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ABSTRACT 
 
 

 
 In this paper, we propose an analysis that allows calculation of kinematic 
histories in unsteady problems of continuum mechanics, in relation to the use of 
memory-integral constitutive equations. Such cases particularly concern flow 
conditions of processing rheology, requiring evaluation of strain or deformation rate 
tensors, for viscoelastic incompressible fluids as polymers. In two- and three-
dimensional cases, we apply concepts of the Stream-Tube Method (STM) initially 
given for stationary conditions, where unknown local or global mapping functions 
are defined instead of classic velocity-pressure formulations, leading to consider the 
flow parameters in domains where the streamlines and trajectories are parallel 
straight lines. The approach enables us to provide accurate formulae for evaluating 
the kinematics histories that can be used later for computing the stresses for a given 
memory-integral model. 
 
 
 
 
 
  
Keywords: Memory-integral models, Strain history, Stream-Tube Method, Domain transformation, 
Unsteady flows, Viscoelasticity 
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1. Introduction 
 
 Time-dependent constitutive equations are generally expressed under the 
general tensorial form 
 

  ( ) )]' ,(     [ ttKt i
t
-H ∞=τ       (1) 

where )( tτ  denotes the extra-stress tensor at time t, )( t
- t∞H   is a functional tensor of 

kinematic tensors  )' ,( ttKi  (i= 1, … I0) for times t’ ≤ t. Expressing such quantities 
requires evaluation of time evolution of particles on their pathlines. Equation (1) is 
generally used on the form of memory-integral expressions [1-8]. Representations of 
the stress tensor are given with rate constitutive equations as corotational laws [3, 5] 
expressed with the rate-of-deformation tensor ( ) ( ) ( )TVVtD ∇+∇=        1/2  in corotational 
reference frames and, more widely, with codeformational models [1, 2, 4-8] involving 
deformation tensors as the respective Cauchy and Finger tensors )'(tCt  and )'(tB   
derived from the deformation tensor )'(tFt (t’≤t). An  example of this type is the 
popular K-BKZ model (e.g. [5]) expressed by the equation 
 

                  
[ ] ' '  )'(   -  )'( )(

21∫
∞− ∂

∂
∂
∂=

t
dttCI

UtBI
Ut ttτ

  ,    (2) 
 
where U denotes a potential of the invariants ( ) B tr  1 =I   and  ( ) C tr  2 =I .  
       
 Particularly, few numerical papers have concerned time-dependent constitutive 
equations in non-stationary flow cases [12]. Since the pathlines do not pass through 
the mesh points of grids defined in numerical applications, significant accuracy 
problems arise  in such cases. Together with fundamental interests, the study of 
unsteady flows of materials obeying memory-integral viscoelastic constitutive 
equations is considered in relation to numerous industrial processes of polymers, food 
fluids, … as extrusion and injection molding and general two- and three-dimensional 
cases. At the moment, the numerical simulations involve coupling of sophisticated 
rheological models and conservation laws in order to determine flow characteristics in 
geometries that are also complex. However, difficulties arise owing to the convective 
character of the viscoelastic constitutive equations, since the stress state in a fluid 
element depends on its strain history. This implies the use of upwind discretizing 
schemes that require robust and efficient stability techniques ensuring accuracy and 
convergence of the solving procedures.  
  
 Focusing on incompressible materials, the purpose of the present paper is to 
extend possibilities of the Stream-Tube Method (STM) to evaluation of kinematic 
quantities in unsteady flows, where streamlines and pathlines are not identical,  in 
relation to time-dependent constitutive equations. The approach is considered 
through streamline and pathline determination at every time t, starting from the rest 
state or from stationary conditions for fluid particles of a domain Ω of boundary 
Γ, given an initial time t0.  
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4 

 
 In STM analysis of stationary cases [13-14] where the concepts of streamlines 
are used, the fluid dynamics problem is reformulated by using global or local 
transformations of the physical domain, that must be considered in the governing 
equations instead of classical primary unknowns as the velocity. Together with the 
pressure, the local or global unknown transformation functions of the physical 
domain, ensuring that the mapped streamlines are parallel and straight, must be 
determined from the governing equations, written with variables of the mapped 
domains where the computations are performed. It should be pointed out that, in 
STM, flow with open or closed streamlines can be considered, according to 
transformations into rectilinear lines summarized in Figure 1a,b [13,14]. From a 
theoretical viewpoint, Stream-Tube Method has allowed to propose simple and 
precise formulae to evaluate kinematic and strain histories as already provided in 
previous papers  [16,17] under stationary conditions, for fluids obeying time-
dependent constitutive equations. In practice, when performing STM simulations 
related to steady configurations, the nodes are naturally set on the rectilinear 
streamlines allowing an optimal accuracy. The calculation of stresses along the 
mapped closed streamlines avoids problems of numerical diffusion that can occur, in 
classical methods, from diffusion related to the singularity from the center of rotation 
of the vortex zone that cannot be improved by convective stabilization techniques. In 
unsteady cases, such accuracy problems are increased.  
 
 Non-stationary flows have been already considered using STM analysis in order 
to compute start-up and pulsating flows between concentric and eccentric cylinders 
with purely viscous non-Newtonian constitutive equations [15]. In these cases, 
streamlines have been determined versus time without referring to the strain 
history. Concerning approaches related to calculation of strain histories in steady 
flows, an analysis has been proposed by Adachi [18,19], from concepts  referred to 
Protean coordinates [20], where one coordinate is a streamline. Starting from this 
study, Clermont [16] applied the  theoretical elements of the Stream-Tube Method to  
evaluate strain rates and strain histories in two- and three-dimensional steady 
situations, for flows involving only open streamlines. In STM, this latter case 
corresponds to the use of one or two global transformation functions, in two and three 
dimensions, respectively.  
 
 We wish to develop theoretical tools of the Stream-Tube Method for determining  
trajectories and histories for moving particles, according to open and closed 
streamlines of two- and thee-dimensional non-stationary flows. In this paper, we first  
recall briefly the background on global and local transformations related to a bounded 
flow domain Ω, in steady conditions. Then, we go further by proposing an approach 
towards evaluation of the kinematics history for non-stationary flows, based on 
elements previously provided for streamlines, in steady conditions, that allows 
computation of pressure and mapping functions for streamlines and trajectories the 
transformed of which are parallel straight lines, in rectangles or parallelepipeds . 
 
  Global one-to-one transformations T(t) of a flow domain Ω with open 
streamlines are related to the use of one or two mapping functions, in 2D  and 3D 
cases, respectively [9]. At time t, the corresponding equations, expressed in Cartesian 
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coordinates  Xi (X1 = x, X2 = y, X3 = z) for the physical domain Ω  and qi (q1 = X, q2 = Y, q3 = 
Z) for its transformed Ω∗ are given by 
  
 T(t) : Ω* → Ω   : (X, Z)  →  (x, z)      (3)  
 
such that     
   x = f(X, Y)  ;  z = Z       (4) 
 
in the planar case and, in the three-dimensional case 
 
 T(t) : Ω* → Ω   : (X, Y, Z) →  (x, y, z)     (5)   
 
with     
   x = f(X, Y, Z)  ;  y = g(X, Y, Z) ;  z = Z  .    (6) 
 
 For the above transformations, we define an upstream reference section  Sref at  
z = zref    where the kinematics are known, mapped into a section  Sref* of Ω*, 
identical in shape to Sref, such that   
 
  x  =  f(X , Y , Zref)  ; y   = g(X , Y , Zref)  ;  zref = Xref       (7) 
 
 The mapped domain Ω* is a straight cylinder of basis Sref* , of transformed 
streamlines parallel to the mean flow direction. 
 
 Similar relations can be obtained with cylindrical coordinates (r, θ, Z) as  
  
  r = f(R, θ, Z)  ;  θ =  g(R, Θ, Ζ)  ;  z = Z  .     (8) 
 
 In the cases investigated, the existence of the reference section Sref at  z = zref  
, where the kinematics are known, is assumed [9] to compute the velocity field in the 
flow domain. The incompressibility condition is automatically verified by the 
formulation, using expressions involving stream functions. 
 
 When flow vortices are expected in domain Ω, local mappings Tm(t) 

: Ω*m  →  

Ωm    are adopted, using domain decomposition such that m
1

  Ω=Ω
=

=
U

Mm

m . When using 

Cartesian coordinates Xi (X1 = x, X2 = y, X3 = z) in domain Ω , we define a coordinate 
system ξj(ξ1 = X, ξ2= Y, ξ3 = s) in a sub-domain Ω*m, where the streamlines are 
parallel segments. The variable s is defined as the length of a  segment of streamline 
in Ω*m, being zero at a reference section Sm, with two branches of the streamline (Fig. 
1b). Assuming, in domain Ω*m, the existence of a reference section S*m identical in 
shape to the reference section S m of the sub-domain Ωm of Ω, we can write the 
correspondence between sub-domain Ωm and a local domain Ω*m according to the 
following relations [13,14]. 
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  x = αm(X, Y, s) ; y = βm (X, Y, s) ;  z = γm (X, Y, s)    (9) 
 
 For each domain Ω*m we consider a kinematic function φ∗m related to the 
reference section S*m, leading to write the velocity components in terms of φ∗m and 
variables ξj [14].  The Jacobian Δ = |∂(Xi)/∂(ξj)| , assumed to be non-zero, is given by 
the  equation  
 
    Δ = α'X ( β'Y γ's  − β's γ'Y )  − β'X ( α'Y γ's   − γ'Y α's)   
          (10) 
     +  γ'X ( α'Y β's  - β' Y α' s)    
   
 To compute the flow field, the local mapping approach requires to write 
compatibility equations at the common boundaries of the sub-domains that define the 
total domain Ω together with the classic conservation equations.  
 
2. Domain transformation for unsteady flows with open streamlines   
 
2.1 Transformation of open streamlines and pathlines  
 
 Let us consider a simply-connected bounded domain Ω of boundary Γ. In 
unsteady conditions, the assumption of non existence of secondary flows implies that 
the pathlines are also open, thus leading to define a mean flow direction z for both 
streamlines and pathlines (Fig. 2). An upstream section Sref at  z = Zref (t), where 
the velocities refV  are known, is assumed. With coordinates (X1, X2, X3) ≡ (x, y, z) 
related to the Cartesian basis ( )  , , 221 εεε ,  the three-dimensional velocity vectors  
expressed by  
 
          321  ,    ,     ,  )  , , ,( εεε  t)zw(x, y, t)zv(x, y,z, t)u(x, ytzyxV ++=       (11) 
 

are tangent to the streamlines at a time t (Fig. 1). Let  0V   be the vector of initial 
velocity conditions in domain Ω, limited by the upstream section Sref . Relations (6) 
can be defined for the transformation  Ts(t) : Ω(t)* → Ω , at a given time t such that, 
∀t, the mapped streamlines are parallel and straight.   
 
 According to the assumption of open streamlines, the Jacobian 
 

 YXYX ''''  ) , ,(
) , ,(  fggfZYX

zyx −=∂
∂=Δ         (12) 

 
of the transformation Ts(t) [13,14] is required to be non-zero. The following 
derivative operators, involving the Jacobian Δ  are written as   
 

 [ ]   '  ' 1 Yg -Xgx XY ∂
∂

∂
∂

Δ=∂
∂  
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 [ ]  '  ' 1  Yf -Xfy XY ∂
∂

∂
∂−Δ=∂

∂              (13) 

    
 ( ) ( )[ ] ZYgfgfXgfgfz ZXXZYZZY ∂

∂+∂
∂+∂

∂
Δ=∂

∂          '' - ''      '' - ''  1       . 

 
 Similarly, for the planar case, with Cartesian coordinates (x, z), the Jacobian 

X'  ) ,(
) ,( fZX

zx =∂
∂=Δ  is assumed to be non-zero and the derivative operators are   

 

        Zf
f

zfx X

Z

X ∂
∂+∂

∂−=∂
∂

∂
∂=∂

∂       X'
'     ;               X '

1       (14) 
 

 According to the non-existence of secondary flows, we can also map the trajectories 
LP into parallel lines of a domain ΩP*(t) by defining a one-to-one transformation TP(t). 
In the mapped domain, we use a reference section S*ref identical to  Sref  and write  

 
 TP(t) : ΩP*(t) → Ω        

 (15) 
 

with the following relationships, similar to equations (6)  
 

   ) , , ,(̂  )( tZYXftx =    ; ) , , ,( ˆ  )( tZYXgty = ; (t)  Zz =   .     (16) 
   
 The mapping functions f̂  and ĝ  are unknown and must be determined, at each 
time t.  As for the steady case, the assumption of open pathlines requires that the 

Jacobian ( ) ( )tZYX
zyxt ) , ,(
) , ,(  ∂

∂=Δ  of the transformation TP(t) , expressed on the same form than 

equation (12), is non-zero. The derivative operators are given versus time  by relations 
(13), in terms of  the mapping functions f̂ and ĝ   .  

 
 Referring to the flow direction Z, the transformed domain ΩP*(t) is limited 
downstream by the curve Γ*P(t), defined by the pathline points at time t (Fig. 3). At all 
times t’≤ t, the particles move on the rectilinear lines of domain Ω*(t), thus allowing 
more simplicity for particle tracking. At every time t, the position M  of a material 

point M of a pathline originating at the position  refS  ∈
ref

M  at a reference time t0,  is 
given by  

 

 ( )∫+= t

t0 0
'd          ttVMM ' M,    .   (17) 

 
 According to pathline properties, the  material point M moves on the straight 

line in the mapped domain ΩP*(t). The material derivative of a function A in terms of 
the transformed variables (X, Y, Z) of Ω*(t) is expressed by 
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         Dt
D         Dt

 D   Dt
 D      Dt

D   D
D Z

Z
AZ

Z
AY

Y
AX

X
A

t
A

∂
∂=∂

∂+∂
∂+∂

∂=     (18) 
 

that leads to write  
 

 ttZYXwZ D
D ) , , ,(

1   =∂
∂      .      (19) 

 
  

2.2  Kinematics 
 

At any instant, the velocities can be evaluated by STM formulae with mapping 
functions for streamlines, as detailed in previous papers [9]. Similarly to the steady 
flow with open streamlines, we  assume a known velocity profile ) , ,( refzyxw at section 
Sref to which corresponds a kinematic function ) ,(* YYψ . We then get the following 
relations  

 

   ) , ,(
) , ,(* ) , ,('̂  tZX, Y

tYXtZX, Yfu Z

Δ= ψ
      (20) 

 

   ) , ,(
) , ,(* ) , ,('ˆ  tZX, Y

tYXtZX, Ygv Z

Δ= ψ
      (21) 

 

   ) , ,(
) , ,(*  tZX, Y

tYXw Δ= ψ
 .      (22) 

 

Using the mapping functions of Tp(t), we can compute the natural basis iX

M
ib

∂

∂=  as in 

steady conditions [19], given by 
 

    2X1X1 gfb εε 'ˆ    '̂ +=  ;  2Y1Y2 gfb εε 'ˆ    '̂ +=  ; 32Z1Z3 gfb εεε    'ˆ     '̂ ++=    (23) 
 
allowing the velocity vector to be written as 
 
      ( )  ,,(

 ,*    ,   ) , , ,( 33 tbt) ZX, Y
 t)(X, Yb t)Zw(X, Y,tzyxV Δ== ψ      .   (24) 

 
 Problems involving memory-integral rate equations require evaluation of the rate-
of-deformation tensor ( )  tD and of  the corotational reference frames ke(  at times t’≤t, 
in order to satisfy the principle of material objectivity [5,16]. For steady flows, such 
problems has been considered in previous papers (e.g. [21]) for axisymmetric flows. 
Though significant difficulties arise in three-dimensional problems with corotational 
models in relation to determination of the corotational frames [16], computation of 
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the tensor  ( )  tD   can be achieved by STM formulae as previously done with purely 
viscous models in unsteady situations [15]. 
 
 Codeformational models can be considered by means of  concepts already 
introduced [5] to compute the strain gradient tensor )'(tFt (t’≤t). In the following 
relations, time variables are referred by subscripts t and t’. The strain gradient is 
given in Cartesian coordinates by the matrix 
 

       ⎥⎦
⎤

⎢⎣
⎡
∂
∂= j

i

t

t
x
xtt

'

'  )'(F    .       (25) 

 
 The expressions of Cauchy and Finger tensors       )'(tCt and  )'(tB , generally 
adopted as kinematic quantities for codeformational models  are written as follows. 
 

 )'(  ).'(  )'( tFtFtC
tt

T
t =            (26) 

   
 [ ] [ ] -111  )'( .)'(   )'(  )'( tFtFtCtB t

T
tt

−− ==   .      (27)      
 
 To solve problems related to codeformational models with STM for unsteady flows 
with open streamlines, we consider pathline mappings versus time, defined by the 
transformation TP(t) (equations (15-16)). The previous approach for kinematic 
histories in steady flow conditions by mapping functions [21] can be adapted to non-
stationary flow situations with similar formulae for strain tensors in steady two- and 
three-dimensional flows without eddies.  
 
 Turning back to previous elements from the steady analysis, we use here the 
transformation TP(t) 

of pathlines. According to equation (17), we get 
 
 11

'   tXXt =         (28) 
 
 22

'   tXXt =         (29) 
 

 ( ) ξξ dwXX
t

t
tt   ,      

'
33

' ∫+= M   .     (30) 

        
 In the natural basis  ib , the deformation gradient matrix is given by the simple 
following form in terms of coordinates qi (q1 = X ,  q2 = Y , q3 = Z)   
 

     [ ]  
33233

     0    
                                              

   

tq/t'qtq/t'q1
tq/t'q

01
001

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂∂∂∂∂∂

=ibF               (31) 

  
where the unknown components are [16,18] 
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  ( ) '
'

2
'

'31
'

 1    ξ
ξ

ξ

ξ

dZ
X
w

w
w

X
ZF

t

t

Z

Z
t'

t

t ∫ ∂
∂=

∂
∂=       (32) 

 

  ( ) '
'

2
'

'32  1    
'

ξ
ξ

ξ

ξ

dZ
Y
w

w
w

Y
ZF

t

t

Z

Z
t'

t

t ∫ ∂
∂=

∂
∂=       (33) 

 

  
t

t
w
w

Z
ZF '

t

t     '33 =
∂
∂=        (34) 

 

In these equations, ( )ξξ  ,   Mww = , ( )' ,   ' twwt M=  and ( )twwt  ,   M=  denote the non-
zero velocity component of a material point M on its pathline at times ξ, t’ and t, 
respectively. (Xξ, Yξ, , Zξ,), (Xt', Y t', , Z t',) and (Xt, Y t, , Z t,) stand for respective positions 
of the material point at times ξ, t’ and t. 
 

To compute  )'(tF t  in the Cartesian basis, the  natural basis  ib and its reciprocal 

basis  iχ  related to the transformation TP(t) (mapping functions f̂ (t) and  ĝ (t) must 
be formulated [16]. Then, the components of )'(tF t in the basis  iε are obtained from 
the following matrix equation     

 

   [ ] [ ][ ] [ ] . . AFF A b
T=ε ,     (35) 

 

where the matrices A and A   are involved in the expressions related to the natural 
and reciprocal bases, such that 
 

     A k
k

i ib ε=    ,      A  k
j j

kεχ =  .     (36) 
 
Thus, the components of the Cauchy and Finger tensors (equations (24-25)) can 

be computed by using equations (35-36), leading to determine the stress components 
versus time.  

 
 

3. Domain transformation for unsteady flows with closed streamlines   
 
 The fluid flows considered can be created from the rest state or by changes 
brought by non-stationary conditions applied to a steady flow in domain Ω, at an 
initial time t0. When particles of the material move from the rest state, a slow flow 
assumption without vortices can be made at the beginning. As pointed out previously, 
the hypothesis of open streamlines and pathlines requires the Jacobians of the 
domain transformations Ts(t) and Tp(t) to be non-zero. From our numerical results 
obtained for steady flows in ducts and between eccentric cylinders with comparisons 
with literature  data [22,23], a divergence of the algorithms, corresponding to a 
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Jacobian approaching zero, has been observed for conditions of appearance of 
circulating regions. Thus, in a non-stationary process, the onset of vortices can be 
assumed when, at an instant t*, the solving process defined with the open 
streamlines approach diverges, requiring to use STM elements related to flows with 
closed streamlines. However, we will consider directly the procedure related to flows 
with closed streamlines. More precisely, the approach concerns more the case of 
changes of sign for the flow velocities, corresponding to the example of streamlines 
and pathlines shown in Fig. 4. 
 
3.1 Rate constitutive equations 
 
 In practice, rate equations as memory-integral corotational models generally 
expressed in terms of the rate-of-deformation tensor ( )  tD  lead to practically 
insurmountable difficulties for determining corotational frames in three-dimensional 
flows. Restricting our study to the two-dimensional case, we define, as in steady 
conditions, local streamline transformations )(tmsT : Ω*m  →  Ωm using domain 
decomposition.  In every domain Ω*m, the transformed streamlines are parallel 
segments [13,14] perpendicular to a reference section S*m identical in shape to a 
reference section Sm of sub-domain Ωm (Fig. 1b), such that the mapped sub-domain is 
a straight cylinder of basis S*m. In the planar case, we adopt coordinates qi(X1=x, 
X2=z) and ξj(ξ1 = X, ξ2= s) for sub-domains Ωm and Ω*m, respectively. The variable s is 
related to the length of a segment of streamline, referred to the plane S*m, as pointed 
out in Section 1. The formalism defined for the stationary case can be applied for 
every time t, requiring streamline determination and evaluation of the corresponding 
stress tensor as a function of ( ) ' tD  (t’≤t). Referring to the Cartesian basis  iε , the 
tensor components of ( )  tD , given by the matrix 

                                                   [ ]      
        )( ⎥⎦
⎤

⎢⎣
⎡

∂∂∂∂
∂∂∂∂= zw(t)/xw(t)/
zu(t)/xu(t)/tD    ,  (37)

  

can be expressed in terms of the variables (X,s) of the mapped domain Ω* , using the 
basic relations of Tm(t) 

, where the subscript “m” has been removed for reasons of 
brevity: 

 x = α(X, s) ;   z = β(X, s) .                                                                      (38) 
 

 The Jacobian Δ = |∂(qi)/∂(ξj)|  of )(tmsT  is given by 

  XsX st '' - ''   )( βαβα=Δ  (39) 

and the derivative operators are written as 
 

[ ]  '  -  ')(
1    stx XX

s ∂
∂

∂
∂

Δ=∂
∂ ββ    ;   [ ]  '    ')(

1    stz XX
s ∂

∂+∂
∂−Δ=∂

∂ αα  (40) 
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 We use a reference kinematic function φ∗ at section S*m (where s=0) defined by 
[13] 
 
  φ *(X) =  w(X, s=0) .        (41) 
 
 When expressing the derivative operators  ∂ /∂x and ∂ /∂z in terms of ∂ /∂X and ∂ /∂s 
[13], with variables (X,s)  of the mapped sub-domain Ω*m, the components (u,w) of the 
velocity vector é t)zw(x, z, t)u(x,tzxV εε  ,      ) , ,( 1 +=   are written as  
 
  Δ/ =  (X) ' tu s * ) ( φα   ;   Δ/= (X)  t w *) ( φ      (42) 

 
  Thus, elements of the matrix of ( )  tD (equation (37)) can be determined, as 
functions of variables (X, s),  from equations (40) and (42), leading to calculation of 
the stress tensor components at any instant t.   
 
3.2  Codeformational constitutive equations 
 
 Even though the flow only involves open streamlines at small times t> t0 when the 
fluid moves from the rest state at the initial time t0, we focus on the case of closed 
streamlines and pathlines that may appear in relation to the geometry, the flow rate 
and the fluid properties. The relative strain gradient is considered for open or closed 
pathlines. As previously proposed [13,14], we define in domain Ω a finite number of 
sub-domains Ωm (m=1, …, M) (Fig. 5) where vortices are expected, that may also involve 
open streamlines, to which are associated reference cross-sections Sm. To these sub-
domains, we specify corresponding domains Ω*m (m=1, …, M) where the mapped 
streamlines are segments parallel to a given direction s , defining a cylinder of basis 
S*m identical to Sm.  Kinematic functions φ∗m(S*m) , a priori unknown,  are 
associated to domains Ω*m  such that  
 
 ( ) ( ) s. SPvSP mmm      *   * ∈=∈ 00φ   .     (43) 
 
 As for the previous approach for local transformations in the steady case, we 
define a new set of variables ξj(X, Y, s), where: 
 
- (X, Y) are the local variables in the reference section; 
- in this case,  s is related to the curvilinear abscissa, that corresponds, differently 
to the case illustrated in Fig. 1b, to the total length of the streamline limited by two 
positions P*0 and P* on this streamline (Fig. 5), such that mSoP *  * ∈  (reference 
section) implies ( ) 0   * =oPs .  
 
 At every time t, the transformation of streamlines  
 

    )(*  )(*  : )( mm ttt Ω→Ωp
mT        (44) 
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associates a point P*(X, Y, s) of Ω*m(t) to a point P(x, y, z) of domain Ωm(t)  according 
to the following equations 
 
  x = αm(X, Y, s, t) ; y = βm (X, Y, s, t) ;  z = γm (X, Y, s, t) ,    (45) 
  
formally the same than equation (9), with a Jacobian given by equation (10), assumed 
to be non-zero. Denoting by χ the corresponding length of the streamline in the 
physical sub-domain Ωm (t) and omitting the subscript “m” for conciseness, we may 
write an additional relation between the three local functions α, β and γ as 
 

  ( ) ( ) ( )[ ]∫ ++=
s

sss
0

2/1 222         ''' γβαχ  .  .    (46) 

 
 A reference kinematic function φ∗ (X,Y,t), related to the section S*m of domain 
Ω*m, may be defined by 
 
            t) X, Y, swtX ,Y  ,0 (   ) ,(* ==φ   ,      (47) 
 
and the use of derivative operators ∂ /∂x, ∂ /∂y and ∂ /∂z in terms of ∂ /∂X, ∂ /∂Y and 
∂ /∂s [13] leads to express the velocity components (u, v, w) as  
 
  Δ/=    ,   Δ/= ,   Δ/ = (X,Y)'  w  (X,Y) '   v (X,Y)  ' u sss *** φγφβφα    (48) 

 
where Δ denotes the Jacobian. These relations verify the mass conservation law. 
 
 We now consider local pathline transformations  )(tmpT , looking for the position of 
material points at time t, in order to determine the kinematics and stresses, still 
retaining domains Ω*m(t)  and Ωm(t) according to the relation 
 
  ( ) )(  )(* :  t   tt mm

p
m ΩΩ →T       (49) 

 
 These transformations are defined such that the trajectories, in  the mapped 
domain *tmΩ , are segments parallel to a given direction d . For further 
computational purposes, one can normalize the lengths of the mapped pathlines as 
done in previous papers that have reported numerical simulations with local 
transformation functions [14,23]. As for the streamlines, we adopt the reference 
sections S*m and Sm and write the following local relationships 
 
       , t) (X, Y,  , t) ,  z  (X, Y, , t) , y (X, Y,  x mmm σγσβσα ˆˆ ˆ ===  .   (50) 
 
with spatial variables Xi≡(x, y, z) and ξk≡ (X, Y, σ) for domains Ωm(t)  and Ω*m(t), 
respectively. The third variable σ is related to the curvilinear abscissa on a pathline, 
referred to section S*m. 
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 The local domain mapping functions require the Jacobian of the transformation 
to be non-zero. We retain the same reference kinematic function given by equation 
(47), leading to write, similarly to equations (48), the velocities in terms of the local 
pathline transformation functions as follows 

 
   Δ/  =     ,    Δ/ = ,   Δ/ = (X,Y)'  w (X,Y)  '   v (X,Y)  ' u sss *ˆ*ˆ*ˆ φγφβφα .   (51) 
 
 These expressions verify the incompressibility condition. For using memory-
integral codeformational models, we need to evaluate the components of the strain 
tensor )'(tFt

at times t’≤t. The same approach than that proposed for open streamlines 
can be applied, related to coordinates  (Xi)≡(x,y,z)  and (ξj)≡(X,Y,σ)  for sub-domains 

mΩ and *mΩ , respectively. To express components of the strain tensor for each sub-
domain, we make use of coordinates (ξj)t’ and (ξj)t and, similarly to equations (28-
30), we get  
 

  tt XX   ' =  ; tt YY   ' =  ;  ( ) ξξσσ dw
t

t
tt   ,      

'

' ∫+= M     (52)  

 
leading to components of )'(tF

t
 of the form given by equation (31). The kinematic 

terms corresponding to the local sub-domains are computed by  relations of the type 
of equations (25-36), taking into account positions of the material points in the sub-
domains under consideration.  
 
 
 4. Concluding remarks 
 
 In this paper, we have focused on theoretical elements of stream-tube methods, in 
order to evaluate accurately strain histories in non-stationary flows of fluids obeying 
memory-integral models. We have started from results on steady situations to extend 
the concept of streamline mapping functions to trajectories, by considerations based 
upon geometry, that have led to their transformations into rectilinear parallel lines, 
with simple and precise formulae for the strain tensor components versus time. In all 
cases, the approach defined for the pathlines has been considered by means of 
relationships similar to those previously developed for stationary flow conditions. It 
should be pointed out that the possible existence of  various vortex regions, notably in 
complex three-dimensional flows, can  lead to insurmountable difficulties for defining 
reference cross-sections and sub-domains related. However, the present study may 
provide answers to numerous problems encountered in flows of processing rheology. 
For flows involving closed streamlines, the determination of streamlines and 
pathlines versus time are performed by domain decomposition, using reference 
sections in sub-domains. When starting from stationary flow conditions with eddies, 
the reference sections can be chosen in regards to the existing vortex flow zones. 
When the fluid is at rest, these sections should be mostly defined in relation to the 
shape of the boundaries as conditions encountered in contraction and expansion flow 
geometries. As pointed out previously, the changes in flows created from the rest 
state may lead to specify the presence of circulating zones and, consequently, the 
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physical sub-domains to be adopted for the analysis. Work is continued towards 
numerical simulations of non-stationary viscoelastic two and three-dimensional flow 
situations, notably those related to industrial applications as extrusion, injection and 
journal bearing flows. 
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Captions for figures 
 
 
Fig. 1  Transformation of streamlines in Stream-Tube Method  

 (a) global transformation for an open streamline 
(b) local transformation for a closed streamline divided into two branches 

 
Fig. 2  Open streamlines and pathlines 
 
Fig. 3  Transformation of trajectories in the case of open streamlines and pathlines 
 
Fig. 4  Local view of closed streamlines and of a pathline 
 
Fig. 5  Physical and mapped local sub-domains Ωm, Ωm+1, Ω*m and Ω*m+1 for 

streamline and pathline transformations 
 
  
 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

20 

 
 
 

 
PHYSICAL 
DOMAIN

PHYSICAL 
DOMAIN

Reference 
section

MAPPED 
DOMAIN

MAPPED 
DOMAIN

Reference 
section

streamline

streamline

mapped  streamline
mapped  streamline

L

L

L*

L*

1

2

2

1
1

2

2

1M*

M*

L
M

M

•

•

•

•

 
(a)               (b) 

 
 
 
 
 

Figure 1 
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Figure 2 
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Figure  3 
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Figure  4 
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Figure  5 
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