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Abstract

The two-parts state-of-art overview of aggregation theory summarizes
the essential information concerning aggregation issues. Overview of ag-
gregation properties is given, including the basic classification of aggrega-
tion functions. In this first part, the stress is put on means, i.e., averaging
aggregation functions, both with fixed arity (n-ary means) and with open
arity (extended means).

1 Introduction

Aggregation functions play an important role in many of the technological tasks
scientists are faced with nowadays. They are specifically important in many
problems related to the fusion of information. More generally, aggregation func-
tions are widely used in pure mathematics (e.g., functional equations, theory
of means and averages, measure and integration theory), applied mathemat-
ics (e.g., probability, statistics, decision mathematics), computer and engineer-
ing sciences (e.g., artificial intelligence, operations research, information theory,
engineering design, pattern recognition and image analysis, data fusion, au-
tomated reasoning), economics and finance (e.g., game theory, voting theory,
decision making), social sciences (e.g., representational measurement, mathe-
matical psychology) as well as many other applied fields of physics and natural
sciences. Thus, a main characteristic of the aggregation functions is that they
are used in a large number of areas and disciplines.

The essence of aggregation is that the output value computed by the ag-
gregation function should represent or synthesize “in some sense” all individual
inputs, where quotes are put to emphasize the fact that the precise meaning
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of this expression is highly dependent on the context. In any case, defining or
choosing the right class of aggregation functions for a specific problem is a dif-
ficult task, considering the huge variety of potential aggregation functions. In
this respect, one could ask the following question: Consider a set of n values,
lying in some real interval [a, b] to be aggregated. Is any function from [a, b]n

to R a candidate to be an aggregation function? Obviously not. On the other
hand, it is not that easy to define the minimal set of properties a function should
fulfill to be an aggregation function. A first natural requirement comes from the
fact that the output should be a synthetic value. Then, if inputs are supposed
to lie in the interval [a, b], the output should also lie in this interval. Moreover,
if all input values are identical to the lower bound a, then the output should
also be a, and similarly for the case of the upper bound b. This defines a bound-
ary condition. A second natural requirement is nondecreasing monotonicity. It
means that if some of the input values increase, the representative output value
should reflect this increase, or at worst, stay constant. These two requirements
are commonly accepted in the field, and we adopt them as the basic definition
of an aggregation function.

Thus defined, the class of aggregation functions is huge, making the problem
of choosing the right function (or family) for a given application a difficult one.
Besides this practical consideration, the study of the main classes of aggregation
functions, their properties and their relationships, is so complex and rich that
it becomes a mathematical topic of its own.

A solid mathematical analysis of aggregation functions, able to answer both
mathematical and practical concerns, was the main motivation for us to prepare
a monograph [?]. From related recent monographs, recall the handbook [?] and
[?]. The aim of these two-parts invited state-of-art overview is to summarize
the essential information about aggregation functions for Information Sciences
readers, to open them the door to the rich world of tools important for informa-
tion fusion. With a kind permition of the publisher, some parts of [?] were used
in this manuscript. Moreover, to increase the transparentness, proofs of several
introduced results are not included (or sketched only), however, for interested
readers always an indication where the full proofs can be found is given.

The paper is organized as follows. In the next section, basic properties of
aggregation functions and several illustrative examples are given. Section 3 is
devoted to means related to the arithmetic mean and means with some special
properties. In Section 4, non-additive integral - based aggregation functions are
discussed, stressing a prominent role of the Choquet and Sugeno integrals. Part I
ends with some concluding remarks. In Part II, Section 2 deals with conjunctive
aggregation functions, especially with triangular norms and copulas. In Section
3, disjunctive aggregation functions are summarized, exploring their duality
to conjunctive aggregation functions. Moreover, several kinds of aggregation
functions mixing conjunctive and disjunctive aggregation functions, are also
included (uninorms, nullnorms, gamma operators, etc.). Several construction
methods for aggregation functions are introduced in Section 4. These methods
are not only a summarization showing how several kinds of aggregation functions
were introduced from simpler ones, but they allow to readers to taylor their
aggregation model when solving nonstandard problems resisting to standard
aggregation functions being used and fit to real data constraints. Finally, several
concluding remarks are included.
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2 Basic definitions and examples

2.1 Aggregation functions

Aggregation functions are special real functions with inputs from a subdomain
of the extended real line R = [−∞,∞]. We will deal with interval I domains,
independently of their type (open, closed, ...). The framework of aggregation
functions we deal with is constrained by the next definition, see also [?, ?, ?, ?]
for the case of closed domain I.

Definition 1. An aggregation function in In is a function A(n) : In → I that

(i) is nondecreasing (in each variable)

(ii) fulfills the boundary conditions

inf
x∈In

A(n)(x) = inf I and sup
x∈In

A(n)(x) = sup I. (1)

An extended aggregation function in ∪n∈NI
n is a mapping A :

⋃

n∈N
In → R

whose restriction A(n) := A|In to In is an aggregation function in In for any
n ∈ N.

Due to this definition, RanA ⊂ I and thus we will consider A :
⋃

n∈N
In → I

(A(n) : In → I) in the rest of the paper.
The integer n represents the arity of the aggregation function, that is, the

number of its variables. When no confusion can arise, the aggregation functions
will simply be written A instead of A(n).

To give a first instance, the arithmetic mean, defined by

AM
(n)(x) :=

1

n

n∑

i=1

xi , (2)

is clearly an extended aggregation function in any domain In (if I = R, conven-

tion +∞+(−∞) = −∞ is often considered). Moreover, ternary function AM
(3)

is an example of a ternary aggregation function. Among other basic (extended)
aggregation functions recall:

(i) the product
∏

(x) =
∏n

i=1 xi (I ∈ {|0, 1|, |0,∞|, |1,∞|}, where |a, b|
means any of four kinds of intervals, with boundary points a and b, and
with convention 0 · ∞ = 0;

(ii) the geometric mean GM(x) = (
∏n

i=1 xi)
1/n

(I ⊂ [0,∞], 0 · ∞ = 0);

(iii) the minimum function Min(x) = min{x1, . . . , xn} (arbitrary I);

(iv) the maximum function Max(x) = max{x1, . . . , xn} (arbitrary I);

(v) the sum function
∑

(x) =
∑n

i=1 xi (I ∈ {|0,∞|, | − ∞, 0|, | − ∞,∞|},
+∞ + (−∞) = −∞).

Based on many valued logics connectives [?, ?] we have the next classification
of aggregation functions.
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Definition 2. Consider an (extended) aggregation function A : In → I ( A :
∪n∈NI

n → I). Then

(i) A is called conjunctive whenever A 6 Min, i.e., A(x) 6 Min(x) for all
x ∈ In (x ∈ ∪n∈NI

n).

(ii) A is called disjunctive whenever A > Max.

(iii) A is called internal whenever Min 6 A 6 Max.

(iv) A is called mixed if it is not conjunctive neither disjunctive nor internal.

In particular case I = [0, 1] (or I = [a, b] ⊂ R), the standard duality of
aggregation functions is introduced.

Definition 3. Let A : [0, 1]n → [0, 1] be an aggregation function. Then the
function Ad : [0, 1]n → [0, 1] given by

A(x) = 1 − A(1 − x1, . . . , 1 − xn) (3)

is called a dual aggregation function (to A).

Evidently, Ad given by (3) is an aggregation function on [0, 1]. Similarly,
dual extended aggregation function Ad to A acting on [0, 1] can be introduced.
If I = [a, b] ⊂ R, then (3) should be modified into

Ad(x) = a + b − A(a + b − x1, . . . , a + b − xn).

It is evident that dual to a conjunctive (respectively disjunctive, mixed) ag-
gregation function is disjunctive (respectively conjunctive, mixed) aggregation
function.

Note that many properties defined for n-ary functions can be naturally
adapted to extended functions. For instance, with some abuse of language, the
extended function F : ∪n∈NI

n → R is said to be continuous if, for any n ∈ N,
the corresponding n-ary function F(n) = F|In is continuous. These adaptations
are implicitly assumed throughout, for example in sections 2.2, 2.3. Proper-
ties defined for extended aggregation functions only will be stressed explicitly
(note that these properties make an important link between aggregation func-
tions with fixed but different arities). In some cases, properties of general real
functions will be introduced.

2.2 Monotonicity properties

Definition 4. The function F : In → R is strictly increasing (in each argument)
if, for any x,x′ ∈ In,

x < x′ ⇒ F(x) < F(x′).

Thus, a function is strictly increasing if it is nondecreasing and if it presents
a positive reaction to any increase of at least one input value.

An intermediate kind of monotonicity (between nondecreasingness and strict
increasigness) is the unanimeonus increasigness, also called jointly strict increas-
ingness.
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Definition 5. The function F : In → R is unanimously increasing if it is
nondecreasing and if, for any x,x′ ∈ In,

xi < x′
i, ∀i ∈ {1, . . . , n} ⇒ F(x) < F(x′).

Clearly, strict increasing monotonicity ensures unanimous increasing mono-
tonicity. For example, the arithmetic mean AM is strictly increasing, hence
unanimously increasing. Functions Min and Max are unanimously increasing
but not strictly increasing. The product Π is unanimously increasing on [0, 1]n.
However, if 0 occurs among inputs, the strict monotonicity of Π is violated.
The bounded sum SL(x) = Min(

∑n
i=1 xi, 1) on [0, 1]n is nondecreasing but not

unanimously increasing.

2.3 Continuity properties

As already mentioned, the continuity of an extended aggregation function A

means the classical continuity of all n-ary functions A(n). The same holds for
the other kinds of continuity which are therefore introduced for n-ary functions
only. We recall only few of them, more details can be found in [?], section 2.2.2.

The continuity property can be strengthened into the well-known Lipschitz
condition [?]; see Zygmund [?].

Definition 6. Let ‖ · ‖ : Rn → [0,∞[ be a norm. If a function F : In → R

satisfies the inequality

|F(x) − F(y)| 6 c ‖x − y‖ (x,y ∈ In), (4)

for some constant c ∈ ]0,∞[ , then we say that F satisfies the Lipschitz condition

or is Lipschitzian (with respect to ‖ · ‖). More precisely, any function F : In →
R satisfying (4) is said to be c-Lipschitzian. The greatest lower bound d of
constants c > 0 in (4) is called the best Lipschitz constant (which means that
F is d-Lipschitzian but, for any u ∈ ]0, d[, F is not u-Lipschitzian).

Important examples of norms are given by the Minkowski norm of order
p ∈ [1,∞[, namely

‖x‖p :=

(
n∑

i=1

|xi|
p

)1/p

,

also called the Lp-norm, and its limiting case ‖x‖∞ := maxi |xi|, which is the
Chebyshev norm.

The c-Lipschitz condition has an interesting interpretation when applied in
aggregation. It allows us to estimate the relative output error in comparison
with input errors

|F(x) − F(y)| 6 c ε

whenever ‖x − y‖ 6 ε for some ε > 0.
We also have the following result.

Proposition 1. For arbitrary reals p, q ∈ [1,∞], a function F : In → R is
Lipschitzian with respect to the norm ‖ · ‖p if and only if it is Lipschitzian with
respect to the norm ‖ · ‖q. Moreover, if F is c-Lipschitzian with respect to the
norm ‖·‖p then it is also c-Lipschitzian with respect to the norm ‖·‖q for q 6 p,
and for q > p it is nc-Lipschitzian.
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In the theory of aggregation functions, when speaking about Lipschitz prop-
erty without mentioning the norm explicitly, always L1-norm is considered.
Observe that if I ⊂ R then the Lipschitz property (with respect to any norm)
implies the continuity but not vice-versa (consider the geometric mean GM on
I = [0, 1], for example).

Proposition 2. Let [a, b] be a real interval. The smallest and the greatest
aggregation functions defined in [a, b]n that are 1-Lipschitzian with respect to

the norm ‖ · ‖ are respectively given by A
(n)
∗ : [a, b]n → [a, b], with

A
(n)
∗ (x) := Max(b − ‖n · b − x‖, a),

and A∗(n) : [a, b]n → [a, b], with

A∗(n)(x) := Min(a + ‖x − n · a‖, b).

Note that if [a, b] = [0, 1] and L1-norm, A∗ = TL (Lukasiewicz t-norm),
where TL(x) = max(0,

∑n
i=1 xi − (n − 1), and A∗ = SL (bounded sum).

Example 1. The arithmetic mean AM : ∪n∈NI
n → R is 1-Lipschitzian (with

respect to the L1-norm) independently of the interval I. For each n ∈ N, the

best Lipschitz constant for AM
(n) is 1/n and AM

(n) is the only n-ary aggre-

gation function having this property. With respect to the L∞-norm, AM
(n) is

1-Lipschitzian for all n, 1 being the best Lipschitz constant.
The extended aggregation function Q : ∪n∈N[0, 1]n → [0, 1] given by Q(x) :=

∏

i xi
i is not Lipschitzian (with respect to the L1-norm), though each Q(n) is

Lipschitzian (the best Lipschitz constant for Q(n) is n).

We have also two next weaker forms of continuity (using the lattice notation
∨ for supremum and ∧ for infimum.

Definition 7. A nondecreasing function F : In → R is called lower semi-

continuous or left-continuous if, for all (x(k))k∈N ⊂ (In)N such that ∨kx
(k) ∈ In,

∨

k∈N

F(x(k)) = F

( ∨

k∈N

x(k)
)

.

Definition 8. A nondecreasing function F : In → R is called upper semi-

continuous or right-continuous if, for all (x(k))k∈N ⊂ (In)N such that ∧kx
(k) ∈

In,
∧

k∈N

F(x(k)) = F

( ∧

k∈N

x(k)
)

.

We have the following important result; see Klement et al. [?, Proposi-
tion 1.22].

Proposition 3. An aggregation function A : In → R is lower semi-continuous
(respectively, upper semi-continuous) if and only if A is lower semi-continuous
(respectively, upper semi-continuous) in each variable.

Proposition 4. An aggregation function A : In → R is continuous if and only
if it is both lower and upper semi-continuous.
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Example 2. (i) An important example of a left-continuous (lower semi-continuous)
but noncontinuous aggregation function is the nilpotent minimum TnM :
[0, 1]2 → [0, 1],

TnM(x1, x2) :=

{
Min(x1, x2) if x1 + x2 > 1
0 otherwise.

(ii) The drastic product TD : [0, 1]n → [0, 1], given by

TD(x) :=

{
Min(x) if |{i ∈ {1, . . . , n} | xi < 1}| < 2
0 otherwise,

is a noncontinuous but upper semi-continuous aggregation function.

2.4 Symmetry

The next property we consider is symmetry , also called commutativity, neutral-

ity, or anonymity. The standard commutativity of binary operations x∗y = y∗x,
well known in algebra, can be easily generalized to n-ary functions, with n > 2,
as follows.

Definition 9. F : In → R is a symmetric function if

F(x) = F(σ(x))

for any x ∈ In and for any permutation σ of (1, . . . , n), where σ(x) = (xσ(1), . . . , xσ(n)).

The symmetry property essentially means that the aggregated value does
not depend on the order of the arguments. This is required when combining
criteria of equal importance or anonymous experts’ opinions.1

Many aggregation functions introduced thus far are symmetric. For exam-
ple, AM, GM, SL, TL,

∏
, Min, Max are symmetric functions. A prominent ex-

ample of non-symmetric aggregation functions is the weighted arithmetic mean
WAMw, WAMw(x1, . . . , xn) =

∑n
i=1 wixi, where the nonnegative weights wi are

constrained by
∑n

i=1 wi = 1 (and at least one weight wi 6=
1
n , else WAMw = AM

is symmetric).
The following result, well-known in group theory, shows that the symmetry

property can be checked with only two equalities; see for instance Rotman [?,
Exercise 2.9 p. 24].

Proposition 5. F : In → R is a symmetric function if and only if, for all x ∈ In,
we have

(i) F(x2, x1, x3, . . . , xn) = F(x1, x2, x3, . . . , xn),

(ii) F(x2, x3, . . . , xn, x1) = F(x1, x2, x3, . . . , xn).

This simple test is very efficient, especially when symmetry does not appear
immediately, like in the 4-variable expression

(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x4) ∨ (x1 ∧ x3 ∧ x4) ∨ (x2 ∧ x3 ∧ x4),

which is nothing other than the 4-ary order statistic x(2).

1Of course, symmetry is more natural in voting procedures than in multicriteria decision
making, where criteria usually have different importances.
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2.5 Idempotency

Definition 10. F : In → R is an idempotent function if δF = id, that is,

F(n · x) = x (x ∈ I).

Idempotency is in some areas supposed to be a natural property of aggrega-
tion functions, e.g., in multicriteria decision making (see for instance Fodor and
Roubens [?]), where it is commonly accepted that if all criteria are satisfied at
the same degree x, implicitly assuming the commensurateness of criteria, then
also the overall score should be x.

It is evident that AM, WAMw, Min, Max, and Med are idempotent functions,
while Σ and Π are not. Recall also that any nondecreasing and idempotent
function F : In → R is an aggregation function.

2.5.1 Idempotent elements

Definition 11. An element x ∈ I is idempotent for F : In → R if δF(x) = x.

In [0, 1]n the product Π has no idempotent elements other than the extreme
elements 0 and 1. As an example of a function in [0, 1]n which is not idempotent
but has a non-extreme idempotent element, take an arbitrarily chosen element
c ∈ ]0, 1[ and define the aggregation function A{c} : [0, 1]n → [0, 1] as follows:

A{c}(x) := Med

(

0, c +
n∑

i=1

(xi − c), 1
)

,

where Med is the standard median function (i.e., in ternary case the ”midle”
input, between the smallest one and the greatest one). It is easy to see that the
only idempotent elements for A{c} are 0, 1, and c.

2.5.2 Strong idempotency

The idempotency property has been generalized to extended functions as follows;
see Calvo et al. [?].

Definition 12. F : ∪n∈NI
n → R is strongly idempotent if, for any n ∈ N,

F(n · x) = F(x) (x ∈ ∪m∈NI
m).

For instance, if F : ∪n∈NI
n → R is strongly idempotent then we have

F(x1, x2, x1, x2) = F(x1, x2).

Proposition 6. Suppose F : ∪n∈NI
n → R is strongly idempotent. Then F is

idempotent if and only if F(x) = x for all x ∈ I.

According to our convention on unary aggregation functions, namely A(x) =
x for all x ∈ I, it follows immediately from the previous proposition that any
strongly idempotent extended aggregation function is idempotent.

Example 3. (i) Let

∆ = (wi,n | n ∈ N, i ∈ {1, . . . , n})
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be the Pascal weight triangle, where

wi,n =

(
n−1
i−1

)

2n−1
,

and let WAM∆ : ∪n∈N[0, 1]n → [0, 1] be the corresponding extended
weighted arithmetic mean,

WAM∆(x) =

n∑

i=1

wi,nxi.

Then WAM∆ is idempotent but not strongly idempotent.

(ii) Projection to the first coordinate PF is a nonsymmetric strongly idem-
potent extended aggregation function. It is a special extended weighted
arithmetic mean, where

wi,n =

{

1 if i = 1,

0 else.

(iii) Define an extended aggregation function A : ∪n∈NI
n → I by

A(x) =

{

Min(x) if n is odd,

Max(x) if n is even.

Then A is symmetric and idempotent but not strongly idempotent.

2.6 Associativity

We consider first the associativity functional equation. Associativity of a binary
operation ∗ means that (x∗y)∗z = x∗(y∗z), so we can write x∗y∗z unambigu-
ously. If we write this binary operation as a two-place function f(a, b) = a ∗ b,
then associativity says that f(f(a, b), c) = f(a, f(b, c)). For general f , this is
the associativity functional equation.

Definition 13. F : I2 → I is associative if, for all x ∈ I3, we have

F
(
F(x1, x2), x3

)
= F

(
x1,F(x2, x3)

)
. (5)

A large number of papers deal with the associativity functional equation
(5) even in the field of real numbers. In complete generality, its investigation
naturally constitutes a principal subject of algebra. For a list of references see
Aczél [?, Section 6.2] and Alsina et al. [?].

Basically, associativity concerns aggregation of only two arguments. How-
ever, as stated in the next definition, associativity can be extended to any finite
number of arguments.

Recall that, for two vectors x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
m), we

use the convenient notation F(x,x′) to represent F(x1, . . . , xn, x′
1, . . . , x

′
m), and

similarly for more than two vectors. Also, if x ∈ I0 is an empty vector then
it is simply dropped from the function. For instance, F(x,x′) = F(x′) and
F(F(x),F(x′)) = F(F(x′)).
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Definition 14. F : ∪n∈NI
n → I is associative if F(x) = x for all x ∈ I and if

F(x,x′) = F(F(x),F(x′))

for all x,x′ ∈ ∪n∈N0
In.

As the next proposition shows, associativity means that each subset of
consecutive arguments can be replaced with their partial aggregation without
changing the overall aggregation.

Proposition 7. F : ∪n∈NI
n → I is associative if and only if F(x) = x for all

x ∈ I and
F(x,F(x′),x′′) = F(x,x′,x′′)

for all x,x′,x′′ ∈ ∪n∈N0
In.

Associativity is also a well-known algebraic property which allows one to
omit “parentheses” in an aggregation of at least three elements. Implicit in the
assumption of associativity is a consistent way of going unambiguously from the
aggregation of n elements to n + 1 elements, which implies that any associa-
tive extended function F is completely determined by its binary function F(2).
Indeed, by associativity, we clearly have

F(x1, . . . , xn+1) = F
(
F(x1, . . . , xn), xn+1

)
.

For practical purpose we can start with the aggregation procedure before
knowing all inputs to be aggregated. Additional input data are then simply
aggregated with the current aggregated output.

Each associative idempotent extended function is necessary strongly idem-
potent. For a fixed arity n > 2, we can introduce the associativity as follows.

Definition 15. Let F : In → R be an n-ary function. Then it is associative if,
for all x1, . . . , x2n−1 ∈ I, we have

F(F(x1, . . . , xn), xn+1, . . . , x2n−1) = F(x1,F(x2, . . . , xn+1), xn+2, . . . , x2n−1)

= F(x1, . . . , xn−1,F(xn, . . . , x2n−1)).

2.7 Decomposability

Introduced first in Bemporad [?, p. 87] in a characterization of the arith-
metic mean, associativity of means has been used by Kolmogoroff [?] and
Nagumo [?] to characterize the so-called mean values. More recently, Marichal
and Roubens [?] proposed to call this property “decomposability” in order not
to confuse it with classical associativity. Alternative names, such as associativ-

ity with repetitions or weighted associativity , could be naturally considered as
well.

When symmetry is not assumed, it is necessary to rewrite this property in
such a way that the first variables are not privileged. To abbreviate notations,
for nonnegative integers m,n, we write F(m·x, n·y) what means the repetition of
arguments, i.e., F(x, . . . , x

︸ ︷︷ ︸

m

, y, . . . , y
︸ ︷︷ ︸

n

). We then consider the following definition.
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Definition 16. F : ∪n∈NI
n → I is decomposable if F(x) = x for all x ∈ I and if

F(x,x′) = F
(
k · F(x), k′

· F(x′)
)

(6)

for all k, k′ ∈ N0, all x ∈ Ik, and all x′ ∈ Ik
′

.

By considering k = 0 or k′ = 0 in (6), we see that any decomposable function
is range-idempotent. Moreover, as the following proposition shows, decompos-
ability means that each element of any subset of consecutive arguments can be
replaced with their partial aggregation without changing the overall aggregation.

Proposition 8. F : ∪n∈NI
n → I is decomposable if and only if F(x) = x for all

x ∈ I and
F
(
x, k′

· F(x′),x′′
)

= F(x,x′,x′′)

for all k′ ∈ N0, all x′ ∈ Ik
′

, and all x,x′′ ∈ ∪n∈N0
In.

2.8 Bisymmetry

Another grouping property is the bisymmetry.

Definition 17. F : I2 → I is bisymmetric if for all x ∈ I4, we have

F
(
F(x1, x2),F(x3, x4)

)
= F

(
F(x1, x3),F(x2, x4)

)
.

The bisymmetry property is very easy to handle and has been investigated
from the algebraic point of view by using it mostly in structures without the
property of associativity. For a list of references see Aczél [?, Section 6.4] (see
also Aczél and Dhombres [?, Chapter 17], and Soublin [?]).

For n arguments, bisymmetry takes the following form (see Aczél [?]).

Definition 18. F : In → I is bisymmetric if

F
(
F(x11, . . . , x1n), . . . ,F(xn1, . . . , xnn)

)

= F
(
F(x11, . . . , xn1), . . . ,F(x1n, . . . , xnn)

)

for all square matrices





x11 · · · x1n

...
...

xn1 · · · xnn




 ∈ In×n.

Bisymmetry expresses the condition that aggregation of all the elements of
any square matrix can be performed first on the rows, then on the columns,
or conversely. However, since only square matrices are involved, this property
seems not to have a good interpretation in terms of aggregation. Its usefulness
remains theoretical. We then consider it for extended functions as follows; see
Marichal et al. [?].

Definition 19. F : ∪n∈NI
n → I is strongly bisymmetric if F(x) = x for all

x ∈ I, and if, for any n, p ∈ N, we have

F
(
F(x11, . . . , x1n), . . . ,F(xp1, . . . , xpn)

)

= F
(
F(x11, . . . , xp1), . . . ,F(x1n, . . . , xpn)

)
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for all matrices 




x11 · · · x1n

...
...

xp1 · · · xpn




 ∈ Ip×n.

Remark 1. Contrary to bisymmetry, the strong bisymmetry property can be
justified rather easily. Consider n judges (or criteria, attributes, etc.) giving a
numerical score to each of p candidates. These scores, assumed to be defined
on the same scale, can be put in a p × n matrix like






J1 · · · Jn

C1 x11 · · · x1n
...

...
...

Cp xp1 · · · xpn






Suppose now that we want to aggregate all the entries (scores) of the matrix
in order to obtain an overall score of the p candidates. A reasonable way to
proceed could be the following. First aggregate the scores of each candidate
(aggregation over the rows of the matrix), and then aggregate these overall val-
ues. An alternative way to proceed would be to first aggregate the scores given
by each judge (aggregation over the columns of the matrix), and then aggregate
these values. The strong bisymmetry property means that these two ways to
aggregate must lead to the same overall score, which is a natural property. Of
course, we could as well consider only one candidate, n judges, and p criteria
(assuming commensurateness of the scores along the criteria). In this latter
setting, strong bisymmetry seems very natural as well.

2.9 Neutral and annihilator elements

The neutral element is again a well-known notion coming from the area of
binary operations. Recall that for a binary operation ∗ defined on a domain X,
an element e ∈ X is called a neutral element (of the operation ∗) if

x ∗ e = e ∗ x = x (x ∈ X).

Clearly, any binary operation ∗ can have at most one neutral element. From the
previous equalities we can see that the action of the neutral element of a binary
operation has the same effect as its omission. This idea is the background of
the general definition.

Definition 20. Let F : ∪n∈NI
n → R be an extended function. An element

e ∈ I is called an extended neutral element of F if, for any i ∈ {1, . . . , n} and
any x ∈ In such that xi = e, then

F(x1, . . . , xn) = F(x1, . . . , xi−1, xi+1, . . . , xn).

So the extended neutral element can be omitted from the input values with-
out influencing the aggregated value. In multicriteria decision making, assign-
ing a score equal to the extended neutral element (if it exists) to some criterion
means that only the other criteria fulfillments are decisive for the overall eval-
uation.

For n-ary functions, there is an alternative approach, given in the following
definition:

12



Definition 21. An element e ∈ I is called a neutral element of a function
F : In → R if, for any i ∈ {1, . . . , n} and any x ∈ I, we have F(x{i}e) = x.

Clearly, if e ∈ I is an extended neutral element of an extended function
F : ∪n∈NI

n → I, with F(1)(x) = x, then e is a neutral element of all F(n),
n ∈ N. For instance, e = 0 is an extended neutral element for the extended sum
function Σ.

Definition 22. An element a ∈ I is called an annihilator element of a function
F : In → R if, for any x ∈ In such that a ∈ {x1, . . . , xn}, we have F(x) = a.

Proposition 9. Consider an aggregation function A : In → I. If A is con-
junctive and a := inf I ∈ I then a is an annihilator element. Dually, if A is
disjunctive and b := sup I ∈ I then b is an annihilator element.

The converse of Proposition 9 is false. For instance, in [0, 1]n, 0 is an anni-
hilator of the geometric mean GM, which is not conjunctive.

For more specific properties of aggregation functions we recommend to con-
sider [?], chapter 2.

3 Means and averages

It would be very unnatural to propose a monograph on aggregation functions
without dealing somehow with means and averaging functions. Already dis-
covered and studied by the ancient Greeks,2 the concept of mean has given
rise today to a very wide field of investigation with a huge variety of applica-
tions. Actually, a tremendous amount of literature on the properties of several
means (such as the arithmetic mean, the geometric mean, etc.) has already
been produced, especially since the 19th century, and is still developing today.
For a good overview, see the expository paper by Frosini [?] and the remarkable
monograph by Bullen [?].

The first modern definition of mean was probably due to Cauchy [?] who
considered in 1821 a mean as an internal function. We adopt this approach and
assume further that a mean should be a nondecreasing function.

As usual, I represents a nonempty real interval, bounded or not. The more
general cases where I includes −∞ and/or ∞ will always be mentioned explicitly.

Definition 23. An n-ary mean in In is an internal aggregation function M :
In → I. An extended mean in ∪n∈NI

n is an extended function M : ∪n∈NI
n → I

whose restriction to each In is a mean.

It follows that a mean is nothing other than an idempotent aggregation
function. Moreover, if M : In → I is a mean in In, then it is also a mean in Jn,
for any subinterval J ⊆ I.

The concept of mean as an average or numerical equalizer is usually ascribed
to Chisini [?, p. 108], who gave in 1929 the following definition:

Let y = F(x1, . . . , xn) be a function of n independent variables
x1, . . . , xn. A mean of x1, . . . , xn with respect to the function F

2See Antoine [?, Chapter 3] for a historical discussion of the various Greek notions of
“mean”.
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is a number M such that, if each of x1, . . . , xn is replaced by M , the
function value is unchanged, that is,

F(M, . . . , M) = F(x1, . . . , xn).

When F is considered as the sum, the product, the sum of squares, the sum
of inverses, or the sum of exponentials, the solution of Chisini’s equation corre-
sponds respectively to the arithmetic mean, the geometric mean, the quadratic
mean, the harmonic mean, and the exponential mean.

Unfortunately, as noted by de Finetti [?, p. 378] in 1931, Chisini’s definition
is so general that it does not even imply that the “mean” (provided there exists
a real and unique solution to Chisini’s equation) fulfills Cauchy’s internality
property.

To ensure existence, uniqueness, and internality of the solution of Chisini’s
equation, we assume that F is nondecreasing and idempotizable. Therefore we
propose the following definition:

Definition 24. A function M : In → I is an average in In if there exists a
nondecreasing and idempotizable function F : In → R such that F = δF ◦ M. In
this case, we say that M is an average associated with F in In.

Averages are also known as Chisini means or level surface means. The
average associated with F is also called the F-level mean (see Bullen [?, VI.4.1]).
The following result shows that, thus defined, the concepts of mean and average
coincide.

Proposition 10. The following assertions hold:

(i) Any average is a mean.

(ii) Any mean is the average associated with itself.

(iii) Let M be the average associated with a function F : In → R. Then M

is the average associated with a function G : In → R if and only if there
exists an increasing bijection ϕ : ran(F) → ran(G) such that G = ϕ ◦ F.

Proposition 10 shows that, thus defined, the concepts of mean and average
are identical and, in a sense, rather general. Note that some authors (see for
instance Bullen [?, p. xxvi], Sahoo and Riedel [?, Section 7.2], and Bhatia [?,
Chapter 4]) define the concept of mean by adding conditions such as continuity,
symmetry, and homogeneity, which is M(r x) = r M(x) for all admissible r ∈ R.

3.1 Quasi-arithmetic means

A well-studied class of means is the class of quasi-arithmetic means (see for
instance Bullen [?, Chapter IV]), introduced as extended aggregation functions
as early as 1930 by Kolmogoroff [?], Nagumo [?], and then as n-ary functions in
1948 by Aczél [?]. In this section we introduce the quasi-arithmetic means and
describe some of their properties and axiomatizations.

Definition 25. Let f : I→ R be a continuous and strictly monotonic function.
The n-ary quasi-arithmetic mean generated by f is the function Mf : In → I

defined as

Mf (x) := f−1
( 1

n

n∑

i=1

f(xi)
)

. (7)
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The extended quasi-arithmetic mean generated by f is the function Mf : ∪n∈NI
n →

I whose restriction to In is the n-ary quasi-arithmetic mean generated by f .

Remark 2. (i) Each quasi-arithmetic mean Mf is a mean in the sense of
Definition 23. It is also the average associated with n(f◦Mf ). For instance,
the arithmetic mean Mf = AM (with f = id) is the average associated
with the sum Σ.

(ii) In certain applications it may be convenient to extend the range of f to
the extended real line R = [−∞,∞]. Evidently, in this case it is necessary
to define the expression ∞−∞, which will often be considered as −∞.

The class of quasi-arithmetic means comprises most of the algebraic means
of common use such as the arithmetic mean and the geometric mean. Table 1
provides some well-known instances of quasi-arithmetic means.

f(x) Mf (x) name notation

x 1
n

n∑

i=1

xi arithmetic mean AM

x2
(

1
n

n∑

i=1

x2
i

)1/2

quadratic mean QM

log x
( n∏

i=1

xi

)1/n

geometric mean GM

x−1 1

1

n

n
P

i=1

1

xi

harmonic mean HM

xα (α ∈ R \ {0})
(

1
n

n∑

i=1

xα
i

)1/α

root-mean-power Midα

eαx (α ∈ R \ {0}) 1
α ln

(
1
n

n∑

i=1

eαxi

)

exponential mean EMα

Table 1: Examples of quasi-arithmetic means

The function f occurring in (7) is called a generator of Mf . Aczél [?] showed
that f is determined up to a linear transformation. More generally, we have the
following result (see Bullen et al. [?, p. 226]):

Proposition 11. Let f, g : I → R be continuous and strictly monotonic func-
tions. Assume also that g is increasing (respectively, decreasing). Then

(i) Mf 6 Mg if and only if g ◦ f−1 is convex (respectively, concave);

(ii) Mf = Mg if and only if g ◦ f−1 is linear, that is,

g(x) = rf(x) + s (r, s ∈ R, r 6= 0).
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We now present an axiomatization of the class of quasi-arithmetic means as
extended aggregation functions, originally called mean values. The next theorem
brings an axiomatization of quasi-arithmetic means as extended aggregation
functions. This axiomatization was obtained independently by Kolmogoroff [?]
and Nagumo [?] in 1930.

Theorem 1. F : ∪n∈NI
n → R is symmetric, continuous, strictly increasing,

idempotent, and decomposable if and only if there is a continuous and strictly
monotonic function f : I→ R such that F = Mf is the extended quasi-arithmetic
mean generated by f .

Another axiomatization of n-ary quasi-arithmetic means is due to Aczél [?].

Theorem 2. The function F : In → R is symmetric, continuous, strictly in-
creasing, idempotent, and bisymmetric if and only if there is a continuous and
strictly monotonic function f : I→ R such that F = Mf is the quasi-arithmetic
mean generated by f .

Remark 3. Note that the results given in Theorem 1, and Theorem 2 can be
extended to subintervals I of the extended real line containing ∞ or −∞ with
a slight modification of the requirements. Namely, the codomain of F should be
[−∞,∞], and the strict monotonicity and continuity are required for bounded
input vectors only. Observe also that if I = [−∞,∞] then the corresponding
quasi-arithmetic means are no more continuous due to the non-continuity of the
standard summation on [−∞,∞].

Adding some particular property, a special subfamily of quasi-arithmetic
means is obtained. Due to Nagumo [?] we have the next result.

Theorem 3. (i) The quasi-arithmetic mean M : In → I is difference scale
invariant, i.e., M(x + c) = M(x) + c for all x ∈ In and c = (c, . . . , c) ∈ Rn

such that x + c ∈ In, if and only if either M is the arithmetic mean AM

or M is the exponential mean, i.e., there exists α ∈ R \ {0} such that

M(x) =
1

α
ln
( 1

n

n∑

i=1

eαxi

)

.

(ii) Assume I ⊆ ]0,∞[. The quasi-arithmetic mean M : In → I is ratio scale
invariant, i.e., M(cx) = cM(x) for all x ∈ In and c > 0 such that cx ∈ In,
if and only if either M is the geometric mean GM or M is the root-mean-
power, i.e., there exists α ∈ R \ {0} such that

M(x) =
( 1

n

n∑

i=1

xα
i

) 1

α

.

A modification of Theorem 2, where the symmetry requirements is omitted,
yields an axiomatic characterization of weighted quasi-arithmetic means, see
Aczél [?] (these are called also quasi-linear means in some sources).

Theorem 4. The function F : In → R is continuous, strictly increasing, idempo-
tent, and bisymmetric if and only if there is a continuous and strictly monotonic
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f(x) M(x) name notation

x
n∑

i=1

wi xi weighted arithmetic mean WAMw

x2
( n∑

i=1

wi x2
i

)1/2

weighted quadratic mean WQMw

log x
n∏

i=1

xwi

i weighted geometric mean WGMw

xα (α ∈ R \ {0})
( n∑

i=1

wi xα
i

)1/α

weighted root-mean-power WMidα,w

Table 2: Examples of quasi-linear means

function f : I→ R and real numbers w1, . . . , wn > 0 satisfying
∑

i wi = 1 such
that

F(x) = f−1
( n∑

i=1

wi f(xi)
)

(x ∈ In). (8)

Weighted quasi-arithmetic means can be seen as transformed weighted arith-
metic means. The later means are trivially characterized by the additivity prop-
erty, i.e., F(x + y) = F(x) + F(y) for all x,y,x + y ∈ Dom(F).

Proposition 12. F : Rn → R is additive, nondecreasing, and idempotent if
and only if there exists a weight vector w ∈ [0, 1]n satisfying

∑

i wi = 1 such
that F = WAMw.

Corollary 1. F : Rn → R is additive, nondecreasing, symmetric, and idempo-
tent if and only if F = AM is the arithmetic mean.

Remark 4. As will be discussed in Section 4, the weighted arithmetic means
WAMw are exactly the Choquet integrals with respect to additive normalized
capacities; see Proposition 14 (v). If we further assume the symmetry property,
we obtain the arithmetic mean AM.

A natural way to generalize the quasi-arithmetic mean consists in incorpo-
rating weights as in the quasi-linear mean (8). To generalize a step further, we
could assume that the weights are not constant. On this issue, Losonczi [?, ?]
considered and investigated in 1971 nonsymmetric functions of the form

M(x) = f−1

(∑n
i=1 pi(xi)f(xi)
∑n

i=1 pi(xi)

)

,

where f : I→ R is a continuous and strictly monotonic function and p1, . . . , pn :
I → ]0,∞[ are positive valued functions. The special case where p1 = · · · = pn
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was previously introduced in 1958 by Bajraktarević [?] who defined the concept
of quasi-arithmetic mean with weight function as follows (see also Páles [?]).3

Definition 26. Let f : I→ R be a continuous and strictly monotonic function
and let p : I→ ]0,∞[ be a positive valued function. The n-ary quasi-arithmetic

mean generated by f with weight function p is the function Mf,p : In → I defined
as

Mf,p(x) = f−1

(∑n
i=1 p(xi)f(xi)
∑n

i=1 p(xi)

)

.

The extended quasi-arithmetic mean generated by f with weight function p
is the function Mf,p : ∪n∈NI

n → I whose restriction to In is the n-ary quasi-
arithmetic mean generated by f with weight function p.

It is very important to note that, even though quasi-arithmetic means with
weight function are (clearly) idempotent, they need not be nondecreasing, which
implies that they need not be means or even aggregation functions. To give an
example, consider the case where n = 2, f(x) = x, and p(x) = 2x + 1, that is,

Mf,p(x1, x2) =
2x2

1 + 2x2
2 + x1 + x2

2x1 + 2x2 + 2
.

We can readily see that the section x 7→ Mf,p(x, 1) of this binary function is not
nondecreasing.

Assuming that the weight function p is nondecreasing and differentiable,
Marques Pereira and Ribeiro [?] and Mesiar and Špirková [?] found sufficient
conditions on p to ensure nondecreasing monotonicity of Mid,p. Here we assume
I = [0, 1] as in [?] but the conditions easily extend to arbitrary intervals. For
extended arithmetic means Mid,p with weight function p, the simplest sufficient
condition to ensure nondecreasing monotonicity is p(x) > p′(x) > 0. A more
general one is

p(x) > (1 − x)p′(x) > 0 (x ∈ [0, 1]).

Remark 5. For extended quasi-arithmetic means Mf,p with weight function p,
assuming that both f and p are increasing and differentiable and that ran(f) =
[0, 1], the above sufficient condition generalizes into

f ′(x) p(x) > (1 − f(x)) p′(x) > 0 (x ∈ [0, 1]).

For n-ary arithmetic means Mid,p with weight function p, we also have the
sufficient condition

p2(x)

(n − 1) p(1)
+ p(x) > (1 − x)p′(x) (x ∈ [0, 1]).

Remark 6. It is worth mentioning that Mf,p can also be obtained by the
minimization problem

Mf,p(x) = arg min
r∈R

n∑

i=1

p(xi) (f(xi) − f(r))2.

Evidently, in the same way, classical quasi-arithmetic means (p is constant) and
weighted quasi-arithmetic means (replace p(xi) with wi) are obtained. For more
details, see Calvo et al. [?] and Mesiar and Špirková [?].

3The subcase where f = id, called Beckenbach-Gini means or mixture operators, has been
investigated by Marques Pereira and Ribeiro [?], Matkowski [?], and Yager [?].
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3.2 Constructions of means

There are several methods how to construct means (binary, n-ary, extended).
Integral-based methods are discussed in Section 4.

Means can also be constructed by minimization of functions. This construc-
tion method will be thoroughly discussed in Part II, Section 4.

To give here a simple example, consider weights w1, w2 ∈ ]0,∞[ and minimize
(in r) the expression

f(r) = w1|x1 − r| + w2(x2 − r)2.

This minimization problem leads to the unique solution

r = M(x1, x2) = Med
(
x1, x2 −

w1

2w2
, x2 +

w1

2w2

)
,

which defines a mean M : R2 → R.
Any nonsymmetric function F can be symmetrized by replacing it variables

x1, . . . , xn with corresponding order statistics functions x(1) (minimal input),
x(2), . . . , x(n) (maximal input).

One of the simplest examples is given by the ordered weighted averaging

function

OWAw(x) =
n∑

i=1

wi x(i), (9)

which merely results from the symmetrization of the corresponding weighted
arithmetic mean WAMw.

Remark 7. The concept of ordered weighted averaging function was intro-
duced by Yager4 in 1988; see Yager [?], and also the book [?] edited by Yager
and Kacprzyk. Since then, the family of these functions has been axiomatized
in various ways; see for instance Fodor et al. [?] and Marichal and Mathonet [?].
Also, these functions are exactly the Choquet integrals with respect to symmet-
ric normalized capacities; see Proposition 14 (vi).

The symmetrization process can naturally be applied to the quasi-linear
mean (i.e., to the weighted quasi-arithmetic mean) (8) to produce the quasi-

ordered weighted averaging function OWAw,f : In → R, which is defined as

OWAw,f (x) := f−1
( n∑

i=1

wif(x(i))
)

,

where the generator f : I→ R is a continuous and strictly monotonic function;
see Fodor et al. [?].

The classical mean value formulas (Lagrange, Cauchy) lead to the concept
of lagrange (Cauchy) means, see [?] and [?, ?].

Definition 27. Let f : I→ R be a continuous and strictly monotonic function.
The Lagrangian mean M[f ] : I2 → I associated with f is a mean defined as

M[f ](x, y) :=







f−1

(
1

y − x

∫ y

x

f(t) dt

)

if x 6= y

x if x = y.
(10)

4Note however that linear (not necessarily convex) combinations of ordered statistics were
already studied previously in statistics; see for instance Weisberg [?] (and David and Na-
garaja [?, Section 6.5] for a more recent overview).
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The uniqueness of the generator is the same as for quasi-arithmetic means:
Let f and g be two generators of the same Lagrangian mean. Then, there exist
r, s ∈ R, r 6= 0 such that g(x) = rf(x) + s; see [?, Corollary 7], [?, p. 344], and
[?, Theorem 1].

Many classical means are Lagrangian. The arithmetic mean, the geometric
mean, and the so-called Stolarsky means [?], defined by

MS(x, y) :=







(
xr − yr

r(x − y)

) 1

r−1

if x 6= y

x if x = y,

correspond to taking f(x) = x, f(x) = 1/x2, and f(x) = xr−1, respectively, in
(10). The harmonic mean, however, is not Lagrangian.

In general, some of the most common means are both quasi-arithmetic and
Lagrangian, but there are quasi-arithmetic means, like the harmonic one, which
are not Lagrangian. Conversely, the logarithmic mean

M(x, y) :=







x − y

log x − log y
for x, y > 0, x 6= y

x for x = y > 0,

is an example of a Lagrangian mean (actually a Stolarsky mean, f(x) = 1/x),
that is not quasi-arithmetic. A characterization of the class of Lagrangian means
and a study of its connections with the class of quasi-arithmetic means can
be found in Berrone and Moro [?]. Further properties of Lagrangian means
and other extensions are investigated for instance in Aczél and Kuczma [?],
Berrone [?], G lazowska [?], Horwitz [?, ?], Kuczma [?], Sándor [?], and Wimp
[?].

Definition 28. Let f, g : I→ R be continuous and strictly monotonic functions.
The Cauchy mean M[f,g] : I2 → I associated with the pair (f, g) is a mean defined
as

M[f,g](x, y) :=







f−1

(
1

g(y) − g(x)

∫ y

x

f(t) dg(t)

)

if x 6= y

x if x = y.

We note that any Cauchy mean is continuous, idempotent, symmetric, and
strictly increasing.

When g = f (respectively, g is the identity function), we retrieve the quasi-
arithmetic (respectively, the Lagrangian) mean generated by f . The anti-

Lagrangian mean [?] is obtained when f is the identity function. For exam-
ple, the harmonic mean is an anti-Lagrangian mean generated by the function
g = 1/x2. We also note that the generator of an anti-Lagrangian mean is defined
up to a non-zero affine transformation.

Further studies on Cauchy means can be found for instance in Berrone [?],
Lorenzen [?], and Losonczi [?, ?]. Extensions of Lagrangian and Cauchy means,
called generalized weighted mean values, including discussions on their mono-
tonicity properties, can be found in Chen and Qi [?, ?], Qi et al. [?, ?, ?], and
Witkowski [?].
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3.3 Associative means

The class of continuous, nondecreasing, idempotent, and associative binary func-
tions is described in the next theorem. The result is due to Fodor [?] who
obtained this description in a more general framework, where the domain of
variables is any connected order topological space. Alternative proofs were ob-
tained independently in Marichal [?, Section 3.4] and [?, Section 5].

Theorem 5. M : I2 → I is continuous, nondecreasing, idempotent, and asso-
ciative if and only if there exist α, β ∈ I such that

M(x, y) = (α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y). (11)

Notice that, by distributivity of ∧ and ∨, M can be written also in the
equivalent form:

M(x, y) = (β ∨ x) ∧ (α ∨ y) ∧ (x ∨ y).

The graphical representation of M is given in Figure 1.

✻

✲

�
�
�

Max

Min

β

α

0 1 x

1

y

α

β

Figure 1: Representation on [0, 1]2 of function (11) when α 6 β

Theorem 5 can be generalized straightforwardly to extended means as fol-
lows.

Theorem 6. M : ∪n∈NI
n → I is continuous, nondecreasing, idempotent, and

associative if and only if there exist α, β ∈ I such that, for any n ∈ N,

M(n)(x) = (α ∧ x1) ∨
( n−1∨

i=2

(α ∧ β ∧ xi)
)

∨ (β ∧ xn) ∨
( n∧

i=1

xi

)

. (12)

Remark 8. Means described in Theorem 5 are nothing other than idempotent
binary lattice polynomial functions, that is, binary Sugeno integrals; see Sec-
tion 4. We also observe that the n-ary lattice polynomial function given in (12)
is an n-ary Sugeno integral defined from a particular normalized capacity.

The special case of symmetric associative means was already discussed by
Fung and Fu [?] and revisited in Dubois and Prade [?]. It turns out that these
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functions are the α-medians, i.e., for α ∈ I α-median , Medα : In → I is given
by

Medα(x) = Med(x1, . . . , xn, α, . . . , α
︸ ︷︷ ︸

n−1

) = Med(Min(x), α,Max(x)).

The description is the following.

Theorem 7. M : I2 → I is symmetric, continuous, nondecreasing, idempotent,
and associative if and only if there exist α ∈ I such that M = Medα. Similarly,
M : ∪n∈NI

n → I is symmetric, continuous, nondecreasing, idempotent, and
associative if and only if there exist α ∈ I such that, for any n ∈ N, M(n) =
Med

(n)
α .

Remark 9. Since the conjunction of symmetry and associativity implies bisym-
metry, we immediately see that the α-medians Medα are particular nonstrict
arithmetic means.

Czoga la and Drewniak [?] have examined the case when M has a neutral
element e ∈ I. They obtained the following result.

Theorem 8. If M : I2 → I is nondecreasing, idempotent, associative, and has
a neutral element e ∈ I, then there is a nonincreasing function g : I → I with
g(e) = e such that, for all x, y ∈ I,

M(x, y) =







x ∧ y if y < g(x)

x ∨ y if y > g(x)

x ∧ y or x ∨ y if y = g(x).

Furthermore, if M is continuous, then M = Min or M = Max.

Remark 10. (i) Fodor [?] showed that Theorem 8 still holds in the more
general framework of connected order topological spaces.

(ii) The restriction of Theorem 8 to symmetric functions corresponds to idem-
potent uninorms.

4 Aggregation functions based on nonadditive

integrals

The preceding section has developed the notion of means, which can be viewed
as a variation of the idea of finite sum. Another generalization is the notion of
integral, where the sum becomes infinite. Beside the classical Riemann integral,
many types of integral exist, but there is one which is of particular interest to
us, namely the Lebesgue integral, which is defined with respect to a measure.
Indeed, the classical notion of measure extends the notion of weight to infinite
universes, and the Lebesgue integral on a finite universe coincides with the
weighted arithmetic mean. Therefore, the existence of more general notions of
measure than the classical additive one, together with the appropriate integrals,
offer a new realm of aggregation functions when these integrals are limited to
a finite universe. These general measures may be called nonadditive measures,
and the corresponding integrals nonadditive integrals, however a more precise
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term would be monotonic measures since additivity is replaced by monotonicity,
although the most common name —which we will use—, is capacity, as coined
by Choquet [?]. The term fuzzy measure introduced by Sugeno [?] is often used
in the fuzzy set community, although this term is mathematically misleading
since no fuzziness is involved there.

There are basically two types of integrals defined with respect to a capacity,
namely the Choquet integral and the Sugeno integral, leading to two interesting
classes of aggregation functions, developed in this section.

We start by introducing the notion of capacity.

Definition 29. Let X = {1, . . . , n} be a given universe. A set function µ :
2X → [0,∞[ is called a capacity if µ(∅) = 0 and µ(A) 6 µ(B) whenever
A ⊂ B ⊂ X (monotonicity). If in addition µ(X) = 1, the capacity is normalized.

If µ does not satisfy monotonicity, it is called a game. If µ takes only values
0 and 1, then µ is called a 0-1 capacity. For any capacity µ, the dual capacity
is defined by µd(A) := µ(X) − µ(X \ A), for any A ⊆ X.

Let µ be a capacity on X and A,B ⊆ X. We say that µ is additive if
µ(A ∪ B) = µ(A) + µ(B) whenever A and B are disjoint; it is symmetric if
µ(A) = µ(B) whenever |A| = |B|; it is maxitive if µ(A∪B) = µ(A)∨µ(B), and
it is minitive if µ(A ∩ B) = µ(A) ∧ µ(B).

We give several fundamental examples of capacities.

(i) The smallest normalized capacity is µmin(A) := 0, ∀A  X, while the
greatest one is µmax(A) := 1, ∀A ⊆ X, A 6= ∅;

(ii) For any i ∈ X, the Dirac measure centered on i is defined by, for any
A ⊆ X

δi(A) :=

{

1 if i ∈ A

0 otherwise.

(iii) For any integer k, 1 6 k 6 n, the threshold measure τk is defined by

τk(A) :=

{

1 if |A| > k

0 otherwise.

The class of all capacities on X can be partitionned into the so-called k-
additive capacities, k = 1, . . . , n. We need some additional definitions to intro-
duce this new concept (details can be found in [?, ?, ?]). For a given capac-
ity µ on X, their Möbius transform mµ : X → R and interaction transform

Iµ : X → R are defined by

mu(A) :=
∑

B⊆A

(−1)|A\B|µ(B)

Iµ(A) :=
∑

B⊇A

1

b − a + 1
mµ(B)

for all A ⊆ X, with a = |A|, b = |B|. A remarkable particular case is A = {i},
i ∈ X, for the interaction transform, since we recover the well-known Shapley
value, whose more familiar expression is

Iµ({i}) =: φi(µ) =
∑

A⊆X\i

(n − a − 1)!a!

n!
(µ(A ∪ i) − µ(A)).
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A capacity µ is k-additive for some 2 ≤ k ≤ n if mµ(A) = 0 for all A such that
|A| > k, and there exists some A ⊆ X, |A| = k, such that mµ(A) 6= 0. Note
that due to the definition of the interaction transform, the above definition can
be equivalently written with Iµ instead of mµ.

4.1 Choquet integral based aggregation functions

The Choquet integral was introduced in 1953 by Choquet [?]. It is a general-
ization of the Lebesgue integral where the (classical) measure is replaced by a
capacity.

Definition 30. Let µ be a capacity on X = {1, . . . , n} and x ∈ [0,∞[
n

. The
Choquet integral of x with respect to µ is defined by

Cµ(x) :=

n∑

i=1

(xσ(i) − xσ(i−1))µ(Aσ(i))

with σ a permutation on {1, . . . , n} such that xσ(1) 6 xσ(2) 6 · · · 6 xσ(n), with
the convention xσ(0) := 0, and Aσ(i) := {σ(i), . . . , σ(n)}.

We will often use the more compact notation x(i) instead of xσ(i), which was
already introduced in Section 3.

It is straightforward to see that an equivalent formula is

Cµ(x) =

n∑

i=1

x(i)

(
µ(A(i)) − µ(A(i+1))

)
,

with A(n+1) := ∅. It can be shown that Cµ is a continuous aggregation function,
for any capacity µ. However, if Cµ is defined on I which is a bounded interval
[0, a], it is necessary that the capacity is normalized, otherwise the bounds of
interval will not be preserved.

If x ∈ Rn, there exist two ways of defining Cµ(x), according to how the
symmetry is done. The usual one is the following:

Cµ(x) = Cµ(x+) − Cµd(x−)

for all x ∈ Rn, where x+
i := xi ∨ 0 for all i ∈ X, and x− := (−x)+. For the

sake of concision, we do not detail further this topic here and refer the reader
to [?]. The Choquet integral with I = R has a very simple form in terms of the
Möbius transform:

Cµ(x) =
∑

A⊆X

(

mµ(A) ·
∧

i∈A

xi

)

.

A last remark before studying properties of the Choquet integral is that this
aggregation function when I = [0, 1] can be obtained as the unique linear parci-
monious interpolation on the vertices of the hypercube [0, 1]n. This remarkable
property comes from the fact that for any capacity µ, we have Cµ(1A) = µ(A)
for any subset A ⊆ X, where 1A is the characteristic vector of A. Indeed, ver-
tices of [0, 1]n correspond to the vectors 1A, A ⊆ X, and for a given x ∈ [0, 1]n

which is not a vertex, the interpolation is done with the vertices of the canonical
simplex

[0, 1]nσ := {x ∈ [0, 1]n | xσ(1) 6 · · · 6 xσ(n)}

with σ any permutation such that x ∈ [0, 1]nσ.
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Definition 31. Let x,x′ ∈ Rn. We say that x,x′ are comonotonic if there
exists a permutation σ on {1, . . . , n} such that xσ(1) 6 xσ(2) 6 · · · 6 xσ(n) and
x′

σ(1) 6 x′
σ(2) 6 · · · 6 x′

σ(n) (equivalently if there is no i, j ∈ {1, . . . , n} such

that xi > xj and x′
i < x′

j).

Proposition 13. The Choquet integral satisfies the following properties:

(i) The Choquet integral is linear with respect to the capacity: for any ca-
pacities µ1, µ2 on X, any λ1, λ2 > 0,

Cλ1µ1+λ2µ2
= λ1Cµ1

+ λ2Cµ2
.

If one restricts to normalized capacities, then the condition λ1 + λ2 = 1 is
needed.

(ii) The Choquet integral satisfies comonotonic additivity, i.e., for any comono-
tonic vectors x,x′ ∈ [0,∞[

n
, and any capacity µ,

Cµ(x + x′) = Cµ(x) + Cµ(x′).

(iii) Let µ, µ′ be two capacities on X. Then µ 6 µ′ if and only if Cµ 6 Cµ′ .

(iv) If µ is a 0-1 capacity, then

Cµ(x) =
∨

A⊆{1,...,n}
µ(A)=1

∧

i∈A

xi, ∀x ∈ [0, 1]
n

,

.

(v) The Choquet integral Cµ is symmetric if and only if µ is symmetric.

(vi) The Choquet integral on Rn is invariant to positive affine transformation
(interval scale change), that is

Cµ(cx + a1X) = c · Cµ(x) + a

for any c > 0 and a ∈ R.

(vii) For any capacity µ on X, we have (Cµ)d = Cµd , i.e., the dual of the Choquet
integral is the Choquet integral. w.r.t. its dual capacity.

The next theorem gives a characterization of the Choquet integral.

Theorem 9. Let F : Rn → R be a given function. Then there exists a unique
normalized capacity µ such that F = Cµ if and only if F fulfills the following
properties:

(i) Comonotonic additivity;

(ii) Nondecreasing monotonicity;

(iii) F(1{1,...,n}) = 1, F(0) = 0.

Moreover, µ is defined by µ(A) := F(1A).
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This result was shown by De Campos and Bolaños [?] in the case of I =
[0,∞[, assuming in addition positive homogeneity, which can be deduced from
(i) and (ii). The proof in the continuous case is due to Schmeidler [?].

We give the relation of the Choquet integral with other aggregation func-
tions.

Proposition 14. Let µ be a normalized capacity and consider I = R. The
following holds

(i) Cµ = Min if and only if µ = µmin.

(ii) Cµ = Max if and only if µ = µmax.

(iii) Cµ = OSk (k-order statistics) if and only if µ is the threshold measure
τn−k+1.

(iv) Cµ = Pk (k-th projection) if and only if µ is the Dirac measure δk.

(v) Cµ = WAMw = Čµ if and only if µ is additive, with µ({i}) = wi, ∀i ∈
{1, . . . , n}.

(vi) Cµ = OWAw if and only if µ is symmetric, with wi = µ(An−i+1)−µ(An−i),
i = 2, . . . , n, and w1 = 1 −

∑n
i=2 wi, where Ai is any subset of X with

|Ai| = i (equivalently, µ(A) =
∑i−1

j=0 wn−j , ∀A, |A| = i).

Let us come back to k-additive capacities. The Choquet integral has an
interesting expression in terms of the interaction transform when the capacity
is 2-additive:

Cµ(x) =
∑

i,j∈X
Iij>0

(xi ∧ xj)Iij +
∑

i,j∈X
Iij<0

(xi ∨ xj)|Iij | +
∑

i∈X

(

φixi −
1

2

∑

j 6=i

|Iij |
)

,

with Iij := Iµ({i, j, }) and φi := Iµ({i}). It is important to note that the above

expression is a convex sum of at most n(n+1)
2 terms, grouped in three parts: a

conjunctive one, a disjunctive one and an additive one.
We end this section by considering multilevel Choquet integrals. An inter-

esting question is the following: what new aggregation function family do we
obtain by combining the output of several different Choquet integrals by an-
other Choquet integral, possibly iterating this process on several levels? For
example, we may consider a 3-level aggregation of x ∈ R3:

A(x) := Cµ3
(Cµ11

(x1, x2), Cµ2
(Cµ11

(x1, x2), Cµ12
(x1, x2, x3)), x3).

This question has been solved by Murofushi and Narukawa [?], and it is based
on a result by Ovchinnikov on piecewise linear functions [?]. The answer is
simply that one gets nothing new after the second level.

First we give a formal definition of a multilevel Choquet integral.

Definition 32. Let Γ ⊆ Rn. For any i ∈ [n], the projection Pi is a 0-level

Choquet integral. Let us consider Fi : Γ → R, i ∈ M := {1, . . . ,m}, being
ki-level Choquet integrals, and a capacity µ on M . Then

F(x) := Cµ(F1(x), . . . ,Fm(x))
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is a k-level Choquet integral, with k := Max(k1, . . . , km) + 1. A multilevel

Choquet integral is a function that is a k-level Choquet integral for some integer
k > 1.

The result is the following.

Theorem 10. Let Γ ⊆ Rn be a convex closed n-dimensional set, and F : Γ → R.
The following are equivalent.

(i) F is a multilevel Choquet integral.

(ii) F is a 2-level Choquet integral, with all capacities of the first level being
additive, and the capacity of the second level being 0-1 valued.

(iii) F is nondecreasing, positively homogeneous, and continuous piecewise lin-
ear.

4.2 Sugeno integral based aggregation functions

The Sugeno integral was introduced by Sugeno in 1972 [?], independently of the
work of Choquet. Yet, there are striking similarities between the two definitions,
up to the fact that the usual arithmetic operations of the Choquet integral are
replaced by the lattice operations ∨,∧. However, the introduction of these two
lattices operations implies many fundamental differences in their properties, and
makes the Sugeno integral very close to the lattice polynomial functions.

We will see that the definition of the Sugeno integral makes sense only if
I = [0, µ(X)].

Definition 33. Let µ be a capacity on X = {1, . . . , n}, and x ∈ [0, µ(X)]n.
The Sugeno integral of x with respect to µ is defined by

Sµ(x) :=

n∨

i=1

(
xσ(i) ∧ µ(Aσ(i))

)

with the same notations as in Definition 30. It can be shown that the Sugeno
integral is a continuous aggregation function. The condition I = [0, µ(X)] is
necessary to fulfill the boundary conditions. As for the Choquet integral, we
have Sµ(1A) = µ(A) for all A ⊆ X.

It can be shown that two other equivalent expressions are:

Sµ(x) =

n∧

i=1

(
xσ(i) ∨ µ(Aσ(i+1))

)
(13)

= Med(x1, . . . , xn, µ(Aσ(2)), . . . , µ(Aσ(n))), (14)

with Aσ(n+1) := ∅, and Med is the classical median function.
The Sugeno integral has a close relation with weighted lattice polynomial

functions. They are inductively defined as follows: (i) for any k ∈ X and
any c ∈ I, the projection Pk and the constant function c are weighted lattice
polynomial functions; (ii) if p, q are weighted lattice polynomial functions, then
p∨ q and p∧ q are weighted lattice polynomial functions; every weighted lattice
polynomial function is formed by finitely many applications of rules (i) and (ii).
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Each weighted lattice polynomial function p : In → I can be written both in
conjunctive and disjunctive normal forms [?]:

p(x) =
∨

A⊆X

(

α(A) ∧
∧

i∈A

xi

)

=
∧

A⊆X

(

β(A) ∨
∨

i∈A

xi

)

, (15)

where α, β : 2X → I are some set functions. Based on (15), we have the next
representation of the Sugeno integral.

Proposition 15. For any x ∈ [0, µ(X)]n and any capacity µ on X, the Sugeno
integral of x with respect to µ can be written as

Sµ(x) =
∨

A⊆X

(
∧

i∈A

xi ∧ µ(A)

)

Sµ(x) =
∧

A⊆X

(
∨

i∈A

xi ∨ µ(X \ A)

)

.

The following result gives the exact relation between weighted lattice poly-
nomial functions and the Sugeno integral.

Theorem 11. Let F : [0, 1]n → [0, 1] be a function. The following assertions
are equivalent.

(i) There exists a unique normalized capacity µ such that F = Sµ;

(ii) F is an idempotent weighted lattice polynomial function;

(iii) F is an endpoint-preserving weighted lattice polynomial function.

A consequence of this theorem is that the multilevel Sugeno integral is the
Sugeno integral: one does not get anything new by combining Sugeno integrals.

The Sugeno integral possesses several particular properties given in the next
propositions.

Proposition 16. The Sugeno integral satisfies the following properties:

(i) The Sugeno integral commutes with max-min combinations of capacities:
for any nonnegative games µ1, µ2 on X, any λ1, λ2 ∈ [0,∞[,

S(λ1∧µ1)∨(λ2∧µ2) = (λ1 ∧ Sµ1
) ∨ (λ2 ∧ Sµ2

)

S(λ1∨µ1)∧(λ2∨µ2) = (λ1 ∨ Sµ1
) ∧ (λ2 ∨ Sµ2

),

with the convention ((λ1 ∨ µ1) ∧ (λ2 ∨ µ2))(∅) := 0.

(ii) The Sugeno integral satisfies comonotonic maxitivity and comonotonic

minitivity: for any comonotonic vectors x,x′ ∈ [0, µ(X)]n, and any capac-
ity µ,

Sµ(x ∨ x′) = Sµ(x) ∨ Sµ(x′)

Sµ(x ∧ x′) = Sµ(x) ∧ Sµ(x′).

(iii) Let µ, µ′ be two nonnegative games on X. Then µ 6 µ′ if and only if
Sµ 6 Sµ′ .
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(iv) Cµ = Sµ if and only if µ is a 0 − 1 capacity.

(v) For any normalized capacity µ and any x ∈ [0, 1]
n
, |Cµ(x) − Sµ(x)| 6

1
4 .

(vi) For any capacity µ on X, we have (Sµ)d = Sµd .

Proposition 17. The Sugeno integral Sµ satisfies the following properties:

(i) Symmetry (or neutrality, commutativity) if and only if µ is symmetric;

(ii) Additivity if and only if µ is a 0-1 additive capacity (Dirac measure);

(iii) Maxitivity if and only if µ is a maxitive capacity (possibility measure);

(iv) Minitivity if and only if µ is a minitive capacity (necessity measure).

The next characterization is due to Marichal [?]. Still others can be found
in this reference.

Theorem 12. Let F : [0, 1]n → [0, 1]. Then there exists a capacity µ on X such
that F = Sµ if and only if F satisfies (i) nondecreasingness, (ii) Sµ(α ∨ x) =
α ∨ Sµ(x) (∨-homogeneity), and (iii) Sµ(α ∧ x) = α ∧ Sµ(x) (∧-homogeneity).

Now we show the relation of the Sugeno integral with other aggregation
functions.

We begin by introducing several aggregation functions.

Definition 34. Let w ∈ [0, 1]n satisfying
∨n

i=1 wi = 1. Then, for any x ∈
[0, 1]

n
:

(i) The weighted maximum with respect to w is the aggregation function
defined by

WMaxw(x) :=

n∨

i=1

(wi ∧ xi), ∀x ∈ In.

(ii) The weighted minimum with respect to w is the aggregation function
defined by

WMinw(x) :=

n∧

i=1

((1 − wi) ∨ xi), ∀x ∈ In.

(iii) The ordered weighted maximum with respect to w is the aggregation
function defined by

OWMaxw(x) :=

n∨

i=1

(wi ∧ x(i)), ∀x ∈ In,

with x(1) 6 · · · 6 x(n), and w1 > w2 > · · · > wn.

(iv) The ordered weighted minimum with respect to w is the aggregation func-
tion defined by

OWMinw(x) :=

n∧

i=1

((1 − wi) ∨ x(i)), ∀x ∈ In.

with x(1) 6 · · · 6 x(n), and w1 6 w2 6 · · · 6 wn.
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Proposition 18. Let µ be a capacity. The following holds.

(i) Sµ = Min if and only if µ = µmin.

(ii) Sµ = Max if and only if µ = µmax.

(iii) Sµ = OSk if and only if µ is the threshold capacity τn−k+1.

(iv) Sµ = Pk if and only if µ is the Dirac measure δk.

(v) Sµ = WMaxw if and only if µ is a normalized maxitive capacity, with
µ({i}) = wi, for all i ∈ {1, . . . , n}.

(vi) Sµ = WMinw if and only if µ is a normalized minitive capacity, with
µ(X \ {i}) = µ(X) − wi, for all i ∈ X.

(vii) Sµ = OWMaxw if and only if µ is a normalized symmetric capacity such
that µ(A) = wn−|A|+1, for any A ⊆ X, A 6= ∅.

(viii) Sµ = OWMinw if and only if µ is a normalized symmetric capacity such
that µ(A) = 1 − wn−|A|, for any A  X.

(ix) The set of Sugeno integrals with respect to 0-1 capacities coincides with
the set of lattice polynomial functions.

5 Concluding remarks

In this Part I we have focused on internal aggregation functions. We have
discussed some of their properties, some construction methods (nonadditive
integrals, for example) and some representation theorems. Much more details
can be found in monographs of Bullen [?], and in our monograph [?]. Some
of internal, i.e., idempotent aggregation functions will be discussed in Part II
due to construction methods discussed there. As a typical example recall the
weighted median, which for integer weights can be defined straightforwardly as

Medw(x1, . . . , xn) = Med(w1 · x1, . . . , wn · xn),

while for real (nonnegative) weights it is linked to the minimization problem of
expression

∑n
i=1 w1|xi − r|.

In the nonadditive integral domain we have discussed only the Choquet
and the Sugeno integrals, though there are several other types of nonadditive
integrals which may be interested (see, e.g., section 5.6 in [?]). Without going
deeper into details, we recall briefly two of them, based on t-conorms, uninorms
and copulas (these particular aggregation functions on [0, 1] are discussed in
Part II). The (S,U)-integral based on continuous t-conorm S and a uninorm U

satisfying the restricted distributivity relation

U(x,S(y, z)) = S(U(x, y),U(x, z))

for all x, y, z ∈ [0, 1] such that S(y, z) < 1 is given, for any x ∈ [0, 1]
n

and
S-additive fuzzy measure µ on X, µ(A ∪ B) = S(µ(A), µ(B)) whenever A and
B are disjoint, by

(S,U)µ(x) = Sk
j=1 (Sm

i=1(U(xi, µ({i})))) .
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As an example take S = SL the bounded sum and U =
∏

the product. Then
(S,U)µ coincide with the Weber integral [?]. Any SL-additive fuzzy measure
on X is determined by the values of µ on singletons, wi = µ({i}), and µ(A) =
min

(∑

i∈A wi, 1
)
. Note that necessarily

∑n
i=1 wi > 1, and

(S,U)µ(x) = min

(
n∑

i=1

wixi, 1

)

.

Obviously, if
∑n

i=1 wi = 1, the weighted arithmetic mean WAMw is recovered.
Copulas C are linked to the probability measures PC on ([0, 1]2,B([0, 1]2)

with uniform marginals, C(x, y) = PC([0, x] × [0, y]). A copula based integral
(see Imaoka [?] for special copulas and Klement at al. [?] for general copulas)
is given for any x ∈ [0, 1]

n
and any fuzzy measure µ on X, by two equivalent

formulas

IC(x, µ) =

n∑

i=1

(
C(xσ(i), µ(Aσ(i))) − C(xσ(i−1), µ(Aσ(i)))

)

=

n∑

i=1

(
C(xσ(i), µ(Aσ(i))) − C(xσ(i), µ(Aσ(i+1)))

)
,

with the convention Aσ(n+1) = ∅, and xσ(0) = 0. Observe that IQ(·, µ) = Cµ is
the Choquet integral, while IMin(·, µ) = Sµ is the Sugeno integral.

In Part II, we will discussed conjunctive and disjunctive aggregation func-
tions, and also some mixed aggregation functions related to both conjunctive
and disjunctive aggregation functions. Moreover, several construction methods
for aggregation functions will be introduced.
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