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1 Introduction

The virtual testing of delamination is a goal shared by many practitioners, especially in the aero-
nautical field. In order to reach such an objective, two research topics which have undergone
drastic changes over the last twenty years must be linked: the relevant modeling of composites and
the efficient analysis of structures.

Indeed, there have been many advances toward a better understanding of the mechanics of
laminated composites and the mechanisms of damage. The validity of two types of models, mi-
croscale models and mesoscale models, has been proven. Microscale models are closely connected
to the physics of the material and, thus, provide a reliable framework for simulation. They take
into account many damage processes, such as diffuse intralaminar degradations percolating into
transverse cracking, diffuse interface degradations leading to distributed delamination, chemically-
or thermally-induced degradations, or fiber breakage. [12, 8]. On the microscale, simulations can
combine continuous (damage) and discrete (fracture) degradation models [18]. Unfortunately, the
analysis of models defined on the microscale requires such a refined discretization that only small
test specimens can be simulated. Industrial-size structural calculations are beyond the reach of
even recent computers. Mesomodels [1, 13, 3] are defined on a scale which makes both the introduc-
tion of physics-based components and the simulation of small industrial structures possible. Very
often these models rely on the definition of two mesoconstituents, the ply (a three-dimensional
entity) and the interface (a two-dimensional entity), which are modeled using continuum (damage)
mechanics and behavior derived from the homogenization of micromodels [17, 16]. Nevertheless, in
order to achieve reliable simulations, refined discretizations are still required for the correct repre-
sentation of the stress gradients induced by edge effects, which are responsible for the initiation of
many degradations. Therefore, the resulting problems remain very large (in terms of the number
of degrees of freedom) and highly nonlinear, which creates potential instabilities.

In a first approach to the reliable simulation of delamination in composite structures, we chose
to neglect the effect of damage within plies and concentrate on the degradations at the interfaces.
Thus, we adopted the mesomodel presented in [1], in which the debonding phenomenon is localized
at the interfaces and handled through cohesive behavior. A similar approach with a different
interface behavior (degradations based on plasticity) was applied in [22].

In order to handle the large nonlinear systems associated with this modeling approach, one can
consider using one of the several multiscale [19, 5, 4, 14] and enrichment [21, 10, 6, 20] techniques
developed recently. We based our strategy on the mixed domain decomposition method described
in [14], which places special emphasis on the interfaces between substructures. Consequently, the
reference problem resulting from the mesomodel chosen is substructured by nature, and the cohesive
interfaces of the model are handled within the interfaces of the domain decomposition method.
This idea is developed in Section 2. Furthermore, the resolution of the substructured problem by
a LATIN iterative solver has very advantageous numerical properties: the nonlinearities are dealt
with through local problems, and very little matrix reassembling is required. The incremental
micro-macro LATIN algorithm as a resolution strategy for delamination problems is presented in

1



Section 2.2. As shown in Section 2.3, the direct application of this method leads to a number
of numerical difficulties. A first issue occurs when setting the parameters of the method: in
Section 3, we present the indispensable tuning of the search directions according to the interface’s
status. Subsequently, the main remaining difficulties concern the treatment of the macroscale of
the problem. In this paper, the emphasis is on the adaptation of our strategy in order to deal with
large macroproblems. (Important remarks on how to make the macroproblem more relevant can be
found in [11].) In Section 4, we present the parallelization of the resolution, which was inspired by
[19]. In order to do that, we introduce a third level of discretization after the first and most refined
level (the finite element) and the second level (the substructure): interconnected substructures are
combined into “super-substructures” (which fill up the memory capacity of processors) connected
to one another through “super-interfaces” using Message Passing Interface (MPI). The method is
validated in Section 5 using a complex test case. The handling of the instabilities is not described in
this paper. The interested reader may refer to [11] where the adaptation of an arc-length algorithm
with local control is presented.

2 Application of the two-scale domain decomposition strat-
egy to delamination analysis

2.1 The substructured delamination problem

Let us consider a laminated structure E defined in a domain Ω bounded by ∂Ω and consisting of
NP adjacent plies P , each defined in a domain ΩP , with Ω =

⋃
P ΩP . Adjacent plies P and P ′

are joined by cohesive interfaces IPP ′ . An external traction field F d is prescribed over a part ∂Ωf
of Ω, and a displacement field Ud is prescribed over the complementary part ∂Ωu of Ω. Let nP
denote the outer normal to the boundary ∂ΩP of Ply P, f

d
the volume force, σ the Cauchy stress

tensor and ε the symmetric part of the displacement gradient. The simulation is performed using
a classical incremental scheme, assuming small perturbations and quasi-static isothermal evolution
over time.

plis

Perfect interfaces

Cohesive 

interfaces

The laminate model

Substructuring

Substructuring in the 

plane of the plies

Substructuring 

perpendicular to the 

plane of the plies

Figure 1: Decomposition of the laminated composite structure into substructures

The laminated structure E is decomposed into substructures and interfaces as shown in Fig. 1.
Each of these mechanical entities has its own kinematic and static unknown fields as well as
its own constitutive law. The substructuring pattern is defined in such a way that the domain
decomposition interfaces coincide with the material’s cohesive interfaces, so that each substructure
belongs to a unique ply P and has a constant linear constitutive law. A substructure E defined
in Domain ΩE is connected to an adjacent substructure E′ through an interface ΓEE′ = ∂ΩE ∩
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∂ΩE′ (Fig. 2). The surface entity ΓEE′ applies force distributions FE , FE′ and displacement
distributions WE , WE′ to E and E′. Let ΓE =

⋃
E′∈E ΓEE′ . Over a substructure E such that

ΓE ∩ ∂Ω 6= ∅, the boundary condition (Ud, F d) is applied through a boundary interface ΓEd .

E

E′
ΓEE′

(uE,σE) (uE′ ,σE′)

(FE,WE)

(FE′ ,WE′)

Figure 2: Decomposition of the laminated composite structure into substructures: mixed unknown
fields

At each step of the incremental time resolution algorithm, the substructured quasi-static prob-
lem consists in finding s = (sE)E∈E (where sE = (uE ,WE , σE , FE)) which is a solution of the
following equations:

• kinematic admissibility of Substructure E:

at each point of ΓE , uE = WE (1)

• static admissibility of Substructure E:

∀(uE?,WE
?) ∈ UE ×WE / uE

?
|∂ΩE

= WE
?,∫

ΩE

Tr
(
σ
E
ε(uE

?)
)
d Ω =

∫

ΩE

f
d
.uE

? dΩ

+

∫

∂ΓE

FE .WE
? dΓ

(2)

• linear orthotropic constitutive law of Substructure E:

at each point of ΩE , σ
E

= K ε(uE) (3)

• behavior of the interfaces ΓEE′ ∈ ΓE :

at each point of ΓEE′ ∈ ΓE ,
REE′(WE ,WE′ , FE , FE′) = 0

(4)

• behavior of the interfaces at the boundary ∂Ω ∩ ΓE :

at each point of ΓEd , REd(WE , FE) = 0
(WE = ud on ∂Ωu and FE = F d on ∂Ωf )

(5)

We make the formal relation REE′ = 0 explicit in the two cases we will be considering:

• perfect interface: {
FE + FE′ = 0
WE −WE′ = 0

(6)
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• cohesive interface: {
FE = K

P
([W ]

EE′
(τ < t)).[W ]

EE′

FE + FE′ = 0
(7)

where [W ]
EE′

= WE′−WE . The stiffness operator K
P

can be expressed in the (N1, N2, nP )

basis as (Fig. 3):




(1− d1)k1
0 0 0

0 (1− d2)k2
0 0

0 0
(

1− h+[W ]
EE′

d3

)
k3

0


 (8)

where h+ is the positive indicator function.

6
1. Modélisation de l’interface

2. Modèle d’interface endommageable

2.1 Expression de l’énergie de déformation
On écrit l’énergie libre de ce milieu sous la forme :

ψ(σ.N3,di) =
1
2

(
σ33+

2

k3(1−d3)
+

σ33−2

k3
+

σ13+
2

k1(1−d1)
+

σ23+
2

k3(1−d2)

)
(1.15)

avec 0 ≤ di ≤ 1

FIG. 1.2: Repère lié à l’interface

L’énergie libre, exprimée en contraintes, est reliée à une expression en déplacement de l’énergie
de déformation par la relation de comportement suivante :

σ.z = K.[u] (1.16)

Avec [u] = u+ − u− = [u1].N1 + [u2].N2 + [u3].N3 exprimé dans le repère (N1,N2,N3) défnit sur la
figure (1.2) et la définition de l’opérateur de comportement

K =




k1(1−d1) 0 0
0 k2(1−d2) 0
0 0 k3(1−d3.h(σ33))


 (1.17)

où h est la fonction heavyside :
∀x < 0 h(x) = 0 (1.18)

∀x ≥ 0 h(x) = 1 (1.19)

On obtient l’expression de l’énergie de déformation volumique en déplacements suivante :

ed =
1
2
((1−d1)k1[u1]

2 +(1−d2)k2[u2]
2 + k3(1−d3)[u3]

2
+ + k3[u3]

2
−) (1.20)

Biblio P. Kerfriden

N1

N2

N3

Ply 1

Ply 2

Interface

Figure 3: The components of the mesomodel

The cohesive constitutive law of an interface joining two adjacent plies is described classically
through continuum damage mechanics. Local damage variables (di)i∈[1 3], with values ranging
from 0 (healthy interface) to 1 (completely damaged interface), are introduced into the interface
model in order to simulate its progressive softening. The parameters (di)i∈[1 3] are related to the
local energy release rates (Yi)i∈[1 3] of the interface’s degradation modes (traction along Direction
N3 and shear along Directions N1 and N2).

Yi = −∂ed
∂di

where





Y1 =
1

2
k1

(
[W ]

EE′
.N1

)2

Y2 =
1

2
k2

(
[W ]

EE′
.N2

)2

Y3 =
1

2
k3+

(
[W ]

EE′
.N3

)2

+

(9)

The damage variables are assumed to be functions of a single quantity: the maximum over time
Y|t of a combination of the energy release rates (Yi|τ )

i∈[1 3], τ6t
:

Y|t = sup(τ≤t)
(
Y3
α
|τ + γ1Y1

α
|τ + γ2Y2

α
|τ
) 1
α

(10)

The evolution laws express that:

d1 = d2 = d3 = w(Y ) where, in general, w(Y ) =
n

n+ 1

(
Y

Yc

)n
(11)

n and α being scalar parameters of the model. When Parameters γ1 and γ2 are set to identified
physical values such that γ1 6= γ2 6= 1, the energies dissipated during the propagation of the crack
are different for the three modes. Details on the identification procedure for such a model can be
found in [2].

After a cohesive interface has become fully damaged, it is converted into a (frictionless) contact
interface.
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2.2 Two-scale iterative resolution of the substructured problem

2.2.1 Introduction of the macroscopic scale

In the end, the substructured problem defined in the previous section will be solved using an
iterative LATIN algorithm, which will be described in the next section. In order to ensure the
scalability of the strategy, a coarse global problem, associated with the equilibrium and continuity
of what one calls the “macro” force and displacement fields at the interfaces, must be solved at
each iteration.

Over each interface ΓEE′ such that (E,E′) ∈ E2, the interface fields are divided into a macro
part (superscript M) and a micro part (superscript m). The macro part belongs to a small subspace
(9 macro degrees of freedom per plane interface for a 3D problem).

FE = FME + FmE
WE = WM

E +Wm
E

(12)

The macro and micro data are uncoupled with respect to the interface’s virtual work:

∀(FE ,WE) ∈ FE ×WE ,∫

ΓEE′
FE .WE dΓ =

∫

ΓEE′
FME .W

M
E dΓ +

∫

ΓEE′
FmE .W

m
E dΓ (13)

Each macrospace is defined by one’s choice of its basis. Numerical tests have shown that the use
of a linear macro basis gives the method good scalability properties. Indeed, the corresponding
macrospace includes the part of the interface fields with the largest wavelength. Consequently,
according to Saint-Venant’s principle, the micro complement resulting from the iterative resolution
of the local problems has only a local influence.

2.2.2 The iterative algorithm

Here, the iterative LATIN algorithm for the resolution of nonlinear problems is applied to the res-
olution of the substructured reference problem, the nonlinearities being localized in the (cohesive)
interfaces.

The equations of the problem can be divided into two groups:

• linear equations in substructure variables and interface macroscopic variables:

– static admissibility of the substructures

– kinematic admissibility of the substructures

– linear constitutive law of the substructures

– linear equilibrium of the macro interface forces

• local equations in interface variables:

– behavior of the interfaces

The solutions s = (sE)E∈E = (uE ,WE , σE , FE)E∈E of the first set of equations belong to

Space Ad and the solutions ŝ = (ŝE)E∈E = (ûE , ŴE , σ̂E , F̂E)E∈E of the second set of equations
belong to Γ. The converged solution sref is such that:

sref ∈ Ad

⋂
Γ (14)

The resolution process consists in seeking the solution sref alternatively in these two spaces:
first, a solution sn is found in Ad, then a solution ŝn+ 1

2
is found in Γ. In order for the two problems

to be well-posed, one introduces two search directions, E+ and E−, linking the solutions s and ŝ
through the iterative process (see Fig. 4). Hence, an iteration of the LATIN algorithm consists of
two stages:
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snsn+1

E+

E−

Γ

Ad

ŝn+ 1
2

sref

Figure 4: Illustration of the LATIN iterative algorithm

• a local stage:

Find ŝn+ 1
2
∈ Γ such that

(
ŝn+ 1

2
− sn

)
∈ E+ (15)

• and a linear stage:

Find sn+1 ∈ Ad such that
(
sn+1 − ŝn+ 1

2

)
∈ E− (16)

In the following sections, the subscript n will be omitted.

The local stage During the local stage, uncoupled problems are solved at each point of the
interfaces (ΓEE′)|(E,E′)∈E2 (as well as (ΓEd)E∈E for the interfaces which belong to the boundary
∂Ω):

Find (F̂E , ŴE , F̂E′ , ŴE′) such that:




REE′(F̂E , ŴE , F̂E′ , ŴE′) = 0

(F̂E − FE)− k+(ŴE −WE) = 0

(F̂E′ − FE′)− k+(ŴE′ −WE′) = 0

(17)

The last two equations of this system define the search direction E+ (k+ and k− are scalar search
direction which, physically, are analogous to “stiffnesses”). In the case of a cohesive interface,
Problem (17) is nonlinear and its solution is obtained through a Newton-Raphson scheme.

The linear stage The linear stage consists in the resolution of a series of linear systems within
the substructures under the constraint of macroscopic equilibrium of the interface forces.

at Interface ΓEE′ |(E,E′)∈E2 , FME + FME′ = 0 (18)

In order to verify the macroscopic condition exactly and the search direction E− defined in (16)
as well as possible, we use a Lagrangian formulation, which leads to:

∀W ?
E ∈ WE ,

∫

ΓE

(
FE − F̂E

)
.WE

? dΓ

+

∫

ΓE

(
k− (WE − ŴE)− k−W̃M

)
.WE

? dΓ = 0
(19)

which can be viewed as a modified search direction, the Lagrange multiplier W̃
M

becoming an
additional unknown of Interface ΓEE′ .
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The problem which needs to be solved for each substructure E is obtained by substituting (19)
into (2):

∀(u?E ,W ?
E) ∈ UE ×WE ,∫

ΩE

Tr(ε(uE)Kε(uE
?)) dΩ +

∫

ΓE

k−WE .WE
? dΓ

=

∫

ΩE

f
d
.uE

? dΩ +

∫

ΓE

(F̂E + k−ŴE + k−W̃
M

).WE
? dΓ

(20)

The condensation of this equation onto the macro degrees of freedom leads to a relation between

FME and W̃
M

E which can be introduced into the macro equilibrium equation (18). Finally, one gets
a small linear system defined in the macro degrees of freedom. All the subdomains contribute to
that “global” system through homogenized (condensed) flexibilities LME calculated explicitly.

∀ W̃
M? ∈ WM ,

∑

E

∫

ΓE

LME W̃
M
.W̃

M?
dΓ

=
∑

E

∫

∂Ωf

F d.W̃
M?

dΓ−
∑

E

∫

ΓE

F̃E .W̃
M?

dΓ
(21)

The macroscopic problem is discrete by nature and is expressed in matrix form as LM W̃M = FM ,
where W̃M is the vector of the components of the Lagrange multiplier in the macro basis.

The right-hand side of Equation (21) can be viewed as a macroscopic static residual from the
calculation of a single-scale linear stage. In order to derive this term, Problem (20) must be solved
independently within each substructure. The resolution of the macroscopic problem (21) leads

globally to the Lagrange multiplier W̃
M

, which is finally used as a prescribed displacement for the
resolution of the substructure-independent problems (20).

In order to carry out the resolutions of (20) in substructure variables, one uses the finite el-
ement method. Since the constitutive law of the substructures is linear, the stiffness operator of
each substructure can be factorized once at the beginning of the calculation and reused without
modifications throughout the analysis, which makes the method numerically advantageous.

Algorithm 1 summarizes the iterative procedure described in this section.

Algorithm 1: The two-scale domain decomposition solver

Construction of each substructure’s operators ;

Calculation of each substructure’s macro homogenized behavior LME ;
Global assembly of the macroscopic operator;
Initialization s0 ∈ Γ;
for n = 0, . . . , N do

Linear stage: calculation of sn ∈ Ad ;

� Calculation of the macroscopic right-hand term F̃E for each substructure ;
� Global assembly of the macroscopic right-hand term ;
� Resolution of the macro problem ;
� Resolution of the micro problems ;

Local stage: calculation of sn+ 1
2
∈ Γ ;

� Resolution of the local problems at the boundary interfaces (Γcl)E∈E ;
� Resolution of the local problems at the interfaces (ΓEE′)(E,E′)∈E2 ;

Calculation of a global error indicator
end

2.3 First example of a delamination analysis

A first example of quasi-static delamination analysis is shown in Fig. 5. The structure is a [0 90]s
double cantilever beam (DCB). The loading leading to Mode-I quasi-static propagation of the crack
is increased linearly through ten time steps, the first two corresponding to the initiation of the
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Ud

Ud

Initially delaminated interface

Propagation of the delamination crack

Figure 5: The four-ply DCB test example

delamination and the remainder to the crack’s propagation.

The calculations were performed using a C++ implementation of the mixed domain decompo-
sition method capable of handling the quasi-static analysis of 3D nonlinear problems. In this code,
the parallel computations use the MPI library to exchange data among several processors. Each
processor is assigned a set of connected substructures and their interfaces; then it calculates the
associated operators and solves the local problems (Fig. 8). The allocation of the substructures
among the CPUs is handled by a METIS routine. The resolution of the macroproblem does not
take full advantage of the parallelism because the substructures send their contributions to the
macro problem to a separate processor in which the matrix is assembled and factorized and the
substitutions are performed.

The direct use of the multiscale domain decomposition strategy to simulate the DCB case led
to a number of numerical difficulties:

• The convergence rate of the LATIN-based strategy is highly dependent on the residual stiff-
nesses of the cohesive interfaces as well as the values of the search direction parameters. The
iterative solver is even likely to stall when using low values of the search direction parame-
ters. In the next section, we will briefly describe a practical tuning algorithm for the strategy
which guarantees convergence.

• The method looses its numerical scalability when the crack’s tip propagates. This phe-
nomenon appears clearly in Fig. 6 under the label “No subresolution”. When the delam-
ination process propagates (time steps 3 to 10), the number of LATIN iterations required
for convergence becomes very large. A solution to this problem, described in [11], enabled
us to recover the scalability of the method for our test case (under the label “Subresolu-
tions”). This approach, which still needs to be generalized, is based on a filtering of the
long-range effects of the crack’s tip achieved through the resolution, at each global LATIN
iteration, of local nonlinear problems in a box surrounding the front (where the main sources
of nonlinearities are located).

• In this case, the ratio of the number of microscopic DOFs to the number of macroscopic DOFs
is relatively small (40). The direct resolution of the macroscopic problem would become an
issue if one were addressing the simulation of a realistic composite structure. A solution to
this problem is discussed in Section 4.

8



1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Time step

It
e
ra

ti
o
n
 n

u
m

b
e
r 

to
 c

o
n
v
e
rg

e
n
c
e
 (

0
,1

%
)

no sub!resolutions

sub!resolutions

N
u
m

b
er

 o
f 

it
er

at
io

n
s 

to
 c

o
n
v
er

g
en

ce

No subresolution

Subresolutions

Figure 6: Subiterations near the crack’s tip

3 Analysis of the parameters of the iterative algorithm

A necessary condition for the algorithm to converge is for the search direction parameters k+ and
k− to be positive definite, symmetrical operators. Previous studies have shown that there exists
an optimum set of these operators. However, the optimum values are known to be difficult to
interpret when the interface constitutive laws are complex, and even in simplified cases (perfect
interfaces) are expensive to calculate. Therefore, our objective was to derive an efficient scalar
approximation of these search direction operators for debonding analysis purposes.

As explained in [11], the non-monotonic relation between the interface stresses and the dis-
placement gap due to damage imposes restrictions on the choice of Parameter k+. Concerning
k−, optimum values for a given damage map can be found after a micro/macro decomposition of
this operator. Since the status of the interfaces changes with the evolution of the delamination
(from elastic to damaged, then from damaged to ruined), the search direction parameters need to
be updated often in order to remain optimum. Therefore, parameters whose efficiency range when
they are not optimum is broad enough to require less frequent updating are preferred. An effective
practical choice is the following:

• Parameter k+: in order to avoid stalling or divergence of the algorithm, this parameter is set
to a very high value (i.e. the search direction E+ is quasi-infinitely stiff).

• Parameter k−:

– perfect interfaces: k− is set to the classically recommended value E/L [14], where E is
the Young’s modulus of the adjacent substructure and L a characteristic length of the
interface.

– interfaces with prescribed forces (respectively displacements): k− is set to a very small
(respectively large) value in order to enforce the boundary condition through penaliza-
tion in the adjacent substructure.

– cohesive interfaces: k− is set to the stiffness of the undamaged interface.

– delaminated interfaces: k− is set to zero in the shear direction. In the normal direction,
k− is set to zero in traction and to the initial stiffness in compression. Therefore, the
status of the interface must be checked regularly (e.g. every ten iterations).
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The use of an infinitely stiff search direction E+ and of the initial cohesive interface stiffness
as the search direction parameter E− brings us back to a well-known situation. The algorithm
can be viewed as a secant Newton algorithm in which the solutions of the prediction steps are
in equilibrium only in the macroscopic space, the equilibrium of the microscopic quantities being
achieved at convergence.

4 The three-scale domain decomposition strategy

The decomposition into substructures described in Section 2 leads to a very large macro problem
and an unnecessarily refined macroscopic solution. In order to solve large problems such as that
represented in Fig. 7, one must place the emphasis on the parallel resolution of the macroproblem
and on the selection and transmission of the large-wavelength part of the macroscopic solution.

These two features can be introduced into the method by using any Schur-complement-based
domain decomposition technique [7]. We chose to solve the macroproblem using the BDD method
[19, 15].

(a) Stresses and displacements in the substructures

(b) Damage over the upper interface

Figure 7: The four-ply perforated plate problem (3.4 MDOFs)

4.1 Resolution of the macroproblem through the balancing domain de-
composition method

4.1.1 Partitioning of the macroproblem

The substructures of the initial partitioned problem are grouped into super-substructures (Ē)
separated by super-interfaces ΓĒĒ′ (Fig. 8). The algebraic problem to be solved within each of
these super-substructures (dropping Superscript M) is:
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Figure 8: Three-level substructuring: assignment of substructures to processors





(
L

(Ē)
ii L

(Ē)
ib

L
(Ē)
bi L

(Ē)
bb

)(
W̃

(Ē)
i

W̃
(Ē)
b

)
=

(
F

(Ē)
i

F
(Ē)
b + λ̃

(Ē)
b

)

W̃
(Ē)
b = A(Ē)T W̃ b∑

Ē

A(Ē)λ̃
(Ē)
b = 0

(22)

where Subscripts b and i refer respectively to the super-interface quantities and to the internal
quantities of the super-substructures. A(Ē) is a Boolean operator which localizes data in such a
way that the second equation of System (22) expresses the continuity of the kinematic unknowns

(deduced from a single unknown W̃ b), while the third equation expresses the equilibrium of the
nodal reactions at the super-interfaces.

First, the local equilibrium is condensed onto the super-interfaces by introducing the Schur

complement S(Ē) and the condensed force F (Ē)
c . The assembled condensed problem becomes:

S W̃ b = F c (23)

where





S =
∑

Ē

A(Ē)S(Ē)A(Ē)T W̃ b S(Ē) = L
(Ē)
bb − L

(Ē)
bi L

(Ē)−1

ii L
(Ē)
ib

Fc =
∑

Ē

A(Ē)F (Ē)
c F (Ē)

c = F
(Ē)
b − L

(Ē)
bi L

(Ē)−1

ii F
(Ē)
i

This substructuring technique can be used exactly as in [9] in order to bind a domain which
is prone to localization and damage to an undamaged region. Nevertheless, for large interface
problems such as those encountered in our case, the condensed problem is much too large to be
solved directly, and iterative solvers must be used.

4.1.2 Resolution of the super-interface problem

The condensed macroproblem is solved iteratively using a conjugate gradient algorithm. Classically,
this resolution involves only matrix-vector products and dot products, which are compatible with
parallel computation. The recommended Neumann-Neumann preconditioner S̃−1 involves the use

of the pseudo-inverses S(Ē)+
of the Schur complements of the super-substructures:

S̃−1 =
∑

Ē

A(Ē)S(Ē)+
A(Ē)T (24)

The use of this preconditioner means that the inverse of the global super-macro operator is ap-
proximated by the assembly of the inverses of the local Schur complements. Let us note that the
description chosen for the interface macrofields precludes the existence of degrees of freedom be-
longing to more than two substructures; consequently, no scaling is required in the preconditioner
(at least as long as the interfaces are not excessively heterogeneous). The use of pseudo-inverses
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is associated with an optimality condition which ensures that rigid body motions are not solicited
(self-equilibrium of the floating super-substructures). This condition is verified thanks to a projec-
tor which makes the residual orthogonal to the kernels of the super-substructures (and possibly to
other given subspaces) at each iteration of the conjugate gradient.

4.2 Results

Fig. 9 shows the convergence rate of the LATIN algorithm when the conjugate gradient algo-
rithm for the condensed macroproblem is stopped after a fixed number of iterations. The test
case was the perforated plate under traction represented in Fig. 7 with the decomposition into
super-substructures of Fig. 8. It is clear that a rough approximation of the Lagrange multiplier,
obtained after very few iterations of the conjugate gradient, is sufficient to reach the convergence
rate of the multiscale LATIN algorithm. Typically, the algorithm is stopped when the residual
error (normalized by the initial error) falls below 10−1. Thus, the third-level enforcement of the
admissibility of the macroforces (through the projection) appears to be sufficient for the determi-
nation of the large-wavelength part of the solution to be transmitted through the structure at each
iteration of the resolution.
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Figure 9: The LATIN convergence curves (error criterion vs. the number of iterations) for several
numbers of macroiterations

5 Efficiency of the strategy: study of a complex test case

In this section, we illustrate the efficiency of the three-scale domain decomposition strategy through
the simulation of the evolution of debonding in the bolted composite joint shown in Fig. 10. Each
composite plate interacts with the adjacent plates and with the two steel bolts through contact
interfaces. The structure is subjected to prescribed displacements along the edges of the plates.

The discretization and the decomposition into substructures for this test case are illustrated in
Fig. 11. The total number of DOFs involved was 12 106, distributed among 10, 600 substructures.
The number of macroscopic DOFs was 3 105, which would have made the direct resolution on a
standard computer very inefficient. 29 processors each with 4 Gigabytes memory were used for this
calculation, which led to a super-coarse grid problem of dimension 150 (6 unknowns per floating
super-substructure).
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Laminate/laminate 

contact

Bolt/laminate 

contact

Stacking sequence [0 902 0]s Stacking sequence [0 90]s

Figure 10: Composite bolted joint made of 16 0.125 mm-thick plies. The in-plane dimensions of
the structure are 30× 5 mm. Prescribed displacements are applied along the left-hand side of the
[0 902 0]s composite plate and along the right-hand sides of the [0 90]s composite plates.

Figure 11: Discretization of the composite bolted joint (12 106 DOFs), decomposition into sub-
structures (10, 600 substructures) and assignment to processors (29 CPUs)

Figure 12: Damage map of the cohesive interfaces of the composite bolted joint after the 70th time
step of the quasi-static incremental analysis procedure
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Figure 12 shows the damage map in the composite bolted joint after 70 time steps. The non-
linear calculation corresponding to each time step was carried out until the LATIN error criterion
got below 10−2, which occurred after an average of 80 LATIN iterations per time step. The aver-
age CPU time required for the calculation of each time step was 30 minutes, which is reasonable
considering the small number of processors used.

However, the number of global LATIN iterations was quite high compared to what could have
been obtained using the relocalization strategy of [11] in the vicinity of the crack’s front (see the
results of Fig. 6). Figure 12 is a clear illustration of the difficulties which may arise in the use of this
dedicated technique in a general case in which multiple crack front propagations may be involved.
The front has a complex shape, which raises the difficult issue of the choice of the number of
relocalization zones and their sizes. In addition, this test case is very unstable. These instabilities
were handled globally using an arc-length algorithm along with the three-scale resolution strategy,
but local instabilities might also appear within the region extracted for the relocalization calcula-
tions, a situation which has not yet been addressed at this stage in our development. Therefore,
in the future, it might be necessary to generalize the relocalization strategy in order to improve
the efficiency of the enhanced multiscale domain decomposition technique for complex laminated
structures.

6 Conclusion

The accurate prediction of delamination in extended process zones of laminated composite struc-
tures requires refined models of the material’s behavior, leading to the resolution of huge systems of
equations. In order to solve such problems accurately, we used a two-scale domain decomposition
strategy based on an iterative resolution algorithm. This method is particularly appropriate for
laminated mesomodels, in which 3D and 2D entities are introduced separately.

This strategy was improved in order to enable it to handle very large delamination problems.
A systematic analysis of the features of the method on the different scales was performed. First,
we showed that in the high-gradient zones the classical scale separation was insufficient to ensure
numerical scalability. Therefore, we developed a subresolution procedure which preserves the nu-
merical scalability of the crack propagation analysis, but still needs to be automated for complex
structures and regulated against local instabilities. We also proved that a third scale is required.
Then, the problem on the intermediate scale was solved using a parallel iterative algorithm which
enabled the rapid transmission of the very-large-wavelength part of the solution. Global instabil-
ities were handled through a classical arc-length algorithm with local control (e.g. based on the
maximum damage increment) and adjustment of the “time” steps during the calculation of the
evolution of damage.

In future developments, 3D analysis in the process zone will be used in conjunction with plate
analysis, which would be sufficient to describe the solution in the low-gradient zones. We will also,
within the MAAXIMUS project, investigate the interaction between delamination and buckling
for the simulation of components of aeronautical structures.
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