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We show that the lowest manifold of electronic states of ethylene (ethene, C2H4) can be described cor-
rectly with a complete active space of 17 quasidiabatic configurations built on state-averaged orbitals.
This space is stable upon large-amplitude deformations, such as torsion, pyramidalization, CC stretching
and HCH bending. The properties of the nuclear coordinates and valence and Rydberg electronic states
are investigated within the framework of nuclear-permutation-inversion group theory. This systematic
analysis is compared to a previous model of the valence states of ethylene (R.P. Krawczyk, A. Viel, U.
Manthe, W. Domcke, J. Chem. Phys. 119 (2003) 1397). Our approach is intended to be generalized to
the non-adiabatic photochemistry of organic molecules where large-amplitude deformations require
global vibronic Hamiltonian models to be expressed in terms of simple functions of polyspherical valence
coordinates.

1. Introduction

Excited-state dynamics concerns molecular processes induced
upon UV–visible light absorption. Simulations of photochemical
reactions and calculations of electronic spectra involve nuclear
dynamics methods to determine the time evolution of the molec-
ular geometry used in concert with electronic structure methods
capable of computing electronic excited state potential energy sur-
faces. Radiationless decay processes are governed by non-adiabatic
transitions that are intense around conical intersections where po-
tential energy surfaces are degenerate [1]. The Born–Oppenheimer
approximation cannot be used, and the molecular Hamiltonian
must account for non-adiabatic coupling terms. Quasidiabatic rep-
resentations [2–4] allow the singular kinetic non-adiabatic cou-
plings to be replaced by potential non-adiabatic couplings that
are smooth-varying functions of the nuclear coordinates. In addi-
tion, the diabatic potential energy surfaces (diagonal elements)
also are simple functions that can cross with no restriction, as op-
posed to the two-dimensional cusp at the conical intersection be-

tween two adiabatic surfaces. Quasidiabatic functions are thus
easier to fit to regular mathematical expressions.

Adiabatic-to-diabatic transformations, also called diabatiza-
tions, are based on a smoothness condition of either the electronic
wavefunctions or the expectation values of some physical proper-
ties. They often relate to the dominant electronic configurations
underlying the adiabatic electronic wavefunctions in the spirit of
correlation diagrams or valence-bond theory [5]. A large number
of approaches have been developed over the years (see, e.g., Refs.
[3,4,6] and references therein).

The approach we are interested in is called diabatization by an-

satz, where the eigenvalues of a quasidiabatic Hamiltonian model
are fitted to the adiabatic energies calculated with an electronic
structure method over a range of geometries. The diabatization
criterion is not explicit in terms of the electronic states, but is
somewhat related to the compactness of the mathematical expres-
sions assumed for the quasidiabatic functions. Simple expressions
mean that the electronic states vary as smoothly as possible with
the nuclear coordinates. In particular, the vibronic coupling
Hamiltonian model developed by Köppel and co-workers [7] is
based on a low-order local expansion of the quasidiabatic potential
energy surfaces and coupling functions around the Franck–Condon
point in terms of normal coordinates. In concert with the
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multiconfiguration time-dependent Hartree (MCTDH) quantum
dynamics method [8], the vibronic coupling Hamiltonian approach
has been used with great success to the calculation of many photo-
absorption and photoelectron spectra [9].

Calculating electronic spectra mostly relies on short-term
dynamics, especially when the conical intersection is close to the
Franck–Condon point. However, describing photochemical events
implies to deal with longer processes, large-amplitude nuclear mo-
tions, and complicated reaction pathways connecting several po-
tential energy wells through transition barriers and crossings
between different electronic states. There is thus a need for gener-
alizing the vibronic coupling Hamiltonian model by making it a
global description capable of dealing with large-amplitude defor-
mations of the molecular geometry. This implies using internal
coordinates that are curvilinear rather than rectilinear to get sim-
ple expressions for the potential energy functions. However, curvi-
linear coordinates lead to complicated expressions for kinetic
energy operators. Polyspherical coordinates, as described in Ref.
[10], are a good compromise, well-adapted to run MCTDH quan-
tum dynamics calculations.

As first shown by Keating and Mead [11] and recently pointed
out in Ref. [12], building a truly global representation of the elec-
tronic Hamiltonian for a flexible molecule [13] should be achieved
within the framework of dynamical symmetry, also called molecu-
lar symmetry [14], when there are identical nuclei in the molecular
system. This implies using the complete nuclear-permutation-
inversion (CNPI) group, which is the symmetry group relevant for
the vibronic Hamiltonian of the flexible molecule (as opposed to
the point group of any given geometry), or a subgroup of it if some
deformations are considered unfeasible. In this, the operations cor-
respond to identical nuclei permutations and inversion of the
whole molecule. See also Refs. [12,15,16] for related approaches
based on CNPI projectors.

This treatment was used by Peyerimhoff and co-workers [17] to
build a one-dimensional quasidiabatic representation for ethylene
(ethene, C2H4) undergoing a pure torsional deformation. The aim of
the present work is to extend this approach to more electronic
states and more nuclear coordinates to write the elements of the
effective Hamiltonian matrix in a quasidiabatic representation
adapted to dynamical symmetry. Thinking further ahead, our ac-
tual purpose is to generalize the current vibronic Hamiltonian
model of Köppel and co-workers by combining it to a dynamical
symmetry treatment using simple basis functions of polyspherical
coordinates (rather than polynomials of normal coordinates with
point-group symmetry adapted to the geometry at the origin of
the expansion).

The p-to-p* photo-excitation of CC bonds and subsequent
cis–trans photo-isomerization is one of the most fundamental
processes in organic photochemistry. In particular, electronically
excited ethylene experiences large-amplitude deformations that
eventually lead to ground-state regeneration through a conical
intersection. Despite the apparent simplicity of this system, the
assignment of the photoabsorption spectrum and the radiationless
decay mechanism of this prototype molecule still remain contro-
versial. In this work, we focus on the first step that follows the
photoabsorption. H migrations are not considered at this time
scale, which allows a reduced-dimensionality treatment whereby
six internal coordinates are frozen. We refer to Ref. [18] for a short
review of experimental and theoretical investigations. See also
Refs. [19–23].

In the present work, we present the first step in building such a
global model. We show that the lowest manifold of adiabatic elec-
tronic states of ethylene can be described correctly with multicon-
figuration self-consistent field (MCSCF) calculations restricted to
17 selected quasidiabatic configurations built on state-averaged
orbitals. This space is stable upon large-amplitude deformations,

such as torsion, pyramidalization, CC stretching and HCH bending.
The properties of the nuclear coordinates and valence and Rydberg
electronic states are investigated within the framework of dynam-
ical symmetry. This systematic analysis is compared to a previous
model of the valence states of ethylene [18]. The p-to-p* state of
ethylene is still today a computational challenge, as discussed in
Ref. [23] and references therein. Although very cheap, our 17-se-
lected-configuration approach is capable of describing the V state
of ethylene quite remarkably.

2. Nuclear coordinates

We start with the definition of the nuclear coordinates that will
be used to express the Hamiltonian matrix dependence on the
molecular geometry. They are taken as symmetrized valence coor-
dinates, directly related to the polyspherical coordinates used in
Refs. [18,24,25]. The former are adapted to the expression of the
potential energy functions within the framework of dynamical
symmetry. The latter lead to a tractable expression for the kinetic
energy operator and are suitable for further MCTDH calculations
[10]. Our choice of coordinates is adapted to describing deforma-
tions that preserve the r bonds, in particular the torsion around
the CC bond involved in the cis–trans photo-isomerization of
substituted ethylene. The dimensionality is reduced to a set of
six active internal degrees of freedom.

2.1. Vector parametrization of the nuclei

The first step in building polyspherical coordinates is the defini-
tion of the vectors to be parametrized [10]. The relative motion of
the six nuclei of C2H4 is parametrized by five independent vectors
and three angular constraints. Two sets are considered here (see
Fig. 1): a mixture of valence and Jacobi vectors for defining the
polyspherical coordinates used in previous work [18,24,25] to
which we want to compare; and valence vectors only, which will
serve to define the symmetrized valence coordinates to be used
here to investigate the potential energy surfaces.

The first set of valence–Jacobi vectors,~Ri(i = 1 to 5), is defined as

~R1 ¼ C5GR

�!
; ð1aÞ

~R2 ¼ GLC6

�!
; ð1bÞ

~R3 ¼ H2H1

�!
; ð1cÞ

~R4 ¼ H4H3

�!
; ð1dÞ

~R5 ¼ C6C5

�!
; ð1eÞ

where GR is the center of mass of H1H2 and GL that of H3H4

[18,24,25].
The second set of valence vectors,~Ri (i = 5 to 9), corresponds to:

~R6 ¼ C5H1

�!
; ð2aÞ

~R7 ¼ C5H2

�!
; ð2bÞ

~R8 ¼ C6H3

�!
; ð2cÞ

~R9 ¼ C6H4

�!
: ð2dÞ

Fig. 1. The two sets of five vectors (left: Jacobi-valence; right: valence).
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The two sets are related through:

~R1 ¼
~R6 þ~R7

2
; ð3aÞ

~R2 ¼ �
~R8 þ~R9

2
; ð3bÞ

~R3 ¼ ~R6 �~R7; ð3cÞ
~R4 ¼ ~R8 �~R9; ð3dÞ

which exhibits that Jacobi vectors simply are symmetry-adapted
combinations of the valence vectors of the CH2 fragments.

These two types of vector parametrization are well-suited for
describing internal deformations of the molecular geometry that
preserve the r bonds. H migrations and formation of ethylidene
structures will not be considered here, although they have been
recognized by some authors as important in the interpretation of
ethylene photochemistry [21,26–30,20]. For these, satellite coordi-
nates (where H atoms are represented by vectors originated from
the center of mass of CC) would be better-suited.

2.2. Polyspherical coordinates

In a second step, each of the vectors defined above are specified
in terms of their spherical coordinates in the E2 frame [10],
ðRi; hi;/

E2
i Þ. All radii, polar angles, and azimuthal angles are re-

stricted according to 0 6 Ri 61, 0 6 hi 6 p, and 0 6 /i < 2p
(mod2p), respectively. The orientation of the E2 frame with respect
to the axes of the laboratory frame is specified by two Euler angles,
(/,h), where 0 6 / < 2p (mod2p) and 0 6 h 6 p. Their definition
corresponds to a constraint involving ~R5 ¼ C6C5

!
: h5 ¼ 0 and

/
E2
5 ¼ 0. The quantization axis, z, is thus parallel to the CC bond, ori-

ented from C6 to C5.
Radii and polar angles are unambiguously related to internal

deformations on one hand, whereas {/,h} describe the body rota-
tion of the CC fragment in the laboratory frame on the other hand.
Things are more complicated for the four dihedral angles. Only
three of these are internal degrees of freedom, the remaining one
being the third body rotation.

The orientation of any body-fixed (BF) frame relative to the E2
frame having in common the same z-axis is determined by the
third Euler angle, vBF, where 0 6 vBF < 2p (mod2p). For polyspher-
ical coordinates, vBF must be identified to one of the four uncon-
strained /

E2
i angles. Once this choice is made, the relative

geometry of the molecule is defined by the remaining twelve inde-
pendent polyspherical coordinates. The radii and polar angles are
the same in both frames, hence the absence of superscript for these
variables. In contrast, azimuthal angles are related through
/

BF
i ¼ /

E2
i � vBF (i– 5). The relative orbiting motion of the four H

nuclei around the CC fragment is thus parametrized by three inter-
nal rotations and one body rotation.

In previous work [25], Jacobi-valence vectors were used and the
corresponding polyspherical coordinates were defined in the sin-
gle-rotor-fixed BF frame labeled L, (xL,yL,z), attached to the left-
hand-side CH2 fragment (see Fig. 2). This particular choice corre-
sponds to a third constraint involving ~R4 ¼ H4H3

�!
: /

E2
4 ¼ vL, such

that the xL-axis is set according to xL4 P 0 and yL4 ¼ 0. Internal
deformations and body rotations are thus parametrized by twelve
polyspherical coordinates and three Euler angles as required,
R1;R2;R3;R4;R5; h1; h2; h3; h4;/

L
1;/

L
2;/

L
3

� �

� f/; h;vLg.
This system had originally been introduced in relation with the

internal coordinate system used in Refs. [18,24], which consisted of
only six selected degrees of freedom (active coordinates), {r,aR,
aL,#R,#L,u}. The latter had been used to parametrize a three-
electronic-state, six-dimensional, vibronic Hamiltonian model,
while the former had be derived to re-write an exact kinetic energy

operator for the nuclei. In this, r describes CC stretching; a, HCH
bending (left or right); #, C(HCH) pyramidalization (left or right),
defined as the planar angle between CC and CGR or CGL; u,
(HH)CC(HH) torsion, defined as the dihedral angle between (CGR,
CC) and (CC, CGL).

The coordinate transformation is given through six independent
relationships (see Ref. [25]):

R1 ¼ RCH cosaR=2; ð4aÞ
R2 ¼ RCH cosaL=2; ð4bÞ
R5 ¼ r; ð4cÞ
#1 ¼ #R; ð4dÞ
#2 ¼ #L; ð4eÞ
/L

3 ¼ u; ð4fÞ

where the a-angles vary from 0 to p, and RCH is frozen to a constant
value of the CH bond length (stretching). The distinction between #i
and hi (i = 1,2) is discussed below.

These six variables are completed with six additional
constraints:

R3 ¼ 2RCH sinaR=2; ð5aÞ
R4 ¼ 2RCH sinaL=2; ð5bÞ
h3 ¼ p=2; ð5cÞ
h4 ¼ p=2; ð5dÞ
/L

1 ¼ 3p=2þu; ð5eÞ
/L

2 ¼ p=2: ð5fÞ

Because of the constraints on /L
1 and /L

2, the range of variation of the
corresponding polar angles are set to the whole circle [25],
�p < #i 6 p (i = 1, 2), in order to describe full oscillations in the
pyramidalizations of the CH2 groups. Alternatively, one could use
two half circles by allowing for two discrete values of the corre-
sponding azimuthal angles, #i P 0 � hi P 0;/L

i

� �

and
#i 6 0 � hi P 0;/L

i þ p
� �

ði ¼ 1;2Þ.

2.3. Symmetrized valence coordinates

Let us consider now the spherical coordinates of the four CH va-
lence vectors in the E2 frame. These are more easily related to the
geometry parametrizations used in quantum chemistry calcula-
tions, and they will be symmetrized in order to make a direct con-
nection between the symmetry of the electronic states and the
geometry.

Fig. 2. The three sets of BF axes used in this work, (xL,yL) (related to the coordinates
used in Refs. [18,24,25]), (xR,yR), and (x,y) (bisecting frame of the L and R frames,
related to the coordinates used in the present work), and their relationships with
the E2 axes, ðxE2 ; yE2 Þ. All three frames are attached to ~R5 , and the common z-axis is
orthogonal to the figure plane. BF L is further attached to the left rotor, ~R4 (third
Euler angle: vL = v � c); BF R, to the right rotor, ~R3 (third Euler angle: vR = v + c),
such that xRkH2H1 and xLkH4H3 within the figure plane (no y-component
considered). The third frame is the bisecting frame of the former two (third Euler
angle: v = (vR + vL) /2; torsional angle: c = (vR � vL)/2).
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The six-dimensional constraint defined above translates here as
four constraints on the four Ri and two constraints on the four hi
(i = 6 to 9),

R6 ¼ R7 ¼ R8 ¼ R9 ¼ RCH; ð6aÞ
h6 ¼ h7 ¼ bR; ð6bÞ
h8 ¼ h9 ¼ p� bL; ð6cÞ

where 0 6 bi 6 p (i = R,L) are two of the six active degrees of free-
dom and correspond to HCC bending. The four azimuthal angles,
/

E2
i (i = 6 to 9) correspond thus to three internal degrees of freedom

(two pyramidalizations and torsion) plus the body rotation around
the CC bond. The remaining degree of freedom is R5 = r.

For the expression of the quasidiabatic functions (potential
energies and couplings), it is convenient to symmetrize the valence
coordinates with respect to the two CH2 fragments. First, for the
bending (scissoring) angles:

bS ¼
bR þ bL

2
; ð7aÞ

bA ¼ bR � bL

2
; ð7bÞ

Second, for the pyramidalization angles:

sU ¼ sR þ sL
2

; ð8aÞ

sG ¼ sR � sL
2

; ð8bÞ

where

sR ¼ /
E2
6 � /

E2
7

2
þ p

2
; ð9aÞ

sL ¼
/

E2
8 � /

E2
9

2
þ p

2
: ð9bÞ

These are illustrated in Fig. 3.
The corresponding valence spherical coordinates read in the E2

frame as

R5 ¼ r; ð10aÞ
h6 ¼ h7 ¼ bS þ bA; ð10bÞ
h8 ¼ h9 ¼ p� bS þ bA; ð10cÞ
/

E2
6 ¼ sU þ sG þ cþ v; ð10dÞ

/
E2
7 ¼ p� sU � sG þ cþ v; ð10eÞ

/
E2
8 ¼ sU � sG � cþ v; ð10fÞ

/
E2
9 ¼ p� sU þ sG � cþ v: ð10gÞ

The c coordinate corresponds to the torsion around CC and is iden-
tical to u/2 (u has been introduced above as the dihedral angle
(HH)CC(HH); we prefer to use c for symmetrized valence coordi-
nates because it leads to a more symmetrical relationship in Eq.
(10g)), sU and sG to the ungerade and gerade pyramidalizations,

respectively (non-pyramidalized geometries correspond to
sR = sL = sU = sG = 0). These motions are illustrated in Fig. 4.

The reverse transformation for the azimuthal angles reads:

v ¼ /
E2
6 þ /

E2
7 þ /

E2
8 þ /

E2
9

4
� p

2
; ð11aÞ

c ¼ /
E2
6 þ /

E2
7 � /

E2
8 � /

E2
9

4
; ð11bÞ

sU ¼ /
E2
6 � /

E2
7 þ /

E2
8 � /

E2
9

4
þ p

2
; ð11cÞ

sG ¼ /
E2
6 � /

E2
7 � /

E2
8 þ /

E2
9

4
: ð11dÞ

The respective domains of definition of the non-symmetrized coor-
dinates are not ambiguous (0 6 /

E2
i < 2p ðmod 2pÞ (i = 6 to 9)),

whereas using symmetrized coordinates may lead to multi-valued
arrangements in the E2 frame (see discussion in Ref. [14]). Here, a
single-valued, but not periodic, domain is obtained by setting
�p/2 6 c, sU, sG < p/2 (and 0 6 v < 2p). Symmetrized valence
coordinates will be used to sample geometries on which potential
energies will be calculated for the electronic states of interest. The
v angle will be set to zero, as the relative geometry is not affected
by this parameter.

The v angle introduced here corresponds to the third Euler an-
gle of the bisecting BF frame, (x,y,z) (see Fig. 2), halfway between
both single-rotor-fixed frames: (xR,yR,z) and (xL,yL,z), rotated about
z through vR = v + c and vL = v � c with respect to E2, respectively
(see Refs. [14,31,32] for more details). The corresponding valence
coordinates in the bisecting BF frame have identical expressions
as in Eq. (10g) without the v term. An important remark must be
made: the spherical coordinates of the valence vectors expressed
in the bisecting BF frame are related to, but do not fulfill the defi-
nition of polyspherical coordinates (polyspherical coordinates as
defined in Ref. [10] need the BF frame to be attached to two of
the five vectors: ~R5 ¼ C6C5

�!
and, e.g., ~R9 ¼ C6H4

�!
).

Before going further, it is worth making a few comments about
the naming convention on the (x,y)-axes. Let us consider a D2h

geometry. The names of the three principal axes (C2) and corre-
sponding symmetry species (B1g/u,B2g/u,B3g/u) that appear in the
character table of the D2h group are ambiguous. As often done in
the literature, we will follow the Mulliken recommendation for
symmetry labels [33]. We label the Mulliken axes xM, yM, and zM.
The zM-axis is parallel to CC and is identical to our choice of z-axis.
However, the xM-axis should be perpendicular to the plane of the
molecule. As pointed out in Ref. [31], this may induce some confu-
sion between B2g/u and B3g/u symmetry species, and the orientation
of the current x and y according to the value of the torsion angle, u
or c. For instance, they coincide with xM and yM when c = p/2 (mod
2p) but are inverted when c = 0 (modp). The same convention can
be generalized to D2 geometries. For a general value of c, xM and yM
correspond to the greater and lesser of the two perpendicular

Fig. 3. The left and right pyramidalization angles: sR or p � sR (right pyramidal-
ization: from xR to the projections of the C5H1 or C5H2 bonds) and sL or p � sL (left
pyramidalization: from xL to the projections of the C6H3 or C6H4 bonds).

Fig. 4. The symmetrized pyramidalization angles: sU or p � sU (ungerade pyrami-
dalization: from xR or xL to the four dotted lines) and ± sG (gerade pyramidalization:
from the dotted lines to the projections of the four CH bonds).
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principal moments of inertia. Our choice of (x,y)-axes is such as
they vary smoothly with c, whereas the Mulliken axes experience
an abrupt relabeling when the molecule passes through a D2d

geometry as illustrated in Fig. 5. Finally, note that, at a D2d geom-
etry, there is no need to distinguish between x and y because they
form a degenerate representation that transforms as an E symme-
try species.

3. Electronic states

We now give details on the calculation of the electronic states of
ethylene. Starting from the D2h equilibrium geometry in the elec-
tronic ground state, electronic energies were calculated along
scans involving the six internal degrees of freedom defined in Sec-
tion 2, {r,bS,bA,sU,sG,c}. We are interested in seven singlet elec-
tronic states: the first three valence states, N (normal, p2), V

(valence, pp*), and Z (zwitterionic, p*2) in Merer–Mulliken’s nota-
tion [34], and the first four Rydberg states, R(3s), R(3px), R(3py), and
R(3pz) [34,32,21]. The notation R(nf) means that the Rydberg state
corresponds essentially to a p-to-nf single excitation where nf is a
virtual orbital in the semi-united atom (SUA) formalism. Note that
these notations refer to single configurations and will label either
the electronic states where these configurations are dominant or
the electronic configurations themselves.

The four Rydberg states are energetically embedded around the
V and Z valence states around the equilibrium geometry and sepa-
rate only later, around twisted geometries. These seven states are
suspected to dominate the photochemistry of ethylene because a
series of real and avoided crossings occurs along the reaction path
that lead to ground-state regeneration after light absorption [21].
The first two bright states are 11B3u(R(3s)) and 11B1u (V) under
the electric-dipole approximation [19], although 11B1g (R(3py))
may borrow intensity as it couples with V at non-planar geome-
tries [32,17] (both states belong to B1 in D2). Although it has been
claimed that the effect of the non-adiabatic couplings between va-
lence and Rydberg states could be neglected on the ground that the
overlap between compact and diffuse states is small, the received
assumption in the most recent works favors the need for a correct
treatment of Rydberg-valence interactions. Here, we show that we
need to consider more than seven electronic configurations to get a
description consistent at all geometries. As a result, the electronic
states of interest can be described qualitatively with the interac-
tion of 17 selected configurations involving two electrons in nine
active orbitals, a good reference for more accurate calculations.

3.1. Active orbitals and selected configurations

We explain here the approach we followed to identify a selected
active space of 17 configurations adapted to run MCSCF calcula-
tions stable with respect to large-amplitude deformations. This
proved to be non-trivial for reasons related to dynamical symme-
try. State-averaged orbitals optimized for all electronic states with
equal weights were used to get a correct description of the many

state-crossings encountered along all considered deformations.
This also allowed an easier control of the stability of the active
orbitals when these have very small weights or are almost doubly
occupied in the configurations involved in the electronic states of
interest. All calculations presented below were made with a devel-
opment version of the Gaussian quantum chemistry program [35].

For the electronic states we are interested in, the 15 most rele-
vant molecular orbitals of D2h ethylene are gathered in Table 1
where they are given (i) with their D2h labels, (ii) as approximate
linear combinations of atomic orbitals (LCAO) centered on C, (iii)
with mention of the bonding/antibonding overlap with the 1s(H)
atomic orbitals, (iv) in an SUA form, (v) with their dominant bond-
ing character, and (vi) with the restricted active space (RAS) to
which they belong in the MCSCF calculations presented below
(the 15 orbitals will be partioned in three groups: RAS1 for orbitals
almost doubly occupied; RAS2 for orbitals with varying occupan-
cies; RAS3 for orbitals almost vacant). The SUA formalism corre-
lates the molecular orbitals of ethylene with the atomic orbitals
of Si (the four core electrons are treated as a K-shell with two
electrons) and is used to label the Rydberg orbitals (ns,npz,ndz2 ,
npx,npy,ndxz, and ndyz are also termed nsr,npr, ndr, nppx,nppy,
ndpx, and ndpy by some authors). Note that nd orbitals start here
with n = 2 only to label the Rydberg states R(nd) with n = 3 as
ususally done in the literature.

The relevant D2d orbitals are listed in Table 2. From D2h to D2d, ag
and b1u orbitals correlate with a1 and b2 orbitals, respectively. The
D2h orbitals b2g and b3u on one hand, and b2u and b3g on the other
hand become degenerate pairs of e orbitals that mix together
through hyperconjugation.

Using the Mulliken (xM,yM)-axes to label the p orbitals in D2d

would be confusing. Axes corresponding to the rotor-fixed BF
frames are simpler to deal with. In D2d, c = p/4 (mod2p), and xR

is orthogonal to xL (in the plane of the CH2 groups) and yR to yL

(out of the plane of the CH2 groups). We introduce a simplified
notation for e orbitals: ðrR;rLÞ ¼ ð2pxR ;2pxL Þ (with positive CH
bonding); ðpR; pLÞ ¼ ð2pyR ;2pyL Þ; r�

R;r
�
L

� �

¼ ð2pxR ;2pxL Þ (with nega-
tive CH bonding); p0

R; p
0
L

� �

¼ ð3pyR ;3pyL Þ. The R/L components of a
pair of valence-bond-like fragment orbitals are not orthogonal in
general, except in perpendicular geometries such as D2d.

The relationships with the D2h delocalized orbitals (using the
Mulliken convention) read:

2py ¼
rR þ rL

ffiffiffi

2
p ; ð12aÞ

2dyz ¼
rR � rL

ffiffiffi

2
p ; ð12bÞ

Fig. 5. Comparison between the bisecting BF axes and Mulliken’s axes for D2

geometries (left panel: 0 < c < p/4; right panel: p/4 < c < p/2.

Table 1

The 15 most relevant orbitals in D2h (x and y here correspond to Mulliken’s
convention: x is the out-of-plane direction).

D2h LCAO on C centers CH bonding SUA Global bonding RAS

2ag 2s + 2s 2s rCC 1
2b1u 2s � 2s (+) 2pz rCH 1
1b2u 2py + 2py (+) 2py rCH 1
3ag 2pz � 2pz (+) 2dz2 rCH 1
1b3g 2py � 2py (+) 2dyz rCH 1

1b3u 2px + 2px 2px pCC 2
1b2g 2px � 2px 2dxz p�

CC 2
4ag 2pz � 2pz (�) 3s r�

CH 2
3b1u 2pz + 2pz (�) 3pz r�

CH 2
2b2u 2py + 2py (�) 3py r�

CH 2
2b3g 2py � 2py (�) 3dyz r�

CH 2
2b3u 3px + 3px 3px p0

CC 2
2b2g 3px � 3px 3dxz p0�

CC 2
5ag 3pz � 3pz 3dz2 r0

CC 2

4b1u 2pz + 2pz 4pz r�
CC 3

5



2pxðpÞ ¼
pR þ pL

ffiffiffi

2
p ; ð12cÞ

2dxzðp�Þ ¼ pR � pL
ffiffiffi

2
p ; ð12dÞ

3py ¼
r�

R þ r�
L

ffiffiffi

2
p ; ð12eÞ

3dyz ¼
r�

R � r�
L

ffiffiffi

2
p ; ð12fÞ

3pxðp0Þ ¼ p0
R þ p0

L
ffiffiffi

2
p ; ð12gÞ

3dxzðp0�Þ ¼ p0
R � p0

L
ffiffiffi

2
p : ð12hÞ

Hyperconjugation between (rR,rL) (in RAS1) and (pR,pL) (in
RAS2) actually gives some rCH character to the pCC and p�

CC orbitals
(and reciprocally). This implies that the orbitals used to define
RAS1 and RAS2 in D2h undergo a smooth adaptation along the tor-
sional deformation that leads to D2d. However, the mixture is small
enough for the original bonding character to stay dominant and
RAS1/RAS2 to be considered stable. This is not obvious when look-
ing at the orbitals in Fig. 6, but examining the atomic orbital coef-
ficients shows that the r component does not involve orbitals on
the other C center and only a bit on the two H centers.

Hyperconjugation happens also to the virtual orbitals r�
R;r

�
L

� �

and p0
R; p

0
L

� �

. They all belong to RAS2, so there is no issue related
to the stability of RAS2. The orbitals shown in Fig. 6 correspond
to a mixture of about half-half when correlating back to D2h orbi-
tals. We introduce the following notation:

~p0
R ¼ p0

R þ r�
L

ffiffiffi

2
p ; ð13aÞ

~p0
L ¼

p0
L � r�

R
ffiffiffi

2
p ; ð13bÞ

~dR ¼ p0
R � r�

L
ffiffiffi

2
p ; ð13cÞ

~dL ¼
p0
L þ r�

R
ffiffiffi

2
p ; ð13dÞ

where the overlaps between r�
R;r

�
L

� �

and p0
R;p

0
L

� �

are neglected.
RAS1 corresponds to 10 electrons in rCC and the four rCH orbi-

tals and RAS3 to the vacant r�
CC orbital. Accurate calculations (see

below) involving a large RAS1/RAS2/RAS3 active space showed that
RAS1/RAS3 orbitals always had occupancies of about 1.99/0.01 for
the electronic states of interest. These could thus be neglected in a
first approximation. In contrast, RAS2 is made of two electrons dis-
tributed in nine orbitals with much-varying occupancies. This min-
imal set of active orbitals (see Fig. 6) was found after many
unsuccessful attempts to get a self-contained set of electronic con-
figurations stable for all geometries reached by the six internal
coordinates presented in Section 2. Some are built on valence

atomic orbitals (1s(H),2s(C),2p(C)), whereas others are purely Ryd-
berg (built on 3s(C) or 3p(C) atomic orbitals). The pCC and p�

CC orbi-
tals are called valence molecular orbitals while the r�

CH orbitals are
called Rydberg molecular orbitals by analogy with the rHH, r�

HH,
and Rydberg orbitals of H2 [34]. This correspondence could be dis-
puted because the so-called Rydberg states are remarkably low-ly-
ing in ethylene and are embedded in the valence-state manifold.
Except for R(3px) they all have a pr* valence character.

We now explain how RAS2 was obtained. Six out of nine of our
RAS2 orbitals are an obvious choice to generate a minimal com-
plete active space (CAS) capable of describing the seven electronic
states of interest (see, e.g., Refs. [36,21]). Five molecular orbitals
(p,p*,3s,3py, and 3pz) are mostly built on valence atomic orbitals
and are used to describe the configurations corresponding to N,

Table 2

The 15 most relevant orbitals in D2d (x and y refer to Mulliken’s convention in D2h).

D2d LCAO on C centers CH bonding SUA Global bonding RAS

2a1 2s + 2s 2s rCC 1
2b2 2s � 2s (+) 2pz rCH 1
3a1 2pz � 2pz (+) 2dz2 rCH 1
(1e,2e) (rR,rL) (+) (2py ± 2dyz) rCHpCC 1

(3e,4e) (pR,pL) (2px ± 2dxz) rCHpCC 2
4a1 2pz � 2pz (�) 3s r�

CH 2
3b2 2pz + 2pz (�) 3pz r�

CH 2
(5e,6e) ð~p0R ; ~p0LÞ (–) (3px � 3dyz ± 3py ± 3dxz) r�

CHp
�
CC 2

(7e,8e) ð~dR ; ~dLÞ (3dyz + 3px ± 3dxz � 3py) r�
CHp

�
CC 2

5a1 3pz � 3pz 3dz2 r0
CC 2

4b2 2pz + 2pz 4pz r�
CC 3

Fig. 6. The nine RAS2 orbitals in D2h (left column; experimental geometry) and D2d

(right column; same geometry, except for u = 90�) optimized at the SA-17-
SASSCF(2,9)/6-31+G* level of theory (see below) and given in the order used in
Tables 1 and 2.
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V, Z, R(3s), R(3py) and R(3pz). The additional molecular orbital built
on the two Rydberg atomic orbitals 3px(C) (labeled p0 because it is
similar to p with an extra nodal surface) is used to describe the
other low-lying Rydberg state R(3px). Note that an antibonding
interaction between C and H atoms, such as in 3py, means an extra
node, so even though this orbital is built on 2p(C) it looks some-
what similar to 3px built on 3p(C) (see Fig. 6).

We first tried an SA-7-CASSCF(2,6)/6-31+G* calculation of the
electronic energies scanned along the torsional angle (SA-7 means
that the orbitals are state-averaged over the first seven states). This
corresponds to the same reference space as in the multireference
configuration interaction (MRCI) calculations made by Barbatti
et al. [21]. By comparison, our active space will lack some dynam-
ical correlation, but it provides the static correlation needed to de-
scribe the seven quasidegenerate states qualitatively. That was
obtained indeed, but the CAS(2,6) generated at the ground-state
equilibrium geometry proved to be unstable when approaching
perpendicular geometries due to the replacement of one of the
states by an intruder state, thus inducing a discontinuity in the
state-averaged orbitals.

The origin of the problem was found in the stability of the set of
active orbitals with respect to dynamical symmetry. In particular,
the 3dxz(p0*) and 3dyz orbitals become degenerate with 3px(p0)
and 3py, respectively, in D2d (see Table 2) and should thus to be
added to the minimal active space to preserve its stability with re-
spect to the torsional deformation. Adding these orbitals created
two new Rydberg states (R(3dxz) and R(3dyz)) between R(3px) and
Z, thus implying to run SA-9-CASSCF(2,8) calculations.

This description proved insufficient to get stable results because
of the Jahn–Teller degeneracy experienced by the electronic states
R(3s) or R(3pz) at D2d geometries. Again, this is a consequence of
dynamical symmetry, as p and p* correlate to a pair of degenerate
e orbitals in D2d (see Table 2). Thus, correlating back to D2h geom-
etries implies to add the electronic configurations p*3s and p*3pz.
We will note such symmetry partners R*(3s) and R*(3pz). Barbatti
et al. [21] did not meet this issue, as their MRCI calculations in-
volved all necessary configurations not present in their reference
CAS.

In addition, excitation from (p,p*) to either (3py,3dyz) or
(3px,3dxz) leads to two groups of four non-degenerate configura-
tions (E � E = A1 � A2 � B1 � B2). Treating this in a balanced way
implies to run SA-15-CASSCF(2,8) calculations involving the three
valence configurations and the 12 Rydberg configurations R(nf)
and R*(nf) corresponding to single excitations from p or p* to each
of the remaining six virtual orbitals nf.

Calculations made at other geometries (pyramidalized, etc.)
showed the need for an extra Rydberg orbital, 3dz2 ðr0

CCÞ, because
the corresponding Rydberg state Rð3dz2 Þ strongly interacts with
the other states. This thus defines the nine active orbitals of
RAS2 (see Tables 1 and 2) for SA-17-CASSCF(2,9) calculations.
The dominant configurations of the 17 electronic states are gath-
ered in Table 3 in D2h, and in Table 4 in D2d, where they also are gi-
ven as combinations of D2h-adapted configurations.

Finally, we noticed the appearance of high-lying intruder states
at some geometry corresponding to double excitations to Rydberg
orbitals. For example, 3s2 was shown to be the 18th state in D2d but
the 17th state in D2h, thus crossing R*(3dxz) partway through the
torsional reaction path. The complete active space CAS(2,9)
(termed RAS2) made of 38 configurations was thus restricted by
hand to the 17 dominant configurations given in Table 3. This con-
figuration selection proved to make the subspace really stable with
respect to all considered deformations for the 17 adiabatic elec-
tronic states calculated. No significant discrepancy was found
regarding the energetics between the two approaches, thus sup-
porting the validity of the configuration selection. This approach
will be termed SA-17-SASSCF(2,9)/6-31+G*, where SAS stands for

selected active space. Note that no significant improvement was ob-
tained using the larger 6-311+G* basis set at this level of theory.

3.2. Adiabatic energy scans

We now show the energies of the first 17 electronic states of
ethylene scanned along the six internal degrees of freedom {r,bS,
bA,sU,sG,c} (see Section 2). Calculations were made at the SA-17-
SASSCF(2,9)/6-31+G* level of theory. Two initial starting points
were taken for the scans: the experimental planar equilibrium
geometry (D2h, CC: r=1.339 Å, CH: RCH = 1.086 Å, HCH: a = 117.6�)
[37] and the corresponding perpendicular structure with the same
bond lengths and polar angles (D2d,c = 45�). The back and forth
scans along the torsional angle c were checked to give identical
energies and states, irrespectively of whether the active orbitals
in RAS2 were originally generated at either one or the other start-
ing points (see Fig. 6). An extra cut was added along sR (or sL, which
is equivalent) for reasons that will be made clearer in Section 4.
The adiabatic energy curves are given in Figs. 7–18 where they
are distinguished according to their symmetry labels in the current
point group. Ambiguities in the symmetry labeling of D2h, D2, and
C2v point groups are specified in the captions.

For the scan along c (see Fig. 7) varying from 0 to p/4, the orbi-
tals correlating with p and p* (c = 0) are pR + pR and pR � pR (omit-
ting the normalization factor). In D2d (c = p/4), the orbitals become
degenerate, which induces a Jahn–Teller crossing of R(nf) and

Table 3

Dominant configurations of the 17 electronic states in D2h (x and y here correspond to
Mulliken’s convention: x is the out-of-plane direction).

Configuration SUA orbitals D2h orbitals D2h symmetry

N p2
1b23u

1Ag

R(3s) p 3s 1b3u 4ag
1B3u

R(3pz) p 3pz 1b3u 3b1u
1B2g

R(3py) p 3py 1b3u 2b2u
1B1g

V + R(3dxz) p(p* + 3dxz) 1b3u (1b2g + 2b2g)
1B1u

R(3px) p 3px 1b3u 2b3u
1Ag

Rð3dz2 Þ p 3dz2 1b3u 5ag
1B3u

R(3dyz) p 3dyz 1b3u 2b3g
1Au

R(3dxz) � V p(3dxz � p*) 1b3u (2b2g � 1b2g)
1B1u

Z p*2 1b22g
1Ag

R*(3s) p* 3s 1b2g 4ag
1B2g

R*(3py) p* 3py 1b2g 2b2u
1Au

R*(3pz) p* 3pz 1b2g 3b1u
1B3u

R�ð3dz2 Þ p�3dz2 1b2g 5ag
1B2g

R*(3px) p* 3px 1b2g 2b3u
1B1u

R*(3dyz) p* 3dyz 1b2g 2b3g
1B1g

R*(3dxz) p* 3dxz 1b2g 2b2g
1Ag

Table 4

Dominant configurations of the 17 electronic states in D2d (x and y refer to Mulliken’s
convention in D2h).

Configuration D2d orbitals D2d symmetry

N � Z pRpL
1B1

V pRpR � pLpL
1B2

Z + N pRpR + pLpL
1A1

R(3s) ± R*(3s) (pR3s,pL3s)
1E

R(3pz) ± R*(3pz) (pR3pz,pL3pz)
1E

R*(3px) � R(3dxz) � R(3py) � R*(3dyz) pR~p
0
L � pL~p

0
R

1A2

R(3px) + R*(3dxz) + R*(3py) � R(3dyz) pR~p
0
R þ pL~p

0
L

1A1

R(3dxz) + R*(3px) + R(3py) � R*(3dyz) pR~p
0
R � pL~p

0
L

1B2
R(3px) � R*(3dxz) � R(3dyz) � R*(3py) pR~p

0
L þ pL~p

0
R

1B1

Rð3dz2 Þ � R�ð3dz2 Þ ðpR3dz2 ; pL3dz2 Þ 1E

R*(3px) � R(3dxz) + R(3py) + R*(3dyz) pR
~dL � pL

~dR
1A2

R(3px) � R*(3dxz) + R(3dyz) + R*(3py) pR
~dL þ pL

~dR
1B1

R(3dxz) + R*(3px) � R(3py) + R*(3dyz) pR
~dR � pL

~dL
1B2

R(3px) + R*(3dxz) � R*(3py) + R(3dyz) pR
~dR þ dL

~dL
1A1
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R*(nf) for nf ¼ 3s;3pz;3dz2 . From p/4 to p/2, a diabatic correlation
of pR and pL (smooth rotation following the two CH2 fragments)
shows that pR + pR is now antibonding while pR � pR has become
bonding. If we keep calling them p and p* for reference with the
D2h origin (c = 0), the energy of the R(nf) component is now higher
than that of the R*(3s) component.

Mulliken’s convention is used for 0 < c < p/4, and a reversed
convention for p/4 < c < p/2. This allows a common BF frame to
be used on both sides of the D2d point with consistent irreducible
representations, and this reveals better the features of the Jahn–
Teller crossing. For example, with our choice, R(3s) and R*(3s) are
B3 and B2, respectively, all along. They cross smoothly in D2d

beyond which their energy curves swap. However, Mulliken’s
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Fig. 7. Adiabatic energy scan along c connecting the D2h origin to its equivalent
version through the D2d origin. D2 symmetry, black: A states; red: B1 states; blue: B2
states; green: B3 states (Mulliken’s convention is used for 0 < c < p/4, and a reversed
convention for p/ 4 < c < p/2).
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convention would have led them to be B2 and B3 from p/4 to p/2,
thus inducing a cusp in energy curves of the same symmetry label.

The other first-order active coordinate with respect to the
Jahn–Teller crossing is bA (see Fig. 16). Here too, the features of
the crossing are better-understood with a common BF frame on
both sides. For example, with the convention chosen here for the
C2v group (z: internuclear axis, xkH4H3, ykH2H1), configurations
pR 3s = R(3s) + R*(3s) and pL3s = R(3s) � R*(3s) (omitting the nor-
malization factor) are B1 and B2, respectively, all along. For bA < 0,

the energy of pR3s is lower than that of pL3s. They cross smoothly
in D2d (bA = 0) beyond which their energy curves swap.

3.3. Accuracy tests

The V state of ethylene is still today a computational challenge.
Its partly-valence/ionic/Rydberg character makes any description
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critical in terms of dynamical correlation (r � p-correlation, p-con-
traction, etc.) as discussed, e.g., in Ref. [23] (see also references
therein). We found out that, although very cheap, our SA-17-SASS-
CF(2,9)/6-31+G* approach was capable of giving the energy of the V
state quite remarkably (see Table 5). We suspect this comes from
using orbitals forced to be state-averaged over an (unusually) large
number of states, i.e., optimized for V as well as for other states
that involve p-to-r* and p-to-p*0 excitations, thus allowing relax-
ation of V (mainly a p-to-p* excitation) through configuration
interaction with the other states. In particular, our calculations
show that the effective V state (11B1U) is a balanced mixture of p
p* (ideal V state) and pp*0 (see Table 3), in other words, a p~p� dom-
inant configuration where ~p� is a mixture of p* and p*0 orbitals.
This is partly induced by state-averaging the orbitals over V at
the same time as R(3dxz) and R*(3px) (11B1u, 2

1B1u, and 31B1u in
D2h), in a spirit similar to the recent work of Angeli [23].

The energies of the ten lower states at the experimental equilib-
rium geometry [37] are given in Table 5 at the SA-17-SASSCF(2,9)
level of theory with the 6-31+G* and 6-311+G* basis sets. The qual-
ity of V is indicated by the vertical excitation energy, in agreement
with the best theoretical estimates and experiments (see Table 5).
For the out-of-plane diffuseness, we obtained hx2i ¼ 23a2

0 with 6-
31+G* and 24 with 6-311+G*. Although this value lies within the
range of values found with most published calculations (see Ref.
[23] and references therein), it is larger than the best theoretical
estimates, 16-18 a20 [23]. This could be attributed to an overestima-
tion of the contribution of the p*

0
in the effective ~p� orbital.

The lower Rydberg states (up to R(3dyz)) are qualitatively cor-
rect but there is no quantitative agreement with experimental val-
ues, except for R(3px) and Rð3dz2 Þ. The energetic order of R(3pz) and
R(3py) is reversed, and the energy can be underestimated by about
1 eV. This is to be expected because special basis sets are needed to
describe such diffuse states accurately. In contrast, the higher-lying
Rydberg states are useful only as mathematical states, here for giv-
ing flexibility to the lower-lying states and making the active space
stable and self-contained with respect to geometrical deforma-
tions. Their energies are not listed in Table 5, as the states may
not have any physical meaning.

SA-17-SASSCF(2,9) calculations were checked against subse-
quent MRCI-like calculations, noted MR-CISD(12,15) (SA-17-SASS-

CF(2,9)//CISD(12,15)), and involving all single and double
excitations from 5 doubly-occupied orbitals and to one extra vir-
tual orbital (see Table 5). This approach corresponds in fact to a
RAS(12,15) divided into RAS1/RAS2/RAS3 (see Tables 1 and 2), with
orbitals optimized from a previous SA-17-RASSCF(2,9) calculations
and kept unchanged. The energy of the first few states at the exper-
imental equilibrium geometry have been compared to experimen-
tal results and two kinds of accurate computations: (i) Ref. [21]
(MR-CISD+Q/SA-7-CAS(2,2)+aux/d-aug-cc-pVDZ); (ii) Ref. [38]
(IDDCI with a large basis set including atomic natural orbitals).

These calculations confirmed that V was already well-described
at the SA-17-SASSCF(2,9) level of theory. The energy did not
change significantly (see Table 5) nor the diffuseness (hx2i=22 a20
with both basis sets). The lower Rydberg states proved to be more
sensitive than V to further dynamical correlation. Their energies
get closer to the experimental values but are not fully converged,
thus confirming again the need for basis sets adapted to Rydberg
states for running more accurate calculations. The Z state and Ryd-
berg states higher than R(3dyz) were not obtained with MR-
CISD(12,15) calculations because states beyond about 9 eV appear
embedded in a series of double excitations.

We also calculated the barrier between the experimental equi-
librium geometry and the perpendicular structure with the same
bond lengths and polar angles (this is not the optimized transition
state). At the SA-17-SASSCF(2,9) level of theory, the barrier is equal
to 3.06 (3.02) eV with the 6-31+G* (6-311+G*) basis set. MR-
CISD(12,15) calculations give about the same value: 2.97 (2.95)
eV with the 6-31+G* (6-311+G*) basis set. The same value is given
in Ref. [21]). This confirms that no further dynamical correlation
was needed to describe correctly the mixture of inactive and active
orbitals through hyperconjugation.

4. Dynamical symmetry analysis

In what follows, we will determine how nuclear coordinates
and electronic configurations transform through nuclear-permuta-
tion-inversion operations (dynamical symmetry) in ethylene. The
nuclei have been labeled such as H1 and H2 are chemically bound
to C5, and H3 and H4 to C6 (see Fig. 1). The type of deformations

Table 5

Vertical excitation energies (eV) for the valence and some of the Rydberg states at the D2h equilibrium geometry with respect to the ground state (absolute energies given in
footnotes). SAS: SA-17-SASSCF(2,9); MRCI: MR-CISD(12,15).

SAS MRCI SAS MRCI [21] [38] Exp.
6-31+G* 6-31+G* 6-311+G* 6-311+G*

N 0.00a 0.00b 0.00c 0.00d 0.00e 0.00
R(3s) 6.61 6.88 6.37 6.61 7.16 7.09 7.11gh

R(3pz) 6.95 7.25 6.84 7.10 7.85 7.96 7.90h

R(3py) 7.25 7.58 7.07 7.35 7.82 7.76 7.80gh

V 7.83 7.90 7.80 7.86 7.91 (7.80f) 7.90 7.66g, 7.8i, 7.9 ± 0.1j

R(3px) 8.17 8.29 7.97 8.09 8.19 8.33 8.26g, 8.28h

Rð3dz2 Þ 8.35 8.63 8.21 8.46 8.59 8.62k

R(3dyz) 8.55 8.88 8.30 8.59 9.12
R(3dxz) 11.54 11.29 9.35 9.33l

Z 13.84 13.82 12.73

a �78.029923 Eh.
b �78.052602 Eh.
c �78.039781 Eh.
d �78.059639 Eh.
e �78.363611 Eh.
f MR-CISD+Q/SA-3-RDP/aug-cc-pVTZ.
g From Ref. [39].
h From Ref. [40].
i From Ref. [41].
j From Ref. [42].
k From Ref. [43].
l From Ref. [44].
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considered here preserve all r bonds, but p bonds may break upon
electronic excitation from the ground electronic state, thus induc-
ing possible large-amplitude motion in the torsion around the CC
bond (barrierless process in some of the excited electronic states
as opposed to tunneling in the electronic ground state, which can
be too weak to be observed).

4.1. The G16 group

The symmetry group of the non-relativistic vibronic Hamilto-
nian is called the molecular symmetry group [14]. For rigid sys-
tems, where only small deformations around the equilibrium
geometry are considered, the molecular symmetry group is iso-
morphic to the point group at this geometry, and all symmetry
properties can be derived from the corresponding irreducible
representations. However, flexible molecules can undergo large-
amplitude deformations that connect various versions of the
equilibrium geometry (geometries that are distinct only because
identical nuclei are labeled individually). In addition, such defor-
mations can lead to intermediate geometries where the point
group is larger than the subgroup followed from the origin. See,
for example, Fig. 7: D2h (c = 0)? D2 ? D2d (c = p/4)? D2? D2h

(c = p/2). Correlating adiabatic energy scans along the same coordi-
nates and originated from D2h and D2d points (e.g., Figs. 8 and 14) is
not obvious when working with point-group symmetry. In con-
trast, dynamical symmetry gives global irreducible representations
that facilitate the connection of electronic states at different
geometries.

For ethylene with feasible torsion the dynamical group is
termed G16, the subgroup made of the operations of the CNPI group
G96 [14,31,32] that preserve the bond connectivity of the molecule.
This allows a consistent description of symmetry properties for all
the point groups that can be explored through large-amplitude
deformations (D2h, D2, D2d, etc.). With the choice of connectivity
made in Fig. 1, the equilibrium geometry of ground-state ethylene
can be represented by two distinct versions regarding nucler label-
ing (see Fig. 19) that interconvert through torsion (see Fig. 2).
When considered rigidly planar, each version is structurally
twelve-fold degenerate and described by the molecular symmetry
group D2h(M), subgroup of G16 isomorphic to the rigid point group
D2h. Note that distorted geometries may be less symmetrical and
be described by a smaller point group than D2h, but they always be-
long to the same molecular symmetry group, G16. This property
will be fully exploited below, in the determination of the elec-
tronic-state symmetry and their dependences on the nuclear coor-
dinates. Finally, geometries resulting from H migration, e.g., D4h

(C(H4)C) or C3v((H3)CC (H)), will not be considered here.
Now, we will consider the action of each operation of G16 on the

nuclear coordinates and the electronic configurations mentioned
above. The notations for the operations are those used in [14]. In
particular, the four generating operations of G16 are E, the identity,
and a = (1423)(56)*, b = (13)(24)(56), and c = E*, the parity (space
inversion). They satisfy

a ¼ ð1423Þð56Þ�; a2 ¼ ð12Þð34Þ; a3 ¼ ð1324Þð56Þ�; a4 ¼ E; ð14aÞ
b ¼ ð13Þð24Þð56Þ; b2 ¼ E; ð14bÞ

c ¼ E�; c2 ¼ E; ð14cÞ
a2b ¼ ba

2 ¼ ð14Þð23Þð56Þ; ab ¼ ba
3 ¼ ð34Þ�; a3b ¼ ba ¼ ð12Þ�:

ð14dÞ

Coordinate transformations are summarized in Table 6. In this, we
used the following properties for degenerate sets:

E�ðR�; L�Þ � E�ðR�; L�Þ ¼ Aþ
1 ðR

�R� þ L�L�Þ � Aþ
2 ðR

�L� � L�R�Þ
� Bþ

1 ðR
�L� þ L�R�Þ � Bþ

2 ðR
�R� � L�L�Þ; ð15aÞ

E�ðG�;U�Þ � E�ðG�;U�Þ ¼ Aþ
1 ðG

�G� þ U�U�Þ � Aþ
2 ðG

�U� � U�G�Þ
� Bþ

1 ðG
�G� � U�U�Þ � Bþ

2 ðG
�U� þ U�G�Þ; ð15bÞ

where (U, G) or (R, L) are two kinds of pairs of components for E rep-
resentations such that (U, G) correlate with D2h and (R, L) correlate
with C2v, the largest Abelian subgroup of D2d (U / R + L; G / R - L).

The symmetry properties of the nuclear coordinates derive di-
rectly from the definitions of the nuclear-permutation-inversion
operations. Those of the electronic configurations derive ultimately
from the transformations of the atomic orbitals. This may need a
few comments. First, only the space inversion (parity, E*) acts on
the electronic coordinates in the space-fixed frame. The atomic
orbitals change according to the coordinate transformation in-
duced on the electronic and nuclear coordinates by E*. The s, p, d,
etc. orbitals behave as tensors of order 0, 1, 2, etc. with respect
to E* acting on the electronic coordinates, e.g., s orbitals: scalars
(positive parity); p orbitals: vectors (negative parity), etc. In addi-
tion, they move with their respective nuclear centers. Second,
although the electrons themselves do not follow the nuclei through
a pure nuclear permutation, the nuclear centers and the BF axes
that label the atomic orbitals are transformed according to the
operation. So, when labeled with BF directions, even orbitals sim-
ply transform as the corresponding monomials built on x,y, and
z, whereas odd orbitals do the same for operations that do not con-
tain E* (e.g, E and b) and are further transformed into their nega-
tives for operations that contain E* (e.g., a and c).

Let us consider as an example b = (13)(24)(56) and
bc = (13)(24)(56)*,

bpxR ðC5Þ ¼ pxL ðC6Þ; ð16aÞ
bpyR ðC5Þ ¼ �pyL ðC6Þ; ð16bÞ
bpzðC5Þ ¼ �pzðC6Þ; ð16cÞ

Fig. 19. The effect of the feasible permutation (12) between two D2h versions of
ethylene that can interconvert through torsion.

Table 6

G16 character table with indication of the coordinate transformations.

G16 E a b c Coordinates

Aþ
1

1 1 1 1 r, (aR + aL)/2, bS, #
2
R þ #2

L , s
2
R þ s2L ,

s2G þ s2U
Aþ
2

1 1 �1 1

Bþ
1 1 �1 1 1 cosu, cos2c, #R#L, sRsL, s2G � s2U

Bþ
2 1 �1 �1 1 (aR � aL)/2, bA, #

2
R � #2

L , s
2
R � s2L , sGsU

E+ 2 0 0 2
(U+) (1) (�G+) (1) (1)
(G+) (1) (U+) (�1) (1)
(R+) (1) (L+) (L+) (1)
(L+) (1) (�R+) (R+) (1)
A�
1 1 1 1 �1 sinu, sin2c

A�
2 1 1 �1 �1

B�
1 1 �1 1 �1

B�
2 1 �1 �1 �1

E� 2 0 0 �2
(G�) (1) (U�) (1) (�1) sG
(U�) (1) (�G�) (�1) (�1) sU
(R�) (1) (L�) (�L�) (�1) #R, sR
(L�) (1) (�R�) (�R�) (�1) #L, sL
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bcpxR ðC5Þ ¼ pxL ðC6Þ; ð16dÞ
bcpyR ðC5Þ ¼ pyL ðC6Þ; ð16eÞ
bcpzðC5Þ ¼ �pzðC6Þ; ð16fÞ

because b swaps C5 and C6, and b(xR,L,yR,L,z) = (xL,R, � yL,R, � z),
whereas c keeps the atomic orbitals on their centers and only
changes the sign of pyR ðC5Þ (combined action of c(xR,L,yR,L, z) =
(�xR,L,yR,L, � z) and the change of sign of p-orbitals). Note that, L
and R BF (x,y)-axes do not necessarily coincide with the Mulliken
axes. Also, as opposed to point-group symmetry based on invari-
ance properties, here there is no reason for orbitals transformed
into each other to be identical if the geometry does not correspond
to any point-group symmetry.

4.2. Basis functions of the nuclear coordinates

Different sets of nuclear coordinates have been introduced in
Section 2. For what follows, we need to determine simple functions
of these that belong to the irreducible representations of the G16

group.
In the work presented in Ref. [18], symmetry considerations

were drawn consistently with respect to some of the nuclear-per-
mutation-inversion operations. However, dynamical symmetry
was not used explicitly, which would have simplified the deriva-
tion greatly. In particular, functions of #R and #L(E

�(R�,L�) pair;
see Table 6) were recombined in a second stage, after examination
of how these two coordinates transform between each other,
whereas functions of symmetrized coordinates could have been
built directly (see Table 7). We now show how dynamical symme-
try is to be used to generate basis functions of the nuclear coordi-
nates adapted to G16. We will show further on how these enter the
electronic Hamiltonianmatrix naturally when a quasidiabatic basis
set adapted to G16 is used.

In Ref. [18], the potential energy matrix for the (N, V, Z) space
was expanded in terms of two-dimensional functions of u and
any coordinate in {r, (aR + aL)/2, (aR � aL)/2, #R, #L}. From the
dynamical symmetry properties of the nuclear coordinates in G16

(see Table 7), one gets the symmetry labels of product functions
using the multiplication table of G16. Also, from Eq. (15b), it is
straightforward to show that #4

R þ #4
L ¼ ð#2

R þ #2
LÞ

2 � 2#2
R#

2
L is Aþ

1

and #4
R � #4

L ¼ ð#2
R þ #2

LÞð#2
R � #2

LÞ is Bþ
2 , but higher-order terms

(not considered here) need more careful consideration. The basis
functions used in Ref. [18] are given in Table 7 along with their
G16 irreducible representations. Note that no Aþ

2 one-dimensional
function is given because no non-zero Aþ

2 matrix element was con-
sidered in Ref. [18], although using Bþ

1 � Bþ
2 ¼ Aþ

2 would have led to
either [(aR � aL)/2]

2n+1cos2n+1u or ½#2;4
R � #2;4

L 	 cos2nþ1u functions.
Now, using the symmetrized valence coordinates {r, bS, bA,-

sU,sG,c} defined in Section 2, we can proceed to the same analysis.
The G16 basis functions needed for building the potential energy
matrix (see below) corresponding to the 17 valence and Rydberg
states defined in Section 3 are given in Table 8.

We prefer to use real Fourier basis functions rather than powers
of cosu and sinu for simplicity, although both kinds transform into

each other directly. Note that some restrictions must be made on
the values of the powers to avoid redundancies in the latter case.
Also, using Eq. (15b) and the same derivations as for (#R, #L) leads
to showing that s4G þ s4U is Aþ

1 and s4G � s4U is Bþ
1 .

4.3. Active orbitals

The active orbitals involved in the 17 reference configurations
selected within the RAS2 space have been presented in Section 3.
Transformations between localized and delocalized orbitals are gi-
ven in Eq. (12h). Table 9 summarizes their symmetry properties
with respect to G16 where they also are correlated to three point
groups: D2h, D2d, and C2v. The latter corresponds to the largest Abe-
lian subgroup of D2d with left–right broken-symmetry (B1 and B2
are symmetric with respect to the left and right HCH planes,
respectively). Note that the B2(3)u(g) irreducible representations of
D2h are correlated assuming yR = yL = ± xM and xR = xL = � yM.

We now enunciate the hypotheses that will be the ground of
our quasidiabatic description. First, we will consider the set of nine
active orbitals in RAS2 self-contained everywhere. In practice, the
active orbitals adapt themselves smoothly along geometrical
deformations: (i) they translate and rotate with the atom centers
and the BF axes, which we consider as a diabatic adaptation; (ii)
they mix with orbitals not originally in RAS2 (in particular, hyper-
conjugation between (2py,2dyz) and (2px,2dxz) gives some rCH char-
acter to the pCC and p�

CC orbitals). Although we treat the problem
formally as if this mixing did not occur, we do not prevent it
numerically as it allows the configuration space to keep the same
size and still be stable with respect to geometrical deformations.
The ‘‘diabaticity” criterion is the continuity of the 17 eigenvalues
over geometrical deformations. As already mentioned, finding the
right active space was not a trivial task. Many unsuccessful at-
tempts led to discontinuities in the energies at some geometries.

A very important difference between dynamical symmetry and
point-group symmetry is the electronic-integral rule such as orbi-
tal overlaps. In the latter case, the overlap is not zero only if the
product of the two orbitals contains the totally symmetric repre-
sentation. In dynamical symmetry, the overlap simply is a function
of the nuclear coordinates that has the same symmetry as the orbi-
tal product. The electronic-integral rule at a given geometry actu-
ally comes from the fact that only functions belonging to the
totally symmetric representation are non-zero in the correspond-
ing point group (a finite value of any other function can only be
due to a geometrical displacement that breaks the local symme-
try). As a consequence, it is not possible to assume zero overlaps
in a global way when using dynamical symmetry.

However, as a second hypothesis, we will neglect such overlaps
between orbitals belonging to different irreducible representations
in G16. The orbitals listed in Tables 1 and 2, shown in Fig. 6, have
been calculated at either one of two starting points: D2h (experi-
mental ground-state equilibrium geometry) and D2d (same geome-
try, except for c = 45�), respectively. The D2h orbitals already belong
to irreducible representations of G16. The MCSCF active orbitals
propagated from D2h to D2d have adapted themselves to the geo-
metrical deformation. They still are orthogonal, but they have
mixed and no longer belong to the irreducible representations of
G16. Hyperconjugation can be neglected for (pR, pL) (E

�) but not be-
tween r�

R;r
�
L

� �

ðEþÞ and p0
R; p

0
L

� �

(E�) that both are E in D2d (see Eq.
(13d)). Here, we assume that it is possible to find a smooth trans-
formation that separates contributions from different irreducible
representations of G16 while keeping the orbitals orthogonal. The
‘‘diabaticity” criterion is that orbitals change as smoothly as possi-
ble from the starting point where they were defined.

It is to be understood that such hypotheses are needed for sim-
plifying the interpretation of results but not to produce them
numerically. The aim is to describe the adiabatic electronic states

Table 7

Dynamical-symmetry-adapted basis functions of the nuclear coordinates used in Ref.
[18] (m = 1,2; n = 1 to 4; p = 1,2; q = 1; r0 and a0 are particular values defining the D2

equilibrium geometry along with RCH).

G16 u r (aR + aL)/2 (aR � aL)/2 (#R,#L)

Aþ
1

sin2mu (r � r0)
n [(aR + aL)/

2 � a0]
p

[(aR � aL)/2]
2q

#2;4
R þ #2;4

L

Bþ
1 cos2m�1u

Bþ
2 [(aR � aL)/2]

2q�1
#2;4
R � #2;4

L
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of interest as mixtures of 17 quasidiabatic configurations of well-
defined symmetry in G16. Each configuration can thus be written
at all geometries in terms of the original set of active orbitals that
we approximate as being strictly diabatic over the range of defor-
mations considered. In other words, any non-adiabatic coupling is
reduced to the contribution due to configuration interaction within
the 17-configuration space. Let us remark that this is similar in
spirit to calculations of the local non-adiabatic coupling between
two states, where it is often assumed that the orbital contribution
can be neglected.

4.4. Valence states

We show here how to build a set of symmetry-adapted combi-
nations of electronic configurations that (i) belong to irreducible
representations of G16, (ii) are orthogonal, (iii) can serve as a basis
set to expand the three valence states, N, V, and Z.

As shown by Krawczyk et al. in Ref. [18], it is possible to qual-
itatively understand the nature of these states in terms of simple
configurations involving either localized or delocalized molecular
orbitals. In fact, none of the two kinds of basis sets is adapted to
G16. Objects corresponding to E� � E� must be written in terms
of symmetrized combinations of (R,L)- or (G,U)-components (see
Eq. (12h)).

Using the ‘‘short names” for the orbitals listed in Table 9, the
three singlet-adapted configuration-state functions corresponding
to the three valence states in D2h expressed in terms of delocalized
orbitals read:

N ¼ j1p2i ¼ pp
ab� ba

2
; ð17aÞ

V ¼ j1pp�i ¼ pp� þ p�p
ffiffiffi

2
p ab� ba

2
; ð17bÞ

Z ¼ j1p�2i ¼ p�p� ab� ba
2

: ð17cÞ

Note that Spp� ¼ hp j p�i, the overlap between the two orbitals, is
zero by construction (even at less symmetrical geometries than
D2h).

Using the localized orbitals, pR and pL, where

p ¼ pR þ pL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ SÞ
p ; ð18aÞ

p� ¼ pR � pL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� SÞ
p ; ð18bÞ

and S ¼ SpRpL ¼ hpR j pLi, leads to non-orthogonal valence-bond
configurations:

j1p2
Ri ¼ pRpR

ab� ba
2

; ð19aÞ

j1pRpLi ¼
pRpL þ pLpR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ S2Þ
q

ab� ba
2

; ð19bÞ

j1p2
L i ¼ pLpL

ab� ba
2

: ð19cÞ

Spatial-symmetry-adapted configurations involving doubly-
occupied orbitals are defined as

j1ðp2
R � p2

L Þi ¼
pRpR � pLpL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� S2Þ
q

ab� ba
2

; ð20aÞ

j1ðp2 � p�2Þi ¼ pp� p�p�
ffiffiffi

2
p ab� ba

2
: ð20bÞ

From there, one shows that there are two kinds of G16-symme-
try-adapted sets of configurations:

N0 ¼ j1ðp2 � p�2Þi; ð21aÞ
V ¼ j1pp�i; ð21bÞ
Z0 ¼ j1ðp2 þ p�2Þi; ð21cÞ

or

N00 ¼ j1pRpLi; ð22aÞ
V ¼ j1ðp2

R � p2
LÞi; ð22bÞ

Z00 ¼ j1ðp2
R þ p2

LÞi: ð22cÞ

Table 8

Dynamical-symmetry-adapted basis functions of the symmetrized valence coordinates (j,m,n,p, and q are any positive integers; r0 and b0 are particular values defining the D2

equilibrium geometry along with RCH).

G16 c r bS bA (sG,sU)

Aþ
1

cos2j2c sin2m2c or cos4mc (r � r0)
n (bS � b0)

p
b
2q
A s2;4G þ s2;4U

Bþ
1 cos2j+12c sin2m2c or cos (4m + 2)c s2;4G � s2;4U

Bþ
2 b

2qþ1
A

sGsU

A�
1 cos2j2c sin2m+12c or sin (4m + 2)c

B�
1 cos2j+12c sin2m+12c or sin4mc

E�(G�,U�) (sG,sU)

Table 9

Active orbitals in G16 (SUA notation given with the Mulliken axis convention).

G16 Approximate LCAO Short Name SUA D2h D2d C2v

E�(R�, L�) ð2pRy ; 2pLyÞ (pR,pL) 2px ± 2dxz E (B1,B2)

E�(U�,G�) 2pRy � 2pLy (p,p*) (2px,2dxz) (B3u,B2g) E

Aþ
1

2pz � 2pz 3s 3s Ag A1 A1

Bþ
2 2pz + 2pz 3pz 3pz B1u B2 A1

E+(R+, L+) ð2pRx ; 2pLxÞ ðr�
R ; r

�
LÞ 3py ± 3dyz E (B2,B1)

E+(U+,G+) 2pRx � 2pLx (3py,3dyz) (3py,3dyz) (B2u,B3g) E

E�(R�, L�) ð3pRy ; 3pLyÞ ðp0R ; p0LÞ 3px ± 3dxz E (B1,B2)

E�(U�,G�) 3pRy � pLy (3px,3dxz) (3px,3dxz) (B3u,B2g) E

Aþ
1

3pz � 3pz 3dz2 3dz2 Ag A1 A1
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The transformations between the three sets read:

N ¼ Z0 þ N0
ffiffiffi

2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ S2
p

ffiffiffi

2
p

1þ Sð Þ
Z00 þ N00� �

; ð23aÞ

Z ¼ Z0 � N0
ffiffiffi

2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ S2
p

ffiffiffi

2
p

1� Sð Þ
Z00 � N00� �

; ð23bÞ

N0 ¼ N � Z
ffiffiffi

2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ S2
p

1� S2
N00 � SZ00� �

; ð23cÞ

Z0 ¼ N þ Z
ffiffiffi

2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ S2
p

1� S2
Z00 � SN00� �

; ð23dÞ

N00 ¼ 1þ Sð ÞN � 1� Sð ÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ S2
� �

r ¼ N0 þ SZ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ S2
p ; ð23eÞ

Z00 ¼ 1þ Sð ÞN þ 1� Sð ÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ S2
� �

r ¼ Z0 þ SN0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ S2
p : ð23fÞ

If S is zero (e.g., in D2d), or is neglected as in Ref. [18], Eq. (23f) sim-
plifies as

N ¼ Z0 þ N0
ffiffiffi

2
p ; ð24aÞ

Z ¼ Z0 � N0
ffiffiffi

2
p ; ð24bÞ

N0 ¼ N � Z
ffiffiffi

2
p ¼ N00; ð24cÞ

Z0 ¼ N þ Z
ffiffiffi

2
p ¼ Z00: ð24dÞ

The configuration symmetries are easily obtained from the expan-
sion of E� � E� in terms of (R,L)- or (G,U)-components as already
mentioned (see Eq. (12h)). N0 and N

00
belong to Bþ

1 ;V to Bþ
2 , and Z0

and Z
00
to Aþ

1 . In addition, the symmetry of the overlap, S, must be
taken into account as can be noticed in Eq. (23f). It is easy to show
that it belongs to Bþ

1 . Terms involving S2 do not matter as they be-
long to Aþ

1 .
The basis set (N0,V,Z0) is more convenient for building a quasid-

iabatic representation as all three configurations are orthogonal
with each other (in contrast, the overlap between N

00
and Z

00
is equal

to 2S/(1 + S2)2). Using the same notations as Krawczyk et al. for the
elements of the potential energy matrix, we get, in the (N0,V,Z0)-
representation:

V ¼ Vpot1þ
�VD VZ Vp

VZ �VC Vpyr

Vp Vpyr VC þ VD

0

B

@

1

C

A
; ð25Þ

where 1 is the unit matrix. The structure of this matrix is simpler
than the two versions given in Ref. [18], either in the delocalized ba-
sis set, (p2,pp*,p*2):

Vdeloc ¼ Vpot1þ
VC=2þ Vp

VpyrþVZ
ffiffi

2
p VD þ VC=2

VpyrþVZ
ffiffi

2
p �VC

Vpyr�VZ
ffiffi

2
p

VD þ VC=2
Vpyr�VZ

ffiffi

2
p VC=2� Vp

0

B

B

B

@

1

C

C

C

A

; ð26Þ

or in the localized basis set, ðp2
R;pRpL;p

2
LÞ,

Vloc ¼ Vpot1þ
VD=2þ Vpyr

VpþVZ
ffiffi

2
p VD=2þ VC

VpþVZ
ffiffi

2
p �VD

Vp�VZ
ffiffi

2
p

VD=2þ VC
Vp�VZ

ffiffi

2
p VD=2� Vpyr

0

B

B

@

1

C

C

A

: ð27Þ

thus revealing how G16 symmetry conditions the natural functions
entering the Hamiltonian. Each entry in the matrix V belongs to a
well-defined irreducible representation of G16 as shown in Table 10.

From then, the basis functions that can be used and multiplied to-
gether to fit thismatrix are to be taken from either Table 7 or Table 8.

4.5. Rydberg states

We now generalize the analysis started for the three valence
configurations to the 14 Rydberg configurations. As already men-
tioned, we make the hypothesis that overlaps between orbitals
belonging to different representations in G16 can be neglected to
simplify the derivation. We will use a for representing orbitals
belonging to one-dimensional irreducible representations in G16

(a=3s,3pz, or 3dz2 ), (u,g) for either (3py,3dyz) (E+) or (3px,3dxz)
(E�), and (r,‘) for either r�

R;r
�
L

� �

ðEþÞ or ðp0
R; p

0
LÞðE

�Þ (see Table 9).
The expressions of the electronic states in terms of dominant

configurations have been analyzed in Section 3 within the frame-
work of point-group theory at D2h and D2d geometries. Here we
give a consistent representation based on dynamical symmetry,
valid at all geometries.

Let us start with the Jahn–Teller pairs. The singlet-adapted con-
figuration-state functions read:

RðaÞ ¼ j1pai ¼ j1pRai þ j1pLai
ffiffiffi

2
p ; ð28aÞ

R�ðaÞ ¼ j1p�ai ¼ j1pRai � j1pLai
ffiffiffi

2
p : ð28bÞ

These two configurations are degenerate at geometries where
G16 corresponds to a point group where E� correlates to a degener-
ate irreducible representation (e.g., D2d). j1pai and j1p*ai transform
as E�(U�) � Ca and E�(G�) � Ca, respectively (Ca=A

þ
1 or Bþ

2 ). Within
the Jahn–Teller pair, the potential energy matrix elements are thus
such that VRðaÞRðaÞ þ VR�ðaÞR�ðaÞ is Aþ

1 , VRðaÞRðaÞ � VR�ðaÞR�ðaÞ is Bþ
1 , and

VRðaÞR�ðaÞ is Bþ
2 . The individual functions VR(a)R(a) and VR�ðaÞR�ðaÞ can

be expressed easily in a second stage. Matrix elements VR(a)C and
VR�ðaÞC , where C is a non-degenerate configuration form a degener-
ate pair of functions belonging to either E+ or E� depending on the
symmetry of C. They behave as E�(U�) � CC and E�(G�) � CC,
respectively (where C belongs to the irreducible representation
CC).

The remaining configurations involve two pairs of degenerate
orbitals. The combinations symmetrized with respect to G16 read:

j1pui þ j1p�gi
ffiffiffi

2
p ¼ j1pRri þ j1pL‘i

ffiffiffi

2
p ! Aþ

1 or A�
2 ; ð29aÞ

j1pui � j1p�gi
ffiffiffi

2
p ¼ j1pLri þ j1pR‘i

ffiffiffi

2
p ! Bþ

1 or B�
2 ; ð29bÞ

j1pgi þ j1p�ui
ffiffiffi

2
p ¼ j1pRri � j1pL‘i

ffiffiffi

2
p ! Bþ

2 or B�
1 ; ð29cÞ

j1pgi � j1p�ui
ffiffiffi

2
p ¼ j1pLri � j1pR‘i

ffiffiffi

2
p ! Aþ

2 or A�
1 ; ð29dÞ

where representations with a ‘‘+” and ‘‘�” correspond to
(p,p*)(3px,3dxz) and (p,p*)(3py,3dyz), respectively. The symmetries
of the corresponding matrix elements are readily obtained as the
products of the irreducible representations of two configurations
involved.

Table 10

Potential energy functions in G16.

G16 Matrix element Function

Aþ
1

VN0N0 , VVV, VZ0Z0 Vpot, VC, VD

Bþ
1 VZ0N0 Vp

Aþ
2

VN0V VZ

Bþ
2 VVZ0 Vpyr
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4.6. Summary

The final list of 17 G16-adapted quasidiabatic configurations is
recalled in Table 11. As already pointed out in Section 3, the active
orbitals and/or the dominant configurations may mix depending
on the the local point groups. The most significant cases are: (i)
the adiabatic N and Z states in D2h, which are balanced mixtures
of N0 and Z0 (see Eq. (23f)); (ii) the adiabatic V and R(3dxz) states
in D2h, which effectively mix the actual V and R(3dxz) with almost
equal weights (see Table 3); (iii) the balanced mixtures (due to
hyperconjugation) of the adiabatic E � E states in D2d:
R(3px) + R*(3dxz) with R(3dyz) � R*(3py)(A1), R(3px) � R*(3dxz) with
R(3dyz) + R*(3py)(B1), R(3dxz) + R*(3px) with R(3py) � R*(3dyz)(B2),
and R(3dxz) � R*(3px) with R(3py) + R*(3dyz)(A2) (see Table 4). Other
mixtures are far less significant, so that this this defines a conve-
nient starting point for further diabatization of the adiabatic states.

5. Conclusions

Quantum dynamics methods such as MCTDH are now capable
of treating molecular systems of about 10 atoms (the multilayer
formulation [45], ML-MCTDH, is expected to make even larger sys-
tems tractable soon). Although quantum dynamics can be applied
in the form of approximate direct dynamics treatments (the poten-
tial energies and derivatives are calculated on the fly; see, e.g., Ref.
[46]), more accurate calculations still require grid-based represen-
tations of the potential energy surfaces. These must be given in the
most compact form. Photochemical applications involve large-
amplitude deformations and several coupled electronic states.
There is thus a real need for generalizing the current vibronic Ham-
iltonian models now limited to ultrafast processes involving small
deformations. This implies using curvilinear coordinates for the
nuclear motion and determining the electronic configurations that
dominate in the regions of the reactant, the product(s), as well as
all intermediate species. This point of view is supported by the idea
that complicated shapes in the resulting adiabatic potential energy
surfaces often result from coupling between simpler quasidiabatic
surfaces through configuration interaction.

In this work, we proposed an approach based on nuclear-per-
mutation-inversion groups to analyze the underlying structure of
the electronic states and nuclear coordinates. Dynamical symme-
try properties are always satisfied, irrespectively of the current
point group for a given geometry. Our strategy directly provides
the most simple basis functions of the nuclear coordinates on
which a natural quasidiabatic representation can be built for all ex-
plored geometries in a flexible molecule.

The natural nuclear coordinates for treating the large-amplitude
deformations that occur during a chemical reaction are curvilinear.

For ethylene photochemistry, we showed how to start from poly-
spherical coordinates and symmetrize them with respect to the
dynamical group G16. In terms of electronic configurations, we
started the analysis by determining a minimal set of valence-
bond-like fragment orbitals that are necessary to describe the va-
lence states of ethylene as well as the lowest Rydberg states
embedded in these (note that the valence/Rydberg distinction
can be disputed: the V state is partly Rydberg p0* and the lowest
Rydberg states are partly valence r*). Using dynamical symmetry
helped in the determination of the self-contained set of nine active
orbitals that is stable along all considered deformations of the
geometry, except for some minor and smooth mixtures with the
space of inactive orbitals. This led to the definition of a stable set
of 17 configurations that was used to run SA-17-SASSCF(2,9) calcu-
lations, i.e. CAS(2,9) calculations restricted to these 17 selected
configurations and using orbitals state-averaged over 17 states.
This strategy gave a remarkably good description of the V state,
although this remains today a computational challenge. We also
got a qualitatively correct description of the lowest Rydberg states.
This stable space of 17 configurations proved to be the most natu-
ral multireference for subsequent MRCI calculations. Further tests
are to be made with better-suited atomic orbital basis sets in order
to define a level of calculation capable of reaching high accuracy
for all geometries and states.

This work is the first stage in building an accurate and global
analytical fit of the N and V potential energy surfaces of ethylene
and those of all electronic states that couple to them in this energy
range. This in turn will be used to run quantum dynamics calcula-
tions and (i) assign the p-to-p* absorption spectrum, (ii) decipher
the radiationless decay mechanism.
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