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Abstract The resource-constrained modulo scheduling problem (RCMSP)
is a general periodic cyclic scheduling problem, abstracted from the problem
solved by compilers when optimizing inner loops at instruction level for very
long instruction word parallel processors. Since solving the instruction schedul-
ing problem at compilation phase in less time critical than for real time schedul-
ing, integer linear programming (ILP) is a relevant technique for the RCMSP.
This paper shows theoretical evidence that the two ILP formulations used by
practitioners are equivalent in terms of linear programming (LP) relaxation.
Stronger formulations issued from Dantzig-Wolfe decomposition are presented.
All formulations are compared experimentally on problem instances generated
from real data. In terms of LP relaxation, the experiments corroborates the
superiority of the new formulations on problems with non binary resource re-
quirements.

Keywords periodic scheduling, resource-constrained modulo scheduling, in-
teger linear programming formulations, lower bounds, column generation

1 Introduction

A cyclic scheduling problem is specified by a set of generic tasks that are pro-
cessed an infinity of times and a set of constraints linked to precedence relations
between the tasks or to usage of limited resources. The objective is to generally
maximize the throughput of scheduling. Cyclic scheduling has many applica-
tions like compiler design and parallel computing [7, 13, 15, 16, 20, 30, 29, 31,
9, 24, 21, 25] and production systems [3, 11, 8, 10, 13, 16, 20, 23, 30, 29, 31].

In this paper, we focus on the resource-constrained modulo scheduling prob-
lem (RCMSP), a general periodic cyclic scheduling problem, abstracted from
the problem solved by compilers when optimizing inner loops at instruction
level for VLIW parallel processors.

We briefly describe the context of the RCMSP in terms of parallel com-
puting and very long instruction word (VLIW) architectures. We refer to
[13, 34, 29, 16, 17, 15] for more details. Studies in the field of compiling for
modern superscalar and VLIW architectures are mainly focused on the instruc-
tion scheduling problem. This problem is defined by a set of operations to
schedule, a set of dependencies between these operations, and a target proces-
sor micro-architecture [13, 15, 34]. An operation is considered as an instance
of an instruction in a program text. Instruction scheduling for inner loops is
known as software pipelining. Software pipelining is an efficient method of loop
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optimization that allows for parallelism of operations related to different loop
iterations. Today, commercial compilers use loop pipelining methods based
on modulo scheduling algorithms. Modulo scheduling is a software pipelining
framework, based only on periodic cyclic schedules with integral period, which
renders this model simplest than the classic model of cyclic scheduling [20].
Modulo Scheduling is a technique that links successive iterations of a loop. The
goal is to find a valid schedule for a loop (the local schedule) that can be over-
lapped with itself infinitely. In the modulo scheduling framework, the interval
between two local schedules is called initiation interval (or period) and is the
main indicator of the schedule quality. The modulo scheduling algorithm must
take into account the constraints of the target processor, this is, latencies of
operations, resources, and size of the register files. Also, it should consider
optimizing goals secondary such as, minimizing the schedule length of a loop it-
eration, minimizing the register requirements of the resulting modulo schedule.
Algorithms based on optimal solvers have been proposed, and are referred to as
optimal modulo schedulers. In this study, register constraints and objectives are
ignored. In this context, The RCMSP can be informally defined as a periodic
scheduling problem consisting in minimizing the period as the main objective,
and the length of the local schedule as a secondary objective, while satisfying
precedence and resource constraints.

Heuristic solving scheme have been proposed since many years to solve this
problem [32, 18, 2, 6]. However, since solving the instruction scheduling problem
at compilation phase in less time critical than for real time scheduling, integer
linear programming (ILP) is a relevant technique for the RCMSP [13, 16, 17,
15]. Hence, different ILP formulations for the RCMSP have been proposed and
used in practice. These formulations can be presented as generalizations of the
classical non preemptive time-indexed formulations of Pritsker et al. [28] and
the tighter variant presented by Christofides et al. [10], for the (non periodic)
resource constrained project scheduling problem (RCPSP).

However, because of the periodic nature of the problem, the time-indexed
formulation of the RCPSP can be extended in two different ways, yielding two
categories of ILP formulations. Eichenberger et Davidson [16] proposed a first
extension comprising both binary and integer variables. We call this category
of formulations the decomposed formulations. Dupont de Dinechin [13, 14]
proposed a second extension comprising only binary variables. We call the
latter category the direct formulations.

In this paper, three main contributions are proposed. First, theoretical
evidence that the two categories of formulations yield ILP that are equivalent
in terms of linear programming (LP) relaxation is shown. Second, stronger
formulations issued from Dantzig-Wolfe decomposition are presented. Last, all
formulations are compared experimentally on problem instances generated from
real data issued from the STMicroelectronics ST200 VLIW processor family [13].

Section 2 presents the RCMSP. Section 3 presents a solving and lower bound-
ing framework. Section 4 presents the classical ILP formulations for the RCMSP
and proves their equivalence. Section 5 presents the new formulations issued
from Dantzig-Wolfe decomposition. Section 6 present a column generation
method to compute the LP relaxation of the new formulations. Section 7
presents an experimental comparison of the ILP formulations in terms of LP
relaxation and shows the superiority of the new formulations on instances with
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tight resource constraints. Section 8 concludes the paper.

2 Problem Statement

Modulo scheduling is defined as a periodic scheduling with an integral period.
We consider n generic tasks of unit duration. A schedule assigns a start time
σk

i ∈ N to each kth instance of generic task i with i ∈ {1, . . . , n} and k ∈ N. A
schedule is periodic if there exists an integer λ ∈ N

∗ verifying:

σk
i = σ0

i + kλ,∀i ∈ {1, . . . , n},∀k ∈ N (1)

In this case, the schedule is periodic with period λ. Given λ, the schedule is
fully determined by the start time of the first instance of each task. In the
remaining of the paper, we will use σi in place of σ0

i . We now consider two
sets of constraints on a schedule: the precedence constraints and the resource
constraints.

Let E denote a set of ordered pairs of tasks, defining the precedence con-
straints. Each precedence constraint (i, j) ∈ E is characterized by a latency (or
length) θ

j
i ∈ N , and a distance (or height) ω

j
i ∈ N. A schedule satisfies the

precedence constraint E if:

σ
k+ωj

i

j ≥ σk
i + θ

j
i ∀(i, j) ∈ E,∀k ∈ N (2)

To understand this constraint, consider that a generic task is a computer
instruction inside a loop that must be repeated a large number of times, yielding
the cyclic scheduling problem. Each instance k of a task i corresponds to the kth
iteration of the loop. The precedence constraint may represent a dependency
link between tasks i and j in such a way that an information produced by
instruction i at iteration k has to be used as an input of instruction j at iteration
ω

j
i iterations later. However, once instruction i is started, the information is

available for j only after θ
j
i time steps. Considering the schedule is periodic, we

obtain a simplified precedence constraint by inserting (1) into (2) and replacing
σ0

i by σi:

σj ≥ σi + θ
j
i − ω

j
i λ, ∀(i, j) ∈ E (3)

A set of m resources is considered. Each task i ∈ {1, . . . , n} requires bs
i ∈ N

units of each resource s ∈ {1, . . . ,m}. Each resource s has a limited availability
Bs ∈ N. Note that since λ ≥ 1, (1) implies that several instances of the same
tasks cannot be scheduled in parallel. Consequently, the set of task instances in
process at a time step t ∈ N is the set A(t) = {i ∈ {1, . . . , n}|∃k ∈ N, σk

i = t}.
The resource constraint can be written as follows:

∑

i∈A(t)

bs
i ≤ Bs, ∀s ∈ {1, . . . ,m},∀t ∈ N

Consider now a “generic” time step τ ∈ {0, . . . , λ − 1} and the set B(τ) =
{i ∈ {1, . . . , n}|∃k ∈ N, σi = τ + kλ} of tasks having their start time σi equal to
τ modulo λ. Thanks to the schedule periodicity, the resource constraint can be
also simplified as it can be shown that there always exists T ∈ N such that for
t ≥ T , we have A(t) = B(τ) and for each t < T we have A(t) ⊂ B(τ) where
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t = τ + kλ. The resource constraints can then be replaced by the following
“modulo” resource constraints:

∑

i∈B(τ)

bs
i ≤ Bs, ∀s ∈ {1, . . . ,m},∀τ ∈ {0, . . . , λ − 1} (4)

The objective to be minimized is first, the period λ and, second, a function
of start times of the tasks. If, wi represents a cost associated with each task
i, in general terms, the secondary goal is to minimize the weighted sum of the
start times of tasks. To summarize, the RCMSP can be stated as

minLex(λ,

n
∑

i=1

wiσi) (5)

subject to
σj ≥ σi + θ

j
i − ω

j
i λ, ∀(i, j) ∈ E (3)

∑

i∈B(τ)

bs
i ≤ Bs, ∀s ∈ {1, . . . ,m},∀τ ∈ {0, . . . , λ − 1} (4)

σi ∈ N ∀i ∈ {1, . . . , n}

λ ∈ N (6)

If, we add task n + 1, such that σn+1 ≥ σi + 1 with i = 1, ..., n, representing
the schedule end and suppose wi = 0 for 1 ≤ i ≤ n, the objective can be a
function of the completion time of the task n+1, this is, minimize the makespan,
Cmax = σn+1.

3 Solving and lower bounding framework

Introducing λ as a decision variable yields non-linear mathematical programs.
Hence the common framework for solving the RCMSP is based on iteratively
solving the problem with a fixed λ [13, 14, 32, 16]. The minimum λ for which a
feasible solution is found is the optimal period. This also allows to optimize the
secondary objective at each iteration, thus solving the lexicographic optimiza-
tion problem. In this paper we perform a linear search starting with a lower
bound λlb which can be obtained as follows [14].

Let N = {1, . . . , n}. When the availability of resources is not limited or
sufficiently large, the minimal feasible period is given by the critical circuit in
the precedence graph G = (N, E). If µ is a circuit in G, the value of µ is defined

by C(µ) = θ(µ)
ω(µ) where θ(µ) =

∑

(i,j)∈µ

θ
j
i and ω(µ) =

∑

(i,j)∈µ

ω
j
i . A circuit µ is

critical if its value C(µ) is maximum among all the circuits of G. The critical
circuit can be found in polynomial time [20]. The lower bound of the period
given by the critical circuit is

λprec = max
µ circuit of G

C(µ)

Another basic lower bound due to resource limitations can be also obtained.

λres =
m

max
s=1

∑n
i=1 bs

i

Bs
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λres is the minimum λ such that the renewable resources are not over-subscribed.
The lower bound basic lower bound to initiate the linear such for the minimal

λ can be set to λlb = max(λdep, λres).
In terms of integer linear programming, let ILP (λ) denote an integer linear

program minimizing the secondary objective for a fixed λ. The optimal solution
of the RCMSP is obtained by finding the smallest λ for which ILP (λ) is feasible
with λ ≥ λlb and by solving ILP (λ) to optimality for the secondary objective.

This principle can be used to compute stronger lower bounds. If LP (λ)
denote the LP relaxation of ILP (λ) the λlb lower bound can be improved by
finding the smallest λ ≥ λlb such that LP (λ) is feasible. This also provides a
conditional lower bound for the secondary objective. The optimal solution of
LP (λ) is a lower bound for the secondary objective under the condition that the
period is equal to λ. In the following section we show that the LP relaxations
of the two different classical formulations for the RCMSP are in fact equal.
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Figure 1: Precedence graph and resource-unconstrained optimal schedule

In Figure 1, a 10-task resource-unconstrained problem instance with λprec =
1 and its solution are displayed. Figure 1.a displays the precedence graph and
the pair (latency,distance) for each precedence constraint. Figure 1.b displays
in a Gantt chart the periodic schedule with λ = 1 and Cmax = 5, for the first 3
iterations.

Table 1 now introduces resources constraints. There are 4 resources and a
particular situation where each task requirement on each resource is binary.

The optimal solution of the resource-constrained problem is displayed in
Figure 2 with λ = 4 and Cmax = 5.

5



Resources R1 R2 R3 R4

availability 4 1 1 2

Operations R1 R2 R3 R4

1 1 0 0 0
2 1 1 0 0
3 1 1 0 0
4 1 1 0 0
5 1 0 0 0
6 1 1 0 0
7 1 0 0 0
8 1 0 0 0
9 1 0 1 1
10 1 0 0 0

Table 1: Resources availabilities and demands.
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Figure 2: Optimal resource constrained modulo scheduling

4 The classical ILP formulations of the RCMSP

For the non periodic resource-constrained project scheduling (RCPSP), Pritsker
et al. [28] proposed an ILP formulation based on time-indexed binary variables
zt
i such that zt

i = 1 if and only if the start time of task i is equal to t. According
to the periodic nature of the RCMSP, there are two ways for extending this
model.

4.1 Direct formulation [13]

Dupont-de-Dinechin [13, 14] proposed a time-indexed formulation based on a
direct discretization of start times σi. This formulation is based on binary
variables xt

i such that xt
i = 1 if and only if σi = t and we have σi =

∑T−1
t=0 txt

i,
where T is any upper bound of the makespan allowing to achieve the optimum
secondary objective for the optimum λ. For ease of notation, we suppose there
is an integer K such that T = Kλ (we can always increase T as needed to obtain
this property). This formulation (direct) is expressed as follows:

min

n
∑

i=1

wi(

T−1
∑

t=0

txt
i) (7)
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T−1
∑

t=0

xt
i = 1 (8)

T−1
∑

t=0

txt
i + θ

j
i − λω

j
i ≤

T−1
∑

t=0

txt
j ,∀(i, j) ∈ E (9)

n
∑

i=1

T/λ−1
∑

k=0

xτ+kλ
i bs

i ≤ Bs,∀τ ∈ {0, . . . , λ − 1}, s ∈ {1, . . . ,m} (10)

xt
i ∈ {0, 1} ∀i ∈ {1, . . . , N},∀t ∈ {0, . . . , T − 1} (11)

Objective (7) and the precedence constraints (9) are obtained directly from

(5) and (3), respectively, by replacing σi by
∑T−1

t=0 txt
i.

Constraints (8) state that each generic task has to be started exactly once
in set {0, . . . , T − 1}. Constraints (10) ensure that the usage of a resource never
exceeds its availability. Here, set B(τ) is the set of tasks such that xt

i = 1 for
any t such that t = τ + kλ with k ∈ {0, . . . , T

λ − 1 = K − 1}.
Inspired by the results of Christophides et al for the RCPSP [10], Dupont-de-

Dinechin [13, 14] introduced the following so-called “disaggregated” precedence
constraints:

T−1
∑

h=t

xh
i +

t+θj

i
−λωj

i
−1

∑

h=0

xh
j ≤ 1,∀t ∈ {0, . . . , T − 1},∀(i, j) ∈ E (12)

As in the preceding case, replacing constraints (9) by constraints (12) yields
a tighter formulation (direct+). The proof can be extended from the results
obtained for the RCPSP (see e.g. [33]). Section 4.3 will give more details

4.2 Decomposed formulation [16]

The start time of the generic task i can be decomposed according to the division
by λ. We have σi = τi + kiλ with τi ∈ {0, . . . , λ − 1} and ki ∈ N.

Following this decomposition, Eichenberger and Davidson [16] introduce in-
teger variables ki and binary variables yτ

i such that, yτ
i = 1 if only if τi = τ

which yields also τi =
∑λ−1

τ=0 τyτ
i . The formulation (decomp) is expressed as

follows:

min

n
∑

i=1

wi(

λ−1
∑

τ=0

τyτ
i + kiλ) (13)

λ−1
∑

τ=0

yτ
i = 1, ∀i ∈ {1, . . . , n} (14)

λ−1
∑

τ=0

τyτ
i + kiλ + θ

j
i − λω

j
i ≤

λ−1
∑

τ=0

τyτ
j + kjλ, ∀(i, j) ∈ E (15)

n
∑

i=1

yτ
i bs

i ≤ Bs, ∀s ∈ {1, . . . ,m},∀τ ∈ {0, . . . , λ − 1} (16)
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yτ
i ∈ {0, 1} ∀i ∈ {1, . . . , n},∀τ ∈ {0, . . . , λ − 1} (17)

ki ∈ {0, . . . ,K − 1} ∀i ∈ {1, . . . , n} (18)

As for the direct formulation, by replacing σi by
∑λ−1

τ=0 τyτ
i + kiλ, objec-

tive (13) is exactly the secondary objective in (5) and constraints (15) are the
precedence constraints (3). Constraints (14) state that each generic task has
to be started exactly once in the period or, equivalently, that the remainder
of the division of σi by λ lies in {0, . . . , λ − 1}. With this decomposition, set
B(τ) is precisely the set of tasks such that yτ

i = 1, which directly gives resource
constraints (16) from original modulo resource constraints (4).

Based on results obtained by Chaudhuri et al. [7], Eichenberger and David-
son [16] propose a new precedence constraint, they call “structured” precedence
constraint.

λ−1
∑

x=τ

yx
i +

(τ+θj

i
−1) mod λ
∑

x=0

yx
j + ki − kj ≤ ω

j
i − ⌊

τ + θ
j
i − 1

λ
⌋ + 1,

∀τ ∈ {0, . . . , λ − 1},∀(i, j) ∈ E (19)

Replacing constraints (15) with constraints (19) yields a tighter formulation
(decomp+) (see [16] for the proof).

4.3 Comparison of LP relaxations

Although experimental results have been carried out to compare the merits
of the direct and decomposed formulations in terms of integer solutions found
with a commercial solver or embedded inside ILP-based heuristics [14, 15], no
study has been carried-out yet to compare the quality of their LP relaxations.
Theorem 1 below shows that the LP relaxations of formulations (direct) and
(decomp) are equal while subsequent Theorem 2 shows that the LP relaxations
of tighter formulations (direct+) and (decomp+) are also equal.

Let T = Kλ, with T, K, λ ∈ N
∗. Given that σi = τi + kiλ, consider the fol-

lowing constraints, expressing variables y and k of the decomposed formulation
as linear functions of variables x of the direct formulation.

yτ
i =

K−1
∑

k=0

xτ+kλ
i ∀i ∈ {1, . . . , n},∀τ ∈ {0, . . . , λ − 1} (20)

ki =

K−1
∑

k=1

Kλ−1
∑

t=kλ

xt
i ∀i ∈ {1, . . . , n} (21)

Consider ILP (E-direct) and (E-direct+), obtained by inserting constraints
(20) and (21) in (direct) and (direct+), respectively.

Given the following bound constraint for variables xt
i.

0 ≤ xt
i ≤ 1 ∀i ∈ {1, . . . , n}, t ∈ {0, . . . , T} (22)

we define also ILP (E-decomp) and (E-decomp+), obtained by inserting con-
straints (20), (21) and (22) in (decomp) and (decomp+), respectively.
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With these transformations, we obtain 4 formulations all defined on the
(x, y, k) space. If (form) denotes an ILP formulation, let z̃∗(form) denote the
optimal objective value of its LP relaxation.

Lemma 1 Considering formulations (direct), (direct+), (decomp), (decomp+)
and their extended versions, we have the following equivalences:

z̃∗(direct) = z̃∗(E-direct),

z̃∗(direct+) = z̃∗(E-direct+),

z̃∗(decomp) = z̃∗(E-decomp),

z̃∗(decomp+) = z̃∗(E-decomp+).

Proof For the direct case, we show that inclusion of variables yi and ki does not
change the optimal LP relaxation are there are no constraints on these variables.
For the decomposed case, we show that for any feasible fractional (y, k) solution
respecting convexity constraints on variable y, we can always find a feasible
fractional x such that 0 ≤ x ≤ 1. Detailed proof is given in Appendix I.

Theorem 1 Let z̃∗(decomp) denote the optimal objective value of the decom-
posed formulation LP relaxation and z̃∗(direct) denote the optimal objective
value of the direct formulation LP relaxation. We have

z̃∗(direct) = z̃∗(decomp)

Proof Lemma 4.3 allows us to show this equivalence by comparing the LP
relaxation of the extended direct and decomposed formulations. We show that
all the constraints of these formulations are equivalent. The proof is detailed in
Appendix II.

Last we show the equivalence of the tighter formulations (direct+) and (de-
comp+).

Theorem 2 Let z̃∗(decomp+) denote the optimal objective value of the im-
proved decomposed formulation LP relaxation and z̃∗(direct+) denote the opti-
mal objective value of the improved direct formulation LP relaxation. We have

z̃∗(direct+) = z̃∗(decomp+)

Proof Lemma 4.3 allows us to show this equivalence by comparing the LP
relaxation of the improved direct (direct+) and extended improved decomposed
(E-decomp+) formulation. The difference with the previous case lies in the
precedence constraints. We show that the optimal solution of the LP relaxation
ignoring the resource constraints is 0-1 in both cases. The proof is detailed in
Appendix III.
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5 Stronger formulations for the RCMSP

5.1 New formulations based on Dantzig-Wolfe decompo-
sition for integer programs

We propose new formulations for the RCMSP based on the Dantzig-Wolfe de-
composition [12] applied to integer programs as proposed in [36].

Consider the following bounded integer polyhedron P(τ), corresponding to
the feasible integer solutions of the resource constraints of the decomposed for-
mulation for a given time τ ∈ {0, . . . , λ − 1}

P(τ) =

{

yτ ∈ {0, 1}n |

n
∑

i=1

yτ
i bs

i ≤ Bs,∀s ∈ {1, . . . ,m}

}

there is a one-to-one correspondence between the set of non zero feasible points
of P(τ) and the set R of sets of tasks {i1, . . . , iq} such that

∑q
p=1 bs

ip
≤ Bs,∀s ∈

{1, . . . ,m}. Each set of R is called a feasible set. The empty set correspond to
y = 0. Let R∗ denote the set of all feasible sets augmented by the empty set.
Hence there are at most 2n elements in R∗.

As P(τ) is bounded, let P0, P1, . . . , P|R|−1 denote its elements, each cor-
responding to a feasible set, P0 corresponding to the empty set. P(τ) can be
alternatively represented by the enumeration of its elements as follows:

P(τ) =

{

yτ ∈ R
n | yτ =

∑

l∈R∗

zτ
l Pl and

∑

l∈R∗

zτ
l = 1 and zτ

l ∈ {0, 1}, l ∈ R∗

}

We introduce binary matrix a such that al
i = 1 if i belongs to the feasible

set corresponding to Pl (al
i is the ith component of Pl). Now, by replacing yτ

i

by
∑

l∈R

al
iz

τ
l and using R instead of R∗ (we do not consider the empty feasible

set), we obtain a new decomposed formulation for the RCMSP (M-decomp).

min

n
∑

i=1

wi(ki ∗ λ +
λ−1
∑

τ=0

τ
∑

l∈R

al
iz

τ
l )

∑

l∈R

(

λ−1
∑

τ=0

al
iz

τ
l ) = 1 i ∈ {1, ..., n} (23)

∑

l∈R

zτ
l ≤ 1, τ ∈ {0, . . . , λ − 1} (24)

λ−1
∑

τ=0

τ(
∑

l∈R

al
jz

τ
l −

∑

l∈R

al
iz

τ
l ) + (kj − kj)λ ≥ θ

j
i − ω

j
i λ.(i, j) ∈ E (25)

zτ
i ∈ {0, 1} ∀i ∈ {1, . . . , n},∀τ ∈ {0, . . . , λ − 1}

ki ∈ {0, . . . ,K − 1} ∀i ∈ {1, . . . , n}

In this formulation, binary variable zτ
l equals 1 if and only if feasible subset

l is used at time τ . The LP relaxation of (M-decomp) is stronger than that of
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(decomp) as resource constraints are replaced by the convex hull of integer set
P(τ) i.e.

conv (P(τ)) =

{

yτ ∈ R
n | yτ =

∑

l∈R

zlPl and
∑

l∈R

zl = 1 and 0 ≤ zl ≤ 1, l ∈ R

}

By using the structured precedence constraints (19), we may replace con-
straints (25) by the following constraints

λ−1
∑

x=τ

∑

l∈R

al
iz

x
l +

(τ+θj

i
−1) mod λ
∑

x=0

∑

l∈R

al
jz

x
l + ki − kj ≤ ω

j
i − ⌊

τ + θ
j
i − 1

λ
⌋ + 1,

∀τ ∈ {0, . . . , λ − 1},∀(i, j) ∈ E (26)

For the same reason the obtained formulation (M-decomp+) has a LP re-
laxation stronger than that of (decomp+).

We also obtain new formulations by applying the same decomposition to the
direct formulations. We keep however variables x for the precedence constraints
and use transformation (20) to make the link between variables z and x. We
obtain the following direct formulation for the simple precedence constraints
(M-direct):

min

n
∑

i=1

wi

T
∑

t=0

txt
i

T
∑

t=0

xt
i = 1, i = 1, ..., n

∑

l∈R

(

λ−1
∑

τ=0

al
iz

τ
l ) = 1, i = 1, ...n (27)

∑

l∈R

zτ
l ≤ 1, τ ∈ [0, λ − 1] (28)

T
∑

t=0

txt
i + θ

j
i − λω

j
i ≤

T
∑

t=0

txt
j , (i, j) ∈ E (29)

∑

l∈R

al
iz

τ
l =

K−1
∑

k=0

xτ+kλ
i ∀i ∈ {1, . . . , n},∀τ ∈ {0, . . . , λ − 1} (30)

xt
i ∈ {0, 1}, i ∈ {1, . . . , n}, t ∈ {0, . . . , T − 1}

zτ
i ∈ {0, 1}, i ∈ {1, . . . , n}, τ ∈ {0, . . . , λ − 1}

Last, by using the disaggregated precedence constraints (12) instead of the
simple precedence constraints. We obtain formulation (M-direct+). As for
the decomposed formulation, LP relaxations (M-direct) and (M-direct+) are
stronger than the ones of (direct) and (direct+), respectively. We have to un-
derline that applying the same decomposition for the non-periodic RCPSP to
the time-indexed formulations of Pritsker et al. [28] gives the Mingozzi et al for-
mulation [26]. The latter formulation was however proposed without mentioning
the Dantzig-Wolfe decomposition applied to integer programs.
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5.2 Reduction of the number of feasible sets

As previously remarked, there are at most 2n feasible sets of tasks. If resource
constraints are active, this maximum number is never reached, as all subset of
tasks whose cumulative demand exceed a resource availability can be a priori
discarded. For the related formulation proposed by Mingozzi et al. [26] for the
non periodic RCPSP, further reduction is obtained by remarking that two tasks
linked by a precedence constraint cannot belong to the same feasible set. Due
to the cyclic nature of the RCMSP, this exclusion rule does not hold any more
and more complex conditions can be derived as follows.

We establish below necessary condition for having σimodλ = σjmodλ (i.e.
τi = τj). If there is a precedence constraints from i to j, we have:

σj ≥ σi + θ
j
i − λω

j
i

τj + kjλ ≥ τi + kiλ + θ
j
i − λω

j
i

τj ≥ τi + kiλ − kjλ + θ
j
i − λω

j
i

τj − τi ≥ (ki − kj)λ + θ
j
i − λω

j
i

For having τi = τi we must find ki and kj such that

kj ≥ ki +

⌈

θ
j
i

λ

⌉

− ω
j
i (31)

and ki, kj integer which can be easily obtained independently of other con-
straints.

If, in addition, if we have also a precedence constraint from j to i we have:

τi − τj ≥ (kj − ki)λ + θi
j − λωi

j

If τi = τi, it comes

ki ≥ kj +

⌈

θi
j

λ

⌉

− ωi
j (32)

Finding ki and kj such that (31), (32) and ki, kj integer is possible if and only
if

⌈

θ
j
i

λ

⌉

− ω
j
i +

⌈

θi
j

λ

⌉

− ωi
j ≤ 0 (33)

On the other hand, if we admit that the problem is precedence feasible, we have

θ
j
i − λω

j
i + θi

j − λωi
j ≤ 0 (34)

A simple counterexample shows that in general (34) 6⇒ (33). Suppose that
θ

j
i = 1, ω

j
i = 0, θi

j = 1, ωi
j = 1 and λ = 2. (34) is verified since θ

j
i − λω

j
i +

θi
j − λωi

j = 1 − 0 + 1 − 2 = 0 and a feasible solution is given for instance
by σi = 0 and σj = 1 but there is no solution satisfying (31) and (32) since
⌈

θj

i

λ

⌉

− ω
j
i +

⌈

θi
j

λ

⌉

− ωi
j =

⌈

1
2

⌉

− 0 +
⌈

1
2

⌉

− 1 > 0.

Hence a necessary condition for having τi = τj is given by (33) and if the
condition is not verified i and j cannot belong to the same feasible subset. This

12



rule can be applied to reduce a priori the number of feasible sets of tasks to be
considered in set R. It actually can be extended, following the same principle,
to any circuit in the precedence graph. Let (i1, i2), (i2, i3), . . . , (iq, iq+1 = i1)
denote such a circuit.

Theorem 3 Subset of tasks {i1, . . . , iq} cannot be included in a feasible set if
∑q

s=1

⌈

θis+1
is

λ

⌉

− ω
js+1
is

> 0

Proof The theorem follows from a trivial generalization of the 2 tasks case.

6 Column generation

6.1 Principle

In formulations (M-direct), (M-direct+), (M-decomp) and (M-decomp+), the
number of variables can be huge (λ× | Rl |). For this reason we propose a column
generation scheme to solve their LP relaxations. The column generation method
is a decomposition technique for solving a structured linear program with a lot of
columns. Generally, the column generation in mainly based upon decomposing
the original linear program into a master problem and a subproblem. the master
problem contains a first subset of columns (it is henceforth called the restricted
master problem) and the subproblem, which is a separation problem for the
dual linear program, is solved to identify whether the master problem should
be enlarged with additional columns or not. The column generation alternates
between the master problem and the subproblem, until the former contains all
the columns that are necessary for reaching an optimal solution of the original
linear program.

In formulation (M-decomp), let ρi denote the dual variable associated with
constraints (23), let βτ denote the dual variable associated with constraints (24)
and let δij denote the dual variable associated with constraints (25).

The dual constraints related to the variable zτ
l for primal formulation (M-

decomp) are

n
∑

i=1

al
iσi − βτ +

∑

(i,j)∈E

δijτ(al
j − al

i) ≤

n
∑

i=1

wiτal
i,∀l ∈ R, τ ∈ {0, . . . , λ − 1}

which gives
n

∑

i=1

w1(i, l, τ)al
i ≤ βτ ,∀l ∈ R, τ ∈ {0, . . . , λ − 1}

where w1(i, l, τ) = ρi + τ(
∑

(j,i)∈E δji −
∑

(i,j)∈E δij + wi).

Formulation (M-decomp+) differs from (M-decomp) through the disaggre-
gated precedence constraints (26). Let δτ

ij denote the dual variable of constraints
(26). We obtain the following dual constraints for variable zτ

l in the primal for-
mulation (M-decomp+):

n
∑

i=1

w2(i, l, τ)al
i ≤ βτ ,∀l ∈ R, τ ∈ {0, . . . , λ − 1}

13



where w2(i, l, τ) = ρi +
∑

(j,i)∈E

(

(τ + θi
j − 1) mod λ + 1

)

δτ
ji +

∑

(i,j)∈E(λ −

τ)δτ
ij + wiτ .
Formulation (M-direct) differs from (M-decomp) through the fact that the

precedence constraints and the objective function do not involve variables zτ
l

while there are linking constraints (30) between variables x and z. Let γτ
i denote

the dual variables of constraints (30). We obtain the following dual constraints
for variables variable zτ

l of the primal formulation (M-direct):

n
∑

i=1

w3(i, l, τ)al
i ≤ βτ ,∀l ∈ R, τ ∈ {0, . . . , λ − 1}

where w3(i, l, τ) = ρi + γτ
i .

As the disaggregated precedence constraints does not involve z variables, the
dual constraints is identical for formulation (M-direct+).

Depending of the formulation, finding a violated dual constraint, i.e. a n-
vector ai such that

∑n
i=1 wx(i, τ)al

i ≤ βτ (for q = 1, 2, 3) can be done by solving
the following subproblem (SPq(τ))

max

n
∑

i=1

wq(i, τ)ai (35)

n
∑

i=1

aib
s
i ≤ Bs,∀s ∈ {1, . . . ,m} (36)

ai ∈ {0, 1}, ∀i ∈ {1, . . . , n} (37)

The subproblem corresponds to a Multi-dimensional Knapsack Problem. For
τ = 0, ..., λ − 1 we have λ subproblems.

Once the restricted master problem is solved, the λ subproblems are solved.
As soon as for a given τ , the optimal subproblem value exceeds βτ the corre-
sponding ai generates a new feasible set and the new variable zτ

l is included
in the master problem. The new master problem is solved and the process is
iterated until no violated dual constraint can be found for all τ ∈ {0, . . . , λ− 1}

Note the rules presented in Section 5.2 can be used as the following valid
clique inequalities to reduce the search space of the sub problem.

∑

i∈U

ai ≤ |U | − 1, ∀U ∈ U

where U is the set of set of tasks U = {i1, . . . , iq} verifying
∑q

s=1

⌈

θis+1
is

λ

⌉

−

ω
js+1
is

> 0 as stated in Theorem 3

6.2 Initial set of columns

The initial restricted master problem must have a feasible LP relaxation to
ensure that proper dual information is passed to the pricing problem. An initial
restricted master can always be found using a two-phase method as the two-
phase method incorporated in simplex algorithms to find an initial basic feasible
solution [1]. In order to determine an initial feasible restricted master problem
(i.e. an initial feasible set of columns), we add λ artificial variables called Cτ , τ ∈
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[0, . . . , λ− 1] and we allow violation of the convexity constraints (24), replacing
them by

∑

l∈R

zτ
l − Cτ ≤ 1, τ ∈ [0, λ − 1] (38)

Furthermore, we change the objective by:

min

λ−1
∑

τ=0

Cτ (39)

We initiate the set of columns by feasible sets {{i}|
∑m

s=1 bs
i > 0}. We start

the column generation process with the modified objective until
λ−1
∑

τ=0
Cτ = 0.

Then we turn to phase 2, by using the regular objective and convexity con-
straints. Note that phase 1 of the column generation scheme may end with a
positive objective, which early proves the unfeasibility of λ.

7 Experimental Results

The purpose of the experimental experiments is mainly to assess the quality of
the proposed new formulation for the RCMSP in terms of LP relaxation and
lower bound computation for the period and for the makespan.

For the experimentations on the ILP formulations for the RCMSP, we used
Cplex V.11 and an Intel(R) Core(TM)2 Duo CPU E4400 @ 2.00GHz 1.99 GHz
RAM. We consider two set of instances.

The first set corresponds to a set of 36 instruction scheduling instances for
the ST200 processor supplied by STmicroelectronics [13], where the smallest
instance has 10 tasks and 42 dependence constraints and the biggest one has
214 tasks and 1063 constraints.

In these industrial instances, there are task classes and each task belong
to a task class, defining its resource demands. In Table 2 we displayed the
resources availabilities and the resource requirements of each operation class.
The resources are: Issue for the instruction issue width; MEM for the memory
access unit; and CTL for the control unit. An artificial resource LANE0 is also
introduced to satisfy some encoding constraints. There are in our example, 10
classes of operations. ALU, MUL, MEM and CTL correspond respectively to
the arithmetic, multiply, memory and control operations. The classes ALUX,
MULX and MEMX represent the operations that require an extended immediate
operand. LDH, MULL, ADD, CMPNE and BRF belong respectively to classes
MEM, MUL, ALU and CTL.

Note the resources consumption is mainly binary, except for the “ISSUE”
resource. To obtain a more constrained (in terms of resource constraints) set of
RCMSP instances, the second set corresponds to the same instance set as the
first set but, in this case, we have replaced the resources consumption by random
consumption chosen between 1 and 10, while each resource availability has been
set to 10. Table 3 (Appendix IV), provide for each instance, the number of
tasks #task, the number of dependence constraints #prec, the precedence-based
lower bound λprec, the resource-based lower bound for the industrial instances
λres (ind) and the resource-based lower bound for the modified instances λres
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Resource ISSUE MEM CTL ODD EVEN LANE0
Availability 4 1 1 2 2 2

ALL 4 0 0 0 0 0
ALU 1 0 0 0 0 0

ALUX 2 0 0 1 1 0
CTL 1 0 1 1 1 0
ODD 1 0 0 1 0 0

ODDX 2 0 0 1 1 0
MEM 1 1 0 0 0 0

MEMX 2 1 0 1 1 0
PSW 1 1 1 1 1 0
EVEN 1 0 0 0 1 0

Table 2: Resources availabilities and operation requirements for ST200 instances

(mod). One observes the resource constraints are much tighter for the modified
instances.

We now evaluate the performance of the standard (direct+) and (decomp+)
formulations on the industrial and modified instances. We first provide the
results of these formulations in terms of lower bounds for the period and the
makespan. The lower bound for the period is set to the smallest λ for which the
LP is feasible. The lower bound for the makespan is the optimal LP objective
value. As we established the equivalence between (direct+) and (decomp+),
Tables 4 and 5 (Appendix IV) compare only the CPU time to obtain the lower
bound, on the industrial and modified instances, respectively. The analysis of
the results shows that the decomposed formulation is always faster. This was
expected since it has much less variables and constraints. However, although
high CPU time requirements are obtained on some instances, the lower bound is
always equal to the trivial lower bound max(λprec, λres) for both the industrial
and modified instances.

Since the LP-based lower bounds for the period do not improve on the trivial
ones, it has to be determined if this is due to the fact that the trivial bound is
actually feasible or to the weakness of the LP relaxations. To this purpose, we
search for the integer optimal solution of the (direct+) and (decomp+) formu-
lations. Starting with the lower bound on the period, the branch-and-bound of
the ILP solver is used, incrementing the period until, first, a feasible solution
is found which yields the optimal period. Solving the last ILP to optimality
then provides the optimal makespan. It appears in Table 6 (Appendix IV) that
almost all industrial instances can be solved to optimality, both in terms of
minimal period and minimal makespan. Again the (decomp+) formulation is
faster than the (direct+) formulation. Furthermore, for the industrial instances,
the minimal period is always equal to the trivial lower bound. It follows that
the industrial instances cannot be used to evaluate the quality of the (direct+)
and (decomp+) LP relaxations in terms of lower bounds for the period. This
not the case for the makespan. Actually, as the makespan cannot be lower than
the period, (direct+) and (decomp+) LP relaxations improve upon this lower
bound as shown in Table 6 (Appendix IV). We underline this has not been the
case for formulations (direct) and (decomp) with the weaker precedence con-
straints (these results are not displayed), which shows the interest of (direct+)
and (decomp+) LP relaxation for lower bpunds of the makespan.

Table 7 (Appendix IV) shows the optimal of best known integer solutions
obtained by (direct+) and (decomp+) on the modified instances. It appears
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that the modified instances are harder to solve as less optimal solutions are
found. There are 6 instances whose optimal solution is not found after three
weeks of time run. We have two instances for which, after three weeks of time
run, a feasible but not optimal solution is found (gap values 1.75% and 8%).
However, for the optimally solved instances, the minimal period is larger than
the trivial lower bound. We can thus conclude that, unfortunately, the standard
LP relaxations of the RCMSP formulations are useless for computing lower
bounds for the period (again this is not the case for the makespan).

Table 8 (Appendix IV) recalls the results of the standard formulations and
the known optimal solutions for the modified instances. The results of the
best new formulations (M-decomp+) in terms of lower bounds of the priod and
makespan are provided. The trivial lower bound of the period is significantly
improved as the proposed column generation-base lower bound reaches the opti-
mal period for 82% of the instances. The CPU times are significantly increased
compared to the standard ILP. However there is still room for improvement as,
to demonstrate the intrinsic quality of the proposed formulations, we used a ba-
sic implementation of column generation and we did not use the rules proposed
in Section 5.2.

8 Summary and Conclusions

We have proposed new formulations for the resource-constrained modulo schedul-
ing problem, based on the integer Dantzig-Wolfe decomposition of existing time-
indexed formulations. We have shown that the LP relaxation of the two previ-
ously proposed standard formulations are equal. Furthermore, the carried out
computational experiments on industrial and modified instance problems show
that these formulations are not able to improve upon trivial precedence and re-
source lower bounds of the period. On the contrary, the proposed formulations
yield significantly improved and often near optimal lower bounds, when solved
with column generation techniques.

Further work will consist in accelerating the column generation method, for
example y improving subproblem solving thorugh the rules proposed in Sec-
tion Section 5.2. This would allow an integration inside a branch-and-price or
heuristic scheme.
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Appendix I - Proofs of Lemma 4.3

Proof of Lemma 4.3 Adding variables y, k and constraints (20) and (21) to
formulations (direct) and (direct+) does not change the relaxed solution space
of the formulations in terms of x variables (as there are no other constraints on
k and y). Consequently, we have z̃∗(direct) = z̃∗(E-direct) and z̃∗(direct+) =
z̃∗(E-direct+).

For formulations (decomp) and (decomp+), extended formulations (E-decomp)
and (E-decomp+) are obtained by adding variables x, constraints (20) and (21)
together with bound constraints 0 ≤ xt

i ≤ 1 (22). We have to show that this
transformation does not alter in both cases the relaxed optimal solution. For
this, we can remark that for any y and k such that y verifies also (14), the
system of equalities (20), (21), always has a solution with 0 ≤ x ≤ 1.

For any τ ∈ {0, . . . , λ− 1}, variable xτ
i appears only one constraint (20), the

one defining yτ
i , so we can rewrite constraints (20) as follows:

xτ
i =

K−1
∑

k=1

xτ+kλ
i − yτ

i ∀i ∈ {1, . . . , n}∀τ ∈ {0, λ − 1}

Rewriting xτ
i ≥ 0 using this expression yields:

K−1
∑

k=1

xτ+kλ
i ≥ yτ

i , ∀i ∈ {1, . . . , n}∀τ ∈ {0, λ − 1} (40)
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Finding a feasible x amounts to find 0 ≤ xt
i ≤ 1, t ≥ λ verifying (40) and (21).

A feasible x can be obtained by the following procedure. If ki is integer, set
xt

i = 0 for t ∈ {0, . . . , kiλ− 1} ∪ {(ki + 1)λ, . . . , T − 1} and set xτ+kiλ
i = yτ

i , for
τ ∈ {0, . . . , λ − 1}. This verifies constraints (40) and also (21) since

ki

λ−1
∑

τ=0

xτ+kiλ
i = ki

λ−1
∑

τ=0

yτ
i = ki

as y verifies (14).
To illustrate how x is obtained in this case, suppose that λ = 3 and K = 4

(yielding T = 12). Furthermore, let yi0 = 0.2, yi1 = 0.3, yi2 = 0.5 and ki = 2.
A non negative x verifying (20) and (21) is simply obtained by setting xit = 0
for t = 0, 1, 2, 3, 4, 5, 9, 10, 11 and xi6 = 0.2, xi7 = 0.3, xi8 = 0.5.

If ki is not integer (we have ki < K − 1), use the above-procedure to find a

feasible x̃ for k̃i = ⌈ki⌉. Then we have
∑λ−1

τ=0 x̃
τ+⌈ki⌉λ
i = ⌈ki⌉. Using (20), we

have yτ
i = x̃τ

i + x̃
τ+⌈ki⌉λ
i with x̃τ

i = 0 for all i ∈ {0, . . . , n}, τ ∈ {0, . . . , λ − 1}.

While keeping the equalities (20), decrease each x̃
τ+⌈k̃i⌉λ
i by (⌈ki⌉−ki)

⌈ki⌉
ỹτ

i and

increase each x̃τ
i by the same amount, yielding x. With this operation we

strictly decrease ⌈ki⌉
∑λ−1

τ=0 x̃
τ+⌈ki⌉λ
i by

∑λ−1
τ=0(⌈ki⌉ − ki)y

τ
i = (⌈ki⌉ − ki). So it

comes ⌈ki⌉
∑λ−1

τ=0 x
τ+⌈ki⌉λ
i = ki.

To understand this transformation, modify the preceding example so that
ki = 2.4. We first obtain x̃ ∈ [0, 1] verifying (20) and (21) for k̃i = 3 by setting
x̃it = 0 for t = 0, 1, 2, 3, 4, 5, 6, 7, 8 and x̃i9 = 0.2, x̃i10 = 0.3, x̃i11 = 0.5. Now

we decrease k̃i back to 2.4 by setting xi0 = (3−2.4)
3 0.2 = 0.04, xi1 = (3−2.4)

3 0.3 =

0.06, xi2 = (3−2.4)
3 0.5 = 0.1, xi9 = 0.2 − 0.04 = 0.16, xi10 = 0.3 − 0.06 = 0.24,

xi11 = 0.5 − 0.1 = 0.4.
It follows that for any feasible (y, k) solution verifying convexity constraints

on y, a solution x such that 0 ≤ x ≤ 1 can be found. So it comes z̃∗(decomp) =
z̃∗(E-decomp) and z̃∗(decomp+) = z̃∗(E-decomp+).

Appendix II - Proofs of Theorem 1

Proof of Theorem 1 According to Lemma 4.3, we have z̃∗(decomp) = z̃∗(E-decomp)
and z̃∗(direct) = z̃∗(E-direct). The extended versions of both formulation can
be compared to derive the desired result. To that purpose we show that each
feasible solution of (E-decomp) is feasible for (E-direct) and vice versa. This is
precisely shown by the following.

• Equivalence of assignment constraints (14) and (8):
Inserting (20) in the left-hand side of (14) we obtain :

λ−1
∑

τ=0

ỹτ
i =

λ−1
∑

τ=0

K−1
∑

k=0

x̃τ+kλ
i =

T−1
∑

t=0

x̃t
i (41)

which is precisely the left-hand side of the assignment constraint of the
direct formulation (8). It follows that any solution y satisfying (14) yields
a solution x satisfying (8), and vice-versa.

21



• Equivalence of precedence constraints (15) and (9):

Inserting (20) and (21) into
∑λ−1

τ=0 τyτ
i + kiλ we obtain

λ−1
∑

τ=0

τ ỹτ
i + k̃iλ =

λ−1
∑

τ=0

τ

K−1
∑

k=0

x̃τ+kλ
i +

K−1
∑

k=1

Kλ−1
∑

t=kλ

λx̃t
i

=

K−1
∑

k=0

λ−1
∑

τ=0

τ x̃τ+kλ
i +

K−1
∑

k=1

k

(k+1)λ−1
∑

t=kλ

λx̃t
i

=

K−1
∑

k=0

λ−1
∑

τ=0

τ x̃τ+kλ
i +

K−1
∑

k=0

λ−1
∑

τ=0

kλx̃τ+kλ
i

=
T−1
∑

t=0

txt
i (42)

Again, from this equivalence, any solution x verifying precedence con-
straints (9) yields a solution y satisfying precedence constraints (15), and
reciprocally.

• Equivalence of resource constraints (16) and (10):
Inserting (20) in the left-hand side of (16) we obtain :

n
∑

i=1

ỹτ
i bs

i =

n
∑

i=1

K−1
∑

k=0

x̃τ+kλ
i bs

i (43)

which is precisely the left-hand side of the resource constraint of the direct
formulation (10).

• Bounds on variables y and k:
Constraints (20) and (8) ensure that 0 ≤ ỹτ

i ≤ 1 for all i ∈ {1, . . . , n},
τ ∈ {0, . . . , λ − 1}. Similarly (21) and (8) imply that 0 ≤ k̃i ≤ K − 1, for
all i ∈ {1, . . . , n}

• Objective function equivalence:
From equality (42) established above, it follows that the objective function
values in the relaxed (E-direct) formulation and in the relaxed (E-decomp)
formulation are the same.

From all this points it comes that (E-decomp) and (E-direct) have equal LP
relaxations. According to Lemma 4.3, this holds also for (decomp) and (direct).

Appendix III - Proofs of Theorem 2

Proof of Theorem 2 As for the previous case, we use Lemma 4.3 that estab-
lishes, on the one hand, that z̃(direct+) = z̃(E-direct+) and, on the other hand,
that z̃(decomp+) = z̃(E-decomp+). Consequently, we compare (direct+) and
(E-decomp+).

By using equalities (41) and (43) and replacing in (E-decomp+) y and k by
their expression in function of x we obtain two formulations which only differ
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by the so-called “disaggregated” precedence constraints and the “structured”
precedence constraints (with x variables), respectively.

Ignoring the resource constraints, we first establish that every basic feasible
solution of the constraints matrix corresponding to both formulation is 0 − 1.

Consider first the improved decomposed formulation. we rewrite the struc-
tured precedence constraint (19) by replacing yi and ki with their expression in

function on xt
i (20) and (21). We consider first expression

∑λ−1
s=τ ys

i + ki. We
have

λ−1
∑

s=τ

ys
i + ki =

K−1
∑

k=0

λ−1
∑

s=τ

xs+kλ
i +

K−1
∑

k=1

Kλ−1
∑

s=kλ

xs
i

=

K−1
∑

k=0

(k+1)λ−1
∑

s=τ+kλ

xs
i +

K−1
∑

k=0

Kλ−1
∑

s=(k+1)λ

xs
i

=
K−1
∑

k=0

Kλ−1
∑

s=τ+kλ

xs
i

If in the structured precedence constraint (19) we use the transformations (20)

and (21) and replacing
∑λ−1

s=τ ys
i +ki by

∑K−1
k=0

∑Kλ−1
s=τ+kλ xs

i as established above,
then the structured precedence constraint (19) can be rewritten as:

K−1
∑

k=0

Kλ−1
∑

s=τ+kλ

xs
i +

(τ+θj

i
−1)modλ
∑

s=0

K−1
∑

k=0

xs+kλ
j −

K−1
∑

k=1

Kλ−1
∑

t=kλ

xt
j ≤ ω

j
i − ⌊

τ + θ
j
i − 1

λ
⌋+ 1

K−1
∑

k=0

Kλ−1
∑

s=τ+kλ

xs
i +

(τ+θj

i
−1)modλ
∑

s=0

K−1
∑

k=0

xs+kλ
j −

K−1
∑

k=0

Kλ−1
∑

t=kλ

xt
j+1 ≤ ω

j
i −⌊

τ + θ
j
i − 1

λ
⌋+1

K−1
∑

k=0

Kλ−1
∑

s=τ+kλ

xs
i +

(τ+θj

i
−1)modλ
∑

s=0

K−1
∑

k=0

xs+kλ
j +

K−1
∑

k=0

kλ−1
∑

t=0

xt
j−K+1 ≤ ω

j
i−⌊

τ + θ
j
i − 1

λ
⌋+1

K−1
∑

k=0

Kλ−1
∑

s=τ+kλ

xs
i +

K−1
∑

k=0

(

(τ+θj

i
−1)modλ
∑

s=0

xs+kλ
j +

kλ−1
∑

t=0

xt
j)−K+1 ≤ ω

j
i −⌊

τ + θ
j
i − 1

λ
⌋+1

K−1
∑

k=0

Kλ−1
∑

s=τ+kλ

xs
i +

K−1
∑

k=0

(

kλ+(τ+θj

i
−1)modλ

∑

s=0

xs
j) − K + 1 ≤ ω

j
i − ⌊

τ + θ
j
i − 1

λ
⌋ + 1

−

K−1
∑

k=0

s=τ+kλ−1
∑

s=0

xs
i +

K−1
∑

k=0

kλ+(τ+θj

i
−1)modλ

∑

s=0

xs
j ≤ ω

j
i − ⌊

τ + θ
j
i − 1

λ
⌋
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Now we make the transformation of the variables xs
i to variables z

τ,k,p
i as

z
τ,k,p
i =

p
∑

q=k

τ+qλ
∑

s=0

xs
i

Then the structured precedence constraint can be written

−z
τ−1,0,K−1
i +z

(τ+θj

i
−1)modλ,0,K−1

j ≤ ω
j
i−⌊

τ + θ
j
i − 1

λ
⌋ ∀(i, j) ∈ E,∀τ ∈ {0, . . . , λ−1}

(44)
Constraints (14) becomes

z
λ−1,0,K−1
i − z

−1,0,K−1
i = 1.∀i ∈ {1, ..., n} (45)

Bound constraints on xτ+kλ
i can be written:

0 ≤ z
τ,k,k
i − z

τ−1,k,k
i ≤ 1.∀i ∈ {1, ..., n},∀τ ∈ {0, . . . , λ},∀k ∈ {0, . . . ,K − 1}

(46)
The constraints matrix Z corresponding to (44),(45) and (46) has a so-

lution z
τ,k,p
i with integer coordinates if and only if Z is totally unimodular,

i.e, each square submatrix of Z has determinant 0, 1 or −1. A sufficient but
not necessary condition [27] for the unimodularity of an integer matrix A with
ai,j =∈ {0,−1, 1} consists in verifying that no more than two nonzero entries
appear in any column, and that the rows of A can be partitioned into two sets
I1 and I2 such that:

1. If a column has two entries of the same sign, their rows are in different
sets.

2. If a column has two entries of different signs, their rows are in the same
set.

Consequently constraint matrix Z is totally unimodular.

We consider now the improved direct formulation without the resource con-
straints. We make another non-singular transformation of the variables xt

i to
variables ht

i as

ht
i =

T−1
∑

s=0

xs
i

Now constraints (8) become:

ht
i = 1,∀i ∈ {1, . . . , n}

constraint (12) can be rewritten:

ht
i − h

t+θj

i
−λωj

i
−1

j ≥ 0,∀(i, j) ∈ E,∀t ∈ {0, . . . , T − 1}.

Bounds on xt
i are rewritten:

0 ≤ ht
i − ht−1

i ≤ 1 ∀i ∈ {1, . . . , n},∀t ∈ {0, . . . , T − 1}
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and
ht

i ≥ 0

Using the same sufficient conditions as above, we obtain a totally unimodular
constraint matrix H.

Both the improved direct and decomposed formulation have 0 − 1 solutions
in terms of x variables concerning the precedence constraints. Furthermore,
they have the same resource constraints. Consequently their LP relaxations are
equal.

Appendix IV - Experimental result tables
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Table 3: Characteristics of the industrial and modified instances
Instance name #task #prec λprec λres (ind) λres (mod)
adpcm-st231.1 86 405 11 21 52
adpcm-st231.2 142 722 38 35 82
gsm-st231.1 30 190 24 12 16
gsm-st231.2 101 462 12 26 59
gsm-st231.5 44 192 4 11 26
gsm-st231.6 30 130 3 7 17
gsm-st231.7 44 192 4 11 28
gsm-st231.8 14 66 1 8 9
gsm-st231.9 34 154 28 8 21
gsm-st231.10 10 42 1 4 6
gsm-st231.11 26 137 20 6 16
gsm-st231.12 15 70 1 8 10
gsm-st231.13 46 210 19 11 27
gsm-st231.14 39 176 5 10 20
gsm-st231.15 15 70 1 8 9
gsm-st231.16 65 323 4 16 38
gsm-st231.17 38 173 8 9 23
gsm-st231.18 214 1063 8 53 120
gsm-st231.19 19 86 2 8 12
gsm-st231.20 23 102 3 6 13
gsm-st231.21 33 154 18 8 20
gsm-st231.22 31 146 18 8 18
gsm-st231.25 60 273 10 16 37
gsm-st231.29 44 192 4 11 28
gsm-st231.30 30 130 3 7 16
gsm-st231.31 44 192 4 11 26
gsm-st231.32 32 138 15 8 21
gsm-st231.33 59 266 4 15 33
gsm-st231.34 10 42 2 4 7
gsm-st231.35 18 80 2 6 12
gsm-st231.36 31 143 2 10 18
gsm-st231.39 26 118 3 8 15
gsm-st231.40 21 103 2 10 12
gsm-st231.41 60 315 2 18 33
gsm-st231.42 23 102 3 6 14
gsm-st231.43 26 115 8 6 15
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Table 4: CPU time comparison for LP-relaxation based lower bound (direct+)
and (decomp+) on industrial instances

Instances λ Cmax CPU (s) (decomp+) CPU (s) (direct+)
adpcm-st231.1 21 29.5 498 536
adpcm-st231.2 38 42 5326.37 6012
gsm-st231.1 24 33 0.02 0.02
gsm-st231.2 26 31.5 586 614
gsm-st231.5 11 15.2 0.02 0.02
gsm-st231.6 7 11.2 0.02 0.02
gsm-st231.7 11 15.2 0.02 0.02
gsm-st231.8 8 8 0.02 0.02
gsm-st231.9 28 28 0.02 0.02
gsm-st231.10 4 4 0.00 0.00
gsm-st231.11 20 21 0.02 0.02
gsm-st231.12 8 8 0.00 0.00
gsm-st231.13 19 25 0.02 0.02
gsm-st231.14 10 12.63 0.02 0.02
gsm-st231.15 8 8 0.00 0.00
gsm-st231.16 16 16.97 3625.12 3812.03
gsm-st231.17 9 15.25 0.02 0.02
gsm-st231.18 53 53 7256 8002.03
gsm-st231.19 8 8 0.00 0.00
gsm-st231.20 6 10 0.00 0.00
gsm-st231.21 18 22 15 15
gsm-st231.22 18 21 17 20
gsm-st231.25 16 24.52 789.26 814
gsm-st231.29 11 15.2 7.52 7.84
gsm-st231.30 7 11.2 0.02 0.02
gsm-st231.31 11 15.2 0.02 0.02
gsm-st231.32 15 15 4.25 4.45
gsm-st231.33 15 17.23 42 42
gsm-st231.34 4 5 0.00 0.00
gsm-st231.35 6 8.2 0.00 0.00
gsm-st231.36 10 10 0.02 0.02
gsm-st231.39 8 12.5 0.02 0.02
gsm-st231.40 10 10 0.00 0.00
gsm-st231.41 18 18 12 0.02
gsm-st231.42 6 10 0.02 0.02
gsm-st231.43 8 10.4 0.00 0.00

27



Table 5: CPU time comparison for LP-relaxation based lower bound (direct+)
and (decomp+) on modified instances

Instances λ Cmax CPU (s) (decomp+) CPU (s) (direct+)
adpcm-st231.1 52 52 1800 1995.03
adpcm-st231.2 82 82 7214 7327
gsm-st231.1 24 32 600 626
gsm-st231.2 59 59 7200 7298.04
gsm-st231.5 26 26 600 600
gsm-st231.6 17 17 600 600
gsm-st231.7 28 28 22 23
gsm-st231.8 9 9 0.02 0.02
gsm-st231.9 28 28 25 30
gsm-st231.10 6 6 0.0001 0.0001
gsm-st231.11 20 21 0.15 0.152
gsm-st231.12 10 10 0.0001 0.0001
gsm-st231.13 27 27 48 52
gsm-st231.14 20 20 18 21
gsm-st231.15 9 9 0.001 0.002
gsm-st231.16 38 38 420 452
gsm-st231.17 24 24 720 795
gsm-st231.18 120 120 600 603
gsm-st231.19 12 12 0.002 0.002
gsm-st231.20 13 13 0.002 0.002
gsm-st231.21 20 22 24 24
gsm-st231.22 18 21 8 8
gsm-st231.25 37 37 300 317
gsm-st231.29 28 28 60 62
gsm-st231.30 16 16 0.25 0.253
gsm-st231.31 26 26 58 60
gsm-st231.32 21 21 3.02 3
gsm-st231.33 33 33 52 51
gsm-st231.34 6 6 0.001 0.001
gsm-st231.35 11 11 0.002 0.002
gsm-st231.36 18 18 8 8
gsm-st231.39 15 15 0.06 0.08
gsm-st231.40 12 12 0.0001 0.0001
gsm-st231.41 34 34 47 49
gsm-st231.42 14 14 4.03 6
gsm-st231.43 15 15 0.026 0.02
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Table 6: Optimal integer solutions of the industrial instances
Instances PLNE(decomp+) PLNE(direct+)

λ Cmax CPUs λ Cmax CPUs

adpcm-st231.1 21 30 14400 21 30 16235
adpcm-st231.2 40 42 582362 40 42 601000
gsm-st231.1 24 33 0.05 24 33 0.05
gsm-st231.2 26 32 79362 26 32 83991
gsm-st231.5 11 17 0.05 11 17 0.05
gsm-st231.6 7 13 17 7 13 20
gsm-st231.7 11 17 0.05 11 17 0.05
gsm-st231.8 8 8 0.05 8 8 0.05
gsm-st231.9 28 28 0.05 28 28 0.05
gsm-st231.10 4 4 0.05 4 4 0.05
gsm-st231.11 20 21 0.05 20 21 0.05
gsm-st231.12 8 8 0.05 8 8 0.05
gsm-st231.13 19 25 1856 19 25 2023
gsm-st231.14 10 13 301.25 10 13 478
gsm-st231.15 8 8 0.05 8 8 0.05
gsm-st231.16 16 20 7520 16 20 8156
gsm-st231.17 9 16 0.05 9 16 0.05
gsm-st231.18 - - - - - -
gsm-st231.19 8 9 0.05 8 9 0.05
gsm-st231.20 6 10 0.05 6 10 0.05
gsm-st231.21 18 22 0.05 18 22 0.05
gsm-st231.22 18 22 0.05 18 22 0.05
gsm-st231.25 16 25 3652 16 25 4001
gsm-st231.29 11 17 12.6 11 17 15
gsm-st231.30 7 13 12 7 13 15
gsm-st231.31 11 17 47 11 17 73
gsm-st231.32 15 15 0.05 15 15 0.05
gsm-st231.33 15 21 2365 15 21 2503
gsm-st231.34 4 5 0.05 4 5 0.05
gsm-st231.35 6 11 0.05 6 11 0.05
gsm-st231.36 10 15 27 10 15 42
gsm-st231.39 8 16 0.05 8 16 0.05
gsm-st231.40 10 10 0.05 10 10 0.05
gsm-st231.41 18 24 2356 18 24 2562
gsm-st231.42 6 10 0.05 6 10 0.05
gsm-st231.43 8 14 0.05 4 14 0.05
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Table 7: Optimal of feasible integer solutions of the modified instances
Instances PLNE(decomp+) PLNE(direct+)

λ Cmax CPUs λ Cmax CPUs

adpcm-st231.1 - - - - - -
adpcm-st231.2 - - - - - -
gsm-st231.1 25 42 250 25 42 375
gsm-st231.2 - - - - - -
gsm-st231.5 36 46 280 36 46 299.03
gsm-st231.6 27 27 152 27 27 265
gsm-st231.7 41 45 92 41 45 115
gsm-st231.8 12 12 0.27 12 12 0.31
gsm-st231.9 32 35 0.56 32 35 60
gsm-st231.10 8 8 0.10 8 8 0.11
gsm-st231.11 24 24 0.37 24 24 0.39
gsm-st231.12 13 13 12.65 13 13 19
gsm-st231.13 43 48 985.03 43 48 1236
gsm-st231.14 33 45 220 33 45 252
gsm-st231.15 12 12 12.36 12 12 13
gsm-st231.16 - - - - - -
gsm-st231.17 33 33 90 33 33 105
gsm-st231.18 - - - - - -
gsm-st231.19 15 15 38.23 15 15 43
gsm-st231.20 20 27 123 20 27 137
gsm-st231.21 30 30 42.03 30 30 59
gsm-st231.22 29 29 80.36 29 29 112
gsm-st231.25 56 (Gap=1.75%) 56 604800 - - -
gsm-st231.29 42 42 210 42 42 513
gsm-st231.30 25 25 58 25 25 67
gsm-st231.31 39 39 142 39 39 169
gsm-st231.32 30 30 0.25 30 30 1.01
gsm-st231.33 52(Gap=8%) 50 604800 - - -
gsm-st231.34 7 7 5.05 7 7 8
gsm-st231.35 14 16 52 14 16 53
gsm-st231.36 24 28 230 24 24 403
gsm-st231.39 21 25 95 21 25 168
gsm-st231.40 17 21 15 17 21 29
gsm-st231.41 - - - - - -
gsm-st231.42 18 26 12 18 26 17
gsm-st231.43 20 25 15 20 25 23
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Table 8: Lower bounds obtained by column-generation for the modified in-
stances

Instances (decomp+) (M-decomp+) Opt
λ Cmax CPUs λ Cmax CPUs λ Cmax∗

adpcm-st231.1 52 52 1800 79 79 1758.38 - -
adpcm-st231.2 82 82 420 - - - - -
gsm-st231.1 24 32 600 25 42 32.15 25 42
gsm-st231.2 59 59 7200 93 61 4823 - -
gsm-st231.5 26 26 600 36 36 385.27 36 46
gsm-st231.6 17 17 600 27 27 17.44 27 27
gsm-st231.7 28 28 22 41 41 17.63 41 45
gsm-st231.8 9 9 0.02 12 12 27.36 12 12
gsm-st231.9 28 28 25 31 32 2.57 32 35
gsm-st231.10 6 6 0.0001 8 8 1.73 8 8
gsm-st231.11 20 21 0.15 24 24 1.2 24 24
gsm-st231.12 10 10 0.0001 13 13 0.08 13 13
gsm-st231.13 27 27 48 42 42 48.29 43 48
gsm-st231.14 20 20 18 33 33 15.7 33 45
gsm-st231.15 9 9 0.001 12 12 16.1 12 12
gsm-st231.16 38 38 420 59 59 469 - -
gsm-st231.17 24 24 720 33 33 16.01 33 33
gsm-st231.18 120 120 600 - - - - -
gsm-st231.19 12 12 0.002 15 15 0.3 15 15
gsm-st231.20 13 13 0.002 20 20 0.88 20 27
gsm-st231.21 20 22 24 30 30 10.78 30 30
gsm-st231.22 18 21 8 29 29 1.85 29 29
gsm-st231.25 37 37 300 55 55 175.52 56 (Gap=1.75%) 56
gsm-st231.29 28 28 60 42 42 28.82 42 42
gsm-st231.30 16 16 0.25 25 25 3.48 25 25
gsm-st231.31 26 26 58 39 39 28.4 39 39
gsm-st231.32 21 21 3.02 29 29 627 30 30
gsm-st231.33 33 33 52 51 51 3287.42 52(Gap=8%) 50
gsm-st231.34 6 6 0.001 7 7 1.56 7 7
gsm-st231.35 11 11 0.002 14 14 0.46 14 16
gsm-st231.36 18 18 8 24 24 333.16 24 28
gsm-st231.39 15 15 0.06 20 20 9.17 21 25
gsm-st231.40 12 12 0.0001 16 16 2.56 17 21
gsm-st231.41 34 34 47 49 49 812.74 - -
gsm-st231.42 14 14 4.03 18 18 13.4 18 26
gsm-st231.43 15 15 0.026 20 20 25.43 20 25
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