
HAL Id: hal-00538984
https://hal.science/hal-00538984

Submitted on 2 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path-Based Supports for Hypergraphs
Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, Arnaud Sallaberry

To cite this version:
Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, Arnaud Sallaberry. Path-Based Supports for
Hypergraphs. 21st International Workshop on Combinatorial Algorithms (IWOCA 2010), Jul 2010,
United Kingdom. pp.20-33. �hal-00538984�

https://hal.science/hal-00538984
https://hal.archives-ouvertes.fr


Path-Based Supports for Hypergraphs

Ulrik Brandes1, Sabine Cornelsen1, Barbara Pampel1, and Arnaud Sallaberry2

1 Fachbereich Informatik & Informationswissenschaft, Universität Konstanz
{Ulrik.Brandes,Sabine.Cornelsen,Barbara.Pampel}@uni-konstanz.de

2 CNRS UMR 5800 LaBRI, INRIA Bordeaux - Sud Ouest, Pikko
arnaud.sallaberry@labri.fr

Abstract. A path-based support of a hypergraph H is a graph with the
same vertex set as H in which each hyperedge induces a Hamiltonian
subgraph. While it is NP-complete to compute a path-based support
with the minimum number of edges or to decide whether there is a planar
path-based support, we show that a path-based tree support can be
computed in polynomial time if it exists.

1 Introduction

A hypergraph is a pair H = (V,A) where V is a finite set and A is a (multi-)set of
non-empty subsets of V . The elements of V are called vertices and the elements of
A are called hyperedges. A support (or host graph) of a hypergraph H = (V,A) is
a graph G = (V,E) such that each hyperedge of H induces a connected subgraph
of G, i.e., such that the graph G[h] := (h, {e ∈ E, e ⊆ h}) is connected for every
h ∈ A. See Fig. 1(b) for an example.

Applications for supports of hypergraphs are, e.g., in hypergraph coloring [10,
4], databases [1], or hypergraph drawing [7, 8, 3, 12]. E.g., see Fig. 1 for an ap-
plication of a support for designing Euler diagrams. An Euler diagram of a
hypergraph H = (V,A) is a drawing of H in the plane in which the vertices are
drawn as points and each hyperedge h ∈ A is drawn as a simple closed region
containing the points representing the vertices in h and not the points represent-
ing the vertices in V \ h. There are various well-formedness conditions for Euler
diagrams, see e.g. [5, 12].

Recently the problem of deciding which classes of hypergraphs admit what
kind of supports became of interest again. It can be tested in linear time whether
a hypergraph has a support that is a tree [13], a path or a cycle [3]. It can
be decided in polynomial time whether a hypergraph has a tree support with
bounded degrees [3] or a cactus support [2]. A minimum weighted tree support
can be computed in polynomial time [9]. It is NP-complete to decide whether a
hypergraph has a planar support [7], a compact support [7, 8] or a 2-outerplanar
support [3]. A support with the minimum number of edges can be computed
in polynomial time if the hypergraph is closed under intersections [3]. If the set
of hyperedges is closed under intersections and differences, it can be decided in
polynomial time whether the hypergraph has an outerplanar support [2].



h1

{v1} {v2} {v3} {v4} {v5} {v6} {v7}

h

h
′

V

h2 h3 h4 h5

(a) Hasse diagram

v1 v2 v3 v4 v5 v6

v7

(b) tree support

v1 v2 v3 v4 v5 v6

v7

(c) Euler diagram

Fig. 1. Three representations of the hypergraph H = (V, A) with hyperedges h1 =
{v1, v2}, h2 = {v2, v3}, h3 = {v3, v4}, h4 = {v4, v5}, h5 = {v5, v6}, h = {v2, v3, v4, v5},
h′ = {v2, v3, v4, v5, v7}, and V = {v1, . . . , v7}.

In this paper, we consider a restriction on the subgraphs of a support that are
induced by the hyperedges. A support G of a hypergraph H = (V,A) is called
path-based if the subgraph G[h] contains a Hamiltonian path for each hyperedge
h ∈ A, i.e., G[h] contains a path that contains each vertex of h. This approach
was on one hand motivated by hypergraph drawing and on the other hand by
the aesthetics of metro map layouts. I.e., the hyperedges could be visualized as
lines along the Hamiltonian path in the induced subgraph of the support like the
metro lines in a metro map. See Fig. 2 for examples of metro maps and Fig. 3(c)
for a representation of some hyperedges in such a metro map like drawing. For
metro map layout algorithms see, e.g., [11, 14].

We briefly consider planar path-based supports and minimum path-based
supports. Our main result is a characterization of those hypergraphs that have a
path-based tree support and a polynomial time algorithm for constructing path-
based tree supports if they exist. E.g., Fig. 1 shows an example of a hypergraph
H = (V,A) that has a tree support but no path-based tree support. However,
the tree support in Fig. 1(b) is a path-based tree support for (V,A \ {V }).

The contribution of this paper is as follows. In Section 2, we give the neces-
sary definitions. We then briefly mention in Section 3 that finding a minimum
path-based support or deciding whether there is a planar path-based support,
respectively, is NP-complete. We consider path-based tree supports in Sect. 4.
In Section 4.1, we review a method for computing tree supports using the Hasse
diagram. In Section 4.2, we show how to apply this method to test whether
a hypergraph has a path-based tree support and if so how to compute one in
polynomial time. Finally, in Section 4.3 we discuss the run time of our method.

2 Preliminaries

In this section, we give the necessary definitions that were not already given in
the introduction. Throughout this paper let H = (V,A) be a hypergraph. We
denote by n = |V | the number of vertices, m = |A| the number of hyperedges,
and N =

∑
h∈A |h| the sum of the sizes of all hyperedges of a hypergraph H.

The size of the hypergraph H is then N + n + m. A hypergraph is a graph if

2



(a) local trains of Zurich (b) metro of Amsterdam

Fig. 2. Local train map of Zurich (www.zvv.ch) and the metro map of Amsterdam
(www.amsterdam.info). In (b) the union of all lines forms a tree.

all hyperedges contain exactly two vertices. A hypergraph H = (V,A) is closed

under intersections if h1 ∩ h2 ∈ A ∪ {∅} for h1, h2 ∈ A.
The Hasse diagram of a hypergraph H = (V,A) is the directed acyclic graph

with vertex set A ∪ {{v}; v ∈ V } and there is an edge (h1, h2) if and only if
h2 ( h1 and there is no set h ∈ A with h2 ( h ( h1. Fig. 1(a) shows an example
of a Hasse diagram. Let (v, w) be an edge of a directed acyclic graph. Then we
say that w is a child of v and v a parent of w. For a descendant d of v there
is a directed path from v to d while for an ancestor a of v there is a directed
path from a to v. A source does not have any parents, a sink no children and
an inner vertex has at least one parent and one child.

3 Minimum and Planar Path-Based Supports

Assuming that each hyperedge contains at least one vertex, each hypergraph H =
(V,A) has a path-based support G = (V,E) with at most N −m edges: Order
the vertices arbitrarily. For each hyperedge {v1, . . . , vk} ∈ A with v1 < · · · < vk

with respect to that ordering the edge set E contains {vi−1, vi}, i = 1, . . . , k. It
is, however, NP-complete to find an ordering of the vertices that minimizes the
number of edges of the thus constructed path-based support of H [6]. Moreover,
even if we had an ordering of the vertices that had minimized the number of the
thus constructed path-based support, this support still does not have to yield
the minimum number of edges in any path-based support of H. E.g., consider
the hypergraph with hyperedges {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. Nevertheless,
we have the following theorem.

Theorem 1. It is NP-complete to minimize the number of edges in a path-based

support of a hypergraph – even if it is closed under intersections.

3



Proof. Reduction from Hamiltonian path. Let G = (V,E) be a graph. Let H =
(V,E ∪{V }∪{{v}; v ∈ V }) and K = |E|. Then G contains a Hamiltonian path
if and only if H has a path-based support with at most K edges. ⊓⊔

For the application of Euler diagram like drawings, planar supports are of spe-
cial interests. However, like for general planar supports, the problem of testing
whether there is a path-based planar support is hard.

Theorem 2. It is NP-complete to decide whether a hypergraph – even if it is

closed under intersections – has a path-based planar support.

Proof. The support that Johnson and Pollak [7] constructed to prove that it
is NP-complete to decide whether there is a planar support was already path-
based. ⊓⊔

4 Path-Based Tree Supports

In this section we show how to decide in polynomial time whether a given hyper-
graph has a path-based tree support. If such a support exists, it is at the same
time a path-based support of minimum size and a planar path-based support.
So far it is known how to decide in linear time whether there is a path-based
tree support if V ∈ A [3].

4.1 Constructing a Tree Support from the Hasse Diagram

A support with the minimum number of edges and, hence, a tree support if one
exists can easily be constructed from the Hasse diagram if the hypergraph is
closed under intersections [3].

To construct a tree support of an arbitrary hypergraph, it suffices to consider
the augmented Hasse diagram – a representation of “necessary” intersections of
hyperedges. The definition is as follows. First consider the smallest set A of
subsets of V that contains A and that is closed under intersections. Consider
the Hasse diagram D of H = (V,A). Note that any tree support of H is also a
tree support of H. Let h1, . . . , hk be the children of a hyperedge h in D. The
hyperedge h ∈ A is implied if the hypergraph (h1 ∪ · · · ∪ hk, {h1, . . . , hk}) is
connected and non-implied otherwise. Let {h1, . . . , hk} be a maximal subset of
the children of a non-implied hyperedge in A such that (h1∪· · ·∪hk, {h1, . . . , hk})
is connected. Then h1 ∪ · · · ∪ hk is a summary hyperedge. Note that a summary
hyperedge does not have to be in A. Let A′ be the set of subsets of V containing
the summary hyperedges, the hyperedges in A that are not implied, and the
sources of D. E.g., for the hypergraph in Fig. 1 it holds that A′ = A. In this
example, the hyperedge h is a summary hyperedge, h′ is not implied, and V is
a source.

The augmented Hasse diagram of H is the Hasse diagram D′ of H ′ = (V,A′).
If H has a tree support then the augmented Hasse diagram has O(n+m) vertices

4



and can be constructed in O(n3m) time [3]. Further note that if H has a tree
support and h ∈ A′ is non-implied then all children of h in D′ are disjoint.

If a tree support G = (V,E) of H exists it can be constructed as follows [3].
Starting with an empty graph G, we proceed from the sinks to the sources of D′.
If h ∈ A′ is not implied, choose an arbitrary ordering h1, . . . , hk of the children of
h in D′. We assume that at this stage, G[hi], i = 1, . . . , k are already connected

subgraphs of G. For j = 2, . . . , k, choose vertices vj ∈
⋃j−1

i=1
hi, wj ∈ hj and add

edges {vj , wj} to E.
If we want to construct a path-based tree support, then G[hj ], j = 1, . . . , k

are paths and as vertices vj+1 and wj for the edges connecting G[hj ] to the other
paths, we choose the end vertices of G[hj ]. The only choices that remain is the
ordering of the children of h and the choice of which end vertex of G[hj ] is wj

and which one is vj+1. The implied hyperedges give restrictions on how these
choices might be done.

4.2 Choosing the Connections: A Characterization

When we want to apply the general method introduced in Sect. 4.1 to construct a
path-based tree support G, we have to make sure that we do not create vertices of
degree greater than 2 in G[h] when processing non-implied hyperedges contained
in an implied hyperedge h.

Let h′, h′′ ∈ A′. We say that h′, h′′ overlap if h′ ∩ h′′ 6= ∅, h′ 6⊆ h′′, and
h′′ 6⊆ h′. Two overlapping hyperedges h′, h′′ ∈ A′ have a conflict if there is some
hyperedge in A′ that contains h′ and h′′. Two overlapping hyperedges h′, h′′ ∈ A′

have a conflict with respect to h ∈ A′ if h′ has a conflict with h′′, h′ ∩ h′′ ⊆ h
and h is a child of h′ or h′′. In that case we say that h′ and h′′ are conflicting

hyperedges of h. Let A′

h be the set of conflicting hyperedges of h. Let Ac
h be the

set of children hi of h such that h ∈ A′

hi
.

Assume now that H has a path-based tree support G and let h, h′, h′′ ∈ A′

be such that h′ and h′′ have a conflict with respect to h. We have three types of
restrictions on the connections of the paths.

1. G[h′ \ h] and G[h′′ \ h] are paths that are attached to different end vertices
of G[h]. Otherwise G[ha] contains a vertex of degree higher than 2 for any
hyperedge ha ⊇ h′ ∪ h′′.

2. Assume further that h1 ∈ Ac
h. For all hyperedges h1 ∈ A′

h that have a conflict
with h with respect to h1 it holds that G[h1 \ h] has to be appended to the
end vertex of G[h] that is also an end vertex of G[h1]. Hence, all these paths
G[h1 \ h] have to be appended to the same end vertex of G[h].

3. Assume further that h2 ∈ Ac
h, h2 6= h1. Let hi ∈ A′

h have a conflict with h
with respect to hi, i = 1, 2, respectively. Then G[hi \ h] has to be appended
to the end vertex of G[h] that is also an end vertex of G[hi]. Hence, G[h1 \h]
and G[h2 \ h] have to be appended to different end vertices of G[h].

E.g., consider the hypergraph H = (V,A) in Fig. 1. Then on one hand, h′ has a
conflict with h1 and h5 with respect to h. Hence, by the first type of restrictions

5



G[h1 \ h] and G[h5 \ h] have to be appended to the same end vertex of G[h], i.e.
the end vertex of G[h] to which G[h′ \ h] is not appended. On the other hand,
h1 and h have a conflict with respect to h2 while h5 and h have a conflict with
respect to h4. Hence, by the third type of restrictions it follows that G[h1 \ h]
and G[h5 \h] have to be appended to different end vertices of G[h]. Hence, there
is no path-based tree support for H.

This motivates the following definition of conflict graphs. The conflict graph

Ch, h ∈ A′ is a graph on the vertex set A′

h ∪Ac
h. The conflict graph Ch contains

the following three types of edges.

1. {h′, h′′}, h′, h′′ ∈ A′

h if h′ and h′′ have a conflict with respect to h.
2. {h′, h1}, h

′ ∈ A′

h, h1 ∈ Ac
h if h′ ∈ A′

h1
and h′ and h have a conflict with

respect to h1.
3. {h1, h2}, h1, h2 ∈ Ac

h, h1 6= h2.

E.g., consider the hypergraph H = (V,A) in Fig. 1. Then the conflict graph
Ch contains the edges {h′, h5} and {h′, h1} of type one, the edges {h2, h1} and
{h4, h5} of type 2 and the edge {h2, h4} of type 3. Hence, Ch contains a cycle of
odd length, reflecting that there is no suitable assignment of the end vertices of
G[h] to h1, h5 and h′.

Theorem 3. A hypergraph H = (V,A) has a path-based tree support if and only

if

1. H has a tree support,

2. no hyperedge contains three pairwise overlapping hyperedges h1, h2, h3 ∈ A′

with h1 ∩ h2 = h2 ∩ h3 = h1 ∩ h3, and

3. all conflict graphs Ch, h ∈ A′, |h| > 1 are bipartite.

From the observations before the definition of the conflict graph it is clear
that the conditions of Theorem 3 are necessary for a path-based tree support.
In the remainder of this section, we prove that the conditions are also sufficient.

In the following assume that the conditions of Theorem 3 are fulfilled. We
show in Algorithm 1 how to construct a path-based tree support G of H. We
consider the vertices of the augmented Hasse diagram D′ from the sinks to the
sources in a reversed topological order, i.e., we consider a hyperedge only if all its
children in D′ have already been considered. During the algorithm, a conflicting
hyperedge h′ of a hyperedge h is labeled with the end vertex v of G[h] if the
path G[h′ \h] will be appended to v. We will call this label sideh(h′). Concerning
Step 2a, the sets Ac

h, h ∈ A′ contain at most two hyperedges – otherwise the
subgraph of Ch induced by Ac

h contains a triangle and, hence, is not bipartite.
Algorithm 1 constructs a tree support G of H [3]. Before we show that

G is a path-based tree support, we illustrate the algorithm with an example.
Consider the hypergraph H in Fig. 3. We show how the algorithm proceeds h5

1

and all its descendants in D′. For the hyperedges h1
3, h

1
4, h

1
6, and h1

8 the conflict
graphs are empty while for the other leaves we have sideh1

5
(h2

2) = sideh1

5
(h2

3) =

sideh1

5
(h3

1) = sideh1

5
(h4

2) = v5, sideh1

7
(h2

4) = sideh1

7
(h3

1) = v7, and sideh1

9
(h2

4) =

6



sideh1

9
(h4

1) = sideh1

9
(h2

5) = sideh1

9
(h2

6) = sideh1

9
(h2

7) = v9. When operating h2
2 and

h2
3, respectively, we add edges {v4, v5} and {v5, v6}, respectively, to G. While

the conflict graph of h2
2 does only contain h1

5 with sideh2

2
(h1

5) = v4, in Ch2

3
we

set sideh2

3
(h1

5) = sideh2

3
(h3

1) = v6, and sideh2

3
(h2

2) = v5. h2
4 has a conflict with

respect to h1
7 and h1

9. Hence, we add edges {v7, v8} and {v8, v9} to G. Further,
sideh2

4
(h1

7) = sideh2

4
(h2

5) = v9 and sideh2

4
(h1

9) = sideh2

4
(h4

1) = v7. When operating

h3
1 we can choose h1 = h2

3 and h2 = h1
7, since sideh2

3
(h1

3) = v6 and sideh1

7
(h1

3) = v7.
We add the edge {v6, v7} to G. The conflict graph Ch3

1
is shown in Fig. 3(b).

The hyperedge h4
1 is implied and we set sideh4

1
(h2

4) = v4. We can finally connect

v3 to v4 or v9 when operating h5
1.

To prove the correctness of Algorithm 1, it remains to show that all hy-
peredges of H induce a path in G. Since we included all inclusion maximal
hyperedges of H in A′, it suffices to show this property for all hyperedges in A′.
We start with a technical lemma.

Lemma 1. Let h′ and h′′ be two overlapping hyperedges and let h′ be not im-

plied. Then there is a hyperedge h ∈ A′ with h′ ∩ h′′ ⊆ h ( h′.

Proof. Let hc ∈ A be maximal with h′ ∩ h′′ ⊆ hc ( h′. The hyperedge hc is a
child of the non-implied hyperedge h′ in D. Consider the summary hyperedge h
with hc ⊆ h ( h′. By definition of A′ it follows that h ∈ A′. ⊓⊔

For an edge {v, w} of G let hvw be the intersection of all hyperedges of A′

that contain v and w. Note that then hvw is not implied since v and w cannot
both be contained in a subset of hvw. Hence, hvw ∈ A′.

Algorithm 1: Path-based tree support

Let E = ∅.
For h ∈ A′ in a reversed topological order of D′.
1. If h = {v} for some v ∈ V

(a) set sideh(h′) = v for all vertices h′ of Ch.
2. Else

(a) let h1, . . . , hk be the children of h such that h2, . . . , hk−1 /∈ Ac
h.

(b) If h is non-implied
i. let wi, vi+1, i = 1, . . . , k be the end vertices of G[hi] such that
A. sideh1

(h) = v2 if h ∈ A′

h1
and

B. sidehk
(h) = wk if h ∈ A′

hk
.

ii. Add the edges {vi, wi}, i = 2, . . . , k to E.
(c) Else let w1 6= vk+1 be the end vertices of G[h] such that

i. vk+1 /∈ h1 and
ii. w1 /∈ hk.

(d) If h1 ∈ Ac
h set sideh(h1) = vk+1.

(e) If hk ∈ Ac
h set sideh(hk) = w1.

(f) Label the remaining vertices of Ch with vk+1 or w1 such that no
two adjacent vertices have the same label.

7



h
1

1
h

1

2 h
1

3
h

1

4
h

1

5 h
1

6 h
1

7
h

1

8
h

1

9
h

1

10 h
1

11
h

1

12 h
1

13

h
2

1
h

2

2
h

2

3
h

2

4
h

2

5

h
4

2
h

4

1

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

h
2

7
h

2

6

h
5

1 h
5

2
h

5

3

h
1

14

v14

h
3

1
h

3

3
h

3

4h
3

2

(a) augmented Hasse diagram D′ of a hypergraph H

h
4
2

h
2
3

side = v5 side = v7

h
1
7

h
2
2

(b) conflict graph of hyperedge h3

1

v9v3 v4 v5 v6 v7 v8 v10

v14

v13

v12

v11v1

v2

(c) metro map like drawing of the sources of D′

Fig. 3. Illustration of Algorithm 1.

Lemma 2. Let Conditions 1-3 of Theorem 3 be fulfilled and let G = (V,E) be

the graph computed in Algorithm 1. Let h′, h′′ ∈ A′ have a conflict with respect

to a child h of h′ and let G[h′] and G[h′′] be paths. Then

1. sideg(h
′′) = sideh(h′′) for all g ∈ A′ with h′ ∩ h′′ ⊆ g ⊆ h,

2. sideh(h′′) ∈ h′′,
3. sideh(h′′) is an end vertex of G[h′],
4. G[h′ \ h′′] is a path, and
5. sideh(h′′) is adjacent in G to a vertex of h′′ \ h′.

Proof. We prove the lemma by induction on the sum of the steps in which h′

and h′′ were considered in Algorithm 1. If h′ and h′′ had been considered in the
first two steps, then at least one of them is a leaf of D′ and, hence, h′ and h′′

have no conflict. So there is nothing to show. Let now h′ and h′′ be considered
in later steps. Let h′′ ∈ A′ have a conflict with h′ with respect to a child h of h′

and let G[h′] and G[h′′] be paths.

1. + 2. if h′ ∩ h′′ ∈ A′: There is nothing to show if h = h′ ∩ h′′. So let h1 be
the child of h with h1 ⊇ h′ ∩ h′′. Then h, h′′ have a conflict with respect
to h1. Hence, Ch contains the path h′, h′′, h1. By the inductive hypothesis
on Property 3, it follows that sideh1

(h′′) is an end vertex of G[h], and, es-
pecially that h1 and h share an end vertex. By construction, it follows that
sideh(h1) is the end vertex of h that is not in h1. Hence, sideh(h′′) ∈ h1

and sideh1
(h′′) = sideh(h′′). By the inductive hypothesis it follows that

sideg(h
′′) = sideh(h′′) for h ∩ h′′ ⊆ g ⊆ h1. Since the labels in sideh′∩h′′(.)

are the end vertices of G[h′ ∩ h′′], it follows that sideh(h′′) ∈ h′ ∩ h′′ ⊂ h′′.

8



h
′

h

h
′
1 h

′′
1

h
′′

hvw

h1

h
′ ∩ h

′′

hc = hvw ∩ h
′′

= hvw ∩ h hvx

hvx ∩ h

v xw

(a) augmented Hasse diagram D′

h

h
′h

′′

hvx

hvw

hc

x

v

w

(b) tree support G

Fig. 4. Illustration of the proof of Lemma 2.3.

1. + 2. + 5. if h′ ∩ h′′ /∈ A′: Let h′′

1 ⊆ h′′ be minimal with h′∩h′′ ⊂ h′′

1 . Since
h′ and h′′

1 overlap there is an edge {v, w} ∈ E such that v ∈ h′ ∩ h′′ and
w ∈ h′′

1 \ h′. We show that sideh(h′′) = v.
By Lemma 1 there is a child hc of hvw that contains h∩hvw. Since v ∈ h∩hvw

it follows that w /∈ hc and, hence, v is an end vertex of hc.
Note that by the minimality of h′′

1 it follows that h′ ∩ h′′ 6⊆ hvw. Since
G[h′′], G[h′] are paths, it follows that hc ( h and, hence, hc = h∩hvw. Let hp

be minimal with hc ( hp ⊆ h. Then hp, hvw have a conflict with respect to hc

and it follows from the inductive hypothesis on Property 5 that sidehc
(hvw) =

v. Let h′

c be maximal with hc ⊆ h′

c ( h. By the inductive hypothesis on
Property 1 it follows that sideh′

c
(hvw) = v. Since h, hvw have a conflict with

respect to h′

c it follows by the inductive hypothesis on Property 3 that v is
an end vertex of h. In Ch there is the path h′

c, hvw, h′, h′′. By construction,
sideh(h′

c) is the end vertex of h that is not in h′

c. Hence, sideh(hvw) =
sideh(h′′) = v.

3.: Let v = sideh(h′′). By the construction in Algorithm 1, v is an end vertex of
G[h′] if h′ is non-implied. So assume that h′ is implied and that v is not an
end vertex of G[h′]. Let w ∈ h′ \ h be a neighbor of v in G. By Property 2,
it follows that v ∈ h′′. Let hc be the child of hvw that contains hvw ∩ h′′. By
the inductive hypothesis on Property 4, it follows that G[hvw \ h′′] is a path
that contains w but not v. Hence, hc = hvw ∩ h′′ = hvw ∩ h.
Let h′

1, h
′′

1 ∈ A′, respectively, be minimal with h′ ⊇ h′

1 ) h′ ∩ h′′ and h′′ ⊇
h′′

1 ) h′ ∩ h′′. Assume first that h′ ∩ h′′ ∈ A′. Then Ch′∩h′′ contains the
triangle hvw, h′

1, h
′′

1 , hvw and, hence, is not bipartite.
Assume now that h′ ∩ h′′ /∈ A′. By the already proven part of Property 5
it follows that there is an edge {v, x} of G with x ∈ h′′

1 \ h. We have hc =
hvw ∩ h′′ ⊇ hvw ∩ hvx. Further, the child of hvx that contains hvx ∩ h equals
hvx∩h. Since h′′

1 is implied and hvx not, it follows that h′′

1 6= hvx and, hence,

9



hvx 6⊇ h′∩h′′. Hence, either hvx∩h ⊆ hvw∩h or hvw∩h ( hvx∩h ( h′∩h′′.
In the first case let h1 ∈ A′ be minimal with hvw ∩ h ( h1 ⊆ h. Then there
is the triangle hvw, hvx, h1, hvw in Ch∩hvw

. In the latter case let h1 ∈ A′ be
minimal with hvx ∩ h ( h1 ⊆ h. Then there is the triangle hvw, hvx, h1, hvw

in Ch∩hvx
.

4.: By the inductive hypothesis G[h \ h′′] is a path. Further, h and h′ share
sideh(h′′) ∈ h′′ as a common end vertex. By the precondition of the lemma,
G[h′] is a path. Hence, G[h′ \ h′′] is a path.

5. if h′ ∩ h′′ ∈ A′: If h 6= h′∩h′′ let h1 be the child of h with h′∩h′′ ⊆ h1. By the
inductive hypothesis sideh1

(h′′) is adjacent in G to a vertex of h′′\h = h′′\h′

and by Property 1 sideh1
(h′′) = sideh(h′′).

If h = h′ ∩ h′′, let h′′

1 ∈ A′ be minimal with h ( h′′

1 ⊆ h′′. Applying
Property 3 with h′′

1 as “h′” and h′ as “h′′” reveals that sideh(h′) is an end
vertex of G[h′′

1 ]. Since G[h′′

1 ] is a path it follows that some vertex of h′′

1 \h is
adjacent to sideh(h′′). ⊓⊔

Lemma 3. If Conditions 1-3 of Theorem 3 are fulfilled then all hyperedges in

A′ induce a path in the graph G constructed in Algorithm 1.

Proof. Again, we prove the lemma by induction on the step in which h was
considered in Algorithm 1. There is nothing to show if h had been considered in
the first step. So assume that h ∈ A′ and that G[h] contains a vertex v of degree
greater than two.

Let u1, u2, u3 be the first three vertices connected to v in G. Let hi = hvui
, i =

1, 2, 3. Then h1, h2, h3 are all three contained in h and its intersection contains v.
Hence, any two of them have a conflict if and only if one of them is not contained
in the other. A case distinction reveals that we wouldn’t have appended all three,
u1, u2 and u3, to v.

h2 = h3: Since h3 contains no vertex of degree higher than two, it follows that
u1 /∈ h3, h3 ∩ h1 = {v}. Hence, h1 and h3 have a conflict with respect to the
common child {v}, contradicting that v is added in the middle of h3.

h1 = h2 or h1 = h3: These cases are analogous to the first case.
h1 ( h3: Like in the first case it follows that u2 /∈ h3. Let h′

i, i = 2, 3 be the
child of hi that contains v. Then h2 and h3 have a conflict with respect to
h′

i, i = 2, 3. Since we add the edge {v, ui} to G when we process hi it follows
on one hand that sideh′

i
(hi) = v. On the other hand, since h1 is contained in

h3 and v ∈ h1 it follows that h1 ⊆ h′

3. Hence, h′

3 has more than one vertex.
If h′

3 6= h3 ∩ h2 then v is the only end vertex of G[h′

3] that is contained
in h2. By Lemma 2 Property 2 it follows that sideh′

3
(h2) = v and hence,

sideh′

3
(h3) 6= v. If h′

3 = h3 ∩ h2 let v′ 6= v be the other end vertex of h′

2.
Since we know that sideh′

2
(h2) = v it follows that sideh′

2
(h3) = v′. Hence, by

Lemma 2 Property 1, we can conclude that sideh′

3
(h3) = v′. In both cases,

we have a contradiction.
h1 ( h2 or h2 ( h3: These cases are analogous to the third case.
h1, h2, h3 pairwise overlapping: Then h1 ∩ h2 = h2 ∩ h3 = h1 ∩ h3 = {v}.

Hence, Condition 2 of Theorem 3 is not fulfilled. ⊓⊔

10



h
1

1
h

1

2 h
1

3
h

1

4
h

1

5 h
1

6 h
1

7
h

1

8
h

1

9
h

1

10 h
1

11
h

1

12 h
1

13

h
2

1
h

2

2
h

2

3
h

2

4
h

2

5

h
4

2
h

4

1

h
2

7
h

2

6

h
5

1 h
5

2
h

5

3

h
1

14

h
3

1
h

3

3
h

3

4h
3

2

ANC ANC

DESC(h2

2)

DESC(h3

1)

DESC(h2

2) DESC(h3

1)

MULTI-DESC MULTI-DESC

DESC(h2

4)

DESC(h2

4) DESC(h2

4)

NOT-CONFLICT

NOT-ANC
NOT-ANC

NOT -ANC NOT-ANC

NOT-ANC

NOT-ANC

CONFLICT(h2

4)

ANCESTOR(h4

1)

DESCENDANT(h2

2, h
2

2)

DESCENDANT(., h3

1)

DESCENDANT(h2

4, h
2

4)

UP-SEARCH(., h3

1)

UP-SEARCH(., h2

4)
DESC(h3

1)

Fig. 5. Computation of the potential conflicts for h4

1

This completes the proof of Theorem 3. We conclude this section with the
following corollary.

Corollary 1. Algorithm 1 computes a path-based tree support of a hypergraph H
if H has a path-based tree support, i.e., if and only if the conditions of Theorem 3

are fulfilled.

4.3 Conflict Computation and Run Time

In this section we show how to efficiently compute the conflicts and give an upper
bound for the run time of testing whether a hypergraph has a path-based tree
support and of constructing one, if it exists.

Representing the hyperedges as sorted lists of their elements, all conflicts
can be determined straight-forwardly in O(n3(n+m)) time. In the following, we
show how this time bound can be improved.

We first compute candidates for conflicting pairs of hyperedges, which in the
case of hypergraphs having a path-based tree support turn out to be a superset
of the set of all conflicts. The idea is, that all potential conflicts lie on a path
from an ancestor of h to one of h’s descendants. The method can be found as
pseudocode in Algorithm 2.

We illustrate Algorithm 2 with an example. Figure 5 shows the computation
of potential conflicts for the hyperedge h4

1 of the hypergraph H from Figure 3(a).
The different methods are colored. h2

5 is the only hyperedge that can be in conflict
with h4

1 with respect to a child of h4
1 and if so, with respect to h2

4.

Lemma 4. Let D′ be the augmented Hasse diagram of a hypergraph that has a

path-based tree support and let h′ and h have a conflict with respect to a child hc

of h. Then Algorithm 2 applied to D′ and h labels h′ with conflict(hc).

Proof. Let G be a path-based tree support of a hypergraph and let h′ and h
have a conflict with respect to a child hc of h.

1. Let v be the end vertex of G[h] that is contained in h′. Then v and all its
ancestors on the path from v to hc are labeled desc(hc) (and not multi-

desc).

11



Algorithm 2: Conflict Computation.

Input : augmented Hasse diagram D′ of a hypergraph, vertex h

Output : vertices h′ with label(h′) = conflict(hc) for all children hc of h

Data : there are the following vertex labels
label(h′) = anc iff h ( h′

label(h′) = not-anc only if h ∪ h′ not contained in any source of D′

label(h′) = desc(hc) iff h′ ⊆ hc for exactly one child hc of h

label(h′) = multi-desc iff h′ is contained in more than one child of h

label(h′) = not-conflict only if h∩ h′ not contained in any child of h

and h ∪ h′ contained in some source of D′

label(h′) = conflict(hc) only if hc ∩ h′ 6= ∅ for a child hc of h

and h ∪ h′ contained in some source of D′

ancestor(vertex h′) begin

foreach parent h′′ of h′ do

label(h′′)← anc;
ancestor(h′′);

descendant(vertex h′, vertex hc) begin

if label(h′) = desc(h′

c
), hc 6= h′

c
then

label(h′)← multi-desc;

else

label(h′)← desc(hc);

foreach child h′′ of h′ do

if label(h′′) 6= multi-desc then

descendant(h′′, hc);

up-search(vertex h′, vertex hc) begin

foreach parent h′′ of h′ do

if label(h′′) ∈ {∅,conflict(h′

c
), h′

c
6= hc} then

up-search(h′′, hc);

if label(h′) = conflict(h′

c
), hc 6= h′

c
then

label(h′)← not-conflict;

else if label(h′) 6= desc(hc) then

if label(h′′) ∈ {conflict(hc),anc, not-conflict} then

label(h′)← conflict(hc);

if label(h′) 6= conflict(hc) then

label(h′)← not-anc;

begin
Clear all labels;
label(h)← not-conflict;
ancestor(h);
foreach child hc of h do

descendant(hc, hc);

foreach vertex h′ of D′ with label(h′) ∈ {desc(hc); hc child of h} do

up-search(h′, hc);

12



2. If there was a descendant of h′ labeled desc(h′

c) for a child h′

c 6= hc of h,
then hc does not contain h ∩ h′ contradicting that h and h′ have a conflict
with respect to hc.

Hence, Algorithm 2 labels h′ with conflict(hc). ⊓⊔

Theorem 4. It can be tested in O(n3m) time whether a hypergraph has a path-

based tree support and if so such a support can be constructed within the same

time bounds.

Proof. Let H be a hypergraph. First test in linear time whether there is a tree
support for H [13]. Let D′ be the augmented Hasse diagram of H. The method
works in four steps.

1. Start with an empty array conflict indexed with pairs of inner vertices of D′.
Set conflicth,h′ ← hc if and only if h′ is labeled conflict(hc) in Algorithm 2
applied to D′ and h.

2. For each pair h, h′ of inner vertices of D′ test whether conflicth,h′ contains
h ∩ h′. Otherwise set conflicth,h′ ← ∅. Now, if H has a path-based tree
support then h, h′ has a conflict with respect to the child hc of h if and only
if hc = conflicth,h′ .

3. Apply Algorithm 1 to compute a support G. If the algorithm stops without
computing a support then H does not have a path-based tree support.

4. Test whether every hyperedge induces a path in G. If not, H does not have
a path-based tree support.

D′ has O(n + m) vertices, O(n2 + nm) edges and can be computed in O(n3m)
time if H has a tree support [3]. Algorithm 2 visits every edge of D′ at most
twice and, hence, runs in O(n2 + nm) time for each of the O(n) inner vertices
of D′.

We may assume that the hyperedges are given as sorted lists of their elements.
If not given in advance, these lists could straight forwardly be computed from
D′ in O(n3 + mn2) time by doing a graph search from each leaf. Now, for each
of the O(n2) pairs h, h′ of inner vertices it can be tested in O(n) time whether
conflicth,h′ contains h ∩ h′.

The sum of the sizes of all conflict graphs is in O(n2). Hence, Algorithm 1
runs in O(n2 + mn) time. For each of the O(m) hyperedges h it can be tested
in O(n) time, whether G[h] is a path. Hence, the overall run time is dominated
by the computation of the augmented Hasse diagram and is in O(n3m). ⊓⊔

5 Conclusion

We have introduced path-based supports for hypergraphs. Hence, as a new
model, we considered a restriction on the appearance of those subgraphs of
a support that are induced by the hyperedges. We have shown that it is NP-
complete to find the minimum number of edges of a path-based support or to
decide whether there is a planar path-based support. Further, we characterized

13



those hypergraphs that have a path-based tree support and we gave an algorithm
that computes a path-based tree support in O(n3m) run time if it exists. Our
algorithm completed the paths for the hyperedges in the order in which they
appeared in a reversed topological ordering of the augmented Hasse diagram. To
connect the subpaths in the right order, we introduced a conflict graph for each
hyperedge h and colored the vertices of this conflict graph with the end vertices
of the path induced by h.

References

1. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. Journal of the Association for Computing Mashinery, 30(4):479–
513, 1983.

2. U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Hypergraphs and outer-
planarity. In this volume.

3. K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek. On planar
supports for hypergraphs. In D. Eppstein and E. R. Gansner, editors, Proceedings
of the 17th International Symposium on Graph Drawing (GD 2009), Lecture Notes
in Computer Science. Springer, 2010.

4. C. Bujtás and Z. Tuza. Color-bounded hypergraphs, II: Interval hypergraphs and
hypertrees. Discrete Mathematics, 309:6391–6401, 2009.

5. J. Flower, A. Fish, and J. Howse. Euler diagram generation. Journal on Visual
Languages and Computing, 19(6):675–694, 2008.

6. D. S. Johnson, S. Krishnan, J. Chhugani, S. Kumar, and S. Venkatasubramanian.
Compressing large boolean matrices using reordering techniques. In M. A. Nasci-
mento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer,
editors, Proceedings of the 13th International Conference on Very Large Data Bases
(VLDB ’04), pages 13–23. Morgan Kaufmann, 2004.

7. D. S. Johnson and H. O. Pollak. Hypergraph planarity and the complexity of
drawing Venn diagrams. Journal of Graph Theory, 11(3):309–325, 1987.

8. M. Kaufmann, M. van Kreveld, and B. Speckmann. Subdivision drawings of hy-
pergraphs. In I. G. Tollis and M. Patrignani, editors, Proceedings of the 16th
International Symposium on Graph Drawing (GD 2008), volume 5417 of Lecture
Notes in Computer Science, pages 396–407. Springer, 2009.

9. E. Korach and M. Stern. The clustering matroid and the optimal clustering tree.
Mathematical Programming, Series B, 98:385 – 414, 2003.

10. D. Král’, J. Kratochv́ıl, and H.-J. Voss. Mixed hypercacti. Discrete Mathematics,
286:99–113, 2004.

11. M. Nöllenburg. An improved algorithm for the metro-line crossing minimization
problem. In D. Eppstein and E. R. Gansner, editors, Proceedings of the 17th In-
ternational Symposium on Graph Drawing (GD 2009), Lecture Notes in Computer
Science, pages 381–392. Springer, 2010.

12. P. Simonetto, D. Auber, and D. Archambault. Fully automatic visualisation of
overlapping sets. Computer Graphics Forum, 28(3):967–974, 2009.

13. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing, 13(3):566–579, 1984.

14. A. Wolff. Drawing subway maps: A survey. Informatik-Forschung und Entwicklung,
22:23–44, 1970.

14


