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Abstract

We give necessary conditions for the Conway polynomial of a two-bridge link. We ap-
ply our conditions to the Alexander polynomial of a two-bridge knot, and obtain simple
proofs of the classical theorems of Murasugi and Hartley. We also give sharp bounds for
the coefficients of the Conway and Alexander polynomials of a two-bridge link. These
bounds improve and generalize those of Nakanishi and Suketa. The efficiency of these
conditions are compared on a large number of knots and links.
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1 Introduction

In this paper, we shall study the problem: given a polynomial, is it the Conway polynomial of
a two-bridge link (or knot)? For small degrees, this can be solved by an exhaustive search
of possible two-bridge links (see algorithm section 5.1). Here, we rather give necessary
conditions on the coefficients of the polynomial, that can be tested also for high degree
polynomials.

We shall use L. Siebenmann description of the Conway polynomial of a two-bridge link.

Conway polynomials of links (or knots) are written as

∇m(z) =

⌊
m
2 ⌋

∑

k=0

cm−2kz
m−2k.

We obtain the following inequalities:

Theorem 6. For k ≥ 0,

|cm−2k| ≤
(

m−k
k

)

|cm| .
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If equality holds for some positive integer k < ⌊m2 ⌋, then it holds for all integers. In this case,
the link is isotopic to a link of Conway form C(2,−2, 2, . . . , (−1)m+12) or C(2, 2, . . . , 2), up
to mirror symmetry.

When |cm| 6= 1, we have the following sharper bounds:

Theorem 8. Let g ≥ 1 be the greatest prime divisor of cm, and m ≥ 2k ≥ 2. Then

|cm−2k| ≤
(

(m−k−1
k

)

+
1

g

((m−k−1
k−1

)

− 1
)

)

|cm|+ 1.

Equality holds for links of Conway forms C(2g, 2, 2, . . . , 2) and C(2g,−2, 2, . . . , (−1)m+1 2).

Our inequalities refine those of Nakanishi and Suketa for Alexander polynomials of two-
bridge knots (theorems 2 and 3 in [25]). Moreover, they are sharp and hold for any k.

It is convenient to write Conway polynomials in terms of Fibonacci polynomials fk defined
by:

f0 = 0, f1 = 1, fn+2(z) = zfn+1(z) + fn(z).

We obtain an extension to links of both the alternating Murasugi theorem [22, 23], and the
trapezoidal Hartley theorem [10].

Theorem 9. Let K be a two-bridge link (or knot). Let

∇K = cm

(

⌊
m
2 ⌋

∑

i=0

(−1)iαifm−2i+1

)

, α0 = 1

be its Conway polynomial written in the Fibonacci basis. Then we have

1. αj ≥ 0, j = 0, . . . , ⌊m2 ⌋.

2. If αi = 0 for some i > 0 then αj = 0 for j ≥ i.

We also obtain:

Theorem 21. Let ∇(z) ∈ Z[z] be the Conway polynomial of a rational link (or knot).
There exists a Fibonacci polynomial fD(z) such that ∇(z) ≡ fD(z) (mod 2).

This provides a simple proof of a congruence of Murasugi [24] for two-bridge knots. More-
over, we obtain a similar congruence for the Hosokawa polynomials of two-bridge links.

We give a simple algorithm that determines the integer D such that ∇(z) ≡ fD(z) (mod 2).
This is applied to test when ∇(z) ≡ 1 (mod 2), which is a necessary condition to be a
Lissajous knot.

We give examples showing that the conditions on Conway coefficients are sharper than
the conditions on Alexander coefficients deduced from them.
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We conclude our paper with experiments comparing the different necessary conditions.
Our results on the 12965 knots with 13 crossings or fewer and the 1424 multi-component
links with 11 crossings or fewer lead us to the following convexity conjecture:
Let P (t) = a0 − a1(t + t−1) + a2(t

2 + t−2) − · · · + (−1)nan(t
n + t−n) be the Alexander

polynomial of a rational knot. There exists an integer k ≤ n such that (a0, . . . , ak) is convex
and (ak, . . . , an) is concave.

We have tested this conjecture for all two-bridge knots with 20 crossings or fewer. We also
give a similar conjecture for two-bridge two-component links.

2 Conway polynomial

Every oriented two-bridge link can be put in the form shown in figure 1. It will be denoted
by C(2b1, 2b2, . . . , 2bm) with bi 6= 0 for all i, including the indicated orientation (see [17]
p.26, [18, 14]). This is a two-component link if and only if m is odd.

Its Conway polynomial ∇m is then given by Siebenmann method (see [26, 7]).

2b1

2b2 2bm−1

2bm

Figure 1: Oriented two-bridge links (m odd)

Theorem 1 (Siebenmann, [7]). Let ∇m = ∇m(z) be the Conway polynomial of the
oriented two-bridge link (or knot) of Conway form C(2b1,−2b2, . . . , (−1)m+12bm). Let
∇−1 = 0, ∇0 = 1. Then

∇m = bmz∇m−1 +∇m−2, (1)

for m ≥ 1.

When z = 1, this is the classical Euler continuant polynomial.

The Fibonacci polynomials will be useful to study these Conway polynomials.

Definition 2 (Fibonacci Polynomials). Let fm(z) be the polynomials defined by:

f0 = 0, f1 = 1, fn+2(z) = zfn+1(z) + fn(z), m ∈ Z. (2)

We have f−m(z) = (−1)m+1fm(z).

Let us recall some basic facts about Fibonacci polynomials.

Lemma 3. For m ≥ 0:

fm+1(z) =

⌊
m
2 ⌋

∑

k=0

(m−k
k

)

zm−2k.
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Proof. By induction on m. The result is clear for m = 1 and for m = 2. Let us suppose the
result true for m − 1 and m. By induction, the coefficient of zm−2k is

(m−1−k
k

)

in zfm(z),

and
(

m−1−k
k−1

)

in fm−1(z). Consequently, the coefficient of zm−2k in fm+1(z) is

(

m−1−k
k

)

+
(

m−1−k
k−1

)

=
(

m−k
k

)

.

2

Remark 4. The Fibonacci polynomials can be read on the diagonals of Pascal’s triangle.
When z = 1, we recover the classical Lucas identity

Fm =

⌊
m
2 ⌋

∑

k=0

(m−k
k

)

,

where Fm are the Fibonacci numbers.

We shall need the following more explicit notation for Conway polynomials:

∇m(z) =

⌊
m
2 ⌋

∑

k=0

cm−2k(b1, . . . , bm)zm−2k.

The next result gives some properties of cm−2k(b1, . . . , bm), viewed as a polynomial in m
variables.

Proposition 5.

1. The polynomial cm−2k(b1, . . . , bm) is the sum of all monomials
b1 · · · bm

bi1bi1+1 · · · bikbik+1
,

where ih + 1 < ih+1.

2. The number of these monomials is
(

m−k
k

)

. They are relatively prime if k 6= 0.

3. Let m ≥ 2k ≥ 4. For any j, the number of these monomials which are relatively prime
to bj is at least

(m−1−k
k−1

)

. Furthermore these monomials are relatively prime.

Proof.

1. This is a classical property of the Euler continuant.

2. This number is cm−2k(1, 1, . . . , 1), which is a coefficient of the Fibonacci polynomial

fm+1(z) =

⌊
m
2 ⌋

∑

k=0

cm−2k(1, 1, . . . , 1)z
m−2k =

⌊
m
2 ⌋

∑

k=0

(m−k
k

)

zm−2k.
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3. Let 1 ≤ j ≤ m and b = (1, . . . , 1, 0, 1, . . . , 1) where bj = 0, and bk = 1 for k 6= j. Let
us define the polynomials gn, for n ≤ m by gn(z) = ∇n(b)(z). The number of our
monomials is the coefficient cm−2k(b) of gm(z).

If j = 1, we have g1 = 0, g2 = 1 and therefore gn = fn−1, n ≥ 1.

If j > 1, we have

g1 = f2, . . . , gj−1 = fj, gj = fj−1, . . . , gn+1 = zgn + gn−1, n ≥ j.

Let us write p(z) � q(z) when each coefficient of p is greater than or equal to the
corresponding coefficient of q. We have fk+2 � fk, and then an easy induction shows
that gm � fm−1.

To conclude the proof, it is enough to verify that for any i 6= j, there is a monomial
which is prime to the monomial bi. This is clear since m ≥ 4. 2

Theorem 6. For k ≥ 0,
|cm−2k| ≤

(m−k
k

)

|cm| .

If equality holds for some positive integer k < ⌊m2 ⌋, then it holds for all integers. In this case,
the link is isotopic to a link of Conway form C(2,−2, 2, . . . , (−1)m+12) or C(2, 2, . . . , 2), up
to mirror symmetry.

Proof. By proposition 5, the number of monomials of cm−2k(b1, . . . , bm) is
(m−k

k

)

. The result
follows since each monomial is not greater than |cm| = |b1 · · · bm| .

If equality holds for some positive integer k < ⌊m2 ⌋, then for all i, j, bibi+1 = bjbj+1 = ±1,
which implies the result. 2

To prove the refined inequalities of theorem 8, we shall use the following lemma, which
generalizes the inequality a+ b ≤ ab+ 1, valid for positive integers.

Lemma 7. Let pi(x), i ∈ S be relatively prime divisors of p(x) = x1x2 · · · xm.
Let b = (b1, . . . , bm) be a m-tuple of positive integers. Then

∑

i∈S

pi(b) ≤
(

card(S)− 1
)

p(b) + 1. (3)

Proof. We do not suppose the pi distinct. Let us prove the result by induction on k =
card(S). The result is clear if k = 1, we have p1 = ±1, and the inequality is ±1 ≤ 1.

If all the pi = 1, the result is clear. Otherwise, let xh be a divisor of some pi.

Let S1 = {i ∈ S, xh|pi}, and S2 = S − S1. We have k = k1 + k2, where kj = card(Sj). Let
qj = GCD{pi, i ∈ Sj}, then q1 and q2 are coprime, and q1q2 is a divisor of p.
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By induction we obtain for j = 1, 2:

∑

i∈Sj

pi(b) ≤ qj(b)
(

(kj − 1)
p(b)

qj(b)
+ 1

)

.

Adding these two inequalities we get

∑

i∈S

pi(b) ≤ (k1 + k2 − 1)p(b) + q1(b) + q2(b)− p(b)

≤ (k1 + k2 − 1)p(b) + q1(b)q2(b)− p(b) + 1,

which proves the result, since q1(b)q2(b) ≤ p(b). 2

With this lemma we can prove:

Theorem 8. Let m ≥ 2k > 0, and g ≥ 1 be the greatest prime divisor of cm. Then

|cm−2k| ≤
(

(m−k−1
k

)

+ 1
g

((m−k−1
k−1

)

− 1
)

)

|cm|+ 1.

Equality holds for links of Conway form C(2g,−2, . . . , (−1)m−12).

Proof. If k = 1, by proposition 5 there arem−1 monomials in the polynomial cm−2(b1, . . . , bm).
Then, using lemma 7 and the notation |b| = (|b1| , . . . , |bm|), we get

|cm−2| = |cm−2(b)| ≤ cm−2(|b|) ≤ (m− 2)cm(|b|) + 1 = (m− 2) |cm|+ 1.

Now, suppose k ≥ 2. Let g be the greatest prime divisor of the integer cm = b1 · · · bm,
and suppose that g | bj . Let N be the number of monomials of cm−2k(b1, . . . , bm) that are
prime to the monomial bj . By proposition 5, these monomials are relatively prime, and

N ≥
(m−1−k

k−1

)

. Using lemma 7 we obtain:

|cm−2k| ≤ (N − 1)
|cm|

|bj|
+ 1 +

(

(

m−k
k

)

−N
)

|cm|

≤
(N − 1

g
+ (

(m−k
k

)

−N)
)

|cm|+ 1

=
(

(m−k
k

)

−N(1− 1
g )−

1
g

)

|cm|+ 1

≤
(

(m−k
k

)

−
(m−1−k

k−1

)

(1− 1
g )−

1
g )
)

|cm|+ 1

=
(

(m−1−k
k

)

+ 1
g (
(m−1−k

k−1

)

− 1)
)

|cm|+ 1.

For links of Conway form C(2g,−2, . . . , (−1)m+12), we have b = (g, 1, . . . , 1), N =
(

m−1−k
k−1

)

,

cm = g, and cm−2k = g
(

m−1−k
k

)

+
(

m−1−k
k−1

)

, and equality holds everywhere.
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For links of Conway form C(2g, 2, . . . , 2), we get cm−2k = (−1)⌊
m
2 ⌋+k

(

g
(m−1−k

k

)

+
(m−1−k

k−1

)

)

,

which proves the result. 2

Now, we will express the Conway polynomials of two-bridge links in terms of Fibonacci
polynomials, and show that their coefficients are alternating.

Theorem 9. Let K be a two-bridge link (or knot). Let

∇K = cm

(

⌊
m
2 ⌋

∑

i=0

(−1)iαifm−2i+1

)

, α0 = 1

be its Conway polynomial written in the Fibonacci basis. Then we have

1. αj ≥ 0, j = 0, . . . , ⌊m2 ⌋.

2. If αi = 0 for some i > 0 then αj = 0 for j ≥ i.

Proof. Let K = C(2b1,−2b2, . . . , (−1)m+1 2bm), with bi 6= 0 for all i, and let ∇n be the
polynomials obtained in the Siebenmann method.

We have ∇0 = f1, ∇1 = b1f2, ∇2 = b1b2

(

f3 − (1− 1
b1b2

)f1

)

.

Let us show by induction that if

∇m = b1 · · · bm

(

⌊
m
2 ⌋

∑

i=0

(−1)iαifm+1−2i

)

, ∇m−1 = b1 · · · bm−1

(

⌊
m−1
2 ⌋

∑

i=0

(−1)iβifm−2i

)

then αj ≥ βj ≥ 0, and if αi = 0 for some i, then αj = 0 for j ≥ i.

The result is true for m = 2 from the expressions of ∇1 and ∇2. Using zfm+1−2i =
fm+2−2i − fm−2i and ∇m+1 = bm+1z∇m +∇m−1, we deduce that

∇m+1 = b1 · · · bm+1

(

⌊
m+1
2 ⌋

∑

i=0

(−1)iγifm+2−2i

)

,

where γ0 = 1 and

γi = αi + (αi−1 − βi−1) + (1− 1
bmbm+1

)βi−1, i = 1, . . . , ⌊m+1
2 ⌋. (4)

As |bmbm+1| ≥ 1, we deduce by induction that γi ≥ αi ≥ 0.
Furthermore, if γi = 0, then by formula (4) αi = 0, and then, by induction, αj = βj = 0

for j ≥ i. Finally, by formula (4), we get γj = 0 for j ≥ i. 2

Remark 10. It is interesting to look at the condition 2. of theorem 9. Let us give a direct
proof of it in the case m = 4. The polynomial ∇3 has only two terms and

∇4 = b1b2b3b4f5 − (3b1b2b3b4 − b1b2 − b1b4 − b3b4)f3

+(2b1b2b3b4 − b1b2 − b1b4 − b3b4 + 1)f1.
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Suppose that the second coefficient of ∇4 is equal to zero. Using lemma 7, we get

3 |b1b2b3b4| ≤ |b1b2|+ |b1b2|+ |b3b4| ≤ 2 |b1b2b3b4|+ 1,

and therefore b1 = b2 = b3 = b4 = ±1, which implies that ∇4 = ±f5. This shows that the
point 2. is true for m = 4.

3 Applications to Alexander polynomials of knots

In this paragraph, we will see that our necessary conditions on Conway coefficients are
improvements of the classical bounds of [25] on Alexander coefficients of two-bridge knots.
For simplicity, we shall restrict ourselves to knots. Conway and Alexander polynomials of
a knot K will be denoted by

∇K(z) = 1 + c̃1z
2 + · · ·+ c̃nz

2n

and
∆K(t) = a0 − a1(t+ t−1) + · · ·+ (−1)nan(t

n + t−n).

The Alexander polynomial ∆K(t) is deduced from the Conway polynomial:

∆K(t) = ∇K

(

t1/2 − t−1/2
)

.

It is often normalized so that an is positive. Thanks to this formula, it is not difficult to
deduce the Alexander polynomial from the Conway polynomial. If we use the Fibonacci
basis, it is even easier to deduce the Conway polynomial of a knot from its Alexander
polynomial.

Lemma 11. If z = t1/2 − t−1/2, and n ∈ Z is an integer, we have the identity

fn+1(z) + fn−1(z) = (t1/2)n + (−t−1/2)n,

where fk(z) are Fibonacci polynomials.

Proof. Let A =
[

z 1
1 0

]

be the (polynomial) Fibonacci matrix. If z = t1/2 − t−1/2, the

eigenvalues of A are t1/2 and −t−1/2, and consequently trAn = (t1/2)n+(−t−1/2)n. On the

other hand, we have An =

[

fn+1(z) fn(z)
fn(z) fn−1(z)

]

, and then trAn = fn+1(z) + fn−1(z). 2

Remark 12. The Lucas polynomials ℓn are defined by ℓn = fn+1 + fn−1. They satisfy
ℓ0 = 2, ℓ1 = z, ℓn+1 = zℓn + ℓn−1. From Lemma 3 we recover the classical result:

ℓn =

⌊
n
2 ⌋

∑

j=0

n
n−j

(

n−j
j

)

zn−2j . (5)
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From Lemma 11, we immediately deduce:

Corollary 13. Let the Laurent polynomial P (t) be defined by

P (t) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · · + (−1)nan(t

n + t−n).

We have

P (t) =

n
∑

k=0

(−1)k(ak − ak+1)f2k+1(z),

where z = t1/2 − t−1/2, and an+1 = 0.

We deduce a useful formula:

f2n+1

(

t1/2 − t−1/2
)

= (tn + t−n)− (tn−1 + t1−n) + · · ·+ (−1)n. (6)

Now, we shall show that theorem 9 implies both Murasugi and Hartley theorems for two-
bridge knots:

Theorem 14 (Murasugi (1958), Hartley (1979)). Let

P (t) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n), an > 0

be the Alexander polynomial of a two-bridge knot. There exists an integer k ≤ n such that
a0 = a1 = . . . = ak > ak+1 > . . . > an.

Proof. Let K be a two-bridge knot and ∇(z) = α0f1 − α1f3 + · · · + (−1)nαnf2n+1 be its
Conway polynomial written in the Fibonacci basis. By theorem 9, αnαk ≥ 0 for all k, and
if αi = 0 for some i then αj = 0 for j ≤ i.

Let ∆(t) = a0 − a1(t + t−1) + a2(t
2 + t−2) − · · · + (−1)nan(t

n + t−n), an > 0 be the
Alexander polynomial of K. We have ∆(t) = ε∇(t1/2 − t−1/2), where ε = ±1, and then, by
corollary 13, εαk = ak − ak+1.

We deduce that εαn = an > 0, and then ak − ak+1 = εαk ≥ 0 for all k.
Consequently we obtain a0 ≥ a1 ≥ . . . ≥ an > 0.
Furthermore, if ak = ak−1 for some k, then αk−1 = 0, and consequently αj−1 = 0 for all

j ≤ k. This implies that for all j ≤ k, aj = aj−1, which concludes the proof. 2

Now, we shall give explicit formulas for Alexander coefficients in terms of Conway coeffi-
cients.

Lemma 15. Let us denote ui = ℓ2i = ti + t−i. We have

z2m =
(

t1/2 − t−1/2
)2m

=

m−1
∑

k=0

(−1)k
(2m

k

)

um−k + (−1)m
(2m
m

)

.
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Proof. By induction. We have z2 = u1 − u0, and the result is true for m = 1. Suppose the
result true for m, we have

z2(m+1) = z2m(u1 − u0) =

m−1
∑

k=0

(−1)k
(2m

k

)

um−k(u1 − u0) + (−1)m
(2m
m

)

u0(u1 − u0).

Using the relations uiuj = ui+j + ui−j and u0 = 2, the rest of the proof is straightforward.
2

Proposition 16. Let Q(z) = c̃0 + c̃1z
2 + · · ·+ c̃nz

2n be a polynomial. We have

Q(t1/2 − t−1/2) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n),

where

an−j =

j
∑

k=0

(−1)n−k c̃n−k

(2n−2k
j−k

)

. (7)

Proof. It is enough to prove this formula for the monomials z2m, which is done using our
lemma. 2

Remark 17. By considering the formula (6) for the polynomial f2n+1 =
∑n

k=0

(2n−k
k

)

z2n−2k,
we deduce the identity

1 =

j
∑

k=0

(−1)k
(2n−k

k

)(2n−2k
j−k

)

, n, j ≥ 0. (8)

Remark 18. Fukuhara [8] gives a converse formula for the ck in terms of the ak, that can
be easily deduced from remark 12:

c̃n−j =

j
∑

k=0

(−1)n−kan−k
2n−2k
2n−j−k

(2n−j−k
2n−2j

)

. (9)

We shall not use this formula. Nevertheless, we remark that it implies a nice identity:

(2n−j
j

)

=

j
∑

k=0

(−1)k 2n−2k
2n−j−k

(2n−j−k
2n−2j

)

. (10)

From the bounds we obtained for Conway coefficients we deduce an improvement of the
bounds of Nakanishi and Suketa ([25]) for Alexander coefficients.

Theorem 19. We have the following sharp inequalities (where all the ai are positive):
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1. an−j ≤ an

(

∑j
k=0

(2n−2k
j−k

)(2n−k
k

)

)

.

2. 2an − 1 ≤ an−1 ≤ (4n − 2)an + 1.

3. an−2 ≤ (8n2 − 15n+ 8)an + 2n− 1, if an 6= 1.

Proof. The first two bounds were given in [25] and the third one is an improvement. These
three bounds are sharp.

1. Using the expression (7) and theorem 6, we obtain

|an−j| ≤

j
∑

k=0

|c̃n−k|
(2n−2k

j−k

)

≤ |an|

j
∑

k=0

(2n−k
k

)(2n−2k
j−k

)

. (11)

2. We have |c̃n−1| ≤
(2n−2

1

)

|c̃n|+1 by theorem 8, and an−1 = c̃n−1−
(2n
1

)

c̃n by proposition
16. We thus deduce

|an−1| ≤
(

2n
1

)

|c̃n|+
(

2n−2
1

)

|c̃n|+ 1 = (4n− 2) |an|+ 1. (12)

We also have

|an−1| ≥
(2n
1

)

|c̃n| − |c̃n−1| ≥
(2n
1

)

|c̃n| −
(2n−2

1

)

|c̃n| − 1 = 2 |an| − 1.

3. From proposition 16 and theorem 8, we get

|an−2| ≤
(2n
2

)

|c̃n|+
(2n−2

1

)

|c̃n−1|+
(2n−4

0

)

|c̃n−2|

≤
(2n
2

)

|c̃n|+
(2n−2

1

)

(
(2n−2

1

)

|c̃n|+ 1) +
(

(2n−3
2

)

+ 1
g (
(2n−3

1

)

− 1)
)

|c̃n|+ 1

= (8n2 − 16n + 10 + 2(n−2)
g ) |an|+ 2n− 1.

If an 6= 1 then g ≥ 2, and we obtain

|an−2| ≤ |an| (8n
2 − 15n+ 8) + 2n − 1. (13)

The upper bounds (11) and (12) are attained by the knots C(2, 2, . . . , 2). The bound (13)
is attained for the knot C(4, 2, 2, 2, . . . , 2). 2

Remarks 20.

1. Let us look at the proof of inequality (13) if g = 1 and an = 1. We get

an−2 ≤ 8n2 − 12n + 5.

that is the first inequality (11) when j = 2.
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2. If g ≥ 3, the inequality (13) can be improved:

an−2 ≤ (8n2 − 16n + 10 + 2(n−2)
g )an + 2n − 1.

3. For j = 3 we obtain

an−3 ≤ 2/3 (2n − 3)
(

8n2 − 24n + 25
)

an + (3n−5)(2n−5)
g an + n (2n− 3)

≤ 1/6
(

64n3 − 270n2 + 413n − 225
)

an + n (2n− 3) .

4. Since the inequalities on Conway coefficients are simpler and stronger, we shall not
give the inequalities on Alexander coefficients for j ≥ 4. Furthermore, if we want to
apply our bounds to the Alexander polynomials, we first compute

c̃n−j =

j
∑

k=0

(−1)n−kan−k
2n−2k
2n−j−k

(2n−j−k
2n−2j

)

,

using remark 18 and test if |c̃n−j| ≤
(2n−j

j

)

|c̃n|, which is stronger than the inequality

(11), or if |c̃n−j | ≤
(

(2n−j−1
j

)

+ 1
g

((2n−j−1
j−1

)

−1
)

)

|cn|+1. The cost of these evaluations

is less than the cost of the evaluations of the inequalities of theorem 19. They are also
sharper.

Our last example shows an infinity of polynomials satisfying all the known necessary con-
ditions, but which are not the Alexander polynomial of a two-bridge knot.

4 Modulo 2 polynomials

Theorem 21. Let ∇m be the Conway polynomial of a two-bridge link. Then there exists
a Fibonacci polynomial fD such that ∇m ≡ fD (mod 2).

Proof. Let us write (a, b) ≡ (c, d) (mod 2) when a ≡ c (mod 2) and b ≡ d (mod 2). We will
show by induction on m that there exist integers D and ε = ±1 such that (∇m−1,∇m) ≡
(fD−ε, fD) (mod 2).

The result is true for m = 0 as (∇−1,∇0) = (0, 1) = (f0, f1), that is D = ε = 1.

Suppose that (∇m−1,∇m) ≡ (fD−ε, fD) (mod 2), with ε = ±1 for some m ≥ 0. Then we
have ∇m+1 = bm+1z∇m +∇m−1.

If bm+1 ≡ 0 (mod 2) then ∇m+1 ≡ ∇m−1 ≡ fD−ε (mod 2) and (∇m,∇m+1) ≡ (fD, fD−ε). If
bm+1 ≡ 1 (mod 2) then ∇m+1 ≡ zfD+ fD−ε ≡ fD+ε (mod 2) and (∇m,∇m+1) ≡ (fD, fD+ε).

2

Following this proof we propose an algorithm at the end of the paper for the determination
of D such that ∇K ≡ fD (mod 2). The condition |D| = 1, that is ∇K ≡ 1 (mod 2) or



Conway polynomials of two-bridge links 13

equivalently ∆K ≡ 1 (mod 2) is a necessary condition for a two-bridge knot to be Lissajous.

Example 22 (The torus links T(2,m)). The Conway polynomial of the torus link
T(2,m) is the Fibonacci polynomial fm(z) (see [15, 20]). Consequently, theorem 21 gives
in fact a characterization of modulo 2 Conway polynomials of two-bridge links.

Then, we deduce a simple proof of a beautiful criterion due to Murasugi ([24, 4])

Corollary 23 (Murasugi (1971)). Let ∆(t) = a0 − a1(t + t−1) + a2(t
2 + t−2) − · · · +

(−1)nan(t
n+t−n) be the Alexander polynomial of a two-bridge knot. There exists an integer

k ≤ n such that a0, a1, . . . , ak are odd, and ak+1, . . . , an are even.

Proof. If K is a two-bridge knot, its Conway polynomial is a modulo 2 Fibonacci polynomial
f2k+1. By corollary 13 we have f2k+1

(

t1/2− t−1/2
)

= (tk+ t−k)− (tk−1+ t1−k)+ · · ·+(−1)k,
and the result follows. 2

Remark 24. This congruence may be used as a simple criterion to prove that some knots
cannot be two-bridge knots. There is a more efficient criterion by Kanenobu [13, 27] using
the Jones and Q polynomials.

There is an analogous result for two-component links

Corollary 25 (Modulo 2 Hosokawa polynomials of two-bridge links).

Let ∆(t) =
(

t1/2 − t−1/2
)

(

a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n)
)

be the

Alexander polynomial of a two-component two-bridge link. There exists an integer k ≤ n
such that ak, ak−2, ak−4, . . . are odd, and the other coefficients are even.

Proof. If K is a two-component two-bridge link, its Conway polynomial is an odd Fibonacci
polynomial modulo 2, i.e. of the form f2h(z). An easy induction shows that

f4k
(

t1/2 − t−1/2
)

=
(

t1/2 − t−1/2
)(

1 + u2 + u4 + · · ·+ u2k
)

and

f4k+2

(

t1/2 − t−1/2
)

=
(

t1/2 − t−1/2
)(

u1 + u3 + · · ·+ u2k+1

)

,

where uj = tj + t−j, and the result follows. 2

Example 26. Fibonacci links, introduced by J. C. Turner ([29]) are the two-bridge links
of Conway form C(n, n, . . . , n), where n is a fixed integer. Their modulo 2 Conway and
Alexander polynomials are computed in [20] (see also [19]).
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5 Experiments

The following example shows an infinite family of polynomials satisfying all the necessary
conditions except the equality case of theorem 6.

Example 27. Consider the polynomial P (z) = fm+1(z) − 2dz2, m = 4n ≥ 4, d 6= 0. All
its coefficients, except one, satisfy cm−2k =

(m−k
k

)

. By theorem 6, it is not the Conway
polynomial of a two-bridge knot. Hence, the corresponding Alexander polynomial

∆(t) = 4d+ 1− (2d + 1)u1 + u2 − u3 + · · ·+ u2n,

where ui = ti + t−i is not the Alexander polynomial of a two-bridge knot. Nevertheless, it
satisfies all the necessary conditions of Hartley and Murasugi. If 0 < d < 1

2n(n+ 1), it also
satisfies the bounds of theorems 6 and 8, and then the Nakanishi and Suketa bounds.

Our next example shows that all our necessary conditions are not sufficient.

Example 28. Let p ≥ 7 be an odd prime, and let n ≥ 3 be an odd integer. Let us define
the Conway polynomial ∇(z) (such that ∇(0) = 1) by

∇(z) = pf2n+1(z)− (p+ 3)f2n−1(z) + 4f2n−3(z).

It satisfies the Murasugi congruence, the trapezoidal conditions of theorem 9, and the
inequalities of theorems 6 and 8 .

If it was the Conway polynomial of a two-bridge knot, then there would exist integers
b1, . . . , b2n, such that c̃n = b1 b2 · · · b2n = p, and

c̃n−1 = c̃n

( 1

b1b2
+

1

b2b3
+ · · ·+

1

b2n−1b2n

)

≡ 0,±1,±2 (mod 2).

Since c̃n−1 = (2n− 2)p− 3 and p ≥ 7, this is impossible, and then ∇(z) is not the Conway
polynomial of a two-bridge knot.

These simple examples motivate us to compare the efficiency of our several criterions on
the Conway polynomials of the first knots and links. Some non two-bridge links have two-
bridged Conway polynomials. It means that their Conway polynomial is also the Conway
polynomial of a two-bridge link. We will give a summary of our results by considering the
first 12965 knots with 13 crossings or fewer and the 1424 multi-component links with 11
crossings or fewer. We obtained their Conway polynomial using the data lists of KnotInfo
[5] and KnotAtlas [1].

5.1 Two-bridged Conway polynomials

First of all, there is a method to determine if a given polynomial is a two-bridged Conway
polynomial. We will not discuss in details the complexity of this algorithm, but it is fast
enough to test our data in a few seconds.
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The Conway polynomial of a knot is even, whereas the Conway polynomial of a two-
component link is odd.

We shall first consider the case of knots. Let K be the knot C(2b1,−2b2, . . . , 2b2n−1,−2b2n).

The continued fraction
α

β
= [2b1,−2b2, . . . , 2b2n−1,−2b2n] is such that 0 < |β| < α, β is

even, and α is odd. Using Siebenmann method, we calculate its Conway polynomial

∇K = cnz
2n + cn−1z

2n−2 + · · ·+ c1z
2 + 1.

We have |cn| = |b1 · · · b2n| and α = |P (2i)| (see [7]).

We thus deduce the following algorithm.

Algorithm 29 (IsTwoBridged).
Input: P = cnz

2n + cn−1z
2n−2 + · · ·+ c1z

2 + 1 in Z[z].

Output: The sequence of two-bridge knots K = S(
α

β
) such that P = ∇K .

1. Compute α = |P (2i)|.

2. For any even integer β such that 1 ≤ β < α,

(a) compute the continued fraction decomposition
α

β
= [2q1, . . . , 2q2ℓ], qi 6= 0,

(b) test if ℓ = n and q1 · · · q2n = cn,

(c) compute ∇K where K = S(
α

β
) and compare it with P .

For the two-bridge two-component links, the method is exactly the same except that P is

odd, and
α

β
= [2b1,−2b2, . . . , 2b2n+1] with α even and β odd. In this case, the classical

Schubert fraction is not
α

β
but

α

β + α
.

Complexity of the algorithm

First, note that α = |P (2i)| ≤
n
∑

k=0

|cn−k| 4
n−k ≤ 1

3 ‖P‖ 4n+1, where ‖P‖ = max{|c0| , . . . , |cn|}.

Conversely, the following lemma allows us to bound the length of the continued fractions
and therefore the degrees of the polynomials ∇K .

Lemma 30. Let
α

β
= [2q1, . . . , 2qm], qi 6= 0. Then m ≤ |α| − 1.

Proof. We shall prove our lemma by induction on m. First, it is not difficult to prove that
|α| > |β| . If m = 1, the result is clear. Let us suppose the result true for m−1, and consider
α

β
= [2q1, . . . , 2qm], qi 6= 0. Consider

α′

β′
= [2q2, . . . , 2qm], qi 6= 0. By induction we have

m− 1 ≤ |α′| − 1. On the other hand, we have

α

β
= [2q1,

α′

β′
] = 2q1 +

β′

α′
=

2q1α
′ + β′

α′
.
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We thus have β = α′, |α| ≥ |2q1α
′| − |β′| ≥ 2 |α′| − (|α′| − 1) = |α′|+ 1 ≥ m+ 1. 2

Remark 31. The rational number m+1
m has the continued fraction expansion of length m:

[2,−2, . . . , (−1)m−12]. This shows that the inequality of lemma 30 is sharp.

Lemma 30 shows that the computation of the continued fraction expansion
α

β
= [2q1, . . . , 2qm]

requires less than α Euclidean divisions). We thus compute all the continued fractions
α

β
in O(α2) steps.

The computation of ∇K requires m = 2n polynomial multiplications of form (P,Q) 7→
qizP +Q. Furthermore, by theorem 6 the coefficients of these polynomials are bounded by
|cn|F2n.

We conclude that the algorithm IsTwoBridged has an exponential complexity O(‖P‖ 43nF2n).

Example 32. Let P = 2880 z10 + 4944 z8 + 2304 z6 + 158 z4 − 61 z2 + 1. Our algorithm
IsTwoBridged easily finds the fractions with positive even denominators

1828139
1042750 = [2,−4,−20, 2,−2,−12,−2, 4,−12,−4], 1828139

447486 = [4, 12,−4, 2, 12, 2,−2, 20, 4,−2].

They correspond to the same two-bridge knot K. Consequently, K and K are the only
two-bridge knots such that ∇K = P .

Remark 33. Using theorem 6, it is possible to improve our complexity estimation. We
have |cn−k| ≤ |cn|

(2n−k
k

)

and by lemma 3

α = |P (2i)| ≤ |cn|

n
∑

k=0

(2n−k
k

)

22n−2k = |cn| f2n+1(2).

We also deduce the following general result on continued fractions.

Corollary 34. Let
α

β
= [2q1, . . . , 2qm], qi 6= 0 where (α, β) = 1 and α > 0. Then we have

α ≤ |q1 · · · qm| fm+1(2), |β| ≤ |q2 · · · qm| fm(2). Equality holds for
α

β
=

fm+1(2)

fm(2)
= [2, . . . , 2].

Proof. Consider the link K = C(2q1,−2q2, . . . , (−1)m−12qm). Its Conway polynomial
∇m(z) is the numerator of the continued fraction [q1z, q2z, . . . , qmz] and we have

α = |∇m(q1, . . . , qm)(2i)| , β = ± |∇m−1(q2, . . . , qm)(2i)| .

Using lemma 3 and theorem 6, we get

α ≤ |c|

⌊
m
2 ⌋

∑

k=0

(m−k
k

)

2m−2k = |c| fm+1(2),
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where c = q1 · · · qm. We also get |β| ≤ |q2 · · · qm| fm(2). 2

5.2 Two-bridge knots

We first use the algorithm 29 to select non two-bridged Conway polynomials among the
Conway polynomials of all knots with 13 crossings or fewer.

Crossing Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Knots 0 0 1 1 2 3 7 21 49 165 552 2176 9988

Two-bridge Knots 0 0 1 1 2 3 7 12 24 45 91 176 352
Two-bridged ∇ 0 0 1 1 2 3 7 12 26 75 203 604 1927
Non two-bridged ∇ 0 0 0 0 0 0 0 9 23 90 349 1572 8061

Table 1: Number of knots having two-bridged Conway polynomials

We now compare our conditions only on the first 10104 non two-bridged Conway polyno-
mials. It is remarkable that theorem 21 on the modulo 2 congruence detects 79 % of these
polynomials (see table 2).

Crossing Number 8 9 10 11 12 13 ≤ 13

Non two-bridged ∇ 9 23 90 349 1572 8061 10104
Detected by theorem 9 1 3 13 42 184 994 1237
Detected by theorem 21 9 21 71 281 1203 6437 8022

Not detected by theorems 9 and 21 0 2 15 56 320 1428 1821

Table 2: Efficiency of theorems 9 and 21 in the detection of non two-bridged Conway
polynomials

Using the other conditions on these 10104 non two-bridged Conway polynomials, we obtain

• 8022 do not satisfy theorem 21 on modulo 2 congruence.

• 1237 do not satisfy theorem 9 which is equivalent to both Hartley condition and
alternating Murasugi theorem for Alexander polynomials.

• 29 do not satisfy the inequality (11).

• 57 do not satisfy the inequality (13).

• 172 do not satisfy theorem 6.

• 333 do not satisfy the equality condition in theorem 6.

• 197 do not satisfy theorem 8
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It appears that the congruence modulo 2 is the more accurate criterion. If we select knots
that satisfy this criterion and the Murasugi and Hartley conditions (theorem 9), we still
detect non two-bridged Conway polynomials. In this case the most accurate criterion is the
equality case in theorem 6.

For example, the knot K11n109 has Conway polynomial −z6 + z4 + 6 z2 + 1 = −f7 +
6 f5 − 6 f3 + 2 f1. It satisfies all conditions but the equality condition of theorem 6 (f7 =
t6 + 5 t4 + 6 t2 + 1).

There are 3 Conway polynomials

∇K13n1862 = ∇K13n2935 = 1 + 8 z2 + 3 z4 − z6,

∇K13n2089 = ∇K13n3038 = 1 + 8 z2 + 5 z4 − z6,

∇K13n3508 = 1 + 10 z2 + 5 z4 − z6,

whose corresponding Alexander polynomials satisfy the Nakanishi-Suketa conditions (11,13)
but not theorem 6.

The knot K13n3010 has Conway polynomial ∇ = 1 + 10 z2 + 4 z4 − 2 z6. It satisfies all
conditions but theorem 8.

5.3 Multi-component links

We have used the data base of KnotAtlas ([1]) that contains many invariants of the first
1424 multi-component links with 11 crossings or fewer. We deduced the Conway polynomial
from the Homfly polynomial. Using our algorithm, we detected 1131 multi-component links
whose Conway polynomials are not two-bridged. We obtain:

Crossing Number 1 2 3 4 5 6 7 8 9 10 11 ≤ 11

Multi-component links 0 1 0 1 1 6 9 29 83 287 1007 1424
Two-bridge links 0 1 0 1 1 3 3 8 12 27 45 101
Two-bridged ∇ 0 1 0 1 1 3 5 13 22 67 180 293
Non two-bridged ∇ 0 0 0 0 0 3 4 16 61 220 827 1131

Table 3: Number of multi-component links having two-bridged Conway polynomials

Among these 1131 polynomials:

• 968 do not satisfy theorem 21 on modulo 2 congruence.

• 168 do not satisfy theorem 9 which is equivalent, in the case of knots, to both Hartley
condition and alternating Murasugi theorem for Alexander polynomials.

• 28 do not satisfy theorem 6.

• 53 do not satisfy the equality condition in theorem 6.

• 32 do not satisfy theorem 8
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Here again, the most accurate condition is the modulo 2 congruence, that detects 86 % of
the non two-bridged polynomials. If we consider these 5 criterions together, we detect 1009
among the 1131 non two-bridged polynomials. These polynomials were detected only by
using theorems 21 and 9. We suppose that links that are detected by theorem 6 or 8 but
not by theorem 21 nor 9 appear when their number of crossings is higher.

5.4 Conjecture

We observed some trapezoidal property for the Conway polynomials of two-bridged links
with crossings fewer than 20 (their number is 131839).

Conjecture 35. Let ∇m = b1 · · · bm

(

∑⌊
m
2 ⌋

i=0 (−1)iαifm+1−2i

)

, α0 = 1, be the Conway poly-

nomial of a two-bridge link. Then there exists n ≤ ⌊m2 ⌋ such that

0 ≤ α0 ≤ α1 ≤ αn ≥ αn+1 ≥ · · · ≥ α⌊
m
2 ⌋ ≥ 0.

If this conjecture was true, it would imply the following property of Alexander polynomials:
Let P (t) = a0 − a1(t + t−1) + a2(t

2 + t−2) − · · · + (−1)nan(t
n + t−n) be the Alexander

polynomial of a two-bridge knot. There exists an integer k ≤ n such that (a0, . . . , ak) is
convex and (ak, . . . , an) is concave.

Note that this property detects 670 non two-bridged Conway polynomials among the
knots with 13 crossings or fewer and 107 among the multi-component links with 11 crossings
or fewer. It still detects non two-bridged polynomials among the knots that do not satisfy
the modulo 2 congruence theorem 21.

5.5 Two-bridge Lissajous knots

Using theorem 21, we deduce an algorithm to compute the integer D such that ∇m ≡
fD (mod 2).

Algorithm 36. Let K be a two-bridge link (or knot) with Conway form C(2b1, 2b2, . . . , 2bm).
Let us define the sequences of integers εi and Di, i = 0, . . . ,m, by

ε0 = 1, D0 = 1, εi+1 = −(−1)bi+1εi, Di+1 = Di + εi+1.

Then the modulo 2 Conway polynomial of K is the Fibonacci polynomial fD(z), where
D = |Dm| .

Note that if K = S(
α

β
), where

α

β
is the Schubert form of K, then its Conway form

C(2b1, 2b2, . . . , 2bm) has length m ≤ α− 1.

Example 37. Consider from the example 32, two-bridge knot K = S(
1828139

1042750
). One can

write
1828139

1042750
= [2b1, . . . , 2b10] = [2,−4,−20, 2,−2,−12,−2, 4,−12,−4].
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Using a formula of Stoimenow, we see that the crossing number of K is 59 (see [28]). Our
algorithm gives

i 0 1 2 3 4 5 6 7 8 9 10

bi 1 -2 -10 1 -1 -6 -1 2 -6 -2
(−1)bi -1 1 1 -1 -1 1 -1 1 1 1

εi 1 1 -1 1 1 1 -1 -1 1 -1 1
Di 1 2 1 2 3 4 3 2 3 2 3

Consequently, the modulo 2 Conway polynomial of K is f3(z) = z2 + 1. Its modulo 2
Alexander polynomial is then 1− (t+ t−1).

We see that the Alexander (and Conway) polynomial of our knot is not congruent to 1
modulo 2. Hence, by a theorem of V. F. R. Jones, J. Przytycki and C. Lamm ([11], [21]),
it cannot be a Lissajous knot.

A much more complicated computation gives the Conway polynomial of K:

∇K(z) = 2880 z10 + 4944 z8 + 2304 z6 + 158 z4 − 61 z2 + 1.

∇K may be expressed in terms of Fibonacci polynomials and we obtain:

∇K(z) = 2880 f11 − 20976 f9 + 68496 f7 − 128482 f5 + 140969 f3 − 62886 f1

≡ f3 (mod 2).

Note that this conversion in terms of Chebyshev polynomials is fast (see [3]). We could also
have computed directly ∇K (mod 2) using Siebenmann method modulo 2.

Using algorithm 36 we easily obtain (in table 4) the number of two-bridge knots with
Conway polynomial congruent to 1 modulo 2 (compare [2])

Crossing Number 3 4 5 6 7 8 9 10 11 12
Two-bridge 1 1 2 3 7 12 24 45 91 176
∇(t) ≡ 1 0 0 1 1 2 4 8 13 26 51

Crossing Number 13 14 15 16 17 18 19 20 21 22
Two-bridge 352 693 1387 2752 5504 10965 21931 43776 87552 174933
∇(t) ≡ 1 97 185 365 705 1369 2675 5233 10211 20011 39221

Table 4: The number of two-bridge knots, and two-bridge knots with Conway polynomial
congruent to 1 modulo 2.



Conway polynomials of two-bridge links 21

6 Conclusion

In this paper, we gave a theorem on Conway polynomials of two-bridge links implying both
the famous Murasugi and Hartley theorems. Our proof may be considered as a simple proof
of these classical theorems obtained by writing Conway polynomials in the Fibonacci basis
(see also [4, 9, 12]). We have experimentally noticed that these Conway coefficients seem
to be first increasing, then decreasing. It would be interesting to study this problem.

We have found an elementary proof of the Murasugi congruence for two-bridge knots.
Furthermore our result on Conway polynomials is also valid for links.

We gave a simple algorithm to compute the modulo 2 Conway polynomial of a two-
bridge link. This algorithm can be applied to the recent study of Lissajous knots. V. F. R.
Jones, J. Przytycki (1998) and C. Lamm (1997) showed that the Alexander polynomial of
a two-bridge Lissajous knot must be congruent to 1 modulo 2 ([11, 21]). This property is
the main tool used by A. Boocher, J. Daigle, J. Hoste and W. Zheng (2009) to prove that
some two-bridge knots cannot be Lissajous ([2]). Our algorithm provides a fast method to
compute modulo 2 Alexander polynomials.

Finally, we obtain sharp inequalities for the coefficients of Conway polynomials of two-
bridge links. These inequalities imply sharp bounds for Alexander coefficients generalizing
the bounds of Nakanishi and Suketa [25]. Nevertheless, the inequalities on the Conway
coefficients are better because they define a polyhedron of volume much smaller than the
polyhedron defined by the bounds on the Alexander coefficients.
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