frequencies minimizes the probability
of missing notifications, but cost more and consume more energy. Trade-offs
between them must be sought.

Change. The adaptation concerns the frequency of position measurement and transmis-
sion, the positioning mode and the sleep mode of the device. It is mainly triggered
when the position of the truck is approaching the waypoint. Other conditions that

SALTY Project (ANR-09-SEGI-012) C-23 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

influence the adaptation are: the speed of the truck, the road conditions, the battery
level of the positioning device.

Source External and internal
The main source of changes is external, the position of the truck. Others are
internal.

Type Functional and non-functional
Positions are functional, but other sources are non-functional.

Frequency Frequent
As trucks approach waypoints, the changes will be made to gradually increase
the frequencies.

Anticipation Unforeseeable (mostly)
Positions of trucks are hardly foreseeable, as speed depends upon not only on
the type of road but also from road, traffic, and weather conditions. Hence,
adaptation will be triggered by positions transmitted by the truck.

Mechanism. Changes concern parameters of the positioning devices: which device to
use, frequencies, mode, ...

Type Parametric
Changes concern parameters of the positioning devices: which device to use,
frequencies, mode, ...

Autonomy Autonomous
No outside intervention.

Organization Decentralized
The adaptation is performed by the autonomic manager of the waypoint man-
agement component, but has its effect on the positioning device of the truck,
so the latency in the adaptation must be taken into account.

Scope Local
Adaptation only involves changes in the positioning device.

Duration Short
The amount of time required to reconfigure the device should be seconds to
minutes. Reconfiguration have no impact on the availability of the system.

Timeliness Guaranteed
A time-bound must be observed for this kind of feedback control to be effi-
cient.

Triggering Event-trigger
The main triggering conditions are event-based, by having positions matching
certain conditions or by matching certain conditions at some time.

Effects. Geotracking objectives are matched but with better resource usage and lower
cost.

Criticality Mission-critical
Although geotracking is currently done without adaptation of frequencies or
fault-tolerance mechanisms, no guarantee can be put that no notification will
be missed for any given precision. To have such guarantee, to some limit,
adaptation is mission-critical.

SALTY Project (ANR-09-SEGI-012) C-24 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Predictability Probabilistic
The result of actions in terms of system guarantees can only be measured as
higher probabilities to match the objectives.

Overhead Insignificant
Parameters reconfiguration takes a small amount of time.

Resilience Resilient
Devices can be adapted without stopping, and the adaptation does not impair
their operation, as the time to adapt is small compared to the typical time
intervals between positioning instants.

2.5.3 Adaptation

In this sub-scenario, expected adaptations are the following. In the three first variants,
the intersection of the road with the waypoint area gives the segment of the route within
which positions must be obtained. Hence, we face two problems: detecting when the
truck will enter the waypoint area and the duration of this passage to compute the fre-
quency of measurements to get the positions. The adaptation consists of increasing the
frequency of transmission to capture the entrance in the waypoint area, and then to set
the frequency of measurements prior the passage at the required level to get the positions.
In this sub-scenario, we postulate that positions in the waypoint can be transmitted at the
end of the passage.

In the last variant, an increase in the transmission frequency will happen if the pas-
sage is near the limits of the waypoint area, but no change in the measurement frequency
as no notification will be needed.

SALTY Project (ANR-09-SEGI-012) C-25 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

SALTY Project (ANR-09-SEGI-012) C-26 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

CHAPTER

3

Scenario 2 -
Short distance truck tracking

3.1 Context

3.1.1 Overall goals of the supporting application

The short distance truck tracking scenario deals with fast delivery parcel services where
delivery men visit customers either to deliver or pick up parcels. Such companies need
to track their truck in order to optimize tour delivery and add locations where to pick
up parcels during the round when time permits. An important criticism towards such
companies is the long delivery time window they impose to their customers; minimizing
this is therefore an important business objective.

Geotracking can help to shorten these windows by following more closely the progress
of trucks in order to notify customers when the delivery will be late, and replan the route
to deliver most customers on time even by skipping some when necessary. Assume cus-
tomers must be delivered one after the other, each within a time window announced in
advance. No later than a certain deadline before the end of each time window, the cor-
responding customer must be notified if the delivery appears to be late. If a customer
cannot be delivered on time, the route coordinator may decide to skip come back later
to this customer in order for the delivery man to serve the rest of the customers on time.
The goal is to maximize the number of customers delivered on time, and therefore their
satisfaction, even at the expense of a very late delivery to some of them.

3.1.2 Short distance tracking use cases

Short distance tracking scenario is based on the following hypothesis :

• Rounds are planned in advance and customer announced a fixed delivery window
that must be matched by the delivery man.

• Delivery men always notify their departure, arrival, stop and restart using the ap-
propriate command on their positioning device.

• The geotracking will last from departure to the return at the logistic base.

• The main positioning device for some trucks will have a fallback: the mobile phone
of the driver located under GSM cell-id. In some failure scenario, the main posi-
tioning device may itself be its own backup it the measurement unit is faulty but
the mobile network transmission subsystem can still be located under GSM cell-id.

The scenario involves the following geotracking objectives:

1. Notification of late arrival, where trucks must deliver within an time window (with
some tolerance) several destinations. When the truck positions and its route show

SALTY Project (ANR-09-SEGI-012) C-27 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

new route

late arrival notification
c
2

c
1

c
3

c
4

Figure 3.1: Route for the delivery and collecting of parcels.

that the delivery of a customer cannot be on time, a notification must be sent to the
customer no later than a certain notification delay before the end of his delivery
time frame. If the delivery is forecasted to be late, a maximum delay is set, such
that when the customer cannot be delivered within this delay, it will be rescheduled
later in the day, using route replanning to get a new round for the delivery man.

2. Imposed corridor, where trucks are forced to stay inside a certain corridor around
their route, otherwise a notification must be sent to the route coordinator. If a route
replanning is required, a new corridor will be imposed according to the new route.
This objective is essentially the same as in the long distance truck tracking use case,
so it will not be detailed again here.

3.1.3 Overall description of the adaptation scenarii

As in the long distance use case, the notification of late arrival and corridor enforcement
cannot be achieved unless the location of trucks is precise and timely enough. However,
precision is only needed when trucks approach the time limit for late arrival notification
to the next customer, or when they approach the frontiers of their corridor. Hence, the
main adaptation aims at ensuring that positions are pushed without failure and at the
right frequency when these conditions are to be met.

Unlike the long distance use case though, the route replanning involves a priori a hu-
man decision from the route coordinator. In practice, this is more likely to happen than a
purely automatic adaptation that may decide to skip an important customer. Techniques
can be used to automatize this, among which a ranking of customers and coordinator’s
preferences, an alternative that may be used here.

3.1.4 Experimental setup

The overall experimental setup of this second use case is very similar to the one of the
long distance use case explained in sub-section 2.2.

3.2 Scenario 2.1 - Notification of late arrival at delivery points

3.2.1 Objective

Each day, delivery rounds are computed for each truck prior to their departure. Each
truck can then start and begin the parcel delivery to customers. If a truck is too late for the

SALTY Project (ANR-09-SEGI-012) C-28 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

timely delivery of a customer, this particular destination will be removed from the round
and will be replanned later, a notification being sent to the rescheduled customer. The
figure 3.1 illustrates this. Customers c1, c2, c3 and c4 are planned to be delivered in a row,
with a time window of half an hour. At most 45 minutes before the end of the window,
materialized by the dashed circles, customers must be notified if the delivery appears to
be late. When a customer can’t be delivered within his time window, a replanning of the
route may be done, as illustrated between customers c2 and c3, where a replanning tells
the delivery man to skip c2 and deliver c4 directly and then come back to c3. The goal is
to maximize the number of customers delivered on time.

Parameters: the notification delay, a time limit from the latest possible delivery time in
the window at which the customers must be notified if the truck is to arrive late,
and a tolerance on this delay. The maximum lateness time, if a truck is to arrive
more than this time, this particular destination may be rescheduled at end of day,
and a tolerance on this maximum delay.

Typical values: A 45-minute notification delay and a 30-minute maximum lateness time,
both with a 5-minute tolerance.

This sub-scenario can develop into several variants depending upon the exact behav-
ior of the truck approaching destination.

1. The nominal variant, where the truck arrived at delivery points in time.

2. The standard late arrival variant, where the truck will be late but within acceptable
gap. The customers will be notified of late delivery.

3. The very late arrival variant, where the truck cannot be at destination within the
maximum lateness time. The delivery will be rescheduled at end of day and a
notification will be sent to customer.

3.2.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. Minimize the overall costs of position sendings, minimize the probability of miss-
ing notifications, minimize the energy consumption of the device, minimize the
number of customers delivered lately.

Evolution: Static
In this scenario, goals do not change within the lifetime of the system.

Flexibility Rigid
The goals are prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime. However, as the truck
passes from delivery points to delivery points, the delivery point to be con-
sidered passes from one to the next.

Multiplicity Multiple goals
In this scenario, we consider three different goals.

SALTY Project (ANR-09-SEGI-012) C-29 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Dependency Dependent
The three first goals are conflicting, as higher frequencies minimize the proba-
bility of missing notifications, but cost more and consume more energy. Trade-
offs between them must be sought. The last one is independent.

Change. The adaptation concerns the frequency of position measurement and transmis-
sion, the positioning mode and the sleep mode of the device. It also concerns routes.
It is mainly triggered when the position of the truck is approaching the delivery
point. Other conditions that influence the adaptation are: the speed of the truck,
the road conditions, the battery level of the positioning device.

Source External and internal
The main source of changes is external, the position of the truck. Others are
internal.

Type Functional and non-functional
Positions are functional, but other sources are non-functional.

Frequency Frequent
As trucks approach delivery points, the changes will be made to gradually
increase the frequencies. Route replanning should be less frequent, but not
rare.

Anticipation Unforeseeable (mostly)
Positions of trucks are hardly foreseeable, as speed depends upon not only on
the type of road but also from road, traffic, and weather conditions. Hence,
adaptation will be triggered by positions transmitted by the truck.

Mechanism. Changes concern parameters of the positioning devices: which device to
use, frequencies, mode, ..., but also routes.

Type Parametric
Changes concern parameters of the positioning devices: which device to use,
frequencies, mode, ... or of the delivery routes.

Autonomy Autonomous and assisted
No outside intervention for the adaptations that concern the positioning de-
vice, but an external human decision may be required for route replanning..

Organization Decentralized
Adaptations are performed by the autonomic manager of the delivery man-
agement component, but has its effect on the positioning device of the truck,
so the latency in the adaptation must be taken into account. Route replanning
involves mainly the delivery management component, but may also affect the
positioning device (to set the next delivery point and its time window).

Scope Local
Adaptation involves changes in the positioning device but also in the delivery
management component, namely the route to be followed.

Duration Short
The amount of time required to reconfigure the device should be from sec-
onds to minutes. Route replanning may take a little longer, but not very long.
Reconfiguration have no impact on the availability of the system.

Timeliness Guaranteed
A time-bound must be observed for this kind of feedback control to be effi-
cient.

SALTY Project (ANR-09-SEGI-012) C-30 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Triggering Event-trigger
The main triggering conditions are event-based, by having positions matching
certain conditions or by matching certain conditions at some time.

Effects. Geotracking objectives are matched but with better resource usage and lower
cost.

Criticality Mission-critical
Although geotracking is currently done without adaptation of frequencies or
fault-tolerance mechanisms, no guarantee can be put that no notification will
be missed for any given precision. To have such guarantee, to some limit,
adaptation is mission-critical.

Predictability Probabilistic
The result of actions in terms of system guarantees can only be measured as
higher probabilities to match the objectives.

Overhead Insignificant
Parameters reconfiguration takes a small amount of time.

Resilience Resilient
Devices can be adapted without stopping, and the adaptation does not impair
their operation, as the time to adapt is small compared to the typical time
intervals between positioning instants.

3.2.3 Adaptation

In this sub-scenario, adaptations can happen to cope with the failure of the device or the
energy management, as in the long distance truck tracking scenario. But to match the
need of delivery point notification in case of late arrival, the frequency of the position
sendings will raise gradually as the truck approaches the time limit in order to refine the
estimation of arrival time and to be able to notify the customer on time.

If the truck appears to be late, the position sending frequency will be kept at a high
enough level to get a good forecast of the arrival time to trigger route replanning when
the estimated time exceeds the maximum lateness time. Route replanning is the major
difference between the long distance truck tracking scenario and this one.

SALTY Project (ANR-09-SEGI-012) C-31 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

SALTY Project (ANR-09-SEGI-012) C-32 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

CHAPTER

4

Scenario 3 -
GeoHub QoS enforcement

4.1 Context

4.1.1 Overall goals of the supporting application

Given the large-scale nature of the intended system, tens of thousands of trucks being
geotracked at the same time, another important adaptation will be sought, namely the
adaptation of the overall workload of the GeoHub given its current performance. As the
delay between position receptions on the GeoHub and the notification of events to appli-
cations must be kept under a limit defined by the quality of service offered to customers,
massive adaptations of all positioning device frequencies may be required when this de-
lay becomes too large. This scenario will show the capability of the SALTY architecture
to cope with large-scale adaptations of distributed systems.

4.1.2 GeoHub QoS enforcement use case

GeoHub QoS enforcement use case is founded on the following hypothesis:

• Every positioning device connected to the GeoHub has at least one autonomic man-
ager component responsible for the management of its frequency. Whenever a po-
sitioning device wishes to send data to the Geohub, its autonomic manager will
register itself with the GeoHub autonomic manager each time a geotracking period
begins. They unregister themselves when their geotracking period ends.

• Autonomic managers of positioning devices can be interconnected in a large-scale
mesh where autonomic managers are nodes connected by neighborhood relation-
ships (knowledge of each other) used to exchange messages. This mesh can be
dynamically constructed, by adding new autonomic managers when devices con-
nect to the GeoHub, and adapted in order to minimize the number of neighbors for
each autonomic manager and at the same time minimize the average path length
between any two autonomic managers.

• Autonomic managers of positioning devices accept a role in the overall manage-
ment of the GeoHub workload, not only to adapt the frequency of their attached
positioning device, but also to participate in exchanges with other autonomic man-
agers to reach collective decisions and coordination. In doing so, autonomic man-
agers adopt a collaborative behavior, i.e. use and manage the positioning sending
frequency resource in a way to maximize global optimization criteria rather than
local ones.

The scenario involves two objectives:

SALTY Project (ANR-09-SEGI-012) C-33 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

1. Global GeoHub workload management, where a limit on the overall frequency of
position sendings to the GeoHub must be maintained under a certain limit corre-
sponding to Deveryware’s QoS objectives. When the workload exceeds this limit,
all of the connected positioning devices will be required to lower their frequency,
to get a decrease in the overall workload of the GeoHub.

2. Local frequency limits management, where each positioning device and their au-
tonomic managers will observe an upper bound on the frequency of its position
sendings. Such limits will be adapted at run-time according to the overall work-
load of the GeoHub and the relative importance of the current geotracking objec-
tives currently driving the use of this device.

4.1.3 Overall description of the adaptation scenarii

A crucial constraint in this scenario is the large-scale nature of the managed system. In-
deed, the separation in two complementary business objectives of this scenario already
takes into account the need for both a global and a local view of this adaptation scenario.
Indeed, to go large-scale, no solution involving a centralized decision-making process
can be adopted. Decentralized, heuristic schemes will be required.

For the first objective, the QoS of the GeoHub will be monitored and its autonomic
manager will trigger an adaptation when the QoS becomes too low. This adaptation will
consist in enforcing a decrease of the frequencies of the positioning devices currently
attached to the GoeHub. To this end, the mesh of their autonomic managers can be used
to broadcast a decrease frequency request, according to some protocol (to be decided at
design time of the SALTY architecture).

For the second objective, individual positioning devices and their autonomic man-
agers will adapt the frequency of position sendings corresponding to the some scenarii
(long or short distance truck tracking), but will be limited in their increase, a limit chosen
to ensure a manageable overall workload for the GeoHub. Hence, this objective comple-
ments the first by decentralizing the workload control.

4.1.4 Experimental setup

The overall experimental setup of this second use case is the same as the one of the long
distance use case explained in sub-section 2.2.

4.2 Scenario 3.1 - Global workload management

4.2.1 Objective

The GeoHub is a kind of complex event processing system, running on servers connected
to the Internet but also capable of emitting and receiving SMS over the GSM network.
It acts as a middleware to connect geotracking applications to positioning devices of
tracked mobiles, to abstract the formers from the specifics of the latters, but also to ex-
ecute rules correlating positions and other data to trigger notifications to applications.
GeoHub receives positions and related data from sensors on mobiles, executes each of
the rules tagged by the sending device and, for each of them, when the guard of the rule
is true, it executes its body, typically consisting of instructions that will send notifications
to the client-side application.

SALTY Project (ANR-09-SEGI-012) C-34 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

As the delays between the emission of a position and the reception of the correspond-
ing notification by the application usually needs to be bounded, the latency in the pro-
cessing of data must be kept under some limit. As the delays for data transmission be-
tween devices and the GeoHub as well as between the GeoHub and application servers
are in the order of seconds (using GPRS for the first), the GeoHub processing time must
also be kept within the same order of magnitude.

This processing latency depends upon the quantity of computational resource dedi-
cated to the GeoHub, and the rate of position receptions to be processed. As resources
allocated to the GeoHub can only be added by large unit (servers), corresponding to a
large processing capability, there is a need to manage relatively small variations in the
workload when the latency reaches its limit but the workload is not large enough to jus-
tify another full server. The idea is then to ask all of the positioning devices to reduce
slightly their frequencies so to reduce the overall workload and therefore the latency. But
the different positioning devices are not engaged in the same business objectives when
ordered to lower their frequency. Hence, a mechanism must be adopted to allow them to
adapt the request to their current needs. The devices and their autonomic managers can
be trusted to act ”cooperatively”, i.e. they aim at a global satisfactory solution rather than
maximizing their own advantage.

Parameter: the maximum latency from position reception to notification sending, and
a function allowing to compute the relative importance of each device given its
current business objective.

Typical values: 2 seconds and, in the long distance truck tracking scenario, a function
saying that notification of arrival at a warehouse is more important than corridor
enforcement which is in turn more important than waypoint notification.

This sub-scenario can develop into several variants:

1. The nominal variant, where the latency remains under the maximum admissible
value.

2. The lower complexity variant, where a (relatively) small number of devices over-
load the GeoHub by their individual high frequencies.

3. The higher complexity variant, where a large number of devices with relatively low
frequencies yet overload the GeoHub.

In the last two variants, devices of different relative importance must be simulated to
check that they adopt different modifications of their frequency.

4.2.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. Keep the latency of the GeoHub under some predefined limit.

Evolution: Static
In this scenario, the goal does not change within the lifetime of the system.

Flexibility Rigid
The goal is prescriptive.

SALTY Project (ANR-09-SEGI-012) C-35 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Duration Persistent
The goal is valid throughout the system’s lifetime.

Multiplicity Single goal
In this scenario, we consider only one goal.

Dependency N/A

Change. The adaptation concerns the frequencies of position sendings for all of the po-
sitioning devices currently connected to the GeoHub.

Source Internal
The source of changes is internal, the latency of the GeoHub.

Type Non-functional
Latency is a non-functional property.

Frequency Rare
Pushing the server to its limit should not occur very often, and the adaptation
must be powerful enough to make sure another adaptation will not be needed
soon, given the extent of the required modifications.

Anticipation Unforeseeable (mostly)
Except for certain periods of the day where a lot of tracked vehicle are typically
on the road, the changes are unforeseeable.

Mechanism. Changes concern parameters of the positioning devices, namely their posi-
tion sending frequencies.

Type Parametric
Changes concern parameters of the positioning devices: frequencies.

Autonomy Autonomous
No outside intervention.

Organization Decentralized
Adaptations are performed by the autonomic manager of the GeoHub but in
cooperation with the autonomic managers to which positioning devices are
attached.

Scope Global
Adaptation involves changes potentially in all the positioning devices con-
nected to the GeoHub.

Duration Short
Given the large-scale of the adaptation, the time required to complete it should
be in the order of ten minutes.

Timeliness Guaranteed
A time-bound must be observed for this kind of feedback control to be effi-
cient.

Triggering Event-trigger
The main triggering conditions are event-based, by having positions matching
certain conditions or by matching certain conditions at some time.

Effects. Lower the latency of the GeoHub.

Criticality Mission-critical
Timely notifications are at the heart of the business of Deveryware.

SALTY Project (ANR-09-SEGI-012) C-36 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Predictability Probabilistic
The result of actions in terms of system guarantees can only be measured as
higher probabilities to get a lower latency.

Overhead Insignificant
The essential impact on the system should be the network bandwidth used to
propagate the command to lower the frequency, but an appropriate multicast
protocol shall maintain the required bandwidth to a relatively small level.

Resilience Resilient
Devices can be adapted without stopping, and the adaptation does not impair
their operation, as the time to adapt is small compared to the typical time
intervals between positioning instants.

4.2.3 Adaptation

The adaptation in this scenario is to modify the frequency of positioning devices. Coarsely
speaking, a request to lower the frequencies by a given percentage will be issued by the
autonomic manager attached to the GeoHub towards positioning devices through their
own autonomic managers. Each of the device autonomic manager will have the possi-
bility to adapt the request according to the relative importance of the device and of the
current business objective served by its geotracking.

4.3 Scenario 3.2 - Local workload management

4.3.1 Objective

In the context of enforcing a global constraint on the QoS of the GeoHub, and coping
with the large-scale nature of the system, a complementary approach to the first sub-
scenario is to individually cap the frequency of each positioning device. Strict caps could
even prevent any overloading of the GeoHub, but this would either over-constrain the
positioning devices (if the caps are very low) or lead to poor resource usage (if the caps
are too large and rarely completely used). Indeed, if the sum of the caps of the connected
devices has to be less or equal to the maximum workload of the GeoHub, high caps
would result in unused frequencies in devices requiring less than their cap. Another
problem would be to impose a fixed cap to all the devices. No only different clients may
have different constraints on their use of geotracking, most of the use cases presented in
the SALTY project show that there can be large differences in the required frequency over
time even for one device.

Hence, caps should be adapted at run-time, so that higher caps are allocated to de-
vices facing stringent requirements from their current business objective. For example, in
the long distance truck tracking scenario, not only the cap can be low when a truck is on a
highway and its futures positions rather easy to predict, but one can imagine that higher
caps will be allocated when tracking the arrival at a warehouse compared to notifying
the passage by a waypoint.

Local workload management involves the exchange of unused frequencies between
positioning devices to adapt their caps to the relative importance of their current business
objectives, while maintaining constant the overall sum of the caps. Again, an important
constraint put on the implementation of a solution in support to this sub-scenario is to
scale to a large number of positioning devices (this rules out any centralized solution,

SALTY Project (ANR-09-SEGI-012) C-37 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

e.g. a central entity in charge of allocating or coordinating the allocation of frequencies to
devices).

Parameters: an initial cap to the frequency of positioning devices, and a function allow-
ing to compute the relative importance of each device given its current business
objective.

Typical values: 10 position sendings per minute and, in the long distance truck tracking
scenario, a function saying that notification of arrival at a warehouse is more im-
portant than corridor enforcement which is in turn more important than waypoint
notification.

This sub-scenario can develop into several variants, among which:

1. The low workload variant, where most of the devices have unused frequency ca-
pacities that ease the acquisition of capacity by the requiring devices.

2. The high workload variant, where only a relatively small number of devices have
unused capacities, which makes difficult the acquisition of capacity by the requiring
devices.

3. The saturated workload variant, where the whole system is overloaded so that the
requiring devices cannot be satisfied.

4.3.2 Classification

Below we provide an analysis of the described adaptation in the context of the modeling
dimensions from appendix A:

Goals. Adapt locally the maximum frequency at which each device can send positions
in order not to overload the GeoHub.

Evolution: Static
In this scenario, the goal does not change within the lifetime of the system.

Flexibility Rigid
The goal is prescriptive.

Duration Persistent
The goal is valid throughout the system’s lifetime.

Multiplicity Single goal
In this scenario, we consider only one goal.

Dependency N/A

Change. The adaptation concerns the frequencies of position sendings for each of the
positioning devices currently connected to the GeoHub.

Source Internal
The source of changes is internal, the frequency currently required by the po-
sitioning devices and request coming from other devices to get unused capac-
ities when they need to higher their own maximum frequency.

Type Functional
Position sending frequency is a functional property.

SALTY Project (ANR-09-SEGI-012) C-38 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Frequency Frequent
As the caps to frequencies should be kept relatively near to the individual cur-
rently used frequencies, the adaptation should happen relatively often. How-
ever, the mean difference between the caps and the used frequencies is an
crucial parameter to tune the system, as it represents in some sense the degree
at which the system will be able to locally adapt used frequencies to the need
of applications. When a device has to require unused frequencies from other
devices, the local adaptation can become more and more global to find unused
capacities somewhere.

Anticipation Unforeseeable
As for the used frequencies themselves, changes in the maximum frequen-
cies are unforeseeable, mostly, even though business objectives that drive the
adaptation are known in advance.

Mechanism. Changes concern parameters of the positioning devices, namely their max-
imum position sending frequencies.

Type Parametric
Changes concern parameters of the positioning devices: the maximum fre-
quencies.

Autonomy Autonomous
No outside intervention.

Organization Decentralized
Adaptations are performed by the autonomic managers of the requiring device
but in cooperation with the autonomic managers of other positioning devices.

Scope Local (mostly)
Adaptation involves changes in a small number of the positioning device au-
tonomic managers.

Duration Short
The time required to complete the adaptation should be kept in the order of
minutes.

Timeliness Guaranteed
A time-bound must be observed for this kind of feedback control to be effi-
cient.

Triggering Event-trigger
The main triggering conditions are event-based.

Effects. Enhancing the probability for applications to match their business objectives,
while maintaining the quality of service of the GeoHub over its target.

Criticality Mission-critical
At the heart of Deveryware’s business model.

Predictability Probabilistic
The result of actions in terms of system guarantees can only be measured as
higher probabilities to get a lower latency.

Overhead Insignificant
The chosen implementation must strive for an insignificant overhead.

Resilience Resilient
Changes in the maximum frequencies of device can be done without impairing
their functioning.

SALTY Project (ANR-09-SEGI-012) C-39 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

4.3.3 Adaptation

The adaptation incurs:

• finding unused capacity, by adapting the maximum frequency(ies) of a(some) de-
vice(s),

• adapt the maximum frequency for the device,

• adapt the current frequency of the device.

SALTY Project (ANR-09-SEGI-012) C-40 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

CHAPTER

5

Scenario 4 -
Decision-making Modeling at

Design-time

This scenario is of a different nature compared to the previous ones. One of the goals
of the SALTY project is to build an interactive tool, the decision-making modeling at
design-time tool, to help non-specialist end-users in eliciting their business objectives
and criteria for adaptation for their geotracking applications. As such a tool cannot be
fully general, the geotracking use case will provide us with a first context for design ex-
ploration. Generality of the tool will be sought through the use of an adaptable database
for parameters such as dictionaries, model-driven interaction patterns (question/answer,
menu, etc.), etc. Figure 5.2 shows a general scheme from the interactive tool to the posi-
tioning devices inside the trucks and back.

5.1 Context

Deveryware offers to its customers a GeoHub configuration tool called DeveryLoc. Us-
ing this tool, users can declare alerts, defining the positioning devices to be tracked, fre-
quency of position transmission and events to be notified along with their triggering
conditions. DeveryLoc leverages a set of predefined alert types, offering users standard
notifications patterns such as entering or leaving a geographical locus. All the param-
eters the user has to enter to configure these alert types are linked either to a duration
(frequency or delay in seconds), or to a distance (in meters), i.e. only very precise val-
ues can be entered. Unfortunately, to date, users rarely have the necessary knowledge to
provide the GeoHub with good enough information for the geotracking to be efficient.
In face of a lot of technical parameters to define, users tend to fix them arbitrarily and
more or less update them after some experience becomes available from the running of
the application, a lengthy and costly process.

The first goal of the design-time decision-making modeling tool is to abstract users
away from these precise and low-level technical parameters. A second goal is to add
the configuration of adaptations to be applied to alerts. Finally, the tool will strive for
a qualitative assessment of parameters rather than precise numerical values. The tool,
through menus and natural language exchanges, will help users to elicit their higher level
business-oriented goals, both at the application level (e.g. notify the application when a
truck is at approximately thirty minutes from its delivery warehouse) and at the adapta-
tion one (e.g. minimize the number of position transmissions while making sure that the
notifications happen within a time frame according to the meaning of ”approximately
thirty minutes”). As several criteria may come into play when allocating position trans-
mission frequencies, users may need to express (qualitatively) their preferences in case
a trade-off is needed (e.g. I prefer a better precision on warehouse delivery notifications
than on waypoint notifications, but if the battery is low, I prefer to keep the positioning

SALTY Project (ANR-09-SEGI-012) C-41 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Positioning

GeoHub

Appli.

Appli.

CEP

Adaptation

Adaptation

Model

Model

Adaptation

Adaptation

devices

Enhanced

Deveryloc

Figure 5.1: The various components of the global tool.

Figure 5.2: General scheme from the human-machine interface to the trucks.

device functioning as long as possible rather than a better precision on notifications).
Although developed in the context of SALTY, the tool will strive for as much gen-

erality as possible, to be adaptable to other adaptive application contexts (such as the
companion middleware use cases).

Thus, the configuration tool DeveryLoc will be enhanced to deal with a larger role
illustrated in Figure 5.1. In this figure, the plain arrows represent position sending by
devices, alerts and/or notifications sending by the GeoHub and other events used at run-
time to execute and adapt the applications. The “Enhanced DeveryLoc”, or E-DeveryLoc,
is a design-time tool that will provide for an enhanced HMI, allowing end-users to build
models of applications and their adaptations, and then to configure the GeoHub accord-
ingly.

Business-specific applications (denoted “Appli.” in the figure) are partly generated
by the E-DeveryLoc through a model. Once in place, and completed by the business-
specific code on the client-side, they will execute and undergo adaptations. Such adap-
tations will use positions sent by the positioning devices and notifications made by the
GeoHub, but also context-based information (i.e. weather forecasts, traffic jams, etc.). A
CEP, completing the GeoHub, will handle the latter kinds of data.

Business-specific applications will also provide logs, shown on the right side of the
figure, that shall be exploited by end-users, through the E-DeveryLoc again, to modify
and adapt (a longer-term vision of this) their application given their operation on the

SALTY Project (ANR-09-SEGI-012) C-42 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

field. The figure 5.2 insists on this feature of the E-DeveryLoc, with the ”experience feed-
back” arrow illustrating this longer-term life-cycle management of applications.

5.2 Overall description of the tool

The decision-making modeling at design-time tool aims at bridging the gap between
client-side applications and the GeoHub, attaching to the latter positioning devices of the
client. Programmers using the tool may adopt one to all of the three following roles:

• an expert role, which consists in defining new type of alerts and new types of adap-
tations, their parameters, the domains for the values of these parameters, including
qualitative ones;

• an application designer role, which consists in using the predefined alert and adap-
tation types to put together the necessary notification rules on the GeoHub for his
application;

• a configurator role, which consists in giving all the necessary parameters to run the
alerts, such as the precise device identifiers, the periods of time during which the
geotracking must occur, etc.

The third role corresponds mostly to the current DeveryLoc tool. The two first ones
concern the design and use of new types of alerts and adaptations. Without dealing im-
mediately with the tool design issues, it nevertheless shall take into account the following
requirements:

• The tool will be Web-based in order to ease its access for Deveryware’s clients.
However, its internal architecture should provide for an easy adaptation to other
interfaces and contexts, such as an integration into development tools like Eclipse.

• It will be qualitative assessment oriented (linguistic approaches) to overcome the
problems raised above, i.e. the replacement of precise values (the parameters the
user has to enter) by qualitative or linguistic ones. Indeed, we know that humans
deal with words and usually not numbers in their everyday lives, especially when
reasoning. Human reasoning is perception-based. For example, one can say: ”it
seems to be rather cold this morning: I’m going to wear a thick pullover” instead of
”it is 12.25◦C this morning: I’m going to wear a .5cm-thick lambswool pullover”.
In our context, we shall use words as far, very near, quickly, etc. Several models exist
in the literature to deal with this problem, such as fuzzy and qualitative models,
all these belonging to the Computing with Words paradigm. In these models, the
objects of computation are words and the principle is to model these words through
membership functions or scales or 2-tuples, etc. Operations are then made on them,
aggregating or modifying them.

• The tool shall use natural language question/answer exchanges whenever possible:
to enhance the HMI and to make it more flexible, we propose to add a non context-
free natural language interface. The advantage of HMI is conclusive proof since
user-friendly interface means ”user-understanding” interface. We will first proceed
to a basic discourse analysis which deals with the main levels of linguistics, such as
morphology (”a big” or ”a bag” or ”a bug”, etc.), syntax (word order and/or lack
of words), semantics (a truck thinks, a man thinks) and some pragmatics (context

SALTY Project (ANR-09-SEGI-012) C-43 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

contributes to semantics), which is a challenge to artificial intelligence techniques,
for example ”the truck is in a difficult situation” that can be interpreted as ”the
truck is caught in a traffic jam” or ”the truck is itself blocking the traffic if it had
an accident” or ”the truck has been arrested at the border and there is a problem
to clear through customs” or . . . Another advantage of this HMI would be to learn
from a logic pattern (grammatical or syntactic model) how to build new interfaces
(as a writer who uses a common dictionary to propose a new novel).

• The tool should produce a description of the notifications and adaptations in the
form of a model, conforming to a predefined meta-model, enabling the generation
of the code1 to be deployed on the software architecture (application components,
adaptation components, GeoHub and positioning devices), including:

– notifications, and their triggers

– tolerance on triggers

– adaptation criteria

– preferences among criteria

5.3 Scenario 4 - Arrival at warehouse notification definition

This section describe the use of the E-DeveryLoc tool through one of the sub-scenario
from the long distance truck tracking application: the arrival at warehouse notification.
The use case is presented in three parts corresponding to the three roles identified above:
expert, application designer and configurator roles.

5.3.1 Expert role

As an example, consider an expert user whose business objectives are to track his truck
fleet going to warehouses. He will have to choose which notifications he wants and their
associated triggers, what tolerance he shall accept on triggers, the kind of adaptations
he wants to be applied when geotracking for warehouse arrival notifications, what he
prefers among criteria in case trade-offs must be made.

Through a series of exchanges with the tool, this user will define a new type of alert
that will be used by the GeoHub to notify the user application when a truck arrives at a
warehouse. These exchanges will take several forms: choices in menus, natural language
questions/answers, etc. The resulting model should take the form of new alert types,
which representation in XML shall resemble to the XML file shown in Figures 5.3 and
5.4.

In Figure 5.3, a geotracking model is defined, with its own URI, from a metamodel
that will be defined in details as a result of the SALTY project. The model consists of alert
type definitions. An alert type has a name and a category (to ease their use afterwards).
It has three kinds of parameters:

1. application parameters, that correspond to what need to be defined to use this type
of alert in a particular application;

1The code generation per se is not part of the SALTY project, but the tool should be implemented to pave
the way to such work. Moreover, these models will be used in use cases to help in by translating them by
hands into code.

SALTY Project (ANR-09-SEGI-012) C-44 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

<?xml version=” 1 . 0 ” encoding=” iso−8859−1” ?>
<geotracking−model

u r i=” h t t p : //www. deveryware . com/model/TruckTracking ”
xmlns=” h t t p : //move . l i p 6 . upmc . f r /geotracking−model/”
xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”>

<aler tType name=” ArrivalAtWarehouseNoti f icat ion ” category=” ArrivalAtADest inat ion ”>
<appl i ca t io n−parameters>

<param name=”Delay” type=” xsd: t ime ”/>
<param name=” DelayTolerance ” type=” Qual i tat iveTimeDelayTolerance ”/>

</app l i ca t i on−parameters>
<conf igurat ion−parameters>

<param name=” Pos i t ioningDevice ” type=” Posit ionDeviceType ”/>
<param name=” StartTime ” type=” xsd:dateTime ”/>
<param name=”EndTime” type=” xsd:dateTime ”/>

</conf igurat ion−parameters>
<runtime−parameters>

<param name=” CurrentPos i t ion ” type=”GPSValue”/>
<param name=”WarehouseLocation” type=”GPSValue”/>

</runtime−parameters>
<t r i g g e r type=” FIS ”>

<param name=”Pos” type=”GPSValue”/>
< f i s name=” t r i g g e r A r r i v a l N o t i f i c a t i o n ”>

<fuzzyRule>
<antecedent type=” Qual i ta t iveTimeTolerance ”>

<l ingValue>
<2 tuple term=” closeTo ” index=”1” symbol icTrans la t ion=” 0 . 0 ”/>

</lingValue>
</antecedent>
<consequent type=” Trigger ingLevel ”>

<l ingValue>
<two−tuple term=” high ” index=”4” symbol icTrans la t ion=” 0 . 2 5 ”/>

</lingValue>
</consequent>

</fuzzyRule>
. . .

</ f i s>
<i n f e r fisName=” t r i g g e r A r r i v a l N o t i f i c a t i o n ”>

<express ion op=”minus”>
<applyFunction name=” est imateTravelTime ”>

<with−param name=”from” value=”$ CurrentPos i t ion ”/>
<with−param name=” to ” value=”$WarehouseLocation”/>

</applyFunction>
<value−of exp=”$Delay”/>

</express ion>
</ i n f e r>

</ t r i g g e r>
<emittedEvent type=” ArrivalAtWarehouseNotif icat ionEvent ”/>
<d e s c r i p t i o n lang=”en−En”>

When a truck can be predic ted to a r r i v e a t the s p e c i f i e d warehouse
a t the given Delay , the s p e c i f i e d event i s emitted towards the
a p p l i c a t i o n .

</ d e s c r i p t i o n>
</aler tType>

Figure 5.3: Application model captured through the E-DeveryLoc tool.

SALTY Project (ANR-09-SEGI-012) C-45 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

<dataType name=” Qual i ta t iveTimeTolerance ”>
<l i n g V a r i a b l e xmlns=” h t t p : //www. univ−p a r i s 8 . f r /schema/lingVar ”>

. . .
<l ingValue name=” closeTo ”> . . . </lingValue>
. . .

</ l i n g V a r i a b l e>
</dataType>
<dataType name=” Tr igger ingLevel ”>

<l i n g V a r i a b l e xmlns=” h t t p : //www. univ−p a r i s 8 . f r /schema/lingVar ”>
. . .

<l ingValue name=” high ”> . . . </lingValue>
. . .

</ l i n g V a r i a b l e>
</dataType>
<dataType name=” ArrivalAtWarehouseNotif icat ionEvent ”>

<data name=” TruckId ” type=” xsd: token ”/>
<data name=” occurenceTime ” type=” xsd:dateTime ”/>
<data name=”WareHouseLocation” type=”GPSValue”/>

</dataType>
</geotracking−model>

Figure 5.4: Application model captured through the E-DeveryLoc tool (cont.).

2. configuration parameters, that correspond to what need to be defined to execute
the alert on the GeoHub (at least an identification of the positioning device, as well
as the start and finish times of the activation of the alert);

3. runtime parameters, that correspond to values that will be known only during pro-
gram execution and supplied by the GeoHub.

To fully define parameters at this stage, datatypes may need to be supplied. The
figure 5.4 show data types defined in this model, the two first being qualitative ones
described next.

Qualitative modeling

Especially, when qualitative parameters or other data are introduced into alert types,
their corresponding linguistic representation will need to be provided. The tool will also
help users in defining such qualitative values, through exchanges that will require not
only to give names (terms) to represent qualitative values, but also their corresponding
fuzzy representation. As another result to the SALTY project, an XML meta-model will
be proposed to define the qualitative model provided by the user in terms of linguistic
variables, modifiers, etc.

The figure 5.5 gives a first example of such a model with a Relax NG grammar in the
compact syntax. Linguistic variables are defined with a name, a support set (e.g. time
durations) and a set of terms representing the qualitative values themselves. Qualitative
terms are linked to fuzzy subsets, in support to a fuzzy qualitative reasoning. This first
grammar puts forward the common use of trapezoid and triangular fuzzy subsets. After
their definition, linguistic values can be used in the geotracking models as references to
the term set of a linguistic variable. The figure also puts forward our intention to use
the 2-tuple models of representation for linguistic values, as said in the SALTY project
definition.

SALTY Project (ANR-09-SEGI-012) C-46 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

File: "LingVariable.rnc"
A RELAX NG grammar in the compact syntax.
Description : Qualitative model with linguistic variables.
Version : 1.0

defaultnamespace = "http://www.univ-paris8.fr/schema/lingVar"

Linguistic variables
LingVariable = element lingVariable { Name, SupportSet, LingValueDefs }
Name = attribute name { NSName }
SupportSet = element supportSet { Name }
Linguistic value definitions
LingValueDefs = element lingValues { LingValueDef+ }
LingValueDef = element lingValueDef { Term, Index?, (FuzzySubset | Crisp) }
Term = attribute term { NSName }
Index = attribute index { xsd:int }
Crisp = element value { xsd:double }
FuzzySubset = element FuzzySubset { TrapezoidFS | TriangularFS | AnyFS }
TrapezoidFS = element trapezoidFS { Point, Point, Point, Point }
TriangularFS = element triangularFS { Point, Point, Point }
AnyFS = element anyFS { Point+ }
Point = element point {

attribute abcissa { xsd:double },
attribute ordinate { xsd:double { minInclusive="0.0" maxInclusive="1.0"} }

}
Linguistic value references
LingValue = element lingValue { FuzzySubset | 2tuple | Crisp }
2tuple = element 2tuple { Term, Index, SymbolicTranslation }
SymbolicTranslation = element symbolicTranslation {

xsd:double { minInclusive="-0.5" maxExclusive="0.5" }
}

Figure 5.5: A first Relax NG schema for linguistic variables.

Adaptation model

After defining alert types, the expert can define their adaptations types. Adaptations aim
at providing policies to decide adaptation actions upon the state of a process. In doing so,
it applies decision criteria, aggregated through the use of user preferences. The figure 5.6
shows an XML excerpt providing these different adaptation parameters and criteria for
the major type of adaptation sought in our scenarii, the position sending frequency adap-
tation. This adaptation relates the current position and the current frequency to a new
frequency to be applied for the next period of time. Three criteria are defined: proba-
bility to get a position matching the need of the geotracking objective, battery usage and
total transmission cost. As a multi-criteria decision making problem, user preferences are
needed to aggregate the criteria into one unique utility value to be optimized. The next
paragraph explains how such preferences will be expressed in the SALTY project.

Preference modeling

For preferences, the SALTY project will primarily use the LCP-nets (Linguistic Condi-
tional Preferences Networks) formalism, as defined in [1]. To be integrated in the sce-
nario, the figure 5.7 shows a graphical representation of the following preference of the
user for the precision of its notifications: ”I prefer more precise warehouse arrival no-
tifications over waypoint passage notifications, but if the battery level is low I prefer to

SALTY Project (ANR-09-SEGI-012) C-47 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

<?xml vers ion =”1.0” encoding=” iso−8859−1”?>
<adaptationTypes

u r i =” http ://www. deveryware . com/model/TruckTrackingAdaptations ”
xmlns=” http ://move . l i p 6 . upmc . f r /adaptation−meta−model/”
xmlns : xsd=” http ://www. w3 . org /2001/XMLSchema”>

<adaptationType name=” Posit ionTransmissionFrequencyAdaptation”>
<s t a t e name=” c u r r e n t P o s i t i o n ” type=”GPSValue”/>
<s t a t e name=” transmissionFrequency ” type=”xsd : f l o a t ”/>
<a c t i o n name=”newTransmissionFrequency ” type=”xsd : f l o a t ”/>
<c r i t e r i o n name=” g e t P o s i t i o n P r o b a b i l i t y ” r e l a t i o n−semantics =” i n c r e a s i n g”>

<funct ion>
<param name=” t a r g e t P o s i t i o n ” type=”GPSValue”/>
<param name=” targetRadius ” type=”xsd : decimal”/>
<expression>

i f (withinRadius (n e x t P o s i t i o n (c u r r e n t P o s i t i o n ,
newTransmissionFrequency) ,

t a r g e t P o s i t i o n , targetRadius)) then
1

e l s e i f (beforeRadius (p r e d i c t e d P o s i t i o n (c u r r e n t P o s i t i o n ,
newTransmissionFrequency) ,

t a r g e t P o s i t i o n , targetRadius)) then
1

e l s e 0
</expression>

</funct ion>
</c r i t e r i o n >
<c r i t e r i o n name=” batteryUsage ” r e l a t i o n−semantics =” decreas ing”>

<funct ion>
<param name=”consumptionPerTransmission ” type=”xsd : f l o a t ”/>
<expression><value−of exp=”$consumptionPerTransmission”\></expression>

</funct ion>
</c r i t e r i o n >
<c r i t e r i o n name=” tota lTransmiss ionCost ” r e l a t i o n−semantics =” decreas ing”>

<funct ion>
<param name=” costPerTransmiss ion ” type=”xsd : f l o a t ”/>
<expression>costPerTransmission</expression>

</funct ion>
</c r i t e r i o n >
<aggregation>

<preferences>
<lcp−net > . . . </ lcp−net>

</preferences>
</aggregation>

</adaptationType>
. . .

</adaptationTypes>

Figure 5.6: Adaptation model for the truck tracking scenario.

save battery levels rather than precision in the notifications.” In the figure, B represents
the battery level, PW the precision on warehouse notifications and PP the precision on
waypoint notifications.

The LCP-net reads as follows. In the center, the net itself shows that battery level
B is always preferred to precisions with conditional preference arcs from the node B to
both the precision in warehouse arrival notifications PW and the precision in waypoint
passage notifications PP . The mid-arrow going from PW to PP is an i-arc expressing
the unconditional preference of the user for PW over PP .

SALTY Project (ANR-09-SEGI-012) C-48 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

PWL PWH

BL very high very low
BM high low
BH very low very high

B

��������������

��555555555555

PW PPI

BL BM BH

very low medium very high

PPL PPH

BL very high very low
BM high low
BH very low very high

Figure 5.7: A user preference example using LCP-nets.

The tables provide the local utilities for the different assignments to the variables. The
table besides B says that a qualitative local utility very low is given to low battery level
BL, medium to a medium battery level BM and very high to a high battery level BH .

The two tables attached to the PW and PP nodes are conditional, to express the fact
that the preferences of the user on values of these variable depends upon the value of B.
Both tables show a reversal in the utilities between the low and the high battery levels
that expresses the fact that the user prefer lower precisions when the battery level is low,
as this will lower the battery usage by requiring less position sendings.

An XML syntax has been defined to represent LCP-nets. This syntax will be used to
add LCP-nets to adaptation models.

In the SALTY project, Thales also proposes an alternative way to express preferences,
an approach based on Choquet integrals. This alternative will be compared to LCP-nets,
and will be taken into account by the decision making component of the MAPE-K loop.

5.3.2 Application designer role

The application designer role consists in using the E-DeveryLoc tool, and the set of alert
types defined by experts, to define alerts for his application. In this role, the E-DeveryLoc
will organize he exchanges with the application designers in such a way to select the
necessary alerts from its alert types library, and then make them provide the application
parameters for each alert as a choice among their possible values, as defined by the expert
in his data types. Similarly, from existing adaptation models, the application designer
will be able to select among them the ones that apply to his application.

After the exchanges, application alert descriptions will be generated in the form of an
XML description of the alerts, as exemplified in Figure 5.8. In this scenario, the appli-
cation designer defines an alert for the arrival at the Nice warehouse. He provides the
location of the warehouse, as GPS coordinates, as well as the notification delay and the
qualitative tolerance he puts on this delay.

5.3.3 Configurator role

The configurator role consists in using the E-DeveryLoc tool and an application as de-
fined by the application designer to configure the geotracking at truck start time. Here,
exchanges aim at providing the configuration parameters of the alert types. The result
will be a configuration file as exemplified in Figure 5.9. In this scenario, the configurator
provides the positioning device information, according to the mobile model shown in
Figure 5.10. He also provides starting and finishing times for the geotracking.

SALTY Project (ANR-09-SEGI-012) C-49 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

<?xml version=” 1 . 0 ” encoding=” iso−8859−1” ?>
<geotracking−a p p l i c a t i o n

u r i=” h t t p : //www. deveryware . com/ a p p l i c a t i o n /LongDistanceTruckTracking ”
applicat ionModel=” h t t p : //www. deveryware . com/model/TruckTracking ”
adaptationModel=” h t t p : //www. deveryware . com/model/TruckTrackingAdaptations ”
xmlns=” h t t p : //move . l i p 6 . upmc . f r /geotracking−program−model/”
xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”>

<a l e r t name=”ArrivalAtNiceWN” type=” ArrivalAtWarehouseNoti f icat ion ”>
<with−param name=”WarehouseLocation”>

<gpsValue l a t =” 4 3 . 7 ” long=” 7 . 2 6 ”/>
</with−param>
<with−param name=”Delay” value=”00 : 3 0 : 0 0 ”/>
<param name=” DelayTolerance ” value=” closeTo ”/>

</ a l e r t>
. . .

<adaptat ion name=” frequencyForArrivalAdaptat ion ”
type=” Posit ionTransmissionFrequencyAdaptation ”/>

. . .
</geotracking−a p p l i c a t i o n>

Figure 5.8: Application description captured through the E-DeveryLoc tool.

<?xml version=” 1 . 0 ” encoding=” iso−8859−1” ?>
<geotracking−c o n f i g u r a t i o n

u r i=” h t t p : //www. deveryware . com/ c o n f i g u r a t i o n /LongDistanceTruckTrackingConfig ”
a p p l i c a t i o n =” h t t p : //www. deveryware . com/ a p p l i c a t i o n /LongDistanceTruckTracking ”
type=” h t t p : //www. deveryware . com/ a p p l i c a t i o n /LongDistanceTruckTracking ”
xmlns=” h t t p : //move . l i p 6 . upmc . f r /geotracking−model/”
xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”>

<a l e r t C o n f i g u r a t i o n a l e r t =” ArrivalAtNiceWarehouseNoti f icat ion ”>
<with−param name=” Pos i t ioningDevice ”>

<mobile name=” truck1234 ” xmlns=” h t t p : //www. deveryware . f r /schema/mobile ”
<phoneNumber>06123456</phoneNumber>

</mobile>
</with−param>
<with−param name=” StartTime ” type=”2010−10−26 T 0 8 : 0 0 : 0 0 ”/>
<with−param name=”EndTime” type=”2010−10−31 T 1 8 : 0 0 : 0 0 ”/>

</ a l e r t C o n f i g u r a t i o n>
. . .

</geotracking−c o n f i g u r a t i o n>

Figure 5.9: Application configuration captured through the E-DeveryLoc tool.

5.4 Experimental setup

The experimental setup for this scenario involves making use of the E-DeveryLoc tool
to define alert types and alerts. All of the geotracking objectives and adaptations from
the previous scenarii will be used to this end. By the end of the project, experiments
with Deverware personnel using the tool will be made in order to assess the usability of
the tool, and its capability to handle more or less unpredictable, though domain-specific,
exchanges in natural language.

SALTY Project (ANR-09-SEGI-012) C-50 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

File: "Mobile.rnc"
A RELAX NG grammar in the compact syntax.
Description : model of mobile positioning devices.
Version : 1.0

defaultnamespace = "http://www.deveryware.fr/schema/mobile"

Mobile = element mobile { Name, PhoneNumber, GPSid?, SynchroInterval?}
Name = element name { text }
PhoneNumber = element phoneNumber { text }
GPSid = element gpsid { text }
SynchroInterval = element synchroInterval { text }

Figure 5.10: A first Relax NG schema to define mobile information.

SALTY Project (ANR-09-SEGI-012) C-51 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

SALTY Project (ANR-09-SEGI-012) C-52 Rev: 209

D-1.1 - Appendix C- Internal truck tracking Scenario Specification

Bibliography

[1] Pierre Châtel, Isis Truck, and Jacques Malenfant. LCP-nets: A linguistic approach
for non-functional preferences in a semantic SOA environment. Journal of Universal
Computer Science, 16(1):198–217, 2010. http://www.jucs.org/jucs_16_1/lcp_
nets_a_linguistic.

SALTY Project (ANR-09-SEGI-012) C-53 Rev: 209

http://www.jucs.org/jucs_16_1/lcp_nets_a_linguistic
http://www.jucs.org/jucs_16_1/lcp_nets_a_linguistic

	D-1.1-requirements
	Introduction
	Overall Context and Motivations
	Definitions
	Self-Adaptive Systems - Classification and Engineering
	Organization

	Use cases
	"Grid" Middleware Use Case
	Context
	Summary of the scenarii
	Experimental setup

	"ESB" Middleware Use Case
	Context
	Summary of the scenarii
	Experimental setup

	Geo-tracking Use Case
	Context
	Summary of the scenarii
	Experimental setup

	Features
	F.I. Tackling Very-Large-Scale Environments
	F.I.A. Supporting the distribution of the managed system and the managing infrastructure
	F.I.B. Supporting the large number and the diversity of managed entities
	F.I.C. Supporting the large number and the diversity of managing entities
	F.I.D. Preserving the level of confidentiality of the managed system

	F.II. Supporting the Adaptation of Complex Systems-of-Systems
	F.II.A. Reflecting feedback control loops as first class entities
	F.II.B. Supporting the monitoring of heterogeneous and complex data and their quality attributes
	F.II.C. Making decisions over complex situations involving multi-criteria objectives
	F.II.D. Executing reliable reconfigurations across distributed entities

	F.III. Building a Versatile Feedback Control Loop Framework
	F.III.A. Adopting SCA as a uniform paradigm to control SOA systems
	F.III.B. Reusing and sharing the framework artifacts across different domain-specific scenarios

	F.IV. Designing and Involving Models Continuously
	F.IV.A. Adopting a model-driven methodology for the engineering of SALTY
	F.IV.B. Guaranteeing the propagation and the verification of constraints and agreements throughout the life-cycle of the system

	Perspectives
	Self-Adaptive System Classification
	Middleware Scenario Specification
	Truck Tracking Scenario Specification

	D1.1-appendix-B
	Introduction
	Context
	Grid and Desktop Fusion Context
	ESB Context

	Scenario 1 - Grid Self-Management
	Context
	Introduction
	gLite
	neuGRID Data Challenge

	Overall Experimental Setup
	Scenario 1.1 - WMS Overload
	Objective
	Classification
	Adaptation
	Experimental Setup
	Extensions

	Scenario 1.2 - CE Starvation
	Objective
	Classification
	Adaptation
	Experimental Setup
	Remarks

	Scenario 1.3 - Job Failures
	Objective
	Classification
	Adaptation
	Experimental Setup

	Scenario 1.4 - CE Black Hole
	Objective
	Classification
	Adaptation
	Experimental Setup
	Remarks

	Scenario 2 - Desktop Fusion Self-Configuration
	Context
	Introduction
	Desktop Fusion

	Scenario 2.1 - Dynamic Load Balancing
	Objective
	Classification
	Adaptation
	Experimental Setup
	Open Questions

	Scenario 3 - Self-Adaptive Enterprise Service Bus
	Context
	Introduction
	Petals ESB Registry

	Scenario 3.1: Self-Organization of the ESB Distributed Registry
	Scenario Description
	Objective
	Classification
	Adaptation
	Experimental Setup

	Scenario 3.2: Self-Adaptation on a Crisis Management Workflow
	Use Case Description
	Objective
	Classification
	Adaptation
	Experimental Setup

	Conclusion

	D-1.1-appendix-C
	Introduction
	Context
	Technical foundations
	Positioning devices
	Deveryware GeoHub
	Geotracked vehicle and their operation

	Scenario 1 - Long distance truck tracking
	Context
	Overall goals of the supporting application
	Long distance tracking use cases
	Overall description of the adaptation scenarii

	Overall experimental setup
	Sub-scenario 1.1 - Notification of arrival at intermediate destinations
	Objective
	Classification
	Adaptation

	Scenario 1.2 - Imposed corridor
	Objective
	Classification
	Adaptation

	Scenario 1.3 - Waypoint notification
	Objective
	Classification
	Adaptation

	Scenario 2 - Short distance truck tracking
	Context
	Overall goals of the supporting application
	Short distance tracking use cases
	Overall description of the adaptation scenarii
	Experimental setup

	Scenario 2.1 - Notification of late arrival at delivery points
	Objective
	Classification
	Adaptation

	Scenario 3 - GeoHub QoS enforcement
	Context
	Overall goals of the supporting application
	GeoHub QoS enforcement use case
	Overall description of the adaptation scenarii
	Experimental setup

	Scenario 3.1 - Global workload management
	Objective
	Classification
	Adaptation

	Scenario 3.2 - Local workload management
	Objective
	Classification
	Adaptation

	Scenario 4 - Decision-making Modeling at Design-time
	Context
	Overall description of the tool
	Scenario 4 - Arrival at warehouse notification definition
	Expert role
	Application designer role
	Configurator role

	Experimental setup

