
HAL Id: hal-00538710
https://hal.science/hal-00538710

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real time implementation of CTRNN and BPTT
algorithm to learn on-line biped robot balance:

Experiments on the standing posture
Patrick Henaff, Vincent Scesa, Fethi Ben Ouezdou, Olivier Bruneau

To cite this version:
Patrick Henaff, Vincent Scesa, Fethi Ben Ouezdou, Olivier Bruneau. Real time implementation of
CTRNN and BPTT algorithm to learn on-line biped robot balance: Experiments on the standing
posture. Control Engineering Practice, 2010, 19 (1), pp.89 - 99. �10.1016/j.conengprac.2010.10.002�.
�hal-00538710�

https://hal.science/hal-00538710
https://hal.archives-ouvertes.fr


 1

 
 
 

Real time implementation of CTRNN and 
BPTT algorithm to learn on-line biped robot 
balance: experiments on the standing posture 

 

Patrick Hénaff*,1, Vincent Scesa2, Fethi Ben Ouezdou2, and Olivier Bruneau2 
 

1  ETIS, UMR 8051, CNRS- ENSEA-UCP, University of Cergy-Pontoise, F-9500, France 
2  LISV, University of Versailles Saint-Quentin, France 

 
ABSTRACT: This paper describes experimental results regarding the real time implementation of continuous time 

recurrent neural networks (CTRNN) and the dynamic back-propagation through time (BPTT) algorithm for the on-line 

learning control laws. Experiments are carried out to control the balance of a biped robot prototype in its standing 

posture. The neural controller is trained to compensate for external perturbations by controlling the torso’s joint motions. 

Algorithms are embedded in the real time electronic unit of the robot. On-line learning implementations are presented in 

detail. The results on learning behavior and control performance demonstrate the strength and the efficiency of the 

proposed approach. 

 

INDEX TERMS:  Neural control, Learning algorithms, CTRNN, Legged locomotion, Real-time systems, robotics, Biped 

robot 

1 Introduction 

Technological developments have enabled us to build robots with morphologies that are inspired by animals 

or humans. Therefore, the most recent humanoid robots are technologically complex systems, with an 

extremely high level of mechanical and electronic integration. They are equipped with complete perceptive 

systems that enable them to interact with human beings and to move in an environment built for human life. 

One of the most important difficulties in controlling humanoid robots is maintaining balance during walking 
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or standing. One solution to this problem is to design controllers based on the zero moment point (ZMP) 

theory (Vukobratovic, 2004). Another method is to design controllers using bio inspired approaches, i.e., 

with some capabilities of adaptation and training, leading to the acquisition of reflexes. 

 Using biologically inspired architectures such as neural networks that are able to learn the “correct” 

control of the robot’s equilibrium is a promising approach. For this purpose, several neural controller-based 

approaches have been proposed in the past. CMAC (cerebellar model articulation controllers) proposed in 

1975 by James Albus (1975), are still studied in the control of legged robots. Recent studies deal with their 

modeling and generalization properties (Horvath & Szabo, 2007) or with their connections to other 

approaches like fuzzy logic (Su, Lee &Wang, 2006) or computed torque control (Lin & Chen, 2007). CMAC 

have been used to control the balance of biped robots (Kun & Miller, 1996) or for robust dynamic walking in 

simulation (Lin & Chen, 2007) and for biped robot experiments (Sabourin & Bruneau, 2005).  

Recurrent neural networks (i.e., dynamic neural nets) have been extensively studied in the control of complex 

systems for many years (Marcua, Köppen-Seligerb & Stücher, 2008; Song & Tahk, 2001). These Artificial 

Neural Networks have also been used to design stable walking gaits for biped robots (Wu, Song &  Yang, 

2007). Several approaches were based on evolutionary synthesis (Fukuda, Komata & Arakawa, 1997), neural 

oscillators (Taga, Yamaguchi & Shimizu, 1991; Geng, Porr & Wörgötter, 2006), and central pattern 

generators (Righetti & Ijspeert, 2006; Nakanishi et al., 2004). Recently, researchers have used RNN as 

predictive compensator (Mizunoa, Kurodaa, Okazakib & Ohtsu, 2007) or tracking controllers with self-

constructing properties. Self-constructing algorithms are very interesting approaches because they allow for 

optimizing on-line the neuronal controller architecture in order to insure the best control performance. In Gao 

& Er, 2003, a self-constructing fuzzy neural controller was proposed for the tracking control of a simulated 

planar robot manipulator with 2 degrees of freedom. In (Hsu, 2009) a simple growing and pruning algorithm 

applied to a recurrent neural network has been tested in experimentation to control one degree of freedom  of 

a moving table with a linear ceramic motor system.  

Many studies on dynamic neural controllers of robots have focused on continuous-time recurrent neural 

networks (CTRNN) due to their ability to be universal approximators (Beer, 2006). CTRNNs have been used 

for bio-inspired control because of their abilities to reproduce the full qualitative range of nerve cell 
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phenomenology (Beer, 2006). They make it possible to show adaptivity properties based on homeostatic 

plastic mechanisms (Williams, 2007; Hoinville & Hénaff, 2004). Moreover, they may be a fine model for 

generating adaptive behavior because they can learn with the back-propagation through time algorithm 

(BPTT) (Pineda, 1987; Werbos, 1990; Pearlmutter, 1995; D.E. Rumelhart, Hinto & Williams, 1986; Robinson 

& Fallside,1987). Unfortunately, these algorithms are complex to implement in real time application, 

especially for the on-line training of real robots because of the shrinking gradient problem of recurrent neural 

networks (this gradient instability problem was first studied in Scesa, Hénaff, Ouezdou & Namoun, 2006).  

There are still only a few recent in-depth studies on real time implementation, especially with the concept 

of learning the equilibrium reflex for a biped robot on-line.  The scientific objective of the work presented in 

this paper is to perform an in-depth analysis of the real time performance of continuous time recurrent neural 

network controllers for learning balance reflexes for a biped robot. In particular, robot abilities to learn on-

line with real time constraints are investigated. 

Several contributions in this area have already been published (see Scesa, Mohamed,  Henaff, & Ouezdou, 

2005). This paper focuses on describing the real time implementation of the learning algorithms embedded 

into the robot control unit. Some promising new experimental results are also reported.  

This paper is organized as follows. The second section deals with the learning models based on the 

CTRNN and BPTT algorithms. The third section presents the fundamental principles of CTRNN and BPTT. 

In the fourth section, the experimental biped platform called ROBIAN is described. The real time 

implementation of the learning algorithm based on CTRNNs and the back-propagation through time 

algorithm is detailed Section 5. The sixth section, describes the experimental results in two subparts: a 

feasibility test for the embedded learning algorithm on controlling the ROBIAN biped torso and a new 

approach of on-line learning of the equilibrium reflex. Finally, the last section presents the conclusions and 

potential further developments stemming from this work.  

2 Learning equilibrium with CTRNN 

It is well known that the human torso attempts to stabilize the whole body when walking (Setiawan, Hyon, 

Yamaguchi & Takanishi, 1999; Kubica, Wang, & Winter, 2001; Hyon, 2009). It is also known that biped 
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robot balance can be considered to be a global behavior because the upper part (the torso) and the lower part 

(the legs) of the robot interact with and disturb each other (see Figure 1) during walking. This internal 

interaction can be taken into account in the synthesis of the biped robot controller. For example, J Morimoto 

et al. (2006) show that a biped robot can stop and walk using simple sinusoidal desired trajectories with their 

phases adjusted by a coupled oscillator model.  

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Control of the biped robot’s balance: perturbations caused by unknown external forces can be 

measured with a force sensor placed between upper and lower part. 

 

During the walking and halting phases, the robot’s balance can be affected by perturbations like external 

forces applied to its body, including the upper part. One way to control the balance of the robot is to drive the 

movements of the upper part (i.e., the torso) in order to minimize the perturbations (forces and moments) 

exerted on the lower part of the robot. 

To measure this perturbation, the robot is equipped with a six-force sensor fixed between the torso and the 

lower part (see Figure 1). Then, if the forces and moments measured by the sensor are close to zero, the 

equilibrium of the robot is assumed to be controlled (Mohammed, Gravez & Ouezdou, 2004).  
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To achieve this goal, the purpose of this experiment is to learn on-line, using a CTRNN, how to control the 

robot torso in order to reduce the external perturbations measured by the sensor. This learning is carried out 

with the biped robot in the standing posture when unknown external forces are applied to its torso.  

The control of robot balance must take into account the real features of the mechanism and the external 

phenomena that are not modeled in the simulation (friction, motor properties, attrition, ground slope and 

passive prosthesis use…). Information on these phenomena is often only available through their effects on the 

total energy of the system. Hence, taking into account these phenomena into the equilibrium control is a 

difficult task. To avoid this obstacle, the controller should be able to adapt its behavior in real time, following 

a cost function that incorporates information on these phenomena. Moreover, in an optimal control approach, 

time variations must be included in the adaptation process. 

To meet these conditions, dynamic recurrent neural networks with back-propagation through a time 

learning process was chosen as the most appropriate network. The proposed learning control architecture is 

shown in Figure 2. The outputs of the network are positions 𝑋, 𝑌, 𝑍  that the torso mechanism then has to 

reach. Thus, at each time step, the net modifies the actuator speed and accelerations are generated. 

Consequently, forces between the upper and lower parts of the robot will be produced to compensate for the 

external perturbations. 

 

 

Fig. 2. Principle of the on-line learning balance control scheme. Grey lines represent the learning process with 

cost computation and modification of the net. Each joint position is measured with an incremental electronic 

sensor. Forces between the upper and lower parts are measured with the six-force sensor. All signals are fed 

back to the inputs of the control boards of the electronic controller unit (see Section 5). 
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 The inputs should show the network the current state of the system. They must be enough representatives 

to compute a correct control response. They consist of the measured components provided by the 6-forces 

sensor and the positions of the current motors given by incremental encoders.  

 To carry out the on-line learning of an optimal control, the parameters of the net must be adapted in real 

time while the system is running. Back-propagation through time (BPTT), with its ability to integrate the error 

in the network at each instant is an appropriate solution to solve the parameter adaptation problem. In BPTT, 

the network is first unrolled in time creating a layer per time step. Then, this algorithm back-propagates the 

output error on these virtual temporal layers as the classical back-propagation algorithm does on existing 

ones. The result is the computation of the error gradient in the network and its integration in time. Then, the 

parameters are modified by the gradient descent algorithm, and the response of the net approaches the desired 

behavior.  Instead of the output error, a cost function that represents the aim of the control can be used for the 

learning stage. The aim is to bring the forces measured by the sensor closer to zero so that the cost is define 

by the sum of the squared force components measured by the six axes force sensor in the 𝑋, 𝑌 and 𝑍  

directions: 

𝐶𝑜𝑠𝑡 𝑡 𝐹 𝑡  𝐹 𝑡 𝐹 𝑡                                                                     (1) 

This cost function is given for the learning algorithm through a gradient computation for each net output: 

𝑒 𝑡                                    (2) 

 This equation expresses the influence of each command on the cost function at time t. BPTT will use this 

gradient to minimize the integral of the cost function (Equation (1)) over the learning time window. Thus, the 

cost function computed to optimize the control has the following expression: 

𝐸 𝐹 𝑡  𝐹 𝑡 𝐹 𝑡 𝑑𝑡         (3) 

Instead of computing the exact expression of (3), which would require a strict knowledge of the system, it is 

possible to use a signal that carries the same information. For the torso experiment, it is defined by the 

following equations: 

𝑒 𝑡 𝐹 𝑡       𝑒 𝑡 𝐹 𝑡       𝑒 𝑡 𝐹 𝑡             (4) 
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3 Principles of CTRNN and BPTT  

 Neurons of a dynamic recurrent neural network are driven by the following equation, derived from (Beer, 

2006; Pineda, 1987; Pearlmutter, 1995): 

𝑇
𝜕𝑦
𝜕𝑡 𝑦 𝑓 𝑥              (5) 

where 

𝑦  output of neuron 𝑖  

𝑥  weighted sum of the 𝑗  neuron inputs 

𝑓   activation function (𝑡𝑎𝑛ℎ or sigmoid) 

𝑇  time constant of the 𝑖 neuron  

3.1  Propagation algorithm 

 The input data provided to the network are propagated to generate output responses. The propagation 

depends on the intrinsic parameters of the network and the neurons, which are given as follows for the 

𝑗  neuron: 

𝜔  weight of the connection from neuron 𝑖 to neuron 𝑗 

𝑏   bias of the 𝑗  neuron  

𝑇   time constant of the 𝑗  neuron. 

  

By the progressive (i.e., explicit) Euler approach, for the ∆𝑡 time step, and the discrete propagation equation 

depends on the following relations (Nguyen & Cottrell, 1997): 

 

 Input sum for the 𝑗  neuron  : 

𝑥 𝑡 𝜔 . 𝑦 𝑡 ∆𝑡  𝑏 𝑡              (6) 

 Output of the 𝑗  neuron : 
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𝑦 𝑡 ∆𝑡
∆𝑡
𝑇 . 𝑓 𝑥 𝑡 1

∆𝑡
𝑇 . 𝑦 𝑡               (7) 

In this equation, the ∆  term is a scale parameter. Its value, which cannot be equal to zero, lies in the 

interval ]0:1] and expresses the response speed of the 𝑗  neuron.  

By defining a new variable 𝑆 ∆ , Equation (7) can be rewritten as follows: 

𝑦 𝑡 ∆𝑡 𝑆 . 𝑓 𝑥 𝑡 1 𝑆 . 𝑦 𝑡          (8) 

 Fig. 3 graphically represents the principles of the propagation through time algorithm. At time 𝑡, each 

neuron (except input neurons) receives the 𝑡 1 outputs of each other neuron. 

 

 

Fig. 3. Equivalent scheme of propagation in time. Example of a 1-6-1 network (1 input, 6 hidden neurons, 1 

output) on two time steps. 

 

3.2 Truncated Dynamic BPTT learning algorithm  

  The time constant parameter of each unit reflects the dynamic aspect of the net. However, the learning 

process must be able to teach it. For this purpose, Pearlmutter (1995) proposed, a dynamical BPTT version for 

which the time constant, the weights and the bias parameters can be adjusted. The only remaining problem is 

the memory needed for BPTT algorithms. To compute the exact error gradient, the algorithm has to store all 

of the network states from the beginning to the current time step. To avoid this excessive memory use, a 

truncated version, in which the states of the net are only stored during a time window that follows the current 

instant, can be used (Williams & Zipser, 1989; Williams & Peng, 1990). Therefore, it only computes an 

  time 
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approximation that approaches the exact gradient as the length of the time window increases. Therefore, the 

learning algorithm used in the experiments will be a truncated dynamic version of the back-propagation 

through time algorithm, called TDBPTT. 

 This learning process begins with an error computation at the output of the net. It represents the 

remaining gap between the current response and the aim of the learning. This error could simply be a squared 

difference between the desired and computed response. It could also be the result of a more complex 

computation, e.g., the equilibrium of a biped robot. The objective of the learning process consists of 

modifying the network parameters (weights, biases and time scale) in order to minimize a desired criterion. In 

a control application, this criterion would be the gap between the desired state of the system and the actual 

state. In an identification process, the criterion would be the error between the neural model and the system 

being taught.  

 At first, the algorithm computes an error function that corresponds to the criterion to be minimized. This 

function, 𝐸, is the error integral between 𝑡  and the current time step, 𝑡, expressed as follows: 

𝐸 𝑒 𝜏 . 𝑑𝜏                                    (9) 

 where 𝑛  is the number of output neurons, 𝑒 𝜏  is the output error of the 𝑗  neuron stored at time 𝜏 and 

𝑡  is the beginning of the integration window. The BPTT algorithm carries out gradient based learning. Thus, 

the parameters are modified by the negation of the error gradient of each parameter: 

   ∆𝜔 𝜂      ∆𝑏 𝜂      ∆𝑇 𝜂                                      10  

where 𝜂 is the learning step. The parameters of the learning process are the learning step and the time 

window width 𝑡 𝑡 . 

Calculation of the gradient components  

The back-propagated cost attached to the 𝑗  neuron is defined by  

𝑍 𝜏
𝜕𝐸

𝜕𝑦 𝜏                           (11) 

and 𝑍  is the back-propagated cost attached to the downstream neuron 𝑘 for  each components of the gradient. 
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The calculation of the gradient components for each parameter is carried out on the network “unrolled in 

time”. Each component is estimated for the completely unrolled network, but it results in the values of 

instantaneous components of the gradients, called the back-propagated gradient components. The total value 

is the integral, over the unrolled network, of the back-propagated values given by Equation (14), for the 

𝑗  neuron connected to the 𝑘   neuron by the weight 𝜔 . 

 By the formula of derivative of the composed functions, the back-propagated components of the gradient 

can be expressed as follows (see Appendix A for details):  

 Gradients on weights: 

𝜕𝐸
𝜕𝜔

𝜕𝐸
𝜕𝜔 𝜏 . 𝑑𝜏 𝑆 . 𝑍 𝜏 . 𝑓 𝑥 𝜏 𝛥𝑡 . 𝑦 𝜏 𝛥𝑡 . 𝑑𝜏                  (12) 

where 𝑓 is the derivative of the sigmoidal activation function. 

 Gradients on bias: 

𝜕𝐸
𝜕𝑏

𝜕𝐸
𝜕𝑏 𝜏 . 𝑑𝜏 𝑆 . 𝑍 𝜏 . 𝑓 ′ 𝑥 𝜏 Δ𝑡 . 𝑑𝜏       (13) 

 Gradients on scale parameters: 

𝜕𝐸
𝜕𝑇

𝜕𝐸
𝜕𝑇 𝜏 . 𝑑𝜏

𝑆
Δt . 𝑍 𝜏 . 𝑓 𝑥 𝜏 Δ𝑡 𝑦 𝜏 Δ𝑡 . 𝑑𝜏        (14) 

 Calculation of back-propagated costs: 

 The value of the back-propagated cost 𝑍  expresses the influence of the output of the 𝑗  neuron, at a 

given time on the current cost. Its computation uses the instantaneous error values 𝑒 𝜏 , calculated outside 

the network by the comparison of the current state of the network and the objective to be reached. 

 For each neuron at one instant, 𝜏 of the past, the back-propagation cost comes from three sources. Indeed, 

the back-propagation “goes up” step-by-step through the neurons from the current activities of the network to 

the oldest states. The back-propagated costs 𝑍 𝜏   and 𝑍 𝜏  are present if the neuron is static or dynamic, 

and 𝑍 𝜏  appears only for dynamic neurons. 𝑍 𝜏  corresponds to the error coming at the following instants 
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from the synapses connecting the neurons. 𝑍 𝜏  represents the error coming directly from the output neurons 

(it does not exist if the neuron is hidden). 𝑍 𝜏  corresponds to the error coming at the following instants by 

means of the internal dynamics of the neuron itself. Hence, the total backpropagation cost 𝑍 𝜏  is 

𝑍 𝜏 𝑍 𝜏 𝑍 𝜏 𝑍 𝜏                         (15) 

 Figure 4 represents the calculation of these three elements of the backpropagated cost through the 𝑗  

neuron. 

 

 

 

 

 

 

 

 

Fig. 4. Ways followed by the three elements of the backpropagated cost through a neuron. 

 

The calculation of these elements is detailed in Appendix B, and it finally yields the total back-propagated 

cost: 

𝑍 𝜏 𝑍 𝜏 Δ𝑡 . 𝑆 . 𝑓 𝑥 𝜏 . 𝜔 𝜏
𝜕𝑒 𝜏
𝜕𝑦 𝜏 . Δ𝑡 𝑍 𝜏 Δ𝑡 . 1 𝑆                         (16)

 
 The integral, present in the total cost expressed by the Equation (9), which made it possible to generate an 

optimal controller, is consequently distributed over time and over the output neurons. Nevertheless, the 

calculation of the components of the gradient, reintroduces this integrating aspect, thus guaranteeing the 

convergence towards an optimal solution over time. This explains the presence of the multiplying term, ∆𝑡, in 

the expression 𝑍 𝜏  that takes into account the temporal integral of the errors coming from outside. 

4 ROBIAN biped 

The learning approach is validated on the ROBIAN biped prototype (Konno, Sellaouti, Amar & Ouezdou, 

2002). ROBIAN consists of two different parts: a locomotion system (lower limbs, i.e, legs) and a special 
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torso mechanism (upper part) that is described in the next section.  Each leg has a total of seven dofs 

(Sellaouti, & Ouezdou, 2005): three actuated dofs for the hip, one actuated for the knee, two actuated for the 

ankle and one passive for the foot, providing a flexible foot system (see Figure 5).  

 

 

 

 

 

 

 

 

 

 

Fig. 5.The ROBIAN biped:  total height is 1.50 m and  weight is 30 kg. 

4.1 A simplified torso for balance control 

The human upper body can be modeled with 13 degrees of freedom, which is not an easy to mechanism 

control. In order to identify a minimal mechanism of the human upper body that can mimic it when walking, a 

previous analysis of the six wrench components exerted by the upper part of a virtual manikin on the 

locomotion apparatus was conducted. It led to the identification of two coupling relations between the upper 

and lower body. Then, the dynamic equivalence between mechanisms allowed us to identify a trunk 

mechanism with 4 degrees of freedom that is able to reproduce the dynamic effects of the upper limbs during 

the walking gait (to understand in detail the advantage of using a simplified torso for balance control, see 

Mohammed, Gravez & Ouezdou, 2004).  

ROBIAN’s trunk (see figure 6 and 7) is an original mechanism with 4 dofs: one rotational (R) and three 

translational (P) movements. It is important to note that the three elements, C2, C3 and C4, are directly 
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connected to element C1 by prismatic joints (P) and the whole system is connected by a rotational joint (R) to 

element C0. 

 

 

 

 

 

 

 

Fig. 6. The ROBIAN trunk is an RPPP mechanism. On the picture, one can see Y and Z masses that follow 

their prismatic joint (the X mass is hidden). Total weight is 13 kg. 

 

 

 

 

 

 

 

 

Fig. 7. Modeling of trunk R3P subjected to external forces, F1 and F2 

 

The sagittal plane of the trunk R3P is 𝑂 , 𝑋 , 𝑌 , and the frontal plane is 𝑂 , 𝑌 , 𝑍 . The properties of the 

R3P mechanism are presented in Table I. The Ci (i=1.., 4) elements represent the mobile masses that are used to 

compensate for the external disturbances.  

 

The simulation results obtained in Mohamed, Gravez, Bruneau & Ouezdou,2002 demonstrate the existence of 

coupling relations between torques and forces exerted by the legs on the trunk during walking: 
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𝑀 𝑘 . 𝐹    and   𝑀 𝑘 . 𝐹                        (17)                                                     

where 𝐹 , and 𝐹    are the components of the measured efforts exerted by the support to the trunk at point 𝑂 . 

 

The efforts measured to the trunk by the sensor on point 𝑂  are given by (see Zaoui, Bruneau, Ouezdou &. 

Maalej, 2009 for more details): 

⎩
⎪
⎨

⎪
⎧𝐹⃗ 𝑚 𝛾 𝑔 𝐹

𝑀⃗ ℎ⃗ 𝑖, 𝑂 𝑀 𝑚 𝑔, 𝑂 𝑀 𝐹 , 𝑂   

(18) 

where             

 ℎ⃗ 𝑖, 𝑂 : Derivation of element Ci angular momentum calculated at point 𝑂  

 ⃗
⃗ : Efforts exerted by the frame on C0 at point 𝑂  

 𝐹⃗and 𝐹⃗  : External forces applied respectively to C1 and C0  (C1 and C0 are the elements in contact with 

the external environment  of the robot) with 𝐹 𝐹 , 𝐹 , 𝐹  and 𝐹 𝐹 , 𝐹 , 𝐹             

 𝛾 : Acceleration of Ci elements. 

Note that if body C0 is fixed, then 𝛾 0⃗ and  ℎ⃗ 0/0, 𝑂 0⃗ .   

Furthermore, because 𝐺 𝑂 :         𝑀 𝑚 𝑔, 𝑂 0⃗.  

 

 TABLE I. 

MASS AND INERTIA PROPERTIES OF THE ROBIAN TORSO 

C0   m0      (kg) 0.5  
C1   m1       (kg) 5 

C2  m2      (kg) 2 

C3   m3       (kg) 3 

C4   m4    (kg) 2.5 
Total inertia  Iy ( kg.m2) 0.28 

L1        (m) 0.1 

L2        (m) 0.2 
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These dynamic equations show that the movements of the three masses can compensate for unknown external 

forces applied to the trunk. Thus, in using BPTT to learn this compensation, the cost function and the gradient 

components for the learning stage will use these equations. 

5 Real time implementation 

The real time implementation of the neural controller is a necessary objective to conduct an efficient 

learning control. The general architecture of the robotic application is based on the exchange of information 

between different systems: a PC user, an industrial electronic control unit and the ROBIAN robot (Fig. 8.).  

The electronic unit is built with one server board (SH3 RISC, 96 MHz, 16 Mb of RAM, 128 kb of flash 

memory, 32 kb of Shared memory) and 8 client boards (SH3 RISC, 96 MHz, 8 Mb for RAM, 128 kb for the 

flash memory). These 8 boards are dedicated to the control of the 16 DC motors and to the measurement 

acquisition (2 DC motors per board). The user computer is dedicated to supervising the robot. It 

communicates with the server board via an Ethernet protocol, which exchanges data with the eight client 

boards via a special local area network. These client boards exchange with the robot through point-to-point 

wiring. Programs are run on the server board and are built around the use of objects representing the 

actuators, the sensors of the robot and their parameters. These objects are written in the shared memory of the 

electronic unit. The control of each motor is regulated locally via the control boards. 

 

 

Fig 8. Control architecture of the ROBIAN platform  
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5.1 Multi task organization 

The neural networks algorithms, written in the C language, are implemented in the server board. A user 

interface, written in the Visual Basic graphic language, gives access to all the parameters of the algorithms, to 

the measurements taken on the robot and to the neural network parameters. The entire application is divided 

into 5 specific tasks, as shown in Figure 8: the “Main” task, which focuses on most of the information 

exchanged and manages the objects of the shared memory, the “Measure” task, the “Transfer” task, the 

“Propagation” task and the “Back-propagation” task. 

5.2 Scheduling of learning tasks 

Temporal evaluation  

Other experiments have shown that the fastest oscillation period that can be applied to the biped robot in its 

frontal plan is 500 ms. Thus, the computing time required by the ROBIAN control must be limited to 10 ms in 

order to maintain sufficient control. 

However, the mathematical complexities (number of implied operations) associated with the propagation 

functions and the training of the neural controller are 𝑂 𝑛  and 𝑂 𝑊 𝑛 , respectively, with n being the 

number of neurons and WT, the width of the time window used. Consequently, if the two functions are 

computed sequentially, then the number of operations will evolve out of 𝑂 𝑛 𝑊 𝑛 , and the associated 

computing time will be able to exceed the limit required. For this reason, the propagation and the 

backpropagation are separated into two dependent and synchronized tasks. Then, according to the ratio of the 

computing time (related to the width of the time window) of each task for one training, several propagations 

in the network are carried out.  

Table II compares the time performance of propagation and backpropagation. The sampling of the 

propagation task depends on the computing time necessary for the propagation in the network and, 

consequently, on the number of parameters defined with the network structure. For example, the propagation 

time is 2 ms through a completely recurring network consisting of 10 neurons (and 3 ms for 14 neurons and 

time window of 10).  The back-propagation, which is computed along the time window, has an execution time 
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that depends on the width of the time window. For a 10 neuron network with a time window memorizing the 

20 preceding states, the back-propagation task will require 50 ms (60 ms for 14 neurons and a time window of 

10).  

TABLE II. 

TIME PERFORMANCES OF PROPAGATION AND BACKPROPAGATION 

 Propagation Backpropagation 
Complexity O(n²) O(TW . n²) 
Computational 
Time(n=10,WT=20) 2 ms 50 ms 

Computational 
Time(n=14,WT=10) 3 ms 60 ms 

 

The algorithmic complexity of the learning tasks is calculated involved in the training, where n is the 

number of neurons in the net, WT is the Time Window width (number of net states stored). 14 neurons and 

WT =10 are setup values for the experiments described in Section 5. 

 

Thus, even taking into account the commutation time between the tasks, these two sampling periods remain 

approximately equal to 2 ms and 50 ms (see next subsection). Figure 9 is a snapshot taken by the numerical 

oscilloscope of the user interface, which is connected to the electronic control unit. It shows the dependence 

and synchronization between the propagation and back-propagation tasks. 

 

 

 

 

 

 

 

Fig. 9: Visualization of activations of propagation and backpropagation tasks computed in real time by the 10 

neurons and there is one backpropagation for 10 propagation step states. 

 

propagation 

back-propagation 

100 ms 
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The learning procedure based on the BPTT algorithm uses neuron outputs to calculate backpropagated 

costs and gradients. However, these same values are modified by the propagation procedure carried out in 

parallel. It is then not possible to use the same set of variables for the two tasks. Thus, two different tables 

have been set up in the neuronal algorithms to memorize the states of the network. 

Synchronization 

For each new iteration of learning, it is necessary to transfer the states from the network generated by the 

propagation task to the learning task. This procedure, which consists of copying one table into another, is 

placed upstream of the back-propagation. It is called “temporal photograph” because it memorizes the current 

instantaneous state of the network. Thus, this table contains the previous states of WT that are present in the 

temporal window. 

 

The learning procedure gathers four principal stages: temporal photograph (A), backpropagated costs 

calculation (B), gradient components computation (C), and parameter modification (D). Stages (B) and (D) 

are based on the values memorized by the temporal photograph and do not interact with those used by the 

propagation. On the other hand, stages (A) and (D) copy the network states and modify the parameters. 

Therefore, their executions are directly related to that of the propagation, as shown in Figure 9.  The stage (A) 

must start only when the propagation (P) is finished. Indeed, it is not necessary for the values that make up a 

state of the network to be modified when copying this state. To avoid this problem, stage (A) initially checks 

that the propagation is not running. If the propagation is running, then stage (A) waits until it ends before 

carrying out the copy. The end of the propagation is announced by a binary semaphore, with a value of 0 

(propagation stopped) or 1 (propagation in progress). 

In the same way, stage (D) must be carried out when the propagation is stopped. Indeed, this stage modifies 

the parameters of the network. Thus, it is essential that these parameters are not used when their values are 

updated. Therefore, this stage (D) waits until the next propagation is finished by observing the semaphore 

value. If the propagation is not running when launching task (D), it will wait until the propagation launches 

(propagation in progress) and then finishes (propagation stopped). This will ensure that the propagation will 



 19

not start during the modification of the parameters. The computation times for this example are given by the 

table in Figure 10. The duration does not include the waiting periods due to the synchronization process. 

 

 

 

 

 

 

 

 

 

 

Figure 10: On the left, description of synchronization between the propagation task and the backpropagation 

procedures. On the right, computation times of the different neural procedures for a 10-neuron network.  

 

Figure 11 details the execution times of the propagation task, and the other tasks necessary for the learning 

process. The duration of the induced synchronization waits are also included. In this example, the network 

consists of 10 neurons and the temporal window has a width of 20 memorized states. The propagation period 

task is 10 ms, whilst that of the learning task is 100 ms, and the sampling rate of the measurement is 1 ms. 

Stage (A') corresponds to the 3 ms wait required before the beginning of the temporal photograph (A). The 

stage (D’) represents waiting for 5ms before modifying the network parameters. Note that this stage waits 

until the propagation starts and finishes before allowing the modification of the parameters (D). 

 

These details clearly show the loop-time for the control. The time necessary to refresh only the commands 

of the DC motors, depending on the propagation, is about 2 ms. Taking into account the learning aspects, the 

loop-time for the control (i.e., the time required to refresh the commands of the DC motors and the network 

controller) is 53 ms. Hence, it is sufficiently compared to the whole dynamics of the robot, which has an 

Task Duration 

Propagation (P) 2 ms 

temporal 
Photograph (A) 

4 ms 

Zj() 
Computation (B) 

19 ms 

gradient 
Computation (C) 21 ms 

Parameters 
Modification (D) 

1 ms 

P 

D 
A 

B 

C 
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equivalent time constant of 1.5 seconds. Thus, the loop time does not degrade the robot system and the 

performance of the control laws. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Synchronization of propagation and learning extracted from the user interface: general view (up) and 

zoom (bottom) for the 10-neuron network. The duration of the propagation task is 3 ms and its period is 10 

ms. The total duration of the back-propagation task is 53 ms and its period is 100ms. 

6 Experimental Results 

6.1 Settings for experiments 

 For this experiment, a 6-5-3 network is used: 6 inputs, 5 hidden neurons and 3 outputs (14 neurons). The 

number of hidden neurons was selected after some testing. At the beginning of the learning, the weight values 

of the net are randomly chosen. The time constants are selected from a wide enough range that the net 

behavior is stable, i.e., that there is no oscillation of the control.  

 

 

  time 

Learning task 

   Waiting time 

Control task time 

10 ms 10 ms  100Hz 90 ms1 ms 

10 ms

100 ms  10 Hz

B

C

D’ D

D’

A 

A’

A’
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TABLE III.  

NUMERICAL VALUES OF LEARNING ALGORITHM PARAMETERS 

parameter name Initial value 
Number of neurons  n 14 
Initial weights  Randomly chosen in range 

of [-5;5]
Width of time 
window

WT 10 steps 

Time constant 
values

T Randomly chosen in range 
[0s;1s]

Learning step   0.001s 
 

6.2 Learning the balance control with Dynamic BPTT 

 For this approach to the robot’s equilibrium control, the experiment is only based on the measured 

wrench between the upper part and the locomotion system given by the 6-component force sensor. The neural 

torso controller aims to keep these forces and moments close to zero for the X and Z axes and to weight the 

value for the Y-axis, even when an external perturbation is applied to the torso. The controller only tries to 

compensate for external perturbations generated manually on the torso to emulate the coupling effects in a 

walking gait.  The experiment consists of following stages: 

 ROBIAN stays in the standing posture with all its joints controlled. 

 Two successive stages are carried out: learning for 60 seconds and then steering. 

 During the learning stage (successive short periods), unknown external forces are manually applied to the 

torso in X and Z directions (for more comprehension, see Fig. 12, Fig. 13). 

 The rotational motion of the torso is locked for this experiment. 

 The X and Z moment components are not required for the net computation because their effects can be 

deduced from the component forces due to the coupling relations (Equations (16)). Moreover, as the 

rotational motion is locked, MY data are also unnecessary. 

 

 The learning stage consists of applying forces to each axis, successively. Indeed, each mass is able to 

compensate only for the forces that appear on its axis. The amplitudes of the applied perturbation and their 
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periods are voluntarily variable in order to show the network different kinds of situations. The values of these 

external forces are in the maximal range corresponding to the limit of the biped toppling. 

 

Fig.12. External forces are applied manually during successive short moments following the X direction here 

(left: pushing; right pulling). 

  

Fig.13. External forces are applied manually during successive short moments following the Z direction here 

(left: pushing, right: pulling). 

6.3 On-line learning of disturbance compensation 

 The aim of the learning stage is to learn to compensate for unknown external disturbances. The time 

evolutions of responses during the learning stage are depicted in Figures 14, 15, and 16. The total duration of 

the learning stage is 120 seconds. This is the time required by the neural controller to learn the decoupling 

between the axes when external forces are applied to the ROBIAN torso.  The learning algorithm starts at 

t=4.5s. Until t=11.4s, no external forces are applied, so the measured forces are close to zero (FY close to the 

ROBIAN torso weight value), and the net does not modify its parameters. Next, during the X-axis 

perturbation period, the net modifies its X output command to generate a stronger and faster response to the 

external forces until it becomes insensitive to the disturbance (around t=20s). Then (from t=18 s to 22 s), the 

Z-axis becomes sensitive to the X-perturbation, and the neural controller explores its control space and learns 
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the decoupling between the two axes. Next (after t=34s), on each axis, the mass has to move in the same 

direction as the force.  

 
 

Fig.14. Beginning of on-line learning for the X-axis and Z-axis during time (s). The learning algorithm starts 

at t=4.5s.The neural controller tries to learn the decoupling between the two axes. 

 

Next, from t=42s (Fig. 14) to t=63s (Fig. 15), it progressively modifies this coupling by decreasing the 

influence of the X force on its Z control law.  From t=62 s, it is clear from Fig. 15 that the network can 

compensate for each pulse of perturbation due to lateral (Z axis) or frontal (X axis) pushes against the robot.  

After this convergence period, the learning continued for about 40 seconds. During that time, the previous 

changes were carried out (with forces in the opposite direction and more switches between X and Z external 

perturbation forces).  At the end, the network emulated a controller that was able to compensate for a portion 

of the external forces applied (see Fig. 16). The learning algorithm stops at t=120 s; when a perturbation 

occurs on an axis, it does not compensate. As far as the Y-axis is concerned, the learning process manages to 

find motions to compensate for external Y forces in the same way as it does for the two other axes. There was 

no coupling between this axis and the others.  
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Fig. 15. Middle of on-line learning for the X-axis and Z-axis during time (s). The neural controller learns the 

decoupling between the two axes, and then compensates each perturbation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. End of on-line learning for the X-axis and Z-axis during time (s).  Until t=120s, the neural controller 

learned the decoupling between the two axis. After, the learning algorithm stops at t=120s, when a 

perturbation occurs on an axis, it is not compensate.  
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6.4 External disturbance compensation after learning 

 Once the learning stage is finished, the net’s parameters (biases, weights and time constants) are fixed 

and stored. The steering consists on using them without adding any new modification. 

 During the neural control period, the same forces are applied, but the 6-force sensor also measures the 

influence of the motion of the mass. The difference between the force shapes in the two periods represents the 

compensation brought about by the mass motion. In a previous study (Scesa, Mohamed, Henaff & Ouezdou, 

2005), it was shown that neural control brings a decrease of about 50% in the measured forces on each axis. 

7 Conclusion 

 This paper addresses the real time implementation of on-line learning control with recurrent Neural 

Networks. The aim of the control is to compensate for external perturbations due to lateral or frontal pushes 

against the robot. An experiment is carried out to control the balance of a biped robot in its standing posture. 

CTRNN neural nets and BPTT learning have been used to optimize a cost function which explains the 

rejection of perturbations. The algorithm is embedded in the real time electronic unit of the robot, and the on-

line learning implementation is very detailed. Preliminary results on the learning behavior and the control 

performances are presented. The implementation enables to focus on the real performance of the neural 

network controller algorithms and shows that CTRNN are able to learn the balance reflex on-line, when 

controlling the robot. These experimental results show the strength and efficiency of the proposed approach. 
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APPENDIX A 

Details of gradient components calculation  

 The backpropagated cost attached to the 𝑗   neuron is defined by:  

𝑍 𝜏
𝜕𝐸

𝜕𝑦 𝜏         (A1) 
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 and 𝑍  the back-propagated cost attached to the neuron downstream 𝑘, then each components of the 

gradient can be written as : 

 Gradients on weights 

𝜕𝐸
𝜕𝜔

𝜕𝐸
𝜕𝜔 𝜏 . 𝑑𝜏 

𝜕𝐸
𝜕𝑦 𝜏

𝜕𝑦 𝜏
𝜕𝜔 𝜏 . 𝑑𝜏 

 𝑍 𝜏
𝜕𝑦 𝜏

𝜕𝜔 𝜏 . 𝑑𝜏 

 𝑍 𝜏
𝜕𝑦 𝜏
𝜕𝑥 𝜏

𝜕𝑥 𝜏
𝜕𝜔 𝜏 . 𝑑𝜏 

𝑆 . 𝑍 𝜏 . 𝑓 𝑥 𝜏 𝛥𝑡 . 𝑦 𝜏 𝛥𝑡 . 𝑑𝜏      (A2)

  𝑓  is derivative from the sigmoid activation function 

 

 Gradients on bias 

𝜕𝐸
𝜕𝑏

𝜕𝐸
𝜕𝑏 𝜏 . 𝑑𝜏 

𝜕𝐸
𝜕𝑦 𝜏

𝜕𝑦 𝜏
𝜕𝑏 𝜏 . 𝑑𝜏 

𝑍 𝜏
𝜕𝑦 𝜏
𝜕𝑏 𝜏 . 𝑑𝜏 

𝑍 𝜏
𝜕𝑦 𝜏
𝜕𝑥 𝜏

𝜕𝑥 𝜏
𝜕𝑏 𝜏 . 𝑑𝜏 
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𝑆 . 𝑍 𝜏 . 𝑓 ′ 𝑥 𝜏 Δ𝑡 . 𝑑𝜏       (A3) 

 Gradients on  scale parameters 

𝜕𝐸
𝜕𝑇

𝜕𝐸
𝜕𝑇 𝜏 . 𝑑𝜏 

𝜕𝐸
𝜕𝑦 𝜏

𝜕𝑦 𝜏
𝜕𝑇 𝜏 . 𝑑𝜏 

𝑍 𝜏
𝜕𝑦 𝜏
𝜕𝑇 𝜏 . 𝑑𝜏 

𝑆
Δt . 𝑍 𝜏 . 𝑓 𝑥 𝜏 Δ𝑡 𝑦 𝜏 Δ𝑡 . 𝑑𝜏        (A4) 

 

APPENDIX B 

Backpropagation in a dynamic neuron. 

 

 Calculation of  𝒁𝒋
𝟏 𝝉 : 

𝑍 𝜏  corresponds to the error coming, at the following instants, from the synapses connecting the neurons: 

𝑍 𝜏
𝜕𝐶

𝜕𝑦 𝜏 Δ𝑡
𝜕𝑦 𝜏 Δ𝑡

𝜕𝑥 𝜏
𝜕𝑥 𝜏
𝜕𝑦 𝜏  

𝑍 𝜏 Δ𝑡 . 𝑆 . 𝑓 𝑥 𝜏 . 𝜔 𝜏     (B1) 

 Calculation of 𝒁𝒋
𝟐 𝝉  :  

 𝑍 𝜏  represents the error coming directly from the output neurons. It does not exist if the neuron is 

hidden. Hence, for the output neurons only, there is 𝑒 𝜏 0 : 
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 for a hidden neuron : 𝑍 𝜏 0. 

 for an output neuron 𝑍 𝜏 0: 

The calculation of the instantaneous errors 𝑒 𝜏  constitutes the coupling between the controlled system 

and the learning algorithm. This calculation depends on the criterion to minimize. Therefore, it is not 

possible to write a general formula to obtain these values because they are related to the controlled system 

and to the cost function: 

𝑍 𝜏
𝜕𝐸

𝜕𝑦 𝜏
𝜕 ∑ 𝑒 𝜏

𝜕𝑦 𝜏 ∆𝑡
𝜕𝑒 𝜏
𝜕𝑦 𝜏 ∆𝑡        (B2) 

 Calculation of  𝒁𝒋
𝟑 𝝉 : 

𝑍 𝜏  corresponds to the error coming at the following instants by means of the internal dynamics of the 

neuron itself : 

 

𝑍 𝜏
𝜕𝐶

𝜕𝑦 𝜏 ∆𝑡
𝜕𝑦 𝜏 ∆𝑡

𝜕𝑦 𝜏 𝑍 𝜏 ∆𝑡 1 𝑆         (B3) 

 The difference between 𝑍 𝜏  and  𝑍 𝜏 , in the error expression coming from the 𝑗   neuron, comes 

from the terms considered in the equation (4) because 𝑍 𝜏  takes into account the dynamic part expressed by 

the term, 1 𝑆 𝑦 𝑡 . 

 

 Calculation of  𝑍 𝝉  : 

Finally, by gathering the equations (B.1), (B.2) and (B.3), the following equation of the backpropagated 

cost is obtained:  

𝑍 𝜏 𝑍 𝜏 𝑍 𝜏 𝑍 𝜏  

   𝑍 𝜏 Δ𝑡 . 𝑆 . 𝑓 𝑥 𝜏 . 𝜔 𝜏
𝜕𝑒 𝜏
𝜕𝑦 𝜏 . Δ𝑡 𝑍 𝜏 Δ𝑡 . 1 𝑆                       (B4) 

REFERENCES 
Vukobratovic M., (2004).  Zero-moment-point- Thirty Five years of its life, International Journal of 

Humanoid Robotics, Vol.1, No.1, 157–173. 



 29

Albus J.S. (1975). A New Approach to Manipulator Control: the Cerebellar Model Articulation Controller 
(CMAC), Trans. ASME, Series G.,  Journal of Dynamic Systems, Measurement and Control, Vol. 97, 
pp. 220-233. 

Horvath, G., Szabo, T. (2007), Kernel CMAC With Improved Capability, IEEE Transactions on Systems, 
Man, and Cybernetics, Part B, vol.37, no.1, pp.124-138.  

Shun-Feng Su, Zne-Jung Lee, Yan-Ping Wang, (2006). Robust and fast learning for fuzzy cerebellar model 
articulation controllers, IEEE Transactions on Systems, Man, and Cybernetics, Part B, , vol.36, no.1, 
pp.203-208,  

Chih-Min Lin; Chiu-Hsiung Chen, (2007). Robust Fault-Tolerant Control for a Biped Robot Using a 
Recurrent Cerebellar Model Articulation Controller, IEEE Transactions on Systems, Man, and 
Cybernetics, Part B, vol.37, no.1, pp.110-123  

Kun A. L., Miller W. T.,, (1996). Adaptive Dynamic Balance of A Biped Robot Using Neural Networks, 
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Vol. 1, pp. 
240-245, Minnesota. 

Sabourin C., Bruneau O., (2005). Robustness of the dynamic walk of a biped robot subjected to disturbing 
external forces by using CMAC neural networks, Journal of Robotics and Autonomous Systems, Elsevier 
Science, N°51, pp 81-99. 

Marcua T., Köppen-Seligerb B., Stücher R. (2008). Design of fault detection for a hydraulic looper using 
dynamic neural networks, Control Engineering Practice , Volume 16,192–213 

Song E-J, Tahk M-J., (2001). Real-time neural-network midcourse guidance, Control Engineering Practice , 
Volume 9 ,1145–1154 

Wu Y., Song Q., Yang X., (2007),Robust recurrent Neural Network Control of Biped Robot, Journal of 
Intelligent Robotic Systems,  Vol. 49, pp151-169. 

Fukuda T., Komata Y., Arakawa T., (1997). Stabilization Control of Biped Locomotion Robot based Learning 
with GAs having Self-adaptive Mutation and Recurrent Neural Networks, Proceedings of the IEEE 
International Conference on Robotics and Automation (ICRA), pp. 217-222. 

Taga G., Yamaguchi Y., Shimizu H., (1991). Self-organized control of bipedal locomotion by neural 
oscillators in unpredictable environment, Biological  Cybernetics, 65(3), pp.147-59. 

Geng T., Porr B., Wörgötter F., (2006). A Reflexive Neural Network for Dynamic Biped Walking Control, 
Neural Computation, MIT press,Vol. 18, No. 5, p 1156-1196. 

Righetti L., Ijspeert A.J., (2006). Programmable Central Pattern Generators: an application to biped 
locomotion control, Proceedings of the IEEE International Conference on Robotics and Automation, pp. 
1585-1590, Orlando.  

Nakanishi J., Morimoto J., Endo G., Cheng G., Schaal S., Kawatoa M., (2004), Robot Learning from 
Demonstration. Robotics and Autonomous Systems, Vol. 47, Issues 2-3, pp 79-91.  

Mizunoa N., Kurodaa M., Okazakib T., Ohtsu K., (2007) , Minimum time ship maneuvering method using 
neural network and nonlinear model predictive compensator, Control Engineering Practice , Volume 15, 
757–765 

Gao Y., Er M. J.,  (2003), On-line Adaptive Fuzzy Neural Identification and control of a class of MIMO 
Nonlinear Systems, IEEE Transactions on Fuzzy Systems, vol. 11, No 4, 462 - 477 

Hsu Chun-Fei, (2009), Intelligent position tracking control for LCM drive using stable on-line self-
constructing recurrent neural network controller with bound architecture, Control Engineering Practice, 
Volume 17, Issue 6, Pages 714-722 

Beer, R.D. (2006). Parameter space structure of continuous-time recurrent neural networks. Neural 
Computation 18:3009-3051. 

Williams H., J., (2007), Homeostatic plasticity improves signal propagation in continuous-time recurrent 
neural networks. Biosystems, Volume 87, Issues 2-3, pp. 252-259.  

Hoinville T., Hénaff P., (2004), Comparative Study of Two Homeostatic Mechanisms in Evolved Neural 
Controllers for Legged Locomotion”, Proceedings of IEEE/RSJ International Conference on Intelligent 
Robots and Systems, pp 2624-2629, Japan. 

Pineda F.J., (1987). Generalization of back-propagation to recurrent neural networks. Physical Review Letters 
59(19), pp. 2229–2232. 

Werbos P.J.  , (1990). Backpropagation through time: what it does and how to do it,  Proceedings of the 
IEEE, Volume 78, Issue 10, pp. 1550-1560, October. 

 30

Nguyen M.H., Cottrell G.W. (1997). Tau Net: A neural network for modeling temporal variability. 
Neurocomputing,  15, pp. 249-271.  

Pearlmutter B.A., (1995). Gradient calculation for dynamic recurrent neural networks: a survey, IEEE 
Transactions on Neural Networks, 6(5), pp. 1212-1228.  

Rumelhart D.E, Hinton G.E., Williams R.J., (1986). Learning internal representations by error propagation. 
Parallel distributed processing: explorations in the microstructure of cognition, eds D E Rumelhart, J L 
Mc- Clelland and the PDP Research Group (MIT Press, Cambridge MA), pp 318–362. 

Robinson A. J., Fallside F., (1987). Static and dynamic error propagation networks with application to speech 
coding, Proceedings of Neural Information Processing Systems, American Institute of Physics, pp. 632-
641. 

Scesa V., Hénaff P., Ouezdou F. B., Namoun F., (2006). Time Window Width Influence On Dynamic 
BPTT(h) Learning Algorithm Performances: Experimental Study, Proceedings of IEEE International 
Conference on Artificial Neural Networks, S. Kollias et al. (Eds.), Part I, LNCS 4131, pp. 93 -102, 
Springer-Verlag Berlin Heidelberg,  

Scesa V., Mohamed B., Henaff P., Ouezdou F.B., (2005). Dynamic recurrent neural network for biped robot 
equilibrium control: preliminary results, Proceedings of IEEE International Conference on Robotics and 
Automation, pp 4125-4130.  

Setiawan S. A.,. Hyon S. H, Yamaguchi J., Takanishi A., (1999). Physical interaction between human and a 
bipedal humanoid robot: Realization of human-follow walking, Proceedings of IEEE International 
Conference on Robotics & Automation (ICRA), pp. 361–367, Detroit, U.S.A.  

Kubica E., Wang D., Winter D., (2001). Feedforward and deterministic fuzzy control of balance and posture 
during human gait, Proceedings of IEEE International Conference on Robotics & Automation (ICRA), 
pp. 2293–2298, Seoul, Korea,.  

Hyon S-H, (2009). Compliant Terrain Adaptation for Biped Humanoids Without Measuring Ground Surface 
and Contact Forces, IEEE Transactions on Robotics, Vol. 25, N. 1,  

Morimoto J., Endo G., Nakanishi, J., Hyon S.H., Cheng G., Bentivegna D. ,Atkeson C.G, (2006). Modulation 
of simple sinusoidal patterns by a coupled oscillator model for biped walking, Proceedings of IEEE 
International Conference on Robotics and Automation, ICRA 2006. Volume , Issue , 15-19 
Page(s):1579 -1584,  

Mohammed B., Gravez F., Ouezdou F.B., (2004). Emulation of the Dynamic Effects of Human Torso During 
a Walking Gait, Journal of mechanical design, Transactions of the ASME, Volume 126, Issue 5, pp.  
830-841. 

Mohamed, B., Gravez, F., Bruneau, O., Ouezdou, F.B. (2001). Four Dof Torso dynamic effects on biped 
walking gait. Proceedings of 14th CISM-IFToMM Symp. On Theo. and Practice of Robots and 
Manipulators, Romansy, pp 453-462 

Williams R.J., Zipser D., (1989). A learning algorithm for continually running fully recurrent neural 
networks, Neural Computation, pp. 1270–280.  

Williams, R. J. and Peng, J. (1990). An efficient gradient-based algorithm for on-line training of recurrent 
network trajectories. Neural Computation, 4, pp. 491-501,. 

Konno A., Sellaouti R., Amar F.B., Ouezdou F.B., (2002). Design and development of the biped prototype 
ROBIAN, Proceedings of IEEE International Conference on Robotics and Automation, Volume 2, 11-
pp1384 – 1389 

Sellaouti R., Ouezdou F. B., (2005). Design and control of a 3DOFs parallel actuated mechanism for biped 
application, Mechanism and Machine Theory, Volume 40, N°12, pp. 1367-1393. 

Zaoui C., Bruneau O., Ouezdou F.B., Maalej A.,  (2009). Simulations of the dynamic behavior of a bipedal 
robot with trunk and arms subjected to 3D external disturbances in a vertical posture, during walking 
and during object handling, accepted in Journal of Multibody System Dynamics, Springer.  

 
 

 
 
 

 


