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Abstract

We give necessary conditions for a polynomial to be the Conway polynomial of a two-
bridge link. As a consequence, we obtain simple proofs of the classical theorems of Murasugi
and Hartley. We give a modulo 2 congruence for links, which implies the classical modulo 2
Murasugi congruence for knots. We also give sharp bounds for the coefficients of the Conway
and Alexander polynomials of a two-bridge link. These bounds improve and generalize those
of Nakanishi and Suketa.
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1 Introduction

In this paper, we study the problem of determining whether a given polynomial is the Conway
polynomial of a two-bridge link (or knot), or equivalently, if it is a Euler continuant polynomial.

For small degrees, this problem can be solved by an exhaustive search of possible two-bridge
links (see Algorithm section 5). Here, however, we give necessary conditions on the coefficients of
the polynomial, which can be tested for high degree polynomials.

We shall use the Siebenmann description of the Conway polynomial of a two-bridge link. Conway
polynomials of links (or knots) are written as

∇m(z) =

⌊
m
2 ⌋

∑

k=0

cm−2kz
m−2k.

We obtain the following inequalities:

Theorem 2.6. For k ≥ 0,
|cm−2k| ≤

(

m−k
k

)

|cm| .

If equality holds for some positive integer k < ⌊m
2 ⌋, then it holds for all integers. In this case, the

link is isotopic to a link of Conway form C(2,−2, 2, . . . , (−1)m+12) or C(2, 2, . . . , 2), up to mirror
symmetry.

When |cm| 6= 1, we have the following sharper bounds:
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Theorem 2.8. Let g ≥ 1 be the greatest prime divisor of cm, and m ≥ 2k ≥ 2. Then

|cm−2k| ≤
(

(

m−k−1
k

)

+
1

g

((

m−k−1
k−1

)

− 1
)

)

|cm|+ 1.

Equality holds for links of Conway forms C(2g, 2, 2, . . . , 2) and C(2g,−2, 2, . . . , (−1)m+1 2).

Our inequalities refine those of Nakanishi and Suketa for Alexander polynomials of two-bridge
knots (see [22, theorems 2 and 3]). Moreover, they are sharp and hold for any k.

It is convenient to write Conway polynomials in terms of Fibonacci polynomials fk defined by:

f0 = 0, f1 = 1, fn+2(z) = zfn+1(z) + fn(z).

We obtain an extension to links of both the Murasugi alternating theorem [19, 20], and the Hartley
trapezoidal theorem [8], see also [10].

Theorem 2.9. Let K be a two-bridge link (or knot). Let

∇K = cm

(

⌊
m
2 ⌋

∑

i=0

(−1)iαifm−2i+1

)

, α0 = 1

be its Conway polynomial written in the Fibonacci basis. Then we have

1. αj ≥ 0, j = 0, . . . , ⌊m
2 ⌋.

2. If αi = 0 for some i > 0 then αj = 0 for j ≥ i.

We also obtain:

Theorem 4.1. Let ∇(z) ∈ Z[z] be the Conway polynomial of a rational link (or knot). There
exists a Fibonacci polynomial fD(z) such that ∇(z) ≡ fD(z) (mod 2).

This provides a simple proof of a congruence of Murasugi [21] for two-bridge knots. Moreover, we
deduce a new congruence for the Hosokawa polynomials of two-bridge links.

We give a simple method (Algorithm 4.8) that determines the integer D such that ∇(z) ≡
fD(z) (mod 2). This is used to test when ∇(z) ≡ 1 (mod 2), which is a necessary condition to
be a Lissajous knot.

We give examples showing that the conditions on Conway coefficients are sharper than the
conditions on the Alexander coefficients deduced from them.

We conclude our paper with the following convexity conjecture:
Let P (t) = a0−a1(t+t−1)+a2(t

2+t−2)−· · ·+(−1)nan(t
n+t−n) be the Alexander polynomial of a

rational knot. Then there exists an integer k ≤ n such that (a0, . . . , ak) is convex and (ak, . . . , an)
is concave.

We have tested this conjecture for all two-bridge knots with 20 crossings or fewer.
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Figure 1: Oriented two-bridge links (m odd)

2 Conway polynomial

Any oriented two-bridge link can be put in the form shown in Figure 1. It will be denoted by
C(2b1, 2b2, . . . , 2bm) with bi 6= 0 for all i, including the indicated orientation (see [14, p. 26],
[15, 12]). This is a two-component link if and only if m is odd.

Its Conway polynomial ∇m is then given by the Siebenmann method (see [23, 6]).

Theorem 2.1 (Siebenmann, [6]) Let ∇m = ∇m(z) be the Conway polynomial of the oriented
two-bridge link (or knot) of Conway form C(2b1,−2b2, . . . , (−1)m+12bm). Let ∇−1 = 0, ∇0 = 1.
Then

∇m = bmz∇m−1 +∇m−2, (1)

for m ≥ 1.

When z = 1, this is the classical Euler continuant polynomial.

The Fibonacci polynomials will be useful in studying these Conway polynomials.

Definition 2.2 (Fibonacci Polynomials) Let fm(z) be the polynomials defined by:

f0 = 0, f1 = 1, fn+2(z) = zfn+1(z) + fn(z), m ∈ Z. (2)

We have f−m(z) = (−1)m+1fm(z).

Let us recall some basic facts about Fibonacci polynomials.

Lemma 2.3 For m ≥ 0:

fm+1(z) =

⌊
m
2 ⌋

∑

k=0

(

m−k
k

)

zm−2k.

Proof. By induction on m. The result is clear for m = 1 and for m = 2. Let us suppose the result
true for m− 1 and m. By induction, the coefficient of zm−2k is

(

m−1−k
k

)

in zfm(z), and
(

m−1−k
k−1

)

in fm−1(z). Consequently, the coefficient of zm−2k in fm+1(z) is

(

m−1−k
k

)

+
(

m−1−k
k−1

)

=
(

m−k
k

)

.

�
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Remark 2.4 The Fibonacci polynomials can be read on the diagonals of Pascal’s triangle. When
z = 1, we recover the classical Lucas identity

Fm =

⌊
m
2 ⌋

∑

k=0

(

m−k
k

)

,

where Fm are the Fibonacci numbers.

We shall need the following more explicit notation for Conway polynomials:

∇m(z) =

⌊
m
2 ⌋

∑

k=0

cm−2k(b1, . . . , bm)zm−2k.

The next result gives some properties of cm−2k(b1, . . . , bm), viewed as a polynomial in m variables.

Proposition 2.5 1. The polynomial cm−2k(b1, . . . , bm) is the sum of all monomials
b1 · · · bm

bi1bi1+1 · · · bikbik+1
,

where ih + 1 < ih+1.

2. The number of these monomials is
(

m−k
k

)

. They are relatively prime if k 6= 0.

3. Let m ≥ 2k ≥ 4. For any j, the number of these monomials which are relatively prime to bj
is at least

(

m−1−k
k−1

)

. Furthermore these monomials are relatively prime.

Proof.

1. This is a classical property of the Euler continuant.

2. This number is cm−2k(1, 1, . . . , 1), which is a coefficient of the Fibonacci polynomial

fm+1(z) =

⌊
m
2 ⌋

∑

k=0

cm−2k(1, 1, . . . , 1)z
m−2k =

⌊
m
2 ⌋

∑

k=0

(

m−k
k

)

zm−2k.

3. Let 1 ≤ j ≤ m and b = (1, . . . , 1, 0, 1, . . . , 1) where bj = 0, and bk = 1 for k 6= j. Let us
define the polynomials gn, for n ≤ m by gn(z) = ∇n(b)(z). The number of our monomials
is the coefficient cm−2k(b) of gm(z).

If j = 1, we have g1 = 0, g2 = 1 and therefore gn = fn−1, n ≥ 1.

If j > 1, we have

g1 = f2, . . . , gj−1 = fj, gj = fj−1, . . . , gn+1 = zgn + gn−1, n ≥ j.

Let us write p(z) � q(z) when each coefficient of p is greater than or equal to the correspond-
ing coefficient of q. We have fk+2 � fk, and then an simple induction shows that gm � fm−1.

To conclude the proof, it is sufficient to verify that for any i 6= j, there is a monomial which
is prime to the monomial bi. This is clear since m ≥ 4.
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Theorem 2.6 For k ≥ 0,
|cm−2k| ≤

(

m−k
k

)

|cm| .

If equality holds for some positive integer k < ⌊m
2 ⌋, then it holds for all integers. In this case, the

link is isotopic to a link of Conway form C(2,−2, 2, . . . , (−1)m+12) or C(2, 2, . . . , 2), up to mirror
symmetry.

Proof. By Proposition 2.5, the number of monomials of cm−2k(b1, . . . , bm) is
(

m−k
k

)

. The result
follows since no monomial is greater than |cm| = |b1 · · · bm|.

If equality holds for some positive integer k < ⌊m
2 ⌋, then for all i, j, bibi+1 = bjbj+1 = ±1, which

implies the result. �To prove the refined inequalities of Theorem 2.8, we shall use the following

lemma, which generalizes the inequality a+ b ≤ ab+ 1, valid for positive integers.

Lemma 2.7 Let pi(x), i ∈ S be relatively prime divisors of p(x) = x1x2 · · ·xm.
Let b = (b1, . . . , bm) be a m-tuple of positive integers. Then

∑

i∈S

pi(b) ≤
(

card(S)− 1
)

p(b) + 1. (3)

Proof. We do not suppose the pi distinct. Let us prove the result by induction on k = card(S).
The result is clear if k = 1, we have p1 = ±1, and the inequality is ±1 ≤ 1.

If all the pi = 1, the result is clear. Otherwise, let xh be a divisor of some pi.

Let S1 = {i ∈ S : xh|pi}, and S2 = S − S1. We have k = k1 + k2, where kj = card(Sj). Let
qj = GCD{pi, i ∈ Sj}, then q1 and q2 are coprime, and q1q2 is a divisor of p.

By induction we obtain for j = 1, 2:

∑

i∈Sj

pi(b) ≤ qj(b)
(

(kj − 1)
p(b)

qj(b)
+ 1

)

.

Adding these two inequalities we get
∑

i∈S

pi(b) ≤ (k1 + k2 − 1)p(b) + q1(b) + q2(b)− p(b)

≤ (k1 + k2 − 1)p(b) + q1(b)q2(b)− p(b) + 1,

which proves the result, since q1(b)q2(b) ≤ p(b). �With this lemma we can prove:

Theorem 2.8 Let m ≥ 2k > 0, and g ≥ 1 be the greatest prime divisor of cm. Then

|cm−2k| ≤
(

(

m−k−1
k

)

+ 1
g

((

m−k−1
k−1

)

− 1
)

)

|cm|+ 1.

Equality holds for links of Conway form C(2g,−2, . . . , (−1)m−12).
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Proof. If k = 1, by Proposition 2.5 there are m− 1 monomials in the polynomial cm−2(b1, . . . , bm).
Then, using Lemma 2.7 and the notation |b| = (|b1| , . . . , |bm|), we get

|cm−2| = |cm−2(b)| ≤ cm−2(|b|) ≤ (m− 2)cm(|b|) + 1 = (m− 2) |cm|+ 1.

Now, suppose k ≥ 2. Let g be the greatest prime divisor of the integer cm = b1 · · · bm, and suppose
that g | bj. LetN be the number of monomials of cm−2k(b1, . . . , bm) that are prime to the monomial

bj. By Proposition 2.5, these monomials are relatively prime, and N ≥
(

m−1−k
k−1

)

. Using Lemma
2.7 we obtain:

|cm−2k| ≤ (N − 1)
|cm|

|bj |
+ 1+

(

(

m−k
k

)

−N
)

|cm|

≤
(N − 1

g
+ (

(

m−k
k

)

−N)
)

|cm|+ 1

=
(

(

m−k
k

)

−N(1− 1
g )−

1
g

)

|cm|+ 1

≤
(

(

m−k
k

)

−
(

m−1−k
k−1

)

(1− 1
g )−

1
g )
)

|cm|+ 1

=
(

(

m−1−k
k

)

+ 1
g (
(

m−1−k
k−1

)

− 1)
)

|cm|+ 1.

For links of Conway form C(2g,−2, . . . , (−1)m+12), we have b = (g, 1, . . . , 1), N =
(

m−1−k
k−1

)

,

cm = g, and cm−2k = g
(

m−1−k
k

)

+
(

m−1−k
k−1

)

, and equality holds throughout.

For links of Conway form C(2g, 2, . . . , 2), we get cm−2k = (−1)⌊
m
2 ⌋+k

(

g
(

m−1−k
k

)

+
(

m−1−k
k−1

)

)

.

�Now, we will express the Conway polynomials of two-bridge links in terms of Fibonacci

polynomials, and show that their coefficients are alternating.

Theorem 2.9 Let K be a two-bridge link (or knot). Let

∇K = cm

(

⌊
m
2 ⌋

∑

i=0

(−1)iαifm−2i+1

)

, α0 = 1

be its Conway polynomial written in the Fibonacci basis. Then we have

1. αj ≥ 0, j = 0, . . . , ⌊m
2 ⌋.

2. If αi = 0 for some i > 0 then αj = 0 for j ≥ i.

Proof. Let K = C(2b1,−2b2, . . . , (−1)m+1 2bm), with bi 6= 0 for all i, and let ∇n be the polynomials
obtained in the Siebenmann method.

We have ∇0 = f1, ∇1 = b1f2, ∇2 = b1b2

(

f3 − (1− 1
b1b2

)f1

)

.

Let us show by induction that if

∇m = b1 · · · bm

(

⌊
m
2 ⌋

∑

i=0

(−1)iαifm+1−2i

)

, ∇m−1 = b1 · · · bm−1

(

⌊
m−1
2 ⌋

∑

i=0

(−1)iβifm−2i

)

6



then αj ≥ βj ≥ 0, and if αi = 0 for some i, then αj = 0 for j ≥ i.

The result is true for m = 2 from the expressions of∇1 and ∇2. Using zfm+1−2i = fm+2−2i−fm−2i

and ∇m+1 = bm+1z∇m +∇m−1, we deduce that

∇m+1 = b1 · · · bm+1

(

⌊
m+1
2 ⌋

∑

i=0

(−1)iγifm+2−2i

)

,

where γ0 = 1 and

γi = αi + (αi−1 − βi−1) + (1 − 1
bmbm+1

)βi−1, i = 1, . . . , ⌊m+1
2 ⌋. (4)

As |bmbm+1| ≥ 1, we deduce by induction that γi ≥ αi ≥ 0.
Furthermore, if γi = 0, then by Formula (4) αi = 0, and then, by induction, αj = βj = 0 for

j ≥ i. Finally, by Formula (4), we get γj = 0 for j ≥ i. �

Remark 2.10 It is interesting to look at the condition 2. of Theorem 2.9. Let us give a direct
proof of it in the case m = 4. The polynomial ∇3 has only two terms and

∇4 = b1b2b3b4f5 − (3b1b2b3b4 − b1b2 − b1b4 − b3b4)f3

+ (2b1b2b3b4 − b1b2 − b1b4 − b3b4 + 1)f1.

Suppose that the second coefficient of ∇4 is equal to zero. Using Lemma 2.7, we get

3 |b1b2b3b4| ≤ |b1b2|+ |b1b2|+ |b3b4| ≤ 2 |b1b2b3b4|+ 1,

and therefore b1 = b2 = b3 = b4 = ±1, which implies that ∇4 = ±f5. This shows that the point 2.
is true for m = 4.

3 Applications to Alexander polynomials of knots

In this section, we will see that our necessary conditions on Conway coefficients are improvements
of the classical bounds of [22] on Alexander coefficients of two-bridge knots. For simplicity, we
shall restrict ourselves to knots. Conway and Alexander polynomials of a knot K will be denoted
by

∇K(z) = 1 + c̃1z
2 + · · ·+ c̃nz

2n

and
∆K(t) = a0 − a1(t+ t−1) + · · ·+ (−1)nan(t

n + t−n).

The Alexander polynomial ∆K(t) is deduced from the Conway polynomial:

∆K(t) = ∇K

(

t1/2 − t−1/2
)

.

It is often normalized so that an is positive. Thanks to this formula, it is not difficult to deduce
the Alexander polynomial from the Conway polynomial. If we use the Fibonacci basis, it is even
easier to deduce the Conway polynomial of a knot from its Alexander polynomial.
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Lemma 3.1 If z = t1/2 − t−1/2, and n ∈ Z is an integer, we have the identity

fn+1(z) + fn−1(z) = (t1/2)n + (−t−1/2)n,

where fk(z) are Fibonacci polynomials.

Proof. Let A =
[

z 1
1 0

]

be the (polynomial) Fibonacci matrix. If z = t1/2 − t−1/2, the eigenvalues

of A are t1/2 and −t−1/2, and consequently trAn = (t1/2)n + (−t−1/2)n. On the other hand, we

have An =

[

fn+1(z) fn(z)
fn(z) fn−1(z)

]

, and then trAn = fn+1(z) + fn−1(z). �

Remark 3.2 The Lucas polynomials ℓn are defined by ℓn = fn+1 + fn−1. They satisfy ℓ0 = 2,
ℓ1 = z, ℓn+1 = zℓn + ℓn−1. From Lemma 2.3 we recover the classical result:

ℓn =

⌊
n
2 ⌋

∑

j=0

n
n−j

(

n−j
j

)

zn−2j. (5)

From Lemma 3.1, we immediately deduce:

Corollary 3.3 Let the Laurent polynomial P (t) be defined by

P (t) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n).

We have

P (t) =
n
∑

k=0

(−1)k(ak − ak+1)f2k+1(z),

where z = t1/2 − t−1/2, and an+1 = 0.

We deduce a useful formula:

f2n+1

(

t1/2 − t−1/2
)

= (tn + t−n)− (tn−1 + t1−n) + · · ·+ (−1)n. (6)

Now, we shall show that Theorem 2.9 implies both Murasugi and Hartley theorems for two-bridge
knots:

Theorem 3.4 (Murasugi (1958), Hartley (1979)) Let

P (t) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n), an > 0

be the Alexander polynomial of a two-bridge knot. There exists an integer k ≤ n such that a0 =
a1 = . . . = ak > ak+1 > . . . > an.
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Proof. Let K be a two-bridge knot and ∇(z) = α0f1 − α1f3 + · · ·+ (−1)nαnf2n+1 be its Conway
polynomial written in the Fibonacci basis. By Theorem 2.9, αnαk ≥ 0 for all k, and if αi = 0 for
some i then αj = 0 for j ≤ i.

Let ∆(t) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n), an > 0 be the Alexander
polynomial of K. We have ∆(t) = ε∇(t1/2 − t−1/2), where ε = ±1, and then, by Corollary 3.3,
εαk = ak − ak+1.

We deduce that εαn = an > 0, and then ak − ak+1 = εαk ≥ 0 for all k.
Consequently we obtain a0 ≥ a1 ≥ . . . ≥ an > 0.
Furthermore, if ak = ak−1 for some k, then αk−1 = 0, and consequently αj−1 = 0 for all j ≤ k.

This implies that for all j ≤ k, aj = aj−1, which concludes the proof. �Now, we shall give

explicit formulas for Alexander coefficients in terms of Conway coefficients.

Lemma 3.5 Let us denote ui = ℓ2i = ti + t−i. We have

z2m =
(

t1/2 − t−1/2
)2m

=

m−1
∑

k=0

(−1)k
(

2m
k

)

um−k + (−1)m
(

2m
m

)

.

Proof. By induction. We have z2 = u1 − u0, and the result is true for m = 1. Suppose the result
true for m, we have

z2(m+1) = z2m(u1 − u0) =
m−1
∑

k=0

(−1)k
(

2m
k

)

um−k(u1 − u0) + (−1)m
(

2m
m

)

u0(u1 − u0).

Using the relations uiuj = ui+j + ui−j and u0 = 2, the rest of the proof is straightforward. �

Proposition 3.6 Let Q(z) = c̃0 + c̃1z
2 + · · ·+ c̃nz

2n be a polynomial. We have

Q(t1/2 − t−1/2) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n),

where

an−j =

j
∑

k=0

(−1)n−k c̃n−k

(

2n−2k
j−k

)

. (7)

Proof. It is sufficient to prove this formula for the monomials z2m, which is done using our lemma.
�

Remark 3.7 By considering Formula (6) for the polynomial f2n+1 =
∑n

k=0

(

2n−k
k

)

z2n−2k, we
deduce the identity

1 =

j
∑

k=0

(−1)k
(

2n−k
k

)(

2n−2k
j−k

)

, n, j ≥ 0. (8)
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Remark 3.8 Fukuhara [7] gives a converse formula for the ck in terms of the ak, which can be
easily deduced from Remark 3.2:

c̃n−j =

j
∑

k=0

(−1)n−kan−k
2n−2k
2n−j−k

(

2n−j−k
2n−2j

)

. (9)

We shall not use this formula. Nevertheless, we note that it implies a nice identity:

(

2n−j
j

)

=

j
∑

k=0

(−1)k 2n−2k
2n−j−k

(

2n−j−k
2n−2j

)

. (10)

From the bounds we obtained for Conway coefficients we can deduce an improvement of the bounds
of Nakanishi and Suketa ([22]) for Alexander coefficients.

Theorem 3.9 We have the following sharp inequalities (where all the ai are positive):

1. an−j ≤ an

(

∑j
k=0

(

2n−2k
j−k

)(

2n−k
k

)

)

.

2. 2an − 1 ≤ an−1 ≤ (4n− 2)an + 1.

3. an−2 ≤ (8n2 − 15n+ 8)an + 2n− 1, if an 6= 1.

Proof. The first two bounds were given in [22] and the third one is an improvement. These three
bounds are sharp.

1. Using Formula (7) and Theorem 2.6, we obtain

|an−j | ≤

j
∑

k=0

|c̃n−k|
(

2n−2k
j−k

)

≤ |an|

j
∑

k=0

(

2n−k
k

)(

2n−2k
j−k

)

. (11)

2. We have |c̃n−1| ≤
(

2n−2
1

)

|c̃n|+ 1 by Theorem 2.8, and an−1 = c̃n−1 −
(

2n
1

)

c̃n by Proposition
3.6. We thus deduce

|an−1| ≤
(

2n
1

)

|c̃n|+
(

2n−2
1

)

|c̃n|+ 1 = (4n− 2) |an|+ 1. (12)

We also have

|an−1| ≥
(

2n
1

)

|c̃n| − |c̃n−1| ≥
(

2n
1

)

|c̃n| −
(

2n−2
1

)

|c̃n| − 1 = 2 |an| − 1.

3. From Proposition 3.6 and Theorem 2.8, we get

|an−2| ≤
(

2n
2

)

|c̃n|+
(

2n−2
1

)

|c̃n−1|+
(

2n−4
0

)

|c̃n−2|

≤
(

2n
2

)

|c̃n|+
(

2n−2
1

)

(
(

2n−2
1

)

|c̃n|+ 1) +
(

(

2n−3
2

)

+ 1
g (
(

2n−3
1

)

− 1)
)

|c̃n|+ 1

= (8n2 − 16n+ 10 + 2(n−2)
g ) |an|+ 2n− 1.

If an 6= 1 then g ≥ 2, and we obtain

|an−2| ≤ |an| (8n
2 − 15n+ 8) + 2n− 1. (13)
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The upper bounds (11) and (12) are attained by the knots C(2, 2, . . . , 2). The bound (13) is
attained for the knot C(4, 2, 2, 2, . . . , 2). �

Remarks 3.10 1. Let us look at the proof of inequality (13) if g = 1 and an = 1. We get

an−2 ≤ 8n2 − 12n+ 5.

that is the first inequality (11) when j = 2.

2. If g ≥ 3, the inequality (13) can be improved:

an−2 ≤ (8n2 − 16n+ 10 + 2(n−2)
g )an + 2n− 1.

3. For j = 3 we obtain

an−3 ≤ 2/3 (2n− 3)
(

8n2 − 24n+ 25
)

an + (3n−5)(2n−5)
g an + n (2n− 3)

≤ 1/6
(

64n3 − 270n2 + 413n− 225
)

an + n (2n− 3) .

4. Since the inequalities on Conway coefficients are simpler and stronger, we shall not give the
inequalities on Alexander coefficients for j ≥ 4. Furthermore, if we want to apply our bounds
to the Alexander polynomials, we first compute

c̃n−j =

j
∑

k=0

(−1)n−kan−k
2n−2k
2n−j−k

(

2n−j−k
2n−2j

)

,

using Remark 3.8 and test if |c̃n−j | ≤
(

2n−j
j

)

|c̃n|, which is stronger than the inequality (11),

or if |c̃n−j | ≤
(

(

2n−j−1
j

)

+ 1
g

((

2n−j−1
j−1

)

− 1
)

)

|cn| + 1. The cost of these evaluations is less

than the cost of the evaluations of the inequalities of Theorem 3.9. They are also sharper.

Our last example shows an infinity of polynomials satisfying all the known necessary conditions,
but which are not the Alexander polynomial of a two-bridge knot.

4 Modulo 2 polynomials

Theorem 4.1 Let ∇m be the Conway polynomial of a two-bridge link. Then there exists a Fi-
bonacci polynomial fD such that ∇m ≡ fD (mod 2).

Proof. Let us write (a, b) ≡ (c, d) (mod 2) when a ≡ c (mod 2) and b ≡ d (mod 2). We will
show by induction on m that there exist integers D and ε = ±1 such that (∇m−1,∇m) ≡
(fD−ε, fD) (mod 2).

The result is true for m = 0 as (∇−1,∇0) = (0, 1) = (f0, f1), that is D = ε = 1.

Suppose that (∇m−1,∇m) ≡ (fD−ε, fD) (mod 2), with ε = ±1 for some m ≥ 0. Then we have
∇m+1 = bm+1z∇m +∇m−1.

If bm+1 ≡ 0 (mod 2) then ∇m+1 ≡ ∇m−1 ≡ fD−ε (mod 2) and (∇m,∇m+1) ≡ (fD, fD−ε). If
bm+1 ≡ 1 (mod 2) then ∇m+1 ≡ zfD + fD−ε ≡ fD+ε (mod 2) and (∇m,∇m+1) ≡ (fD, fD+ε). �

11



Example 4.2 (The torus links T(2,m)) The Conway polynomial of the torus link T(2,m) is
the Fibonacci polynomial fm(z) (see [13, 17]).

Consequently, Theorem 4.1 gives in fact a characterization of modulo 2 Conway polynomials of
two-bridge links.

Then, we deduce a simple proof of an elegant criterion from Murasugi ([21, 3])

Corollary 4.3 (Murasugi (1971)) Let ∆(t) = a0−a1(t+t−1)+a2(t
2+t−2)−· · ·+(−1)nan(t

n+
t−n) be the Alexander polynomial of a two-bridge knot. There exists an integer k ≤ n such that
a0, a1, . . . , ak are odd, and ak+1, . . . , an are even.

Proof. If K is a two-bridge knot, its Conway polynomial is a modulo 2 Fibonacci polynomial f2k+1.
By Corollary 3.3 we have f2k+1

(

t1/2 − t−1/2
)

= (tk + t−k) − (tk−1 + t1−k) + · · · + (−1)k, and the
result follows. �

Remark 4.4 This congruence may be used as a simple criterion to prove that some knots cannot
be two-bridge knots. There is a more efficient criterion by Kanenobu [11, 24] using the Jones and
Q polynomials.

There is an analogous result for two-component links

Corollary 4.5 (Modulo 2 Hosokawa polynomials of two-bridge links) Let ∆(t) =
(

t1/2 −

t−1/2
)

(

a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n)
)

be the Alexander polynomial of

a two-component two-bridge link. Then all the coefficients ai are even or there exists an integer
k ≤ n such that ak, ak−2, ak−4, . . . are odd, and the other coefficients are even.

Proof. If K is a two-component two-bridge link, its Conway polynomial is an odd Fibonacci
polynomial modulo 2, that is of the form f2h(z). An easy induction shows that

f4k
(

t1/2 − t−1/2
)

=
(

t1/2 − t−1/2
)(

1 + u2 + u4 + · · ·+ u2k

)

and
f4k+2

(

t1/2 − t−1/2
)

=
(

t1/2 − t−1/2
)(

u1 + u3 + · · ·+ u2k+1

)

,

where uj = tj + t−j , and the result follows. �

Remark 4.6 This rectifies Satz 4 in [14, p. 186].

Example 4.7 Fibonacci links, introduced by J. C. Turner ([25]) are the two-bridge links of Conway
form C(n, n, . . . , n), where n is a fixed integer. Their modulo 2 Conway and Alexander polynomials
are computed in [17] (see also [16]).

Following the proof of Theorem 4.1, we propose an algorithm for the determination of D such that
∇K ≡ fD (mod 2).

12



Algorithm 4.8 Let K be a two-bridge link (or knot) with Conway form C(2b1, 2b2, . . . , 2bm). Let
us define the sequences of integers εi and Di, i = 0, . . . ,m, by

ε0 = 1, D0 = 1, εi+1 = −(−1)bi+1εi, Di+1 = Di + εi+1.

Then the modulo 2 Conway polynomial of K is the Fibonacci polynomial fD(z), where D = |Dm|.

Example 4.9 Consider the two-bridge knot K = S(
1828139

1042750
). One can write

1828139

1042750
= [2b1, . . . , 2b10] = [2,−4,−20, 2,−2,−12,−2, 4,−12,−4] .

Our algorithm gives D = D10 = 3. Consequently, the modulo 2 Conway polynomial of K is
f3(z) = z2 + 1. Its modulo 2 Alexander polynomial is then 1− (t+ t−1).

We see that the Alexander (and Conway) polynomial of our knot is not congruent to 1 modulo
2. Hence, by a theorem of V. F. R. Jones, J. Przytycki and C. Lamm ([9, 18]), it cannot be a
Lissajous knot.

Using Algorithm 4.8 we easily obtain (in Table 1) the number of two-bridge knots with Conway
polynomial congruent to 1 modulo 2 (compare [2]) The condition |D| = 1, that is ∇K ≡ 1 (mod2)

Crossing Number 3 4 5 6 7 8 9 10 11 12

Two-bridge 1 1 2 3 7 12 24 45 91 176

∇(t) ≡ 1 0 0 1 1 2 4 8 13 26 51

Crossing Number 13 14 15 16 17 18 19 20 21 22

Two-bridge 352 693 1387 2752 5504 10965 21931 43776 87552 174933

∇(t) ≡ 1 97 185 365 705 1369 2675 5233 10211 20011 39221

Table 1: The number of two-bridge knots, and two-bridge knots with Conway polynomial congruent
to 1 modulo 2.

or equivalently ∆K ≡ 1 (mod2) is a necessary condition for a two-bridge knot to be Lissajous.

5 Experiments

The following example shows an infinite family of polynomials satisfying all the necessary conditions
except the equality case of Theorem 2.6.

Example 5.1 Consider the polynomial P (z) = fm+1(z) − 2dz2, m = 4n ≥ 4, d 6= 0. All its
coefficients, except one, satisfy cm−2k =

(

m−k
k

)

. By Theorem 2.6, it is not the Conway polynomial
of a two-bridge knot. Hence, the corresponding Alexander polynomial

∆(t) = 4d+ 1− (2d+ 1)u1 + u2 − u3 + · · ·+ u2n,

where ui = ti + t−i is not the Alexander polynomial of a two-bridge knot. Nevertheless, it satisfies
all the necessary conditions of Hartley and Murasugi. If 0 < d < 1

2n(n + 1), it also satisfies the
bounds of Theorems 2.6 and 2.8, and then the Nakanishi and Suketa bounds.
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Our next example shows that all our necessary conditions are not sufficient.

Example 5.2 Let p ≥ 7 be an odd prime, and let n ≥ 3 be an odd integer. Let us define the
Conway polynomial ∇(z) (such that ∇(0) = 1) by

∇(z) = pf2n+1(z)− (p+ 3)f2n−1(z) + 4f2n−3(z).

This satisfies the Murasugi congruence, the trapezoidal conditions of Theorem 2.9, and the inequal-
ities of Theorems 2.6 and 2.8.

If it were the Conway polynomial of a two-bridge knot, then there would exist integers b1, . . . , b2n,
such that c̃n = b1 b2 · · · b2n = p, and

c̃n−1 = c̃n

( 1

b1b2
+

1

b2b3
+ · · ·+

1

b2n−1b2n

)

≡ 0,±1,±2 (mod2).

Since c̃n−1 = (2n − 2)p − 3 and p ≥ 7, this is impossible, and therefore ∇(z) is not the Conway
polynomial of a two-bridge knot.

These simple examples motivate us to compare the efficiency of our several criteria on the Conway
polynomials of the first knots and links. Some non two-bridge links have two-bridged Conway
polynomials. This means that their Conway polynomial is also the Conway polynomial of a two-
bridge link. We will summarize of our results by considering the first 12965 knots with 13 crossings
or fewer and the 1424 multi-component links with 11 crossings or fewer. We obtained their Conway
polynomial using the data lists of KnotInfo [4] and KnotAtlas [1].

Two-bridged Conway polynomials

First of all, there is a method to determine whether a given polynomial is a two-bridged Conway
polynomial. The Conway polynomial of a knot is even, whereas the Conway polynomial of a
two-component link is odd.

We shall first consider the case of knots. Let K be the knot C(2b1,−2b2, . . . , 2b2n−1,−2b2n). The

continued fraction
α

β
= [2b1,−2b2, . . . , 2b2n−1,−2b2n] is such that 0 < |β| < α, β is even, and α is

odd. Using the Siebenmann method, we compute its Conway polynomial

∇K = cnz
2n + cn−1z

2n−2 + · · ·+ c1z
2 + 1.

We have |cn| = |b1 · · · b2n| and α = |P (2i)| (see [6]).

We thus deduce the following algorithm.

Algorithm 5.3 (IsTwoBridged)
Input: P = cnz

2n + cn−1z
2n−2 + · · ·+ c1z

2 + 1 in Z[z].

Output: The sequence of two-bridge knots K = S(
α

β
) such that P = ∇K .

1. Compute α = |P (2i)|.

2. For any even integer β such that 1 ≤ β < α,

14



(a) compute the continued fraction decomposition
α

β
= [2q1, . . . , 2q2ℓ], qi 6= 0,

(b) test if ℓ = n and q1 · · · q2n = cn,

(c) compute ∇K where K = S(
α

β
) and compare it with P .

For the two-bridge two-component links, the method is exactly the same except that P is odd, and
α

β
= [2b1,−2b2, . . . , 2b2n+1] with α even and β odd. In this case, the classical Schubert fraction is

not
α

β
but

α

β + α
(see [12]).

Example 5.4 Let P = 2880 z10+4944 z8+2304 z6+158 z4−61 z2+1. Our Algorithm IsTwoBridged

easily finds the fractions with positive even denominators

1828139

1042750
= [2, -4, -20, 2, -2, -12, -2, 4, -12, -4],

1828139

447486
= [4, 12, -4, 2, 12, 2, -2, 20, 4, -2].

They correspond to the same two-bridge knot K. Consequently, K and K are the only two-bridge
knots such that ∇K = P .

Two-bridge knots

We used the Algorithm 5.3 to select non two-bridged Conway polynomials among the Conway
polynomials of all knots with 13 crossings or fewer. Among the 12965 prime knots with 13 or fewer
crossing, we found 10104 non two-bridged Conway polynomials. It is remarkable that Theorem 4.1
on the modulo 2 congruence detects 79 % of these polynomials. If we select knots that satisfy this
criterion and the Murasugi and Hartley conditions (Theorem 2.9), we still detect non two-bridged
Conway polynomials. In this case the most efficient criterion is the equality case in Theorem 2.6.

For example, the knot K11n109 has Conway polynomial −z6+z4+6 z2+1 = −f7+6 f5−6 f3+
2 f1. It satisfies all conditions except the equality condition of Theorem 2.6 (f7 = t6+5 t4+6 t2+1).

There are exactly 3 Conway polynomials

∇K13n1862 = ∇K13n2935 = 1 + 8 z2 + 3 z4 − z6,

∇K13n2089 = ∇K13n3038 = 1 + 8 z2 + 5 z4 − z6,

∇K13n3508 = 1 + 10 z2 + 5 z4 − z6,

whose corresponding Alexander polynomials satisfy the Nakanishi-Suketa conditions (11,13) but
not those of Theorem 2.6.

The knot K13n3010 has Conway polynomial ∇ = 1+ 10 z2 + 4 z4 − 2 z6. It satisfies all conditions
except those of Theorem 2.8.

Nevertheless, the inequalities on the Conway coefficients are better because they define a poly-
hedron of volume much smaller than the polyhedron defined by the bounds on the Alexander
coefficients.
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Multi-component links

We have used the data base of KnotAtlas ([1]) that contains many invariants of the first 1424
multi-component links with 11 crossings or fewer. We deduced the Conway polynomial from the
Homfly polynomial. Using our algorithm, we detected 1131 multi-component links whose Conway
polynomials are not two-bridged.

Here again, the most efficient condition is the modulo 2 congruence, that detects 86 % of the non
two-bridged polynomials. If we consider the 5 criteria together, we detect 1009 among the 1131
non two-bridged polynomials. These polynomials were detected only by using Theorems 4.1 and
2.9.

Conjecture

We observed a trapezoidal property for the Conway polynomials of two-bridged links with crossings
fewer than 20 (their number is 131 839).

Conjecture 5.5 Let ∇m = b1 · · · bm

(

∑⌊
m
2 ⌋

i=0 (−1)iαifm+1−2i

)

, α0 = 1, be the Conway polynomial

of a two-bridge link written in the Fibonacci basis. Then there exists n ≤ ⌊m
2 ⌋ such that

0 ≤ α0 ≤ α1 ≤ αn ≥ αn+1 ≥ · · · ≥ α⌊
m
2 ⌋ ≥ 0.

If this conjecture is true, it would imply the following property of Alexander polynomials: Let
P (t) = a0 − a1(t + t−1) + a2(t

2 + t−2) − · · · + (−1)nan(t
n + t−n) be the Alexander polynomial

of a two-bridge knot. Then there exists an integer k ≤ n such that (a0, . . . , ak) is convex and
(ak, . . . , an) is concave.

Note that this property detects 670 non two-bridged Conway polynomials among the knots
with 13 crossings or fewer and 107 among the multi-component links with 11 crossings or fewer.
It still detects non two-bridged polynomials among the knots that do not satisfy the modulo 2
congruence Theorem 4.1.
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