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Introduction

Given an open set Ω ⊂ R N , N ≥ 1, and p > 1, consider the Lane-Emden equation (1.1) -∆u = |u| p-1 u in Ω.

We are interested in the classical question of regularity of solutions to (1.1). Namely, given a class of weak solutions C, we ask: what is the largest exponent p > 1, such that

(1.2) u ∈ C =⇒ u ∈ C 2 (Ω) ?
Consider first C = L p loc (Ω) and assume (1.1) is understood in the sense of distributions. Then, as follows from a well-known bootstrap argument, (1.2) holds true for all p < p 0 (N ), where

p 0 (N ) =    +∞, if 1 ≤ N ≤ 2, N N -2 , if 3 ≤ N .
The exponent p 0 (N ) is sharp. Indeed, for all p > p 0 (N ),

u(x) = c N,p |x| -2 p-1
is a singular solution belonging to C. A (radial) singular solution also exists if p = p 0 (N ), see [START_REF] Aviles | On isolated singularities in some nonlinear partial differential equations[END_REF][START_REF] Ni | Singular behavior in nonlinear parabolic equations[END_REF]. Consider next the case C = H 1 loc (Ω) ∩ L p loc (Ω). Then (1.2) holds true for all p ≤ p S (N ) where

p S (N ) =    +∞, if 1 ≤ N ≤ 2, N + 2 N -2
, if 3 ≤ N .
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1 When p < p S (N ), the proof uses the same bootstrap argument and the extra assumption that u ∈ H 1 loc (Ω) for the initial step. See [START_REF] Brézis | Remarks on the Schrödinger operator with singular complex potentials[END_REF] for the critical case p = p S (N ). The Sobolev exponent p S (N ) is again sharp in the considered class, using the same counter-example.

Restrict at last to the class C of energy solutions having finite Morse index, i.e., u ∈ C if u ∈ H 1 loc (Ω) ∩ L p loc (Ω) and the maximal dimension of a vector space X ⊂ C 1 c (Ω) such that

Q u (ϕ) := Ω |∇ϕ| 2 dx -p Ω |u| p-1 ϕ 2 dx < 0, for all ϕ ∈ X \ {0}
is an integer k, called the Morse index of u. If k = 0, we say that u is stable. Note that this class of weak solutions is a natural choice, since any C 2 solution to (1.1) is bounded on any open set ω ⊂⊂ Ω and so must have finite Morse index on ω. We obtain the following result.

Theorem 1.1. Let u ∈ H 1 loc (Ω) ∩ L p loc (Ω) be a solution to (1.1) of finite Morse index. If p < p c (N ), where p c (N ) =      +∞, for 1 ≤ N ≤ 10, (N -2) 2 -4N + 8 √ N -1 (N -2)(N -10) , for 11 ≤ N , then, u ∈ C 2 (Ω).
Under the stronger assumptions that Ω is smoothly bounded, u is stable, and u| ∂Ω = 1, the smoothness of u was first proved in [START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF][START_REF] Mignot | Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe[END_REF]. At no surprise, the proof of Theorem 1.1 is by bootstrap (using the additional information that u has finite Morse index in the initial step). The Joseph-Lundgren exponent p c (N ) is again sharp in the considered class, using the same counter-example.

In the supercritical cases (p ≥ p 0 (N ), p > p S (N ), p ≥ p c (N )), solutions can be singular at a point, as discussed earlier, but also on larger sets. E.g. if there exists an integer k such that 0 ≤ k ≤ N -1 and k < N -2 p p-1 , then

(1.3) u(x) = C N,p,k x 2 1 + . . . x 2 N -k -1 p-1
is a solution having k-dimensional singular set. See also an example in [START_REF] Schoen | Conformally flat manifolds, Kleinian groups and scalar curvature[END_REF] where the Hausdorff dimension of the singular set is not an integer. Nevertheless, if solutions are assumed to be positive and stationary, the singular set can be estimated as follows.

Theorem 1.2 ([16]). Let N ≥ 3 and p ≥ p S (N ). Let u ∈ H 1 loc (Ω) ∩ L p+1 loc ( 
Ω) be a positive weak solution to (1.1). Assume in addition that u is stationary. Then, u ∈ C 2 (Ω \ Σ), where Σ is a closed set of Hausdorff dimension bounded above by

H dim (Σ) ≤ N -2 p + 1 p -1 .
The precise definition of stationary solution can be found in [START_REF] Pacard | Convergence and partial regularity for weak solutions of some nonlinear elliptic equation: the supercritical case[END_REF]. Smooth solutions (and limits thereof in the H 1 (Ω) ∩ L p+1 (Ω) topology) are stationary. When the solution has finite Morse index, we prove that the singular set is in fact much smaller. 

H dim (Σ) ≤ N -2 p + γ p -1 , with γ = 2p + 2 p(p -1) -1.
Remark 1.4. The dimension of the singular set computed in Theorem 1.3 is optimal at least when it is an integer. Indeed, the solution given by

(1.3) is stable in R N if p > p c (N -k), while p c (N -k) solves N -2 p + γ p -1 = k. Remark 1.5. If u ∈ H 1 loc (Ω)∩L p loc (Ω)
is a positive solution with finite Morse index, we prove in the next section that for any point x ∈ Ω, there exists a ball B = B(x, r) such that u is the limit of C 2 solutions in the H 1 (B) ∩ L p+1 (B) topology. Hence, u is stationary in B.

Theorem 1.3 remains valid for sign-changing solutions, provided they are stationary.

We discuss at last the question of universal a priori estimates.

Theorem 1.6. Assume 1 < p < p c (N ) and p = p S (N ). Assume u ∈ H 1 loc (Ω) ∩ L p loc (Ω) is a solution to (1.1) of finite Morse index m.
Then, there exists a constant C depending on N, p, m only, such that for all x ∈ Ω,

(1.4) |u(x)| + |∇u(x)| 2 p+1 ≤ Cdist(x, ∂Ω) -2 p-1 .
Remark 1.7. Assume p = p S (N ). Then, (1.4) remains true for stable solutions (see [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF]). However, the estimate is false for solutions of finite Morse index, since for λ > 0,

u λ (x) = λ N (N -2) λ 2 + |x| 2 N -2 2
provides an unbounded family of solutions of constant Morse index.

The universal estimate (1.4) was first proved for positive solutions and 1 < p < p S (N ) (see [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF][START_REF] Dancer | Superlinear problems on domains with holes of asymptotic shape and exterior problems[END_REF][START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF][START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF]), with a constant C independent of the Morse index m. Note however that for such p, there do exist sign-changing solutions of arbitrary large Morse index, for which the dependance of the constant C to m must be kept (see [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF][START_REF] Bahri | Solutions of superlinear elliptic equations and their Morse indices[END_REF][START_REF] Rabinowitz | Dual variational methods for nonlinear eigenvalue problems[END_REF]). Estimate (1.4) was then proved in [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF] for C 2 solutions which are stable, for the full range 1 < p < p c (N ).

We provide at last a universal estimate for C 2 solutions of the more general problem:

(1.5) -∆u = f (u) in Ω
where f ∈ C 1 (R, R) behaves like a power of u at infinity. More precisely, Theorem 1.8. Suppose

lim t→±∞ f ′ (t) p|t| p-1 = a (1.6)
for some a > 0 and 1 < p < p c (N ) and p = p S (N ). Let u ∈ H 1 loc (Ω) ∩ L p loc (Ω) be a solution of (1.5) of finite Morse index m. Then, there exists a constant C depending on N, f, m only, such that for all x ∈ Ω,

|u(x)| + |∇u(x)| 2 p+1 ≤ C(1 + dist(x, ∂Ω) -2 p-1 ).
Theorem 1.8 was proved in [START_REF] Poláčik | Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems[END_REF] for positive solutions, 1 < p < p S (N ), and with a constant C independent of the Morse index m. In the case p = p S (N ), the theorem remains valid for stable solutions, but fails for solutions of finite Morse index (see the counter-example in Remark 1.7). Similar statements can be derived for the nonlinearity f (u) = e u , as we shall demonstrate in a future publication.

Preliminary results

2.1. Reduction to the case of stable solutions. Proposition 2.1. Let u ∈ H 1 loc (Ω)∩L p loc (Ω) be a solution to (1.1) with finite Morse index. Then, for every x 0 ∈ Ω, there exists r 0 > 0 such that u is stable in B(x 0 , r 0 ).

Proof. When N = 1, any function u ∈ H 1 loc (Ω) is locally bounded by Morrey's inequality. In particular, the linearized operator L = -∆ -p|u| p-1 has positive principal eigenvalue in any sufficiently small ball, whence u is stable on such a ball. Assume now N ≥ 2. We may always assume that B(0, 1) ⊂ Ω and it suffices to prove that u is stable near the origin. Assume first that u has Morse index 1. Either u is stable in B(0, 1/n) for some n ≥ 2 and we are done. Or, for all n ≥ 2, there exists a direction

ϕ n ∈ C 1 c (B(0, 1/n)) such that Q u (ϕ n ) < 0. Since u has index 1, this implies that u is stable in B(0, 1) \ B(0, 1/n).
This being true for all n ≥ 2, we deduce that u is stable in B(0, 1) \ {0}. In fact, since N ≥ 2, points have zero Newtonian capacity and so u is stable in B(0, 1). So, every solution of index 1 is stable in a neighborhood of 0. Take now a solution u of index k ≥ 2. Working exactly as above, we deduce that u has index k -1 in some ball B(0, r 1 ). Working inductively on k, we deduce that u is stable in some ball B(0, r k ).

Approximation of singular stable solutions.

Lemma 2.2. Suppose u ∈ H 1 loc (Ω) ∩ L p loc (Ω) is a nonnegative stable weak solution to (1.1). Then, there exists a sequence of nonnegative stable solutions u n ∈ C 2 (Ω) to (1.1), such that u n ր u a.e. and in H 1 loc (Ω).

Proof. The proof is a refinement of a concave truncation technique found in [START_REF] Brezis | Blow up for ut -∆u = g(u) revisited[END_REF].

Let us first observe that since u ∈ H 1 loc (Ω) and u solves (1.1), we have u ∈ L p+1 loc (Ω). Take now ω ⊂⊂ Ω with smooth boundary, so that u ∈ H 1 (ω) ∩ L p+1 (ω). We are going to produce a sequence u n converging to u in H 1 (ω). By a standard diagonal argument, we then reach the desired conclusion.

In the sequel, we write ω = Ω for notational convenience. Given c > 0, consider the function

φ c (t) = c + t -(p-1) -1 p-1 , defined for t > 0.
We set also φ c (0) = 0. Then, φ c is increasing, concave, and smooth for t > 0. In addition, φ c (t) ր t as c ց 0 + , and φ c (t) ≤ t, for all t ≥ 0. Also, if c > 0, then φ c , φ ′ c are uniformly bounded. We have

φ ′ c (t) = φ c (t) p t p ∀t > 0.
Let w c denote the unique solution to

-∆w c = 0 in Ω w c = φ c (u) on ∂Ω.
Then,

w c ≥ 0, w c ∈ L ∞ (Ω) ∩ H 1 (Ω).
Moreover, w c is non-increasing with respect to c. We claim that w c → w in H 1 (Ω) as c → 0, where w is the solution to -∆w = 0 in Ω w = u on ∂Ω.

To see this, consider the problem

(2.1) -∆v = (v + w c ) p in Ω v = 0 on ∂Ω.
Since w c ∈ L ∞ (Ω), (2.1) has a minimal nonnegative solution v c , which can be constructed by the method of sub and super-solutions, as follows. Note that v = 0 is a sub-solution, since w c ≥ 0. Moreover, by Kato's inequality, v = φ c (u) -w c is a bounded super-solution:

-∆(φ c (u) -w c ) = -∆φ c (u) ≥ -φ ′ c (u)∆u = φ c (u) p = (φ c (u) -w c + w c ) p .
In particular, (2.1) has a minimal nonnegative solution v c . This minimal solution is bounded and by elliptic regularity, v c belongs to C 1,α (Ω). Moreover, v c is stable in the sense that

p Ω (v c + w c ) p-1 ϕ 2 dx ≤ Ω |∇ϕ| 2 dx, for all ϕ ∈ C 1 c (Ω).
Since v c is minimal and w c is non-increasing with respect to c, we deduce that v c is also non-increasing with respect to c. It follows that v(x) = lim c→0 v c (x) is well-defined for all x ∈ Ω. Since v c ∈ C 1 (Ω), we have

Ω |∇v c | 2 dx = Ω (v c + w c ) p v c dx ≤ Ω u p+1 dx.
In particular, v c is bounded in H 1 0 (Ω). It follows that v c ⇀ v weakly in H 1 0 (Ω). Multiplying (2.1) by ϕ ∈ C ∞ c (Ω), integrating, and passing to the limit as c → 0, we see that v is a weak solution to

-∆v = (v + w) p in Ω v = 0 on ∂Ω. (2.2) Let ϕ k ∈ C 0,1 c (Ω) be a sequence such that ϕ k → v in H 1 0 (Ω).
Since v ≥ 0 we can assume ϕ k ≥ 0. We can also assume that ϕ k → v a.e. in Ω. Multiplying (2.2) by ϕ k and integrating, we obtain

Ω ∇v∇ϕ k dx = Ω (v + w) p ϕ k dx By Fatou's lemma, Ω (v + w) p v dx ≤ lim inf k→∞ Ω ∇v∇ϕ k dx = Ω |∇v| 2 dx.
By monotone convergence,

lim c→0 Ω |∇v c | 2 dx = lim c→0 Ω (v c + w c ) p v c dx = Ω (v + w) p v dx.
Hence,

lim c→0 Ω |∇v c | 2 dx = Ω (v + w) p v dx ≤ Ω |∇v| 2 dx.
Since v c ⇀ v weakly in H 1 0 (Ω), the reverse inequality

Ω |∇v| 2 dx ≤ lim inf c→0 Ω |∇v c | 2 dx
also holds, which proves that v c → v in H 1 0 (Ω). We claim that u = v + w, from which Lemma 2.2 follows. By construction, v = lim v c ≤ lim(φ c (u) -w c ) = u -w. We need thus only prove that u ≤ v + w. Note that ṽ = u -w solves (2.2). Let z = ṽ -v ≥ 0. Then, z ∈ H 1 0 (Ω), and since u is stable,

p Ω (ṽ + w) p-1 (ṽ -v) 2 dx ≤ Ω |∇(ṽ -v)| 2 dx. (2.3) Now, ṽ -v satisfies Ω ∇(ṽ -v)∇ϕ dx = Ω ((ṽ + w) p -(v + w) p )ϕ dx, ∀ϕ ∈ C ∞ c (Ω).
We would like to take ϕ = ṽ -v. First, we claim that we can take ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω). These functions can be approximated in H 1 0 (Ω) by functions in C ∞ c (Ω) with a uniform bound. Then, take ϕ = min(ṽ -v, t), t > 0, which belongs to

H 1 0 (Ω) ∩ L ∞ (Ω). We get [ṽ-v≤t] |∇(ṽ -v)| 2 dx = Ω ((ṽ + w) p -(v + w) p ) min(ṽ -v, t) dx. Now let t → ∞. Then, Ω |∇(ṽ -v)| 2 dx = Ω ((ṽ + w) p -(v + w) p )(ṽ -v) dx
Combined with (2.3) we find Ω (ṽ -v) p(ṽ + w) p-1 (ṽ -v) -(ṽ + w) p + (v + w) p dx ≤ 0.

By convexity, p(ṽ + w) p-1 (ṽ -v) -(ṽ + w) p + (v + w) p ≥ 0 with strict inequality, unless ṽ ≡ v.

Some well-known ingredients.

Proofs of all the results in this section can be found in [START_REF] Dupaigne | Stable solutions to elliptic partial differential equations[END_REF]. We begin with a so-called ε-regularity result for weak solutions to (1.1) in Morrey spaces. Recall the following definition.

Definition 2.3. Let Ω be a bounded open set of R N , N ≥ 1. Given p > 1 and λ ∈ [0, N ],
the Morrey space L p,λ (Ω) is the set of functions u in L p (Ω) such that the following norm is finite:

u p L p,λ (Ω) = sup x0∈Ω, r>0 r -λ B(x0,r)∩Ω |u| p dx < ∞.
Then, Theorem 2.4 ( [START_REF] Guo | The blow up locus of semilinear elliptic equations with supercritical exponents[END_REF][START_REF] Pacard | Convergence and partial regularity for weak solutions of some nonlinear elliptic equation: the supercritical case[END_REF]). Let N ≥ 3, p > 1, and λ = N -2 p+1 p-1 . Let also B(x 0 , r 0 ) be a ball. There exists ε = ε(N, p) > 0 such that for any weak solution u ∈ H 1 (B(x 0 , r 0 )) ∩ C(B(x 0 , r 0 )) to (1.1) satisfying

(2.4) u L p+1,λ (B(x0,r0)) ≤ ε, there holds u L ∞ (B(x0,r0/2)) ≤ 4 r 0 2 p-1 .
Also recall the following classical result from geometric measure theory.

Theorem 2.5. Let Ω denote an open set of R N , N ≥ 1, u a function in L 1 loc (Ω) and 0 ≤ s < N . Set E s = x ∈ Ω : lim sup r→0 + r -s Br (x) |u(y)| dy > 0 . Then, H s (E s ) = 0,
where H s denotes the Hausdorff measure of dimension s.

The next ingredient in the proof of Theorem 1.3 is the following monotonicity formula.

Theorem 2.6 ([15]

). Let u ∈ H 1 (Ω) ∩ L p+1 (Ω) denote a stationary weak solution to (1.1). For x ∈ Ω, r > 0, such that B(x, r) ⊂ Ω, consider the energy E u (x, r) given by

(2.5) E u (x, r) = r -µ B(x,r) 1 2 |∇u| 2 - 1 p + 1 |u| p+1 dx + r -µ-1 p -1 ∂B(x,r) |u| 2 dσ, where µ = N -2 p + 1 p -1 .
Then,

• E u (x, r) is nondecreasing in r. • E u (x, r) is continuous in x ∈ Ω and r > 0.
Remark 2.7 ( [START_REF] Pacard | Partial regularity for weak solutions of a nonlinear elliptic equation[END_REF]). The energy E u (x, r) can be equivalently written as

(2.6) E u (x, r) = p -1 p + 3 r -µ B(x,r) 1 2 |∇u| 2 + 1 p + 1 |u| p+1 dy + 1 p + 3 d dr r -µ ∂B(x,r) |u| 2 dσ .
We shall use at last the following capacitary estimate.

Proposition 2.8 ([10]). Let Ω be an open set of R N , p > 1. Let u ∈ H 1 loc (Ω) ∩ L p loc (Ω) denote a stable solution to (1.1). Then, for any γ ∈ [1, 2p+2 p(p -1)-1), any ψ ∈ C 1 c (Ω), 0 ≤ ψ ≤ 1, and any integer m ≥ max p+γ p-1 , 2 , there exists a constant C p,m,γ > 0 such that Ω ∇ |u| γ-1 2 u 2 + |u| p+γ ψ 2m dx ≤ C p,m,γ Ω |∇ψ| 2( p+γ p-1 ) dx.
In the case where u ∈ C 2 (Ω), the proof of this result is given in [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF]. This proof can be adapted to the case u ∈ H 1 loc (Ω) ∩ L p loc (Ω) as follows: multiply (1.1) with |T k (u)| γ-1 uϕ 2 , where T k (s) = max(-k, min(u, k)) and ϕ ∈ C 2 c (Ω) and apply stability with test function Proof of Theorem 1.3 . By Proposition 2.1, we may assume that u is a nonnegative stable weak solution to (1.1). Given ε > 0, define

|T k (u)| γ-1 2 uϕ.
Σ ε = x ∈ Ω : ∀r > 0 B(x,r) (u p+1 + |∇u| 2 ) dx ≥ εr N -2 p+1 p-1
Step 1. There exists a fixed value of ε > 0 such that for every x ∈ Σ ε , u is bounded (hence C 2 ) in a neighborhood of x.

To see this, let x 0 ∈ Σ ε : there exists r 0 > 0 such that

r -µ 0 B(x0,r0) (u p+1 + |∇u| 2 ) dx < ε,
where µ = N -2 p+1 p-1 . By (2.5), for r < r 0 ,

E u (x 0 , r) ≤ r -µ B(x0,r) 1 2 |∇u| 2 dy + r -µ-1 p -1 ∂B(x0,r) u 2 dσ ≤ r -µ B(x0,r0) 1 2 |∇u| 2 dy + r -µ-1 p -1 ∂B(x0,r) u 2 dσ ≤ ε 2 r r 0 -µ + r -µ-1 p -1 ∂B(x0,r) u 2 dσ
Integrating between r = r 0 /2 and r 0 , and recalling that E u (x, r) is nondecreasing in r, we deduce that

r 0 2 E u (x 0 , r 0 /2) ≤ 2 µ-2 εr 0 + 1 p -1 r0 r0/2 r -µ-1 ∂B(x0,r) u 2 dσ dr ≤ Cεr 0 + Cr -µ-1 0 B(x0,r0) u 2 dy ≤ Cεr 0 + Cr -µ-1 0 B(x0,r0) u p+1 dy 2 p+1 r N (1-2 p+1 ) 0 < Cεr 0 .
Hence, E u (x 0 , r 0 /2) < Cε.

Since E u is continuous in x, there exists r 1 < r 0 /2 such that E u (x, r 0 /2) < 2Cε, for x ∈ B(x 0 , r 1 ). Since E u is nonincreasing in r, we deduce that for all x ∈ B(x 0 , r 1 ) and all r < r 1 , (3.1) E u (x, r) < 2Cε.

Now take an approximating sequence u n given by Lemma 2.2. Integrating (2.6) between 0 and r 2 < r 1 , we find

p -1 p + 3 r2 0 r -µ B(x,r) 1 2 |∇u n | 2 + 1 p + 1 u p+1 n dy dr+ + r -µ 2 p + 3 ∂B(x,r2) u 2 n dσ ≤ r 2 E un (x, r 2 ).
It follows that

Cr 2 E u (x, r 2 ) ≥ r2 0 r -µ B(x,r)
u p+1 dy dr

≥ r2 r2/2 r -µ B(x,r)
u p+1 dy dr

By the fundamental theorem of calculus, we deduce that there exists r 3 ∈ (r 2 /2, r 2 ) such that

CE u (x, r 2 ) ≥ r -µ 3 B(x,r3) u p+1 dy ≥ r -µ 2 B(x,r2/2)
u p+1 dy Apply now (3.1). Then,

r -µ B(x,r)
u p+1 dy ≤ Cε, for all x ∈ B(x 0 , r 1 ) and all r < r 1 /2. Taking ε small, it follows from Theorem 2.4 that (u n ) is uniformly bounded near x 0 and so, u is C 2 in a neighborhood of x 0 .

Step 2. For all γ ≥ 1, there exists ε ′ > 0 such that

Σ ε ′ ⊇ Σε ′ := x ∈ Ω : ∀r > 0 B(x,r) u p+γ dx ≥ ε ′ r N -2 p+γ p-1
.

Indeed, suppose x ∈ Σε ′ . Then,

B(x,r) u p+γ dx < ε ′ r N -2 p+γ p-1
for some r > 0. By Hölder's inequality,

B(x,r)

u p+1 dx ≤ C B(x,r) u p+γ dx p+1 p+γ r N (1-p+1 p+γ ) < C ε ′ r N -2 p+γ p-1 p+1 p+γ r N (1-p+1 p+γ ) = C(ε ′ ) p+1 p+γ r N -2 p+1 p-1 .
Take a function ϕ ∈ C 2 c (Ω) and multiply the Lane-Emden equation (1.1) by uϕ 2 . Then,

Ω |∇u| 2 ϕ 2 dx + Ω u∇u • ∇ϕ 2 dx = Ω u p+1 ϕ 2 dx i.e. Ω |∇u| 2 ϕ 2 dx = Ω u p+1 ϕ 2 dx + 1 2 Ω u 2 ∆ϕ 2 dx
Choose now ϕ such that ϕ = 1 in B(x, r/2), ϕ = 0 outside B(x, r), and |∆ϕ 2 | ≤ C/r 2 . Then,

B(x,r/2) |∇u| 2 dx ≤ C B(x,r) u p+1 dx + C r 2 B(x,r) u 2 dx
We estimate

1 r 2 B(x,r) u 2 dx ≤ C r 2 B(x,r) u p+γ dx 2 p+γ r 1-2 p+γ < C r 2 ε ′ r n-2 p+γ p-1 2 p+γ r 1-2 p+γ = C(ε ′ ) 2 p+γ r N -2 p+1 p-1 .
Using (3.2), we deduce that

B(x,r/2) (u p+1 + |∇u| 2 ) dx < C(ε ′ ) 2 p+γ r N -2 p+1 p-1 . Choosing ε ′ such that C(ε ′ ) 2 p+γ ≤ ε, we deduce that x ∈ Σ ε . And so, Σε ′ ⊂ Σ ε . Step 3. By the capacitary estimate (Proposition 2.8), u ∈ L p+γ loc (Ω) if γ ∈ [1, 2p + 2 p(p -1) -1)
. By Theorem 2.5 It follows that for ε ′ > 0 small,

H N -2 p+γ p+1 ( Σε ′ ) = 0.
This being true for all γ ∈ [1, 2p + 2 p(p -1) -1), Theorem 1.3 follows.

Proof of the apriori estimates

Proof of Theorem 1.6. The proof of (1.4) is the same as the one given in [START_REF] Poláčik | Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems[END_REF], except for the use of Theorem 2 of [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF] 

λ k = (|u k (x k )| p-1 2 + |∇u k (x k )| p-1 p+1 ) -1 v k (y) = λ 2 p-1 k u k (x k + λ k y) we have λ k → 0, -∆v k = f k (v k ) in B(0, k)
where

f k (v) = λ 2p p-1 k f (λ -2 p-1 k v), and 
|v k | p-1 2 + |∇v k | p-1 p+1 ≤ 2 in B(0, k) |v k (0)| p-1 2 + |∇v k (0)| p-1 p+1 = 1. Note that f k (v k ) and ∇[f k (v k )] are both uniformly bounded. Then, up to subse- quence v k → v in the C 1 loc (R N ) topology, f k (v k ) → g in the C 0,α loc (R N
) topology (for some α ∈ (0, 1)) and -∆v = g in the sense of distributions. By standard elliptic estimates v is then a classical C 2,α loc (R N ) solution of -∆v = g in R N . We claim that v satisfies -∆v = a|v| p-1 v in R N . To conclude we work again by contradiction. Assume there exist m + 1 linearly independent functions ϕ j ∈ C ∞ c (R N ) such that Q v (ϕ j ) < 0, j = 1, . . . , m+1, where

Q v (ϕ) = R N |∇ϕ| 2 -ap|v| p-1 ϕ 2 dx.
Then, since lim k→+∞ f ′ k (v k (y)) = ap|v(y)| p-1 pointwise in R N , we have lim k→∞ B(0,k)

|∇ϕ| 2 -f ′ k (v k )ϕ 2 dx = Q v (ϕ),
for any ϕ ∈ C ∞ c (R N ). Therefore, for k large enough, u k has Morse index greater or equal than m + 1, which is a contradiction.

We have constructed a nontrivial C 2 solution of (4.1) of finite Morse index, which is not possible by Theorem 2 of [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF] if p = p S (N ) (and by Theorem 1 of [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF] when p = p S (N ) and m = 0).

3 .

 3 Proofs of Theorems 1.1 and 1.3. Proof of Theorem 1.1. Thanks to Proposition 2.8, u ∈ L p+γ loc (Ω) for all γ ∈ [1, 2p + 2 p(p -1) -1). Using elliptic estimates and a standard bootstrap argument, we deduce that u ∈ C 2 (Ω), provided N ≤ 10 or N ≥ 11 and p < p c (N ).

(4. 1 ) 2 p- 1 knv 2 p- 1 kn 2 p- 1 kn

 1212121 To this end it is enough to prove that g = a|v| p-1 v in R N . The assumption(1.6) implieslim t→±∞ f (t) |t| p-1 t = a. (4.2) Therefore, on the open set [v = 0], f k (v k (x)) → a|v(x)| p-1 v(x) pointwise, hence g = |v| p-1 v on [v = 0] and also on [v = 0] by continuity. If y ∈ [v = 0] then v is zero in a neighborhood U y of y and hence 0 = -∆v = g in U y , giving in particular that g(y) = 0.It remains to verify that v has Morse index at most m. We first prove thatlim k→+∞ f ′ k (v k (y)) = ap|v(y)| p-1 pointwise in R N .This is clearly true for y ∈ [v = 0], thanks to (1.6). On the other hand, for y ∈ [v = 0], the desired conclusion holds true since lim sup k→+∞ |f ′ k (v k (y))| = 0. Indeed, let us suppose the contrary, then lim n→+∞ |f ′ kn (v kn (y))| > 0 for a sequence k n ր +∞. Since f ′ kn (v kn (y)) = λ 2 kn f ′ (λ kn (y)), the sequence λ -|v kn (y)| must be unbounded. Hence, up to a subsequence, λ -|v kn (y)| → +∞ and then, by (1.6), |f ′ kn (v kn (y))| ≤ C|v kn (y)| p-1 → 0. A contradiction.

  Theorem 1.3. Let N ≥ 11 and p > p c (N ). Let u ∈ H 1 loc (Ω) ∩ L p loc (Ω) be a positive solution to (1.1) of finite Morse index. Then, u ∈ C 2 (Ω \ Σ), where Σ is a closed set of Hausdorff dimension bounded above by

  stating that there are no entire solutions of finite Morse index if p is in the range of Theorem 1.1. Proof of Theorem 1.8. By Theorem 1.1, any finite Morse index solution to (1.1) is C 2 , provided p < p c (N ). Working by contradiction, as in the proof of Theorem 2.3 of[START_REF] Poláčik | Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems[END_REF], we can find a sequence (u k ) of solutions of (1.5) (with Morse index at most m) and a sequence of points (x k ) such that by setting
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