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Abstract

In this second part of our state-of-the-art overview on aggregation
theory, based again on our recent monograph on aggregation functions,
we focus on several construction methods for aggregation functions and
on special classes of aggregation functions, covering the well-known con-
junctive, disjunctive, and mixed aggregation functions. Some fields of
applications are included.

1 Introduction

This paper is a continuation of [29] and it is based on our monograph [28], as ex-
plained in the first part of this paper, i.e., in [29]. This two-part overview paper
is an invited state-of-art overview for Information Sciences, and as all necessary
details are in [28] (as mentioned in introduction), we do not give here proofs,
detailed related references etc. Using the same notation and terminology as in
[29], this paper is organized as follows. The next section deals with construc-
tion methods for aggregation functions. Section 3 is devoted to conjunctive
aggregation functions, with a special stress on distinguished classes of trian-
gular norms and copulas. In Section 4, disjunctive aggregation functions are
discussed, though due to their duality with conjunctive aggregation functions,
many results are omitted. Mixed aggregation functions, mixing in some sense
conjunctive and disjunctive aggregation functions, are introduced in Section 5.
In concluding remarks, several applied fields where aggregation functions play
an important role are summarized.
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2 Some construction methods for aggregation

functions

There is a strong demand for an ample variety of aggregation functions having
predictable and tailored properties to be used in modelling processes. Several
construction methods have been introduced and developed for extending the
known classes of aggregation functions (defined either on [0, 1] or, possibly, on
some other domains). In this paper we present some well-established construc-
tion methods as well as some new ones.

The first group of construction methods can be characterized “from simple to
complex”. They are based on standard arithmetical operations on the real line
and fixed real functions. The second group of construction methods starts from
given aggregation functions to construct new ones. Here we can start either
from aggregation functions with a fixed number of inputs (e.g., from binary
functions only) or from extended aggregation functions which have multiple
arities. Observe that some methods presented are applicable to all aggregation
functions (for example, transformation), while some of them can be applied
only to specific cases. Finally, there are construction methods allowing us to
find aggregation functions when only some partial knowledge about them is
available. For more details on this topic we recommend Chapter 6 in [28].

2.1 Transformation of aggregation functions

The idea of transformation of aggregation functions can be clearly illustrated
on the well-known relation of the two basic arithmetic operations of addition
and multiplication

n∑
i=1

(− logxi) = − log
n∏
i=1

xi. (1)

Formally, (1) can be rewritten as

n∏
i=1

xi = ϕ−1

( n∑
i=1

ϕ(xi)
)
, (2)

where ϕ : ]0,∞[ → ]−∞,∞[ is given by ϕ(x) = − log x.

Proposition 1 Let I, J be real intervals and let ϕ : J → I be a monotone
bijection. For n ∈ N, let A : In → I be an n-ary aggregation function. Then the
function Aϕ : Jn → J given by

Aϕ(x1, . . . , xn) := ϕ−1(A(ϕ(x1), . . . , ϕ(xn))) (3)

is an n-ary aggregation function on Jn.

Observe that the transformed aggregation functions Aϕ inherit the algebraic
and topological properties of the original aggregation function A (and then ϕ
is an isomorphism between (I,A) and (J,Aϕ)), for example the associativity,
symmetry, bisymmetry, existence of the neutral element and/or annihilator,
continuity, strict monotonicity, etc. On the other hand, analytical properties
of A need not be inherited by the transform Aϕ, in general. This is, for exam-
ple, the case of the Lipschitz property, difference scale invariance, homogeneity,
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additivity, linearity, etc. Transformations can be applied consecutively, i.e., if
A : In → I is a given aggregation function, and ϕ : J → I and ψ : L → J are
given monotone bijections, then Aϕ is an aggregation function on J and hence
(Aϕ)ψ is an aggregation function on L. We have

(Aϕ)ψ = Aϕ◦ψ . (4)

Note that quasi-arithmetic means, see Section 3.1 in [29], can be seen as trans-
formations of the standard arithmetic mean. Similarly, strict t-norms (see Sec-
tion 3) and representable uninorms (see Section 5) are related to the standard
addition.

Transformations of aggregation functions on In into aggregation function
on Jn by means of a monotone bijection ϕ : J → I can be seen as a change
of the scale (recall the logarithmic scale). In the case I = J one can discuss
the invariance of an aggregation function A under ϕ-transform, A = Aϕ. As a
typical example recall the transformation ϕ : [0,∞[→ [0,∞[ given by ϕ(x) =
cx, where c is a fixed positive constant. Then the summation Σ : [0,∞]n →
[0,∞] remains unchanged under ϕ-transform, Σϕ = Σ. As an example of an
aggregation function on any closed or open interval In which is invariant under
each monotone bijection ϕ : I → I, consider the function A : [0, 1]4 → [0, 1] given
by

A(x) = Med(Med(x1, x2, x3), x2, x4).

For more details we recommend Section 6.2 and Chapter 7 in [28].

2.2 Composed aggregation

The idea of composed aggregation has two different roots leading to two dif-
ferent composition construction methods. The first is linked to the notion of
associativity.

Proposition 2 Let I be a real interval, n,m ∈ N, and let A : I2 → I, B : In → I

and C : Im → I be aggregation functions. Then the composite function DA;B,C :
In+m → I given by

DA;B,C(x1, . . . , xn+m) := A(B(x1, . . . , xn),C(xn+1, . . . , xn+m)) (5)

is an aggregation function on In+m.

Remark 1 i) Construction (5) can be generalized by induction to the case
of a k-ary outer aggregation function A and k inner aggregation functions
B1, . . . ,Bk defined on n1-,. . . , nk-dimensional input vectors, i.e., for n =∑k
i=1 ni we obtain an aggregation function DA;B1,...,Bk

: In → I given by

DA;B1,...,Bk
(x1, . . . ,xk) := A(B1(x1), . . . ,Bk(xk)),

where xi ∈ Ini , i ∈ [k].

ii) Construction (5) is also known as double aggregation, and was deeply
investigated in [14].

The second root of composition-based constructions of aggregation functions
comes from the standard composition of real functions.
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Proposition 3 Let I be a real interval and let k, n ∈ N \ {1}. Let A : Ik → I

and B1, . . . ,Bk : In → I be aggregation functions. Then the function C =
A(B1, . . . ,Bk) : In → I given by

C(x) := A(B1(x), . . . ,Bk(x)) (6)

is an aggregation function on In.

Example 1 Let A in (6) be a weighted arithmetic mean with weights w1, . . . , wk.
Then the function C given by (6) is the well-known convex combination (convex
sum) of aggregation functions B1, . . . ,Bk,

C =
k∑
i=1

wiBi.

Several special classes of aggregation functions can be obtained by the con-
struction (6), such as the (n-ary with n > 2) uninorms or nullnorms discussed
in Section 5.

An essential difference between composition-based constructions (5) and (6)
is in the formal occurrence of single inputs xi in the composed aggregation.
Indeed, in (5) each input xi is aggregated by exactly one inner function B or C
(in the extended version described in Remark 1 (i) by exactly one Bj). On the
other hand, in the case (6), each input xi is aggregated by any of the involved
inner aggregation functions B1, . . . ,Bk. Several intermediate approaches can be
introduced, too.

2.3 Weighted aggregation functions

Let m1, . . . ,mn ∈ N0, such that at least one m1, . . . ,mn is positive, be given
integer weights and let m := (m1, . . . ,mn) be the corresponding nonzero weight
vector. For a given symmetric extended aggregation function A : ∪n∈NIn → I,
we can incorporate weights mi as follows:

Am(x) := A(m1 · x1,m2 · x2, . . . ,mn · xn) , (7)

where mi ·xi = xi, . . . , xi (mi times). Applying (7) to the arithmetic mean AM,
we obtain the class of weighted means (with rational weights mi/

∑n
j=1mj).

The above cardinality-based approach of introducing weights into symmetric
extended aggregation functions can be straightforwardly extended to rational
weights in the case when the original extended aggregation function is not only
symmetric but also strongly idempotent, i.e., for any k ∈ N and for any x ∈
∪n∈NIn we have A(k · x) = A(x), where k · x represents the ordered list of the
(k × n) values obtained by concatenating k copies of x and then delating the
parentheses. For general weights details can be found in [13].

Proposition 4 Let A : ∪n∈NIn → I be a symmetric strongly idempotent ex-
tended aggregation function, and let v ∈ [0,∞[n be an n-dimensional weight
vector. For k ∈ N, define w(k) = (w(k)

1 , . . . , w
(k)
n ) by

v
(k)
i := inf

{m
k

∣∣∣m ∈ N0,
m

k
� vi

}
, w(k) :=

v(k)∑n
i=1 v

(k)
i

. (8)
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Then w(k) is a normalized rational weight vector for all k ∈ N. Define a function
Av : In → I by

Av(x) := lim inf
k→∞

Aw(k)(x).

Then Av is an idempotent aggregation function on In, which is called a (v-
)weighted aggregation function A.

Example 2 (i) Let A : ∪n∈NIn → I be a quasi-arithmetic mean, i.e., there
exists a continuous strictly monotone function f : I → [−∞,∞] such that

A(x) = f−1

( n∑
i=1

f(xi)
n

)
.

Applying Proposition 4, for any weight vector v we have

Av(x) = f−1

(∑n
i=1 vif(xi)∑n

i=1 vi

)
= f−1

( n∑
i=1

wif(xi)
)

= Aw(x),

where
w =

v∑n
i=1 vi

.

Hence Av = Aw is a (w-)weighted quasi-arithmetic mean.

(ii) Let q : [0, 1] → [0, 1] be a nondecreasing continuous function satisfying
q(0) = 0 and q(1) = 1. For an arbitrary real interval I, the mapping
OWAq : ∪n∈NIn → I given by

OWAq(x) :=
n∑
i=1

(
q

(
i

n

)
− q

(
i− 1
n

))
x(i), (9)

where (x(1), . . . , x(n)) is a nondecreasing permutation of (x1, . . . , xn), is
an extended ordered weighted averaging function. Though OWAq is not
decomposable, in general, it is symmetric and strongly idempotent, and
thus we can apply Proposition 4. For any normalized weight vector w ∈
[0, 1]n , we then have

OWAq,w(x) =
n∑
i=1

(q(ci) − q(ci−1)) x(i),

where ci :=
∑i

j=1 wj .

The approach to weighted aggregation as introduced in Proposition 4 can
be understood as a quantitative approach (weights include the number of rep-
etitions of inputs to be aggregated). In the case of an extended aggregation
function A with an extended neutral element e, we can apply another approach
which can be called qualitative (weights include how the data should be trans-
formed before aggregation). Its idea is based on transformation of an input
xi and the weight ui into a new quantity yi = h(ui, xi) and then to aggregate
these new quantities yi by means of A. For deeper motivation, applications and
some details on this approach (on the unit interval only, and under the name
RET-operators) we recommend [41, 71]. In this qualitative approach we deal
with weight vectors u ∈ [0, 1]n such that Max(u) = 1.
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Definition 1 Let I be a real interval and e ∈ I a fixed constant. Let a function
h : [0, 1] × I → I satisfy the following conditions:

(i) h(0, x) = e and h(1, x) = x;

(ii) h is nondecreasing in the second coordinate;

(iii) h(·, x) is nondecreasing for all x � e and nonincreasing for all x � e.

Then h is called an e-weighting transformation function.

Proposition 5 Let A : ∪n∈NIn → I be an extended aggregation function with an
extended neutral element e. Let h : [0, 1]×I → I be an e-weighting transformation
function, and let u ∈ [0, 1]n be a weight vector such that Max(u) = 1. Then the
function Ah,u : ∪n∈NIn → I given by

Ah,u(x) := A(h(u1, x1), . . . , h(un, xn)) (10)

is an extended aggregation function.

Example 3 Each (binary) t-norm T is a 0-weighting transformation function
on the unit interval [0, 1], see Section 3.1. Recall that each t-conorm S is an ex-
tended aggregation function with extended neutral element 0, see Section 4.Then
for each n-dimensional u such that Max(u) = 1, the corresponding function
ST,u : [0, 1]n → [0, 1] is given by

ST,u(x) = S(T(u1, x1), . . . ,T(un, xn)).

In the special case T = Min and S = Max we obtain the well-known weighted
maximum, given by

MaxMin,u(x) = Max(Min(u1, x1), . . . ,Min(un, xn)).

2.4 Aggregation functions based on minimal dissimilarity

For the Euclidean metric d on Rn (L2 metric),

d(x,y) :=

√√√√ n∑
i=1

(xi − yi)
2
,

it is well known that for each x ∈ Rn there exists a unique s ∈ R such that

d(x, n · s) = inf{d(x, n · r) | r ∈ R},
and that s = AM(x). Hence the arithmetic mean can be understood as the solu-
tion of a minimization problem (projection, in fact). Similarly, the Chebyshev
metric c on Rn (L∞ metric),

c(x,y) := ‖x− y‖∞,
yields the arithmetic mean of Min and Max,

s =
Min(x) + Max(x)

2
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(observe that this is an ordered weighted averaging function). On the other
hand, for the “Manhattan distance” (L1 metric) l on Rn,

l(x,y) := ‖x− y‖1,

the set of all points minimizing the expression l(x, n ·r) can be a closed interval,
and taking as s the middle point of this interval (in the case when a single real
number is the minimizer, it can also be understood as a closed real interval),
the median is obtained, s = Med(x). We modify this minimization problem
replacing the metrics (distance functions) by dissimilarity functions and thus
propose a new method for constructing aggregation functions.

Definition 2 Let K : R → R be a convex function with unique minimum
K(0) = 0. Then K is called a shape function and for any real interval I, the
function DK : I2 → R given by

DK(x, y) := K(x− y)

is called a dissimilarity function.

Remark 2 (i) If the function K in Definition 2 is even, then, taking L :
[0,∞[→ [0,∞[ the inverse function of K|[0,∞[, and defining dK : Rn → R

by

dK(x,y) := L

(
n∑
i=1

K(xi − yi)

)
,

one can show that dK is a metric on Rn. The above mentioned Euclidean
metric d is related to K given by K(x) = x2, while the “Manhattan metric”
l is related to K(x) = |x|. Similarly, the Lp-distance for p ∈ [1,∞[ are
related to K(p)(x) := |x|p.

(ii) Dissimilarity functions are a special kind of penalty functions introduced,
discussed and applied in [10, 13, 48, 50, 73, 76].

Example 4 (i) For the shape function K(x) = exp(|x|)−1, the corresponding
dissimilarity function DK is given by DK(x, y) = exp(|x− y|) − 1.

(ii) Shape functions need not be even. For any γ ∈ ]0,∞[ different from 1, the
function K<γ> : R → R given by

K<γ>(x) :=
{
x if x � 0
−γx otherwise

is a shape function which is not even.

Proposition 6 For a given n ∈ N, let K1, . . . ,Kn : R → R be given shape
functions. For an arbitrary real interval I define a function AK1,...,Kn : In → I

by

AK1,...,Kn(x) :=
s∗ + s∗

2
, (11)

where

[s∗, s∗] =
{
u ∈ I

∣∣∣ n∑
i=1

DKi(xi, u) = inf
{ n∑
i=1

DKi(xi, r), r ∈ I

}}
.

Then AK1,...,Kn is an idempotent aggregation function.
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Corollary 1 For any fixed shape function K : R → R and any real interval I,
the extended function AK : ∪n∈NIn → I given by

AK(x) := AK,...,K(x), (12)

see (11), is a symmetric idempotent extended aggregation function.

Example 5 (i) For n = 2, and for x ∈ R, take K1(x) = |x| and K2(x) = x2,
i.e., K1 = K(1) and K2 = K(2) are shape functions. Then AK1,K2 : R2 →
R is given by

AK1,K2(x, y) = Med

(
x, y − 1

2
, y +

1
2

)
.

(ii) For K<γ> given in Example 4 (ii), the extended aggregation function
A<γ> : ∪n∈NRn → R is the 1

1+γ 100%-quantile from the uniformly dis-
tributed sample (x1, . . . , xn), well known in statistics.

For each shape function K, wK is also a shape function for any positive
weight w. This fact allows one to easily incorporate weights into the AK1,...,Kn in-
troduced in Proposition 6, simply dealing with the aggregation function Aw1K1,...,wnKn .
For any w > 0,

AK1,...,Kn = AwK1,...,wKn ,

and thus it suffices to deal with normalized weight vectors w ∈ [0, 1]n ,
∑n

i=1 wi =
1, only.

Example 6 (i) For w ∈ [0, 1]n and K = K(2) , we have AK
(2)

= AM and

(AK)w = Aw1K(2) ,...,wnK(2)

is the weighted arithmetic mean with weights w1, . . . , wn.

(ii) Using our approach, we can introduce weights in nonsymmetric aggrega-
tion, too. Continuing Example 5 (i), we have

(Aw1K(1),w2K(2))(x, y) = Med

(
x, y − w1

2w2
, y +

w1

2w2

)

(if w2 = 0, formally Med(x, y −∞, y + ∞) = x ).

Remark 3 The fixed weights wi in the above approach (independent of input
values xi) can be replaced by input-dependent weights w(xi) for some weighting
function w : I → [0,∞[, i.e., we have to minimize the expression

n∑
i=1

w(xi)DKi(xi, r). (13)

Based on minimization of (13), we can introduce the (extended) function AK1,...,Kn;w :
In → I (respectively, AK;w : ∪n∈NIn → I) in the same way as we have introduced
the function AK1,...,Kn in (11). However, the monotonicity (and even idempo-
tency) of these functions may fail, in general. Some more details on this topic
can be found in [49, 50].
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Example 7 For K = K(2) and w : I →]0,∞[, the extended function AK;w :
∪n∈NIn → I is given by

AK;w(x) =
∑n

i=1 w(xi)xi∑n
i=1 w(xi)

and it is called a mixture operator in [42]; see also [5]. On I = [0, 1], if a smooth
nondecreasing function w satisfies w(x) � w′(x), then AK;w is an idempotent
symmetric extended aggregation function. The above condition can be relaxed to
w(x) � w′(x)(1 − x) for all x ∈ [0, 1]; see [49].

Remark 4 We can modify a dissimilarity function DK on an interval I by a
continuous strictly monotone function f : I → R (this function is often called a
scale) to

DK,f(x, y) := K(f(x) − f(y)).

However, the minimization problem
∑n

i=1DKi,f (xi, r) leads then to an aggrega-
tion function AK1,...,Kn;f : In → I (or an extended aggregation function AK;f :
∪n∈NIn → I) which is an f -transform of the aggregation function AK1,...,Kn

(extended aggregation function AK), i.e., we can look on this approach as a
combination of two construction methods. As a typical example recall the ex-
tended aggregation function AK(2);f based on the shape function K(2)(x) = x2

which is, in fact, the quasi-arithmetic mean based on the generator f .

2.5 Some other aggregation-based construction methods

There are several construction methods which we have not discussed yet, which
we recall only briefly. Among construction methods based on a given aggrega-
tion function possessing some additional property and yielding another aggre-
gation function with desired property let us mention the idempotization and
symmetrization. Important issue is the method of ordinal sums originally in-
troduced by Birkhoff [6] in the framework of posets and lattices. There are
well-known ordinal sums of t-norms, t-conorms (see [35]) and copulas (see [55]).
As an interesting example of an ordinal sum of aggregation functions proposed
by De Baets and Mesiar we give the next proposition.

Proposition 7 Let 0 = a0 < a1 < · · · < an = 1, and let Ai : [ai−1, ai]m →
[ai−1, ai], i = 1, . . . , n, be continuous aggregation functions. Let f : [0, 1] → R

be a continuous strictly monotone non-bijective function. Then the mapping
A : [0, 1]m → [0, 1] given by

A(x1, . . . , xm) = f−1

(
n∑
i=1

f
(
Ai(x

(i)
1 , . . . , x(i)

m )
)
−
n−1∑
i=1

f(ai)

)
,

where x(i) = Max (ai−1,Min(ai, x)) , is a continuous aggregation function.

Evidently, A|[ai−1,ai]m = Ai, i.e., A extends all Ai.
Further, A is a t-norm, t-conorm, copula, quasi-copula whenever all Ai are

t-norms, t-conorms, copulas, quasi-copulas, respectively, i.e., Proposition 7 ex-
presses in one formula, in general, different formulas for ordinal sums of t-norms,
t-conorms, copulas and quasi-copulas.
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For special classes of aggregation functions, several extension methods are
known based on a-priori given partial information. This is, e.g., the case of
several integrals (Choquet, Sugeno, etc.), extending the knowledge of A for
boolean inputs (i.e., a capacity) to the entire A, see also [29].

Another related approaches are known for t-norms (strict t-norm determined
by diagonal section and opposite diagonal section, for example), for copulas (for
known diagonal section), etc.

3 Conjunctive aggregation functions

As already mentioned in the introduction in [29], a conjunctive aggregation
function is any aggregation function which is bounded from above by the Min,
independently of the interval I we are dealing with. For the sake of transparency,
and because of the fact that the majority of applications dealing with conjunc-
tive aggregation functions is linked to the unit interval I = [0, 1], we restrict our
considerations in this section to the unit interval. Directly from the definition
it follows that Min is the greatest conjunctive aggregation function (indepen-
dently of arity, but also as an extended aggregation function). On the other
hand, the smallest aggregation function A⊥, which up to the boundary case
A⊥(1, . . . , 1) = 1 coincide with the zero constant function, is also the small-
est conjunctive aggregation function. In the next definition we recall several
distinguished classes of binary conjunctive aggregation functions.

Definition 3 Let A : [0, 1]2 → [0, 1] be an aggregation function.

(i) A is a boundary weak triangular norm (bwt-norm for short) if it is an
associative symmetric conjunctive aggregation function.

(ii) If A has a neutral element e = 1, then A is called a conjunctor.

(iii) A is a triangular norm (t-norm in short) if it is a bwt-norm and a con-
junctor.

(iv) A is a quasi-copula if it is a conjunctive aggregation function and satisfies
the Lipschitz condition with constant 1, i.e., such that for all x, y, u, v,∈
[0, 1] we have

|A(x, y) − A(u, v)| � |x− u| + |y − v|.

(v) A is a copula if it is a conjunctor and fulfills the moderate growth prop-
erty, i.e., such that for all x, y, u, v ∈ [0, 1] , with x � u, y � v, we have

A(x, y) + A(u, v) � A(x, v) + A(u, y).

Remark 5 We have the following comments related to Definition 3 with the
same numberings as in Definition 3.

(i) Bwt-norms were considered in [56, 68].

(ii) Conjunctors are known under several different names, e.g., semicopulas
[19], weak t-norms [64], etc. We call these aggregation functions conjunc-
tors following [46]. Conjunctors are conjunctive aggregation functions.
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(iii) Triangular norms were introduced in [60], and for more details we recom-
mend monographs [3, 35, 62]. These conjunctors model the intersection
in the theory of fuzzy sets, and play a role of conjunctions in fuzzy logics.

(iv) Quasi-copulas were introduced [4] in relationship with copulas, and in its
above form in [27]. They are applied in several domains, such as preference
structures modeling or fuzzy logics.

(v) Copulas were introduced in [63], and more details can be found in mono-
graphs [33, 55, 62]. They form a proper subclass of quasi-copulas. Binary
associative copulas and associative quasi-copulas coincide and they are
just 1-Lipschitz triangular norms. They model the dependence structure
of multivariate random variables.

Bwt-norms and t-norms are associative and thus their extensions to extended
aggregation functions are trivial, hence we keep the same name and notation for
the binary and the extended bwt-norms and t-norms. An extended conjunctor is
an extended aggregation function on [0, 1] with extended neutral element e = 1.
Similarly, a 1-Lipschitzian conjunctive extended aggregation function is called a
(extended) quasi-copula. A n-ary copula C : [0, 1]n → [0, 1] (n-copula, in short)
with n > 2 is a quasi-copula satisfying the n-increasing monotonicity property,
i.e., for any (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that x1 � y1, . . . , xn � yn it
holds ∑

d

(
n∏
i=1

di)C(u(d1)
1 , . . . , u(dn)

n ) � 0, (14)

where the sum is taken over all n-tuples d = (d1, . . . , dn) ∈ {−1, 1}n and where
u

(−1)
i := xi, u

(1)
i := yi. A general copula C : ∪∞

n=1[0, 1]n → [0, 1] is an extended
quasi-copula such that its n-ary version C(n) : [0, 1]n → [0, 1] is an n-copula for
each n � 2.

Examples of nondecreasing functions bounded by Min but not necessarily
being conjunctive aggregation functions are triangular subnorms introduced by
Jenei [32]; see [35, 51, 52].

Definition 4 A symmetric, nondecreasing, associative function R : [0, 1]2 →
[0, 1] such that R � Min is called a triangular subnorm, t-subnorm in short.

The smallest t-subnorm is the constant 0 two-place function, while the greatest
t-subnorm is Min. T-subnorms which are also aggregation functions are bwt-
norms.

The relations between the introduced classes of conjunctive binary conjunc-
tive aggregation are visualized in Figure 1.

In the class of conjunctive aggregation functions, several construction meth-
ods introduced in the previous section can be applied. We give some examples
here.

Proposition 8 Let ϕ be an increasing bijection from [0, 1] onto [0, 1] and let
A be a conjunctive n-ary (extended) aggregation function. Then Aϕ : [0, 1]n →
[0, 1] (Aϕ : ∪n∈N[0, 1]n → [0, 1]) given by

Aϕ(x) = ϕ−1(A(ϕ(x1), . . . , ϕ(xn))),

(see Section 2.1) is a conjunctive extended aggregation function.

11



Conjunctive aggregation functions

t-subnorms

bwt-norms

conjunctors

t-norms

copulas

quasi-copulas

Figure 1: Relations between various particular binary conjunctive aggregation
functions

Remark 6 (i) Proposition 8 remains true if we replace the conjunctive ex-
tended aggregation function by bwt-norms, t-norms or conjunctors. How-
ever, it fails for quasi-copulas and copulas, in general.

(ii) Any nondecreasing function F : [0, 1]n → [0, 1], bounded from above by
Min, i.e., F � Min, can be redefined to a conjunctive aggregation function
F∼, simply by putting F∼(1) = 1 and F∼(x) = F(x) in all other cases (so,
for example, if F is identically zero, F∼ is just the smallest aggregation
function, F∼ = A⊥). This redefinition preserves the symmetry, but it may
violate the associativity of binary or extended F, in general.

Proposition 9 Let A be an idempotent m-ary (extended) aggregation function
on [0, 1], A1, . . . ,Am be n-ary (extended) conjunctive aggregation functions on
[0, 1]. Then the composed n-ary aggregation function B : [0, 1]n → [0, 1] (extended
aggregation function B : ∪n∈N[0, 1]n → [0, 1]) given by

B(x) = A(A1(x), . . . ,Am(x))

is an n-ary (extended) conjunctive aggregation function.

There are also other kinds of composition yielding conjunctive aggregation
functions.

Proposition 10 Let A be a conjunctive m-ary (extended) aggregation function
on [0, 1], and let A1, . . . ,Am be n-ary (extended) aggregation functions on [0, 1]
and there is at least one i ∈ {1, . . . ,m} so that Ai is conjunctive. Then the
composed n-ary aggregation function B : [0, 1]n → [0, 1] (extended aggregation
function B : ∪n∈N[0, 1]n → [0, 1]) given by

B(x) = A(A1(x), . . . ,Am(x))

is an n-ary conjunctive (extended) aggregation function.
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Proposition 11 Let A : [0, 1]2 → [0, 1] be a conjunctive or an idempotent ag-
gregation function, and let B : [0, 1]m → [0, 1] and C : [0, 1]n → [0, 1] be two
conjunctive aggregation functions. Then the function D : [0, 1]m+n → [0, 1]
given by

D(x1, . . . , xm+n) = A(B(x1, . . . , xm),C(xm+1, . . . , xm+n))

is an (m+ n)-ary conjunctive aggregation function.

Another distinguished construction method preserving conjunctive aggregation
functions is the conjunctive ordinal sum.

Proposition 12 Let (]ak, bk[)k∈K be a disjoint system of open subintervals of
[0, 1], and let (Ak)k∈K be a system of conjunctive n-ary (extended) aggregation
functions on [0, 1] (of conjunctors, of triangular norms, of quasi-copulas, of
copulas, respectively). Then the mapping B : [0, 1]n → [0, 1] (B : ∪n∈N[0, 1]n →
[0, 1]) given by

B(x1, . . . , xn) =
{

Ak(min(x1, bk), . . . ,min(xn, bk)) if Min(x1, . . . , xk) ∈ ]ak, bk[ ,
Min(x1, . . . , xn) else,

is an n-ary (extended) conjunctive aggregation function (a conjunctor, triangu-
lar norm, quasi-copula, copula, respectively).

The ordinal sum aggregation function B introduced in the last Proposition 12 is
often denoted as B = (< ak, bk,Ak >| k ∈ K). Formally, we allow also an empty
index set K, in which case B = Min by definition.

Though we have introduced several classes of conjunctive aggregation func-
tions, we will put a closer look only on the two most important classes, namely
triangular norms and copulas. More details about the remaining classes of con-
junctive aggregation functions can be found in Chapter 3 in [28].

3.1 Triangular norms

Definition 3 (iii) gives us the binary t-norm T(2) : [0, 1]2 → [0, 1]. Associativity
of t-norms T(2) : [0, 1]2 → [0, 1] allows us to consider their extensions to n-ary
functions T(n) : [0, 1]n → [0, 1] in the following way

T(n)(x) := T(2)(T(n−1)(x1, . . . , xn−1), xn).

So we can give the definition of a t-norm in extended form.

Definition 5 An extended t-norm T : ∪n∈N[0, 1]n → [0, 1] is an associative
symmetric extended aggregation function with extended neutral element 1.

The smallest t-norm (and also the smallest conjunctor) is the drastic product
TD (independently of the arity) given by

TD(x1, . . . , xn) =
{
xi if for each j �= i, xj = 1,
0 else.

Proposition 13 (i) Each t-norm T is an aggregation function with annihi-
lator 0, i.e., T(x) = 0 for all x ∈ [0, 1]n such that 0 ∈ {x1, . . . , xn}.
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(ii) The greatest (and the only idempotent) t-norm is the standard Min, i.e.,
for any t-norm T,

TD � T � Min.

TD and TM are basic t-norms. The next two basic t-norms are the standard
product TP = Π, and the �Lukasiewicz t-norm TL given by

TL(x) := Max

(
0,

n∑
i=1

xi − (n− 1)

)
. (15)

Archimedean property plays a distinguished role in the domain of triangular
norms. A t-norm T is Archimedean whenever for each x, y ∈ ]0, 1[ there is n ∈ N

such that T(n)(x, . . . , x) < y. For continuous t-norm T, its Archimedeanity is
equivalent to the diagonal inequality T(x, x) < x for all x ∈ ]0, 1[ . Continu-
ous Archimedean t-norms can be seen as an isomorphic transformation of the
standard (truncated) addition.

Theorem 1 Let T : ∪∞
n=1[0, 1]n → [0, 1] be a triangular norm. Then T is

Archimedean if and only if there is a continuous strictly decreasing function
h : [0, 1] → [0,∞], h(1) = 0, so that

T(x1, . . . , xn) = h−1

(
min

(
h(0),

n∑
i=1

h(xi)

))
. (16)

Note that h generating T via (16) is called an additive generator of T and it is
unique up to a multiplicative constant (hence, fixing h(0.5) = 1, the relationship
between continuous Archimedean t-norms and additive generators is one-to-
one). Moreover, defining a function g : [0, 1] → [0, 1] by g(x) = exp(−h(x)), a
multiplicative version of (16) is obtained,

T(x1, . . . , xn) = g−1

(
max

(
g(0),

n∏
i=1

g(xi)

))
. (17)

The function g generating T via (17) is called a multiplicative generator of T,
and it is unique up to a positive power. Continuous Archimedean t-norms can
be divided into two classes:

(i) strict t-norms are continuous t-norms which are strictly increasing (as
binary functions) on ]0, 1]2 and they are characterized by unbounded ad-
ditive generators, i.e., h(0) = ∞. Note that they are just isomorphic trans-
formations of the product t-norm Π, i.e., T = Πφ for some increasing bi-
jection φ : [0, 1] → [0, 1]. Observe that then φ = g is just the multiplicative
generator of T;

(ii) nilpotent t-norms are non-strict continuous Archimedean t-norms, they
are characterized by bounded additive generators, and to ensure the unique-
ness of these generators, often the normed additive generators satisfy-
ing h(0) = 1 are considered; nilpotent t-norms are isomorphic to the
�Lukasiewicz t-norm TL, i.e., T = (TL)φ for some increasing bijection
φ : [0, 1] → [0, 1].
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The importance of Archimedean t-norms in the framework of continuous trian-
gular norms is illustrated in the next two theorems.

Theorem 2 Let T : ∪∞
n=1[0, 1]n → [0, 1] be a triangular norm. Then the fol-

lowing are equivalent:

(i) T is continuous;

(ii) T is isomorphic to an ordinal sum (< ak, bk,Tk >| k ∈ K) where for each
k ∈ K,Tk ∈ {Π,TL};

(iii) T is an ordinal sum (< ak, bk,Tk >| k ∈ K) where for each k ∈ K, Tk is
a continuous Archimedean t-norm;

(iv) there is a system (]ak, bk[)k∈K of disjoint open subintervals of ]0, 1[ and a
system (hk)k∈K of continuous strictly decreasing functions hk : [ak, bk] →
[0,∞] satisfying hk(bk) = 0 so that

T(x1, . . . , xn) =

⎧⎨
⎩

h−1
k (min (hk(0),

∑n
i=1 hk(min(xi, bk)))

if Min(x1, . . . , xn) ∈ ]ak, bk[ ,
Min(x1, . . . , xn) else.

Theorem 3 Let T be a continuous triangular norm. Then for any fixed n � 2
and any ε > 0 there is a strict t-norm T1 and a nilpotent t-norm T2 such that
for i = 1, 2 it holds

sup{|T(x, y) − Ti(x, y)| | (x, y) ∈ [0, 1]2} � ε.

Due to Theorem 3, a general continuous t-norm can be approximated (with any
given tolerance ε) by a strict t-norm or by a nilpotent t-norm.

The fact that the complete information about a continuous Archimedean
t-norm T is contained in its additive generator h allows to transform the inves-
tigation of these t-norms into the study of the corresponding additive generators.
For example, for comparison of continuous Archimedean t-norms we have the
next result.

Proposition 14 Let T1,T2 be two continuous Archimedean t-norms with the
corresponding additive generators h1, h2. Then T1 � T2 if and only if the com-
posite function h1 ◦ h−1

2 : [0, h2(0)] → [0,∞] is subadditive, i.e., if for all
x, y ∈ [0, h2(0)] such that also x+ y � h2(0) it holds

h1 ◦ h−1
2 (x+ y) � h1 ◦ h−1

2 (x) + h1 ◦ h−1
2 (y).

Note that the concavity of h1 ◦ h−1
2 is sufficient to ensure T1 � T2.

For any fixed continuous Archimedean (strict, nilpotent) t-norm T with an
additive generator h, also hλ, λ ∈ ]0,∞[ is an additive generator of a continuous
Archimedean (strict, nilpotent) t-norm T(λ). Observe that the limit members
of families (T(λ)) are T(∞) = TM and T(0) = TD, independently of the original
fixed t-norm T. For example, consider the nilpotent basic t-norm TL generated
by a normed additive generator hL : [0, 1] → [0, 1], hL(x) = 1 − x. Then

T
(λ)
L (x1, . . . , xn) = max

⎛
⎝0, 1 −

(
n∑
i=1

(1 − xi)λ
)1/λ

⎞
⎠ .
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Note that these nilpotent t-norms are known as Yager t-norms [72], T
(λ)
L = TYλ .

Similarly, consider the strict basic t-norm Π with hΠ(x) = − log x. Then the
corresponding strict t-norms (Π)(λ) = TAAλ , λ ∈ ]0,∞[ , are known as Aczél-
Alsina t-norms [2] and they are given by

TAAλ (x1, . . . , xn) = exp

⎛
⎝−

(
n∑
i=1

(− log xi)λ
)1/λ

⎞
⎠ .

Another modification of a fixed additive generator yielding a new additive gen-
erator is linked to the power of the argument. Indeed, for a fixed additive gen-
erator h : [0, 1] → [0,∞] of a given continuous Archimedean t-norm T, also the
function h(λ) : [0, 1] → [0,∞] given by h(λ)(x) = h(xλ) is an additive generator
of a t-norm denoted as T(λ) whenever λ ∈ ]0,∞[ . As a prototypical example for
this construction of continuous Archimedean t-norms recall the Schweizer-Sklar
t-norms (TSSλ )λ∈[−∞,∞] introduced in [61] and which contains all four basic t-
norms TM = TSS−∞,Π = TSS0 ,TL = TSS1 and T = TSS∞ . For λ ∈ ]−∞, 0[∪ ]0,∞[ ,
the continuous Archimedean t-norms TSSλ are generated by additive generators
hSSλ : [0, 1] → [0,∞] given by

hSSλ (x) =
1 − xλ

λ
.

Then evidently all nilpotent members of this family are related to the �Lukasiewicz
t-norm TL,T

SS
λ = (TL)(λ) whenever λ ∈ ]0,∞[ . Moreover, the strict members

of this family are related to the Hamacher product TH introduced in [31] and
given (in binary form) by

TH(x, y) =
{ xy

x+y−xy if x > 0,
0 else.

Note that the Hamacher product TH is generated by an additive generator
hH : [0, 1] → [0,∞] given by hH(x) = x−1 − 1, and that TSSλ = (TH)−λ
whenever λ ∈ ]−∞, 0[ .

Among several construction of non-continuous t-norms recall the next one.

Proposition 15 Let E be subset of [0, 1]2 such that

(i) if (x, y) ∈ E then also (y, x) ∈ E;

(ii) if (x, y) ∈ E and 0 � u � x, 0 � v � y, then also (u, v) ∈ E;

(iii) if (x, y) ∈ [0, 1]2 and 1 ∈ {x, y} then (x, y) ∈ E if and only if 0 ∈ {x, y}.
Then the function TE : [0, a]2 → [0, 1] given by

TE(x, y) =
{

0 if (x, y) ∈ E,
min(x, y) else

is a (binary) triangular norm.

Evidently, the only continuous t-norm TE is the basic t-norm TM corre-
sponding to the minimal E∗ = [0, 1]2−]0, 1]2. The smallest t-norm TE is the
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basic t-norm TD corresponding to the maximal E∗ = [0, 1[2∪{(0, 1), (1, 0)} (TD
is right-continuous). A distinguished example of a left-continuous t-norm TE is
the nilpotent minimum TnM introduced in [20] related to E = {(x, y) ∈ [0, 1]2 |
x+ y � 1},

TnM (x, y) =
{

0 if x+ y � 1,
min(x, y) else.

There are several peculiar triangular norm. For example, Krause t-norm dis-
cussed in details in [35][Appendix B1] is not continuous though its diagonal
section is continuous (for any arity). The next t-norm T : [0, 1]2 → [0, 1] given
by

T(x, y) =
{ x+y−1

1−4(1−x)(1−y) if x+ y > 1,
0 else

has unique discontinuity point (0.5, 0.5) (and it is left-continuous, see Exam-
ple 3.72(i) in [35]). Many other examples, as well as a deep discussion of many
aspects of the theory and application of triangular norms can be found in mono-
graphs [3, 35], but also in [28].

3.2 Copulas

Copulas were introduced by A.Sklar [63] in the multivariate statistical frame-
work as ”products” for distribution functions. n-ary copulas are characterized
by the nonnegative probability of the n-dimensional box [x1, y1]× [x2, y2]×· · ·×
[xn, yn], which we shall denote by [x,y]. For x,y ∈ [0, 1]nsuch that x � y, let
[x,y] be the corresponding n-box, and let z = (z1, . . . , zn) be a vertex of [x,y].
Then we define sign [x,y](z) in the following way

sign [x,y](z) :=
{

1 if zm = xm for an even number of m’s,
−1 if zm = xm for an odd number of m’s.

If the vertices of the n-box [x,y] are not all distinct, then sign [x,y](z) = 0.

Definition 6 For a fixed n � 2, let C : [0, 1]n → [0, 1] be an n-ary aggregation
function with a neutral element e = 1, such that for all x,y ∈ [0, 1]n ,x � y,
the following inequality (called n-increasing monotonicity or moderate growth)
is fulfilled: ∑

sign [x,y](z)C(z) � 0, (18)

where the sum is taken over all vertices z of [x,y]. Then C is called an n-copula.
An extended aggregation function C : ∪n∈N[0, 1]n → [0, 1] such that for each

n � 2 the corresponding n-ary aggregation function C(n) is an n-copula is called
a general copula.

To better understand the statistical background of copulas we recall here
the Sklar theorem introduced in [63].

Theorem 4 (i) If H : [−∞,∞]n → [0, 1] is an n-dimensional (cumulative)
distribution function with one-dimensional marginal (cumulative) distribu-
tion functions F1, . . . ,Fn : [−∞,∞] → [0, 1], then there exists an n-copula
C such that

H(x) = C(F1(x1), . . . ,Fn(xn)) (19)

17



for all x ∈ Rn. If F1, . . . ,Fn are continuous, then C is unique; otherwise
C is uniquely determined on ran(F1) × · · · × ran(Fn).

(ii) For any one-dimensional distribution functions F1, . . . ,Fn, and any n-
copula C, the function H given by (19) is an n-dimensional distribution
function with one-dimensional marginals F1, . . . ,Fn.

Remark 7 (i) Each n-copula can be seen as (the restriction to [0, 1]n of) an
n-dimensional distribution function with marginals which have uniform
distribution on [0, 1].

(ii) A nice probabilistic characterization of the three basic continuous t-norms
(TL, Π, and Min), which are also copulas, is the next one: For events
E1, . . . , En of the form Ei := {Xi � x}, let P (E1), . . . , P (En) be their
respective probabilities. What can we say about the probability of the in-

tersection
n⋂
i=1

Ei?

The probability P (E1 ∩ · · · ∩ En) can be computed using Theorem 4 by
means of a (in most cases unknown) copula C,

P (E1 ∩ · · · ∩ En) = C(P (E1), . . . , P (En)).

Due to the fact that TL < C � Min for any copula C we have the (best)
estimation

TL(P (E1), . . . , P (En)) < P (E1 ∩ · · · ∩ En) � Min(P (E1), . . . , P (En)).

If the events E1, . . . , En are jointly independent, then C = Π and

P (E1 ∩ · · · ∩En) = Π(P (E1), . . . , P (En)).

(iii) In the case described in Theorem 4 (ii), the left-hand side of the inequality
(18) is exactly the probability of the n-dimensional box [x,y] (which is
clearly nonnegative).

We have the following basic properties of n-copulas, [62].

Proposition 16 Let C : [0, 1]n → [0, 1] be an n-copula. Then the following
holds.

(i) Let i ∈ [n]. Then for all x, y ∈ [0, 1] and all x ∈ [0, 1]n,

|C(x1, . . . , xi−1, x, xi+1, . . . , xn) − C(x1, . . . , xi−1, y, xi+1, . . . , xn)| � |x− y|.
(20)

(ii) For any x,y ∈ [0, 1]n we have

|C(x) − C(y)| �
n∑
i=1

|xi − yi|, (21)

i.e., C is 1-Lipchitzian and therefore a continuous aggregation function.
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We introduce some examples of copulas based on statistical properties of
random variables.

(i) As we have already noticed, the independence of random variables is ex-
pressed by the product copula Π, i.e., any n-tuple (X1, . . . , Xn) of n inde-
pendent random variables has joint distribution

FX1,...,Xn(x) =
n∏
i=1

FXi(xi).

(ii) As already mentioned above, another general copula is Min. Min relates
random variables which are totally positively dependent in the sense that
in the random vector (X1, . . . , Xn), each Xi can be expressed in the form
Xi = fi(X1), where fi is a real function increasing on the range of X1.
Then

FX1,...,Xn(x) = Min(FX1(x1), . . . , FXn (xn)).

(iii) In the case of 2-copulas, the smallest 2-copula TL relates two negatively
dependent random variables X1 and X2, X2 = f(X1), where f is a real
function decreasing on the range of X1.

Due to Moynihan [54] it is known that associative binary copulas are ex-
actly 1-Lipschitz triangular norms, i.e., they can be seen as ordinal sums of
Archimedean copulas. Moreover, the next result was shown in [54].

Theorem 5 An aggregation function C : [0, 1]2 → [0, 1] is an Archimedean
copula if and only if it is a continuous triangular norm with a convex additive
generator h : [0, 1] → [0,∞].

Due to the associativity, each 1-Lipschitz t-norm can be extended to n-ary
(extended) 1-Lipschitz triangular norm, i.e., to n-ary (extended) quasi-copula.
However, not all such aggregation functions are n-ary copulas. For example,
taking the smallest binary copula TL, its ternary form TL : [0, 1]3 → [0, 1]
is given by TL(x, y, z) = max(0, x + y + z − 2). For x = (0.5, 0.5, 0.5) and
y = (1, 1, 1), the 3-increasing property of TL would mean

TL(1, 1, 1) − (TL(0.5, 1, 1) + TL(1, 0.5, 1) + TL(1, 1, 0.5)) + TL(0.5, 0.5, 1)

+TL(0.5, 1, 0.5) + TL(1, 0.5, 0.5)− TL(0.5, 0.5, 0.5) � 0

what obviously is not true. Therefore, TL is not a ternary copula! Though there
is no smallest n-copula for n > 2, due to [44] we have the next result.

Theorem 6 Let n > 2. An n-ary extension C : [0, 1]n → [0, 1] of a continuous
Archimedean t-norm T with an additive generator h is an n-copula if and only
if the function q : [−∞, 0] → [0, 1] given by

q(x) = h−1(min(h(0),−x))

has on ] − ∞, 0[ all derivatives of order 1, . . . , n − 2 which are non-negative
and the (n − 2)th derivative of q is a convex function. The smallest n-ary
copula Cn of this type has an additive generator hn : [0, 1] → [0,∞] given by
hn(x) = 1 − x1/(n−1), i.e., Cn = TSS1/(n−1).
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It is not difficult to see that the n-ary copula Cn is the smallest one in the class
of all n-ary copulas which are n-ary extensions of an associative copula. Based
on Theorem 6, it is also visible that the smallest associative general copula is
the extended product Π (recall that Π = TSS0 ).

One crucial difference between the classes of (binary, n-ary, extended) t-
norms and copulas is the convexity and compactness of copula classes [36]. For
example, the function D = TM+Π

2 is a copula for any arity (and thus also a
general copula, though it is not associative).

From the introduced parametric families of continuous Archimedean t-norms,
observe that the Aczel-Alsina t-norms TAAλ are binary copulas (even general cop-
ulas) for any λ � 1 (and in the copula theory they are known as Gumbel family).
Similarly, Yager t-norms TYλ are binary copulas for any λ � 1. Moreover, TYλ as
n-ary aggregation function is an n-copula if and only if λ � n − 1. In the case
of Schweizer-Sklar t-norms, these are (as n-ary functions) n-copulas whenever
λ � 1

n−1 , and they (as extended aggregation functions) are general copulas for
each λ � 0. In the copula world, copula members of Schweizer-Sklar family they
are known as Clayton copulas.

In the following proposition we introduce an important subclass of 2-copulas,
namely the Archimax copulas [16].

Proposition 17 Let t : [0, 1] → [0,∞] be a convex decreasing function such
that t(1) = 0 (i.e., t is an additive generator of some 2-copula Ct), and let
D : [0, 1] → [0, 1] be a convex function bounded from below by Max(x, 1 − x).
(D is a so-called dependence function.) Then the mapping Ct,D : [0, 1]2 → [0, 1]
given by (for (x, y) ∈ ]0, 1[2)

Ct,D(x, y) = t−1

(
Min

(
t(0), (t(x) + t(y))D

(
t(x)

t(x) + t(y)

)))

is a 2-copula. This copula is called an Archimax copula.

The smallest Archimax copula with fixed t corresponds to the constant
dependence function D = 1, and then Ct,1 = Ct is an Archimedean cop-
ula generated by t. On the other hand, for the lowest dependence function
D∗(x) := Max(x, 1 − x), we have Ct,D∗ = Min(2), independently of t. More
details about Archimax copulas can be found also in [37, 38]. In the special
case t(x) = − logx (i.e., when Ct = Π), the corresponding Archimax copulas
Ct,D are known in statistics as Max-attractor copulas [15, 26, 66] and they are
characterized by power stability, i.e.,

Ct,D(xp, yp) = (Ct,D(x, y))p

for all p ∈ ]0,∞[ .
Max-attractors are closed under Max-composition and under weighted geo-

metric mean composition.
For a deeper discussion on copulas, their statistical and functional properties

we recommend specialized monographs [33, 55] and [3, 35, 62].

4 Disjunctive aggregation functions

As already mentioned, disjunctive aggregation functions are those which are
bounded from below by Max. Hence Max is the smallest disjunctive aggregation
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function. When restricting our consideration to the unit interval I = [0, 1],
there is a one-to-one connection between conjunctive and disjunctive aggregation
functions (this is not true, for example, if I =]0, 1] or I = [0, 1[).

Lemma 1 Let ϕ : [0, 1] → [0, 1] be a decreasing bijection. Then the (extended)
aggregation function A is disjunctive if and only if its transform Aϕ given by

Aϕ(x) := ϕ−1(A(ϕ(x1), . . . , ϕ(xn)))

(see (3)) is conjunctive.

Remark 8 (i) In fuzzy logic (see [30, 35]), an involutive decreasing bijec-
tion ϕ : [0, 1] → [0, 1] (i.e., ϕ(ϕ(x)) = x for all x ∈ [0, 1]) plays the
role of negation. For any aggregation function A we have (Aϕ)ϕ = A,
i.e., ϕ-transformation brings a kind of duality into the class of aggrega-
tion functions. Due to Lemma 1, this duality also connects the class of
disjunctive aggregation functions and the class of conjunctive aggregation
functions. Moreover, if a t-norm T models the conjunction in fuzzy logic
and ϕ models the negation, then the triplet (T,Tϕ, ϕ) is called a de Morgan
triplet.

(ii) For N : [0, 1] → [0, 1] given by N(x) = 1−x, the dual aggregation function
Ad can be introduced as Ad = AN . Thus disjunctive aggregation functions
are just dual functions to conjunctive aggregation functions, and therefore
we can derive all their properties from the corresponding properties of
conjunctive aggregation functions. So, for example, the smallest and the
only idempotent disjunctive aggregation function is Max. In fuzzy logic N
is called the standard negation.

As already mentioned, the only idempotent disjunctive n-ary (extended) ag-
gregation is just Max, while the greatest n-ary (extended) aggregation function
A
 is also the greatest n-ary (extended) disjunctive aggregation function. As far
as each idempotent aggregation function on [0, 1] has a = 1 as its annihilator,
it can have as a neutral element only e = 0.

Taking into account Definition 3, the duality of conjunctive and disjunctive
aggregation functions allows to introduce several classes of special disjunctive
aggregation functions. To avoid superfluous repetitions, we focus here only on
the case of aggregation functions dual to triangular norms, i.e., to triangular
conorms .

Definition 7 The dual aggregation function to a t-norm T : ∪n∈N[0, 1]n →
[0, 1], i.e., an associative symmetric aggregation function S : ∪n∈N[0, 1]n → [0, 1]
with extended neutral element 0 is called a triangular conorm or a t-conorm for
short.

Obviously, Max is the smallest t-conorm and it is dual to the greatest t-norm
Min.

By duality, t-conorms have annihilator a = 1. For each t-conorm S, we have
Max � S � SD, where

SD(x) :=
{

Max(x) if |{i | xi > 0}| < 2
1 otherwise. (22)
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The dual function to the product Π is called the probabilistic sum and it is
denoted by SP,

SP(x) := 1 −
n∏
i=1

(1 − xi). (23)

The �Lukasiewicz t-conorm SL is often called the bounded sum because of

SL(x) := Min

(
1,

n∑
i=1

xi

)
. (24)

Remark 9 (i) A continuous Archimedean t-conorm S is characterized by the
diagonal inequality S(x, x) > x for all x ∈ ]0, 1[.

(ii)) A continuous Archimedean t-conorm S is always related to some continu-
ous increasing additive generator s : [0, 1] → [0,∞], s(0) = 0, by

S(x) = s−1

(
Min

(
s(1),

n∑
i=1

s(xi)

))
. (25)

(iii) The t-conorms which are dual to strict t-norms are called strict t-conorms.
They have unbounded additive generators, and they are isomorphic to
SP. Similarly nilpotent t-conorms are dual to nilpotent t-norms (with
bounded additive generators, isomorphic to SL). The duality of continuous
Archimedean t-norms and t-conorms is reflected by the duality s = t ◦ N
(where N is the standard negation, N(x) = 1 − x) of the correspond-
ing additive generators, i.e., s(u) = t(1 − u), u ∈ [0, 1]. Consequently,
sP(u) = − log(1 − u) generates the probabilistic sum SP, while sL(u) = u
generates the bounded sum SL.

(iv) The representation of continuous t-norms in Therem 2(iv) is reflected by
the dual representation of continuous t-conorms,

S(x) =

⎧⎨
⎩ s−1

k

(
Min

(
sk(bk),

n∑
i=1

sk(Max(xi, ak))
))

if Max(x) ∈ ]ak, bk[

Max(x) otherwise,
(26)

where (]ak, bk[)k∈K is a family of pairwise disjoint subintervals of [0, 1],
and sk : [ak, bk] → [0,∞], sk(ak) = 0, is a corresponding family of con-
tinuous increasing mappings. A continuous t-conorm S as given in (26)
is, in general, a disjunctive ordinal sum of disjunctive aggregation func-
tions, and each of classes of disjunctive aggregation functions which can
be introduced by means of duality and Definition 3 is closed under this type
of ordinal sums.

In several domains with inputs from the interval I = [e, a], a special kind
of disjunctive aggregation functions called pseudo-additions is required. Due to
the associativity of a pseudo-addition, only its binary form is now introduced.

Definition 8 Let I = [a, b] be fixed. A mapping ⊕ : I2 → I is called a pseudo-
addition (on I) if it satisfies the next properties:
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(i) associativity, i.e., (x⊕ y) ⊕ z = x⊕ (y ⊕ z) for all x, y, z ∈ I;

(ii) monotonicity, i.e., x⊕ y � x′⊕ y′ for all x, y, x′, y′ ∈ I, x � x′ and y � y′;

(iii) a is the neutral element of ⊕, i.e., x⊕ a = a⊕ x = x for all x ∈ I;

(iv) continuity.

Note that based on the classical result of Mostert and Shields [53], each pseudo-
addition is an I-semigroup and thus the symmetry of ⊕ follows. Moreover, [53]
provides also a representation theorem for pseudo-additions. It is not difficult
to see that in the special case I = [0, 1], pseudo-additions are just continuous
t-conorms, and then the representation theorem from [53] is just the disjunctive
ordinal sum given in (26). In the theory of non-additive integrals [57, 58, 65],
pseudo-additions on I = [0,∞] play an important role.

Proposition 18 A mapping ⊕ : [0,∞]2 → [0,∞] is a pseudo-addition on [0,∞]
if and only if there is a family (]ak, bk[)k∈K of pairwise disjoint subintervals
of ]0,∞[, and fk : [ak, bk] → [0,∞], fk(ak) = 0, is a corresponding family of
continuous strictly increasing functions, so that

x⊕ y =
{
f−1
k (min(fk(bk), fk(x) + fk(y))) if (x, y) ∈ ]ak, bk[2 ,

max(x, y) otherwise.

Note that the standard addition + on [0,∞] corresponds to K = {1}, a1 =
0, b1 = ∞, and f1(x) = x for x ∈ [0,∞] , while K = ∅ is linked with the
idempotent pseudo-addition ⊕ = Max.

As already mentioned, triangular norms and triangular conorms model in
fuzzy set theory the intersection and the union of fuzzy sets, respectively. The
classical valuation property of characteristic functions of standard sets, i.e., the
validity of

1A∪B + 1A∩B = 1A + 1B

for any two subsets A,B of a given universe X, is then reflected in the fuzzy set
theory by the famous Frank functional equation [23]

T(x, y) + S(x, y) = x+ y for all x, y ∈ [0, 1] , (27)

where T is a t-norm and S is a t-conorm (note that the original motivation of
Frank in [23] was related to associative copulas and associative dual copulas).
Evidently, T = Min and S = Max is a trivial solution of (27). Moreover, also
TP = Π with SP , and TL with SL solve [23]. The solution of (27) in the class of
triangular norms with no non-trivial idempotent elements gave birth to the well-
known parametric class (TFλ )λ∈[0,∞] of Frank t-norms, where TF0 = Min,TF1 =
Π,TF∞ = TL, and for λ ∈ ]0, 1[∪]1,∞[ it holds

TFλ (x, y) = logλ
1 + (λx − 1)(λy − 1)

λ− 1
.

Note that for λ ∈ ]0,∞[ , all Frank t-norms are strict, and for λ ∈ [0,∞] ,
all Frank t-norms are also binary copulas (and thus, they are 1-Lipschitz con-
junctors). Frank t-conorms SFλ have two equivalent expressions, namely, for all
x, y ∈ [0, 1] it holds

SFλ (x, y) = x+ y − TFλ (x, y) = 1 − TFλ (1 − x, 1 − y).
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Up to the prominent role of Frank t-norms and t-conorms as fuzzy connectives
in the fuzzy set theory, observe that there are important applications of Frank
t-norms and t-conorms in fuzzy game theory, see [8].

5 Mixed aggregation functions

There are several aggregation functions which are neither averaging, nor con-
junctive or disjunctive. As a typical example recall the standard summation on
the real line, or the standard product on [0,∞]. Aggregation functions of this
type will be called mixed. On some sub-domains, mixed aggregation functions
behave like averaging, or conjunctive, or disjunctive aggregation functions. For
example, considering the product Π : [0,∞]2 → [0,∞], it is conjunctive on
[0, 1]2, disjunctive on [1,∞]2 and averaging of the remainder of its domain. In
this section, we will discuss some well-known classes of mixed aggregation func-
tions. Maybe the most prominent class of this type is formed by uninorms
introduced by Yager and Rybalov in [75], see also [18, 34, 57].

Definition 9 An aggregation function U : ∪n∈N[0, 1]n → [0, 1] which is sym-
metric, associative and possesses an extended neutral element e ∈ ]0, 1[ is called
a uninorm.

Observe that each uninorm U has an annihilator a = U(0, 1) ∈ {0, 1}. If
a = 0, then the uninorm U is called conjunctive, as it can be seen as an extension
of the Boolean conjunction. Similarly, disjunctive uninorms are characterized
by annihilator a = 1. We should stress that there is no continuous uninorm! A
similar problem we see in the case of the standard product Π on [0,∞], where
the points (0,∞) and (∞, 0) are points of discontinuity, independently of the
convention determining the value of Π(0,∞). A typical example of a conjunctive
uninorm (with the only discontinuity points (0, 1) and (1, 0)) is the 3-Π-operator
E, see [74], given by

E(x) =

n∏
i=1

xi

n∏
i=1

xi +
n∏
i=1

(1 − xi)
, with the convention

0
0

= 0.

The structure of uninorms is strongly connected with t-norms and t-conorms.
For a given uninorm U with a neutral element e, we introduce the related t-norm
TU : [0, e]2 → [0, e] and the t-conorm SU : [e, 1]2 → [e, 1], given by

TU(x, y) :=
U(ex, ey)

e
(28)

and
SU(x, y) :=

U(e+ (1 − e)x, e+ (1 − e)y) − e

1 − e
. (29)

We characterize the binary form of a uninorm U, which due to the associa-
tivity of U, gives complete information about U.

Proposition 19 Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈
]0, 1[ . Then there are three binary aggregation functions T, S,H : [0, 1]2 → [0, 1]
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such that T is a t-norm, S a t-conorm and H is a symmetric mean aggregation
function (see [29], Definition 25), and for any x ∈ [0, 1]2 we have (see Figure
2)

U(x) =

⎧⎨
⎩

T(x) if x ∈ [0, e]2 ,
S(x) if x ∈ [e, 1]2 ,
H(x) otherwise.

(30)

H

H

(e, 0)(0, 0)

(0, e)

(1, 0)

(1, 1)(0, 1)

T

S

Figure 2: The representation of a uninorm from Proposition 19

Proposition 19 gives the necessary but not sufficient representation of (bi-
nary) uninorms by means of t-norms, t-conorms and symmetric mean functions.
For a given t-norm TU, t-conorm SU and neutral element e ∈ ]0, 1[ , to find an
appropriate uninorm U means to find a symmetric mean aggregation function H
so that (30) holds, where T = (< 0, e,TU >) and S = (< e, 1, SU >). The main
problem is to ensure the associativity of the function U constructed in such a
way.

Proposition 20 Let e ∈ ]0, 1[ be a given constant, and let T = (< 0, e,TU >)
and S = (< e, 1, SU >) be an ordinal sum of t-norms and an ordinal sum of
t-conorms, respectively. Then the following holds.

(i) For any uninorm U characterized by e,TU and SU, we have

T < Ue,T,S � U � UT,S,e < S, (31)

where

Ue,T,S(x, y) :=

⎧⎪⎨
⎪⎩

eT
(
x
e ,

y
e

)
if (x, y) ∈ [0, e]2 ,

e+ (1 − e)S
(
x−e
1−e ,

y−e
1−e
)

if (x, y) ∈ [e, 1]2 ,
Min(x, y) otherwise,

(32)

and

UT,S,e(x, y) :=

⎧⎪⎨
⎪⎩

eT
(
x
e ,

y
e

)
if (x, y) ∈ [0, e]2 ,

e+ (1 − e)S
(
x−e
1−e ,

y−e
1−e
)

if (x, y) ∈ [e, 1]2 ,
Max(x, y) otherwise.

(33)
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(ii) Ue,T,S and UT,S,e are uninorms.

Note that uninorms need not be mixed aggregation functions, in general. Indeed,
some of uninorms are idempotent, see e.g. [17], and thus they are averaging
aggregation functions.

Example 8 Let ϕ : [0, 1] → [0, 1] be an increasing bijection and define U(ϕ) :
[0, 1]2 → [0, 1] by

U(ϕ)(x, y) :=
{

Min(x, y) if ϕ(x) + ϕ(y) � 1,
Max(x, y) otherwise.

Then U(ϕ) is a (left-continuous, conjunctive) uninorm with neutral element e =
ϕ−1(0.5).

Another important class of uninorms is formed by so called representable uni-
norms [22, 34] which are isomorphic to the product Π on [0,∞] (or, equivalently,
to the sum Σ on [−∞,∞]). Based on Aczél’s representation theorem [1] for con-
tinuous cancellative associative functions, the next result can be shown.

Theorem 7 A function U : ∪n∈N[0, 1]n → [0, 1] is a uninorm continuous and
cancellative on ∪n∈N]0, 1[n if and only if there exists a monotone bijection u :
[0, 1] → [−∞,∞] such that

U(x) = u−1

(
n∑
i=1

u(xi)

)
, (34)

with convention ∞+(−∞) = −∞. The uninorm U is then called a representable
uninorm with additive generator u, and an additive generator u is unique up to
a positive multiplicative constant.

Obviously, a multiplicative version of (34) exist, i.e.,

U(x) = v−1 (Πn
i=1v(xi)) ,

where v : [0, 1] → [0,∞] is a monotone bijection (unique up to a positive power
constant!) and the convention Π(0,∞) = 0 is adopted. Observe that a repre-
sentable uninorm U with an additive generator u (multiplicative generator v)
is conjunctive if and only if u (v) is increasing. Similarly, disjunctive repre-
sentable uninorms are characterized by decreasing generators. 3-Π-operator E
introduced above is a conjunctive representable uninorm with an additive gener-
ator u : [0, 1] → [−∞,∞] given by u(x) = log

(
x

1−x
)
, and with a multiplicative

generator v : [0, 1] → [0,∞] given by v(x) = x
1−x . The class of uninorms is

closed under duality. Note only that a dual to a conjunctive uninorm with a
neutral element e is a disjunctive uninorm with a neutral element 1 − e. For
more details we recommend [28], Section 3.6.

Each non-idempotent uninorm is an example of a mixed aggregation function
on an interval I possessing a neutral element e which is an interior point of I. The
structure of such mixed aggregation functions is closely related to the structure
of uninorms described in Proposition 19.
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Proposition 21 Let B : [0, 1]2 → [0, 1] be a non-idempotent aggregation func-
tion with neutral element e ∈ ]0, 1[ . Then B is a mixed aggregation function and
there are three binary aggregation functions C,D,A : [0, 1]2 → [0, 1] such that C
is conjunctive, D is disjunctive and A is an averaging aggregation function, and
for any (x, y) ∈ [0, 1]2 we have

B(x, y) =

⎧⎨
⎩

C(x, y) if (x, y) ∈ [0, e]2 ,
D(x, y) if (x, y) ∈ [e, 1]2 ,
A(x, y) otherwise.

(35)

Example 9 Fix a constant e ∈ ]0, 1[ and let B : [0, 1]2 → [0, 1] be given by

B(x, y) = Max(0,Min(1, x+ y − e)).

Then B is a symmetric mixed aggregation function with a neutral element e.
Observe that B is continuous and hence it cannot be a uninorm (indeed, B is
not associative). B possesses a representation (35), where C = (< 0, e,TL >) is
an ordinal sum t-norm and D = (< e, 1, SL >) is an ordinal sum t-conorm.

As already seen in the case of uninorms, additional properties posed on mixed
aggregation functions with a neutral element e ∈ ]0, 1[ have impact on the
characterization of related conjunctive operators C and disjunctive operators D.
One of such properties is 1-Lipschitzianity, see [39].

Proposition 22 Let B : [0, 1]2 → [0, 1] be a 1-Lipschitz function. Then B is a
mixed aggregation function with a neutral element e ∈ ]0, 1[ if and only if there
are quasi-copulas C,Q : [0, 1]2 → [0, 1] so that

B(x, y) =

⎧⎨
⎩

eC(xe ,
y
e ) if (x, y) ∈ [0, e]2 ,

1 − (1 − e)Q(1−x
1−e ,

1−y
1−e ) if (x, y) ∈ [e, 1]2 ,

x+ y − e otherwise.

Observe that the function B from Example 9 satisfies the requirements of Propo-
sition 22, with C = Q = TL.

When considering aggregation functions on an interval I, also the position of
the corresponding annihilator a (if it exists) has the impact on the classification
of the discussed aggregation function. Clearly, for I = [0, 1], a < 1 excludes
disjunctive aggregation functions. Similarly, a > 0 excludes conjunctive aggre-
gation functions. Therefore, a ∈ ]0, 1[ admits mixed or averaging aggregation
functions only.

Proposition 23 Let B : [0, 1]2 → [0, 1] be a non-idempotent aggregation func-
tion with annihilator a ∈ ]0, 1[ . Then B is a mixed aggregation function and
there are two binary aggregation functions C,D : [0, 1]2 → [0, 1] such that C is
conjunctive, D is disjunctive, and for any (x, y) ∈ [0, 1]2 we have

B(x, y) =

⎧⎨
⎩

D(x, y) if (x, y) ∈ [0, a[2 ,
C(x, y) if (x, y) ∈ ]a, 1]2 ,
a otherwise.

(36)
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Evidently, B given in (36) is symmetric whenever both C and D are symmetric.
Moreover, also the associativity of C and D ensures the associativity of B.

We have by [11] the following definition.

Definition 10 A symmetric associative aggregation function V : [0, 1]2 → [0, 1]
with an annihilator a ∈ ]0, 1[ is called a nullnorm.

Idempotent nullnorms are completely characterized by their annihilator a and
they are known as a-medians ([21, 25]) Meda : [0, 1]2 → [0, 1], given by Meda(x, y) =
Med(x, a, y). As observed in [12], nullnorms are closely related to t-norms, t-
conorms and a-medians.

Proposition 24 A function V : [0, 1]2 → [0, 1] is a nullnorm with an anni-
hilator a ∈ ]0, 1[ if and only if there is a t-norm T : [0, 1]2 → [0, 1] and a
t-conorm S : [0, 1]2 → [0, 1] such that for any (x, y) ∈ [0, 1]2 it holds V(x, y) =
Meda(T(x, y), S(x, y)).

Example 10 Fix a = 0.5,T = Π = TP and S = SP. Then the nullnorm V
characterized by the above proposition is given by

V(x, y) =

⎧⎨
⎩

xy if xy > 0.5,
x+ y − xy if (1 − x)(1 − y) > 0.5,
0.5 otherwise.

There are several other mixed aggregation functions related to triangular norms
and triangular conorms.

The gamma operators Γγ : ∪n∈N[0, 1]n → [0, 1] were introduced by Zimmer-
mann and Zysno [77] and applied to car control. For a parameter γ ∈ [0, 1], the
gamma operator Γγ is given by Γγ := Π1−γSγP, that is,

Γγ(x) :=

(
n∏
i=1

xi

)1−γ (
1 −

n∏
i=1

(1 − xi)

)γ
. (37)

Gamma operators can be seen as a weighted geometric mean applied to the
product Π and the probabilistic sum SP. Though they are not associative (up to
the boundary cases γ = 0 or γ = 1), their components Π and SP are associative,
what can be exploited by applications of these operators.

Gamma operators are a special subclass of the so called exponential convex
T-S-operators [40], that is, of weighted geometric means of a t-norm T, and a
t-conorm S (not necessarily a dual pair), ET,S,γ : ∪n∈N[0, 1]n → [0, 1],

ET,S,γ(x) := (T(x))1−γ (S(x))γ . (38)

Another composed aggregation approach based on t-norms and t-conorms is
related to the weighted arithmetic mean (as the outer function) [40]. A linear
convex T-S-operator LT,S,γ : ∪n∈N[0, 1]n → [0, 1] is given by

LT,S,γ(x) := (1 − γ)T(x) + γS(x). (39)

These operators were successfully applied in fuzzy linear programming. Linear
convex T-S-operators are symmetric, continuous whenever T and S are contin-
uous, neither with annihilator nor with neutral element whenever γ ∈ ]0, 1[.
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Example 11 Consider the following linear convex operator

LTP,SP,0.4(x, y) = 0.6 · TL(x, y) + 0.4 · SP(x, y) = 0.4x+ 0.4y + 0.2xy.

Obviously, the above two concepts can be further generalized into Expo-
nential convex C-D-operators and into Linear convex C-D-operators with C a
conjunctive and D a disjunctive aggregation function. Moreover, as an outer
composition we can replace the geometric mean (applied in the case of expo-
nential convex operators) and the weighted arithmetic mean (applied in the case
of linear convex operators) by any other averaging binary aggregation function.

Example 12 Consider the harmonic mean HM(x, y) = 2xy
x+y , the product Π and

the probabilistic sum SP. Then the corresponding mixed aggregation function
B : [0, 1]2 → [0, 1] is given by

B(x, y) = HM(Π(x, y), SP(x, y)) =
2xy(x+ y − xy)

x+ y

whenever (x, y) �= (0, 0). Evidently, B is not averaging (it is not idempotent).
Moreover, B(0.1, 0.1) = 0.019 < 0.1 and thus B cannot be disjunctive. Similarly,
B(1, 0.5) = 2/3 > 0.5 and thus B cannot be conjunctive. Thus B is a mixed
aggregation function.

6 Concluding remarks

In our two-part contribution we have introduced and discussed the basics of the
theory of aggregation functions. Besides several properties and construction
methods, also several kinds of aggregation functions have been introduced and
examined. The application of aggregation functions can be found in any domain
where the observed pieces of information are merged into a single value. We
indicate some of the domains where aggregation functions play a substantial
role.

We do not pretend to be exhaustive, and the reader may consult more
application-oriented books on aggregation, e.g., [67].

A first group of applications comes from decision theory. Making decisions
often amounts to aggregating scores or preferences on a given set of alternatives,
the scores or preferences being obtained from several decision makers, voters,
experts, etc., or represent different points of view, criteria, objectives, etc. This
concerns decision under multiple criteria or multiple attributes, multiperson
decision making, and multiobjective optimization.

A second group is rooted in information or data fusion. The aim is to refine
the information on a given set of objects, by fusing several sources. Often, this
amounts to making some kind of decision, as in the first group of applications.
Typical applications here are pattern recognition and classification, as well as
image analysis.

A third group comes from artificial intelligence and fuzzy logic. Aggregation
functions are essentially used there as a generalization of logical connectives in
rule-based systems (automated reasoning).

Finally, we recall the probability theory and risk management with appli-
cations in hydrology, finance, etc., where copulas play a prominent role. To
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stress the expansive development of aggregation theory and its applications in
information sciences we recall some of recent publications in this area, namely
[7, 9, 24, 43, 45, 47, 59, 69, 70].

Acknowledgment

The authors gratefully acknowledge the support of following projects: bilateral
project between Slovakia and Serbia SK-SRB-19, the internal research project
supported by the University of Luxembourg ”Mathematics Research in Decision
Making and Operations Research”, F1R-MTH-PUL-09MRDO,, project APVV-
0012-07 supported by the Slovak grant agency, the national grants Ministry of
Sciences of Serbia 174009 (Mathematical models of nonlinearity, uncertainty and
decision), Provincial Secretariat for Science and Technological Development of
Vojvodina. The article has drawn heavily upon material from Michel Grabisch,
Jean-Luc Marichal, Radko Mesiar, Endre Pap, Aggregation Functions, c©M.
Grabisch, J.-L. Marichal, R. Mesiar and E. Pap 2009, published by Cambridge
University Press, extracts reproduced with permission.

References

[1] J. Aczél. Lectures on functional equations and their applications. Math-
ematics in Science and Engineering, Vol. 19. Academic Press, New York,
1966. Translated by Scripta Technica, Inc. Supplemented by the author.
Edited by Hansjorg Oser.

[2] J. Aczél and C. Alsina. Characterizations of some classes of quasilinear
functions with applications to triangular norms and to synthesizing judg-
ments. Methods Oper. Res., 48:3–22, 1984.

[3] C. Alsina, M. J. Frank, and B. Schweizer. Associative functions, Triangular
norms and copulas. World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2006.

[4] C. Alsina, R. B. Nelsen, and B. Schweizer. On the characterization of a
class of binary operations on distribution functions. Statist. Probab. Lett.,
17(2):85–89, 1993.
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