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Non-linear dynamics of curved beams. Part 1,

formulation

D. Zulli a, R. Alaggio a, F. Benedettini a,∗,
aDISAT, University of L’Aquila, 67040 Monteluco di Roio (AQ), Italy

Abstract

The non-linear dynamics of elastic beams with uniform initial curvature and double-
symmetric cross-section are considered in this work. In particular, the work is di-
vided in two parts. In Part 1, the interest is oriented to the formulation of an
accurate model, able to describe the finite dynamics of initially curved beams as
to obtain a parameterization of the initial configuration and the weak expression
of the equations of motion. To this end, an explicit description of the deformation
field and inertia terms is presented. The equations of motion can be used, with
slight modifications, for extensible and inextensible, or shear-deformable and shear-
indeformable, beams. A description of the free dynamics, of the possible classes of
motion under a sinusoidally varying shear tip force, and of bifurcation phenomena
is presented in Part 2 for a case-study, together with the results of experimental
tests on an aluminum prototype.

Key words: Beams, non-linear dynamics, initial curvature

1 Introduction

The analysis of finite dynamics, even for simple structural systems, is of great
interest in different engineering fields. Often a rich and varied response is due
to the presence of non-linear terms. In the case of beams, arches and cables,
a key role is played by the initial configuration (null, small, or large initial
curvature) and by the simplifying assumptions (e.g., internal constraints).

Works devoted to model formulation and to non-linear dynamic analysis of
beams are widely present in literature. Non-linear dynamics of straight beams,

∗ Corresponding author. Tel.: +39 0862 434513; fax: +39 0862 434548.
Email address: francesco.benedettini@univaq.it (F. Benedettini).
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subjected to time-periodic forces, were studied in Bolotin [1], where particu-
lar attention was given to flexural-torsional dynamic coupling in the case of
thin-walled beams. In Crespo da Silva et al. [2,3,4,5], the formulation of ap-
proximate models of Euler-Bernoulli beams, considering or neglecting exten-
sional deformation, was presented. It was proved that, when one end of the
beam is free to move, the beam behaves essentially as inextensional. In Simo
[6], an accurate formulation of the non-linear model of an elastic beam, as
descending from a corresponding 3-dimensional continuum, was presented. In
Luongo et al. [7], the steady-state solutions of reduced-order models for planar
beams, having different constraint conditions, were analyzed via a perturba-
tion approach. In Antman [8], the formulation of non-linear models and various
stability and post-critical analyses were provided for one dimensional bodies
using Cosserat rod theory. In Tatone et al. [9], the sensitivity to imperfections
for thin-walled beams, where warping is considered, were studied in the case
of buckling. In Di Egidio et al. [10], a non-linear model of a thin-walled, non-
symmetric open-section beam were studied including both non-linear warping
and torsional elongation effects. It was also shown that, in beams with double-
symmetric sections, these two last contributions are negligible. In Smoleński
[11], the exact non-linear equations for the statics of beams were obtained
and numerical computations were performed considering various configura-
tions. In Pai et al. [12], the equations describing the kinematics and statics
of initially curved and twisted beams, in case of very large rotations and dis-
placements, were formulated and then solved using multiple shooting method.
More recently, in Paolone et al. [13], the stability of thin-walled cantilever
beams under static non-conservative forces was studied, using the non-linear
Cosserat rod model.

This work is composed of two Parts. In Part 1, an accurate geometrically
non-linear 1-dimensional model of initially curved beams is formulated. A
double-symmetric, uniform, cross-section is considered. The initial curvature
terms, assumed as uniform, are considered as explicit parameters character-
izing the initial configuration. The deformation field, the inertia terms, and
then the equations of motion are explicitly derived as function of such param-
eters, without considering the contributions due to the warping (Di Egidio et
al. [10]).

These equations describe, with slight modifications, extensional and inexten-
sional, as well as shear-deformable and shear-indeformable, beams. In partic-
ular, the model is developed for an extensional, shear-deformable, and rigid-
section beam. Then, internal constraints for inextensible and shear-indeformable
beam are added directly in weak form, considering the corresponding stress
terms as reactive forces.

As an example, a cantilever with distributed and tip mass, and time-periodic
shear tip force, is considered.
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In Part 2, a description of the results obtained by using the model in a case-
study is presented. The free dynamic problem is solved for different initial con-
figurations, in order to discuss the variation of the spectral properties as the
initial configuration is varied, enlightening on the possible internal resonance
conditions as well as possible veering phenomena among different couples of
adjacent modes. The non-linear forced problem is then studied, after use of a
Galerkin projection of the continuous problem on a reduced basis. Direct in-
tegrations and path-following procedures in the excitation control-parameters
plane are applied to the discretized equations. An analysis of the flexural-
torsional dynamic instability phenomenon, of bifurcation boundaries, and of
post-critical classes of motion for different initial configurations are considered
as well.

The results are compared with experimental observations on a straight beam
characterized by geometrical imperfections on the initial configuration, in or-
der to evaluate if imperfections, however present in experimental prototypes
and in real full-scale cases, could justify the use of a model with some initial
curvature to obtain better agreement between analytical results and experi-
mental evidence.

2 The model

2.1 Geometry and configurations

The shape of the beam is a cylinder, occupying the space spanned by the
axis line and the cross-sections (Fig. 1a). The axis line is a curve in the 3-
D Euclidean configuration space E . Let I be a closed set of R, and ζ1 ∈
I is chosen as a length abscissa for the axis curve, whose position, in the
current configuration, is xo(ζ1). The time-dependent positions of the points of
the curve are oriented, i.e., in correspondence to every position xo(ζ1), three
orthonormal vectors {a1(ζ1), a2(ζ1), a3(ζ1)}, called directors, are considered
(Fig. 1b). They belong to the vector translation space V of E . These vectors
describe the attitude of the rigid plane sections of the beam, which are images
of a closed set S of R

2.

The vectors a2 and a3 are supposed to lay on the sections; therefore, if (ζ2, ζ3) ∈
S, the position x of a point of the beam in the current configuration can be
written as

x(ζ1, ζ2, ζ3) = xo(ζ1) + ζ2a2(ζ1) + ζ3a3(ζ1) (1)

Equation (1) represents a parameterization of the shape of the beam, denoted
as R, a subset of E , in the current configuration. In particular, the parameters
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Figure 1. Geometry of the beam in a generic configuration: (a) the cylinder, spanned
by the axis curve and the cross-sections; (b) the axis curve and the directors.

that identify the position of a point in R are {ζ1, ζ2, ζ3}.

A particular configuration, corresponding to the initial time t̄, is chosen as
reference. In this configuration, the shape is denoted by R̄, the axis curve
by x̄o(ζ1), and the directors by {ā1(ζ1), ā2(ζ1), ā3(ζ1)}. The overbar indicates
time-independent terms related to the reference configuration. Both {a1(ζ1), a2(ζ1), a3(ζ1)}
and {ā1(ζ1), ā2(ζ1), ā3(ζ1)} are bases for V. In analogy with Eq. (1), the pa-
rameterization for R̄ is

x̄(ζ1, ζ2, ζ3) = x̄o(ζ1) + ζ2ā2(ζ1) + ζ3ā3(ζ1) (2)

It can be assumed that the sections, in the reference configuration, are orthog-
onal to the tangent vector of the axis curve, i.e.

x̄′o = ā1 (3)

where ( )′ stands for differentiation with respect to ζ1.

2.2 Initial curvature

The orientation of the directors in the reference configuration is provided by
the skew tensor of the initial curvature K̄(ζ1), assumed as known and defined
as

ā′i(ζ1) = K̄(ζ1)āi(ζ1), i = 1, 2, 3 (4)

4



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Its representation with respect to the basis {āi} is

[K̄]āi
=

⎡
⎢⎢⎢⎢⎢⎣

0 −k̄3(ζ1) k̄2(ζ1)

k̄3(ζ1) 0 −k̄1(ζ1)

−k̄2(ζ1) k̄1(ζ1) 0

⎤
⎥⎥⎥⎥⎥⎦

(5)

In the following, the initial curvature is assumed to be uniform, i.e., k̄i do not
depend on ζ1, for i = 1, 2, 3. This provides a limitation to the possible classes
of initial shapes; anyhow the obtained set of possible shapes permits one to
study several interesting cases. Under such hypothesis, Eq. (4) furnishes

ā′1(ζ1) = k̄3ā2(ζ1)− k̄2ā3(ζ1)

ā′2(ζ1) = −k̄3ā1(ζ1) + k̄1ā3(ζ1)

ā′3(ζ1) = k̄2ā1(ζ1)− k̄1ā2(ζ1)

(6)

which is a linear ordinary differential equation system with constant coeffi-
cient. The necessary initial conditions read

ā1(0) = e1

ā2(0) = e2

ā3(0) = e3

(7)

asserting, without loss of generality, that the initial section lays on a plane
parallel to the natural base {e1, e2, e3} of V. The initial value problem (6)-
(7) can be solved to obtain the expressions of āi (see Appendix A). To get
information on the axis curve in the reference configuration, Eq. (3) can be
integrated, considering x̄o(0) = 0, i.e., the axis curve starts from the zero
position of E (Appendix A). In this way, the parameterization of R̄ (Eq. (2))
is completely written in terms of the three initial curvature components k̄i

(i = 1, 2, 3).

2.3 Deformation

A bijective and smooth transformation

φ : R̄ → R (8)

is assumed to deform the initial shape of the beam. In particular this transfor-
mation allows one to express the current position as a function of the initial
one

x(ζ1, ζ2, ζ3) = φ(x̄(ζ1, ζ2, ζ3))

xo(ζ1) = φ(x̄o(ζ1))
(9)

5
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To take into account the rigidity of the section, the directors {ā1, ā2, ā3} can
only perform a rotation. If R is a rotation of V, the evolution of the directors,
from the reference configuration, is described by the following relation

ai(ζ1) = R(ζ1)āi(ζ1) , i = 1, 2, 3 (10)

Hence, Eq. (1) becomes (omitting the independent variables)

x = xo + ζ2Rā2 + ζ3Rā3 (11)

The rotation R can be written in terms of three functions {ϑ1(ζ1),ϑ2(ζ1),ϑ3(ζ1)}
describing the finite angles carrying āi(ζ1) on ai(ζ1). A possible expression 1

for R with respect to āi is

[R] =
[

cos ϑ2 cos ϑ3 sinϑ1 sin ϑ2 cos ϑ3−cos ϑ1 sin ϑ3 cos ϑ1 sinϑ2 cos ϑ3+sinϑ1 sinϑ3
cos ϑ2 sinϑ3 cos ϑ1 cos ϑ3+sinϑ1 sin ϑ2 sin ϑ3 cos ϑ1 sinϑ2 sin ϑ3−sin ϑ1 cos ϑ3
− sinϑ2 sinϑ1 cos ϑ2 cos ϑ1 cos ϑ2

]
(12)

It is useful to describe the deformation of the beam by means of its gradient.
This is defined as the tensor transforming the tangent vectors of the curves
passing through x̄(ζ1, ζ2, ζ3) to the tangent vectors of the corresponding curves
passing through x(ζ1, ζ2, ζ3).

In this way, choosing three curves passing through the position x̄(ζ1, ζ2, ζ3) as

c̄1(h) := x̄(ζ1 + h, ζ2, ζ3)

c̄2(h) := x̄(ζ1, ζ2 + h, ζ3) h ∈ R

c̄3(h) := x̄(ζ1, ζ2, ζ3 + h)

(13)

and using Eqs. (2), (3) and (6), the tangent vectors in h = 0 are

dc̄1

dh

∣∣∣∣∣
h=0

= x̄′ = ā1 + ζ2(−k̄3ā1 + k̄1ā3) + ζ3(k̄2ā1 − k̄1ā2) =

= (1− ζ2k̄3 + ζ3k̄2)ā1 − ζ3k̄1ā2 + ζ2k̄1ā3

dc̄2

dh

∣∣∣∣∣
h=0

= ā2

dc̄3

dh

∣∣∣∣∣
h=0

= ā3

(14)

1 This expression for R describes the composition of a rotation of amplitude ϑ3

around ā3, followed by a rotation of amplitude ϑ2 around the new a2, and then by
a rotation of amplitude ϑ1 around the final a1.

6
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The corresponding curves passing through x(ζ1, ζ2, ζ3) are

c1(h) := x(ζ1 + h, ζ2, ζ3)

c2(h) := x(ζ1, ζ2 + h, ζ3) h ∈ R

c3(h) := x(ζ1, ζ2, ζ3 + h)

(15)

and, using Eqs. (11) and (6), the tangent vectors in h = 0 are

dc1

dh

∣∣∣∣∣
h=0

= x′ = x′o + R′(ζ2ā2 + ζ3ā3)+

+ R
[
ζ2(−k̄3ā1 + k̄1ā3) + ζ3(k̄2ā1 − k̄1ā2)

]

dc2

dh

∣∣∣∣∣
h=0

= Rā2

dc3

dh

∣∣∣∣∣
h=0

= Rā3

(16)

Therefore, defining the deformation gradient F as

dci

dh

∣∣∣∣∣
h=0

= F
dc̄i

dh

∣∣∣∣∣
h=0

, i = 1, 2, 3 (17)

and substituting Eqs. (14) and (16) in Eq. (17), one obtains

Fā1 =
1

κ̄

[
x′o + R′(ζ2ā2 + ζ3ā3) + (−ζ2k̄3 + ζ3k̄2)Rā1

]

Fā2 = Rā2

Fā3 = Rā3

(18)

where κ̄ := 1− ζ2k̄3 + ζ3k̄2.

Now the objective is to evaluate the determinant of F. It represents the current
volume of a parallelepiped having unit volume in the initial configuration. To
this aim, it is necessary to write in a different form Eq. (18)1; the comparison
of Eqs. (16)1 with (18)1, leads one to the following equation

Fā1 =
1

κ̄
[x′ − (−ζ3k̄1Rā2 + ζ2k̄1Rā3)] (19)

Calling λ, ν2, ν3 the components of x′ with respect to the basis {ai} (i.e.,
x′ = λRā1 + ν2Rā2 + ν3Rā3), Eq. (19) becomes

Fā1 =
1

κ̄

[
λRā1 + (ν2 + ζ3k̄1)Rā2 + (ν3 − ζ2k̄1)Rā3

]
(20)

Hence, using Eqs. (20) and (18)2,3, the representation of F on the basis {āi}

7
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is

[F]āi
= [R]

⎡
⎢⎢⎢⎢⎢⎣

λ
κ̄

0 0

ν2+ζ3k̄1

κ̄
1 0

ν3−ζ2k̄1

κ̄
0 1

⎤
⎥⎥⎥⎥⎥⎦

(21)

and so

detF =
λ

κ̄
(22)

A more explicit expression for Eq. (22) will be provided in the following para-
graphs.

2.4 Velocity field

The velocity field is also needed to describe the kinematics of the beam.
Eqs. (2) and (10) can be combined to obtain

x− xo = R(x̄− x̄o) (23)

Considering that the terms with overbar are time-independent, time differen-
tiation of Eq. (23) provides, using the orthogonality of R, the expression of
the velocity of a generic point of the beam

ẋ = ẋo + ṘRT (x− xo) (24)

Hence the velocity field is written as

w = wo + W(x− xo) (25)

where W := ṘRT is the skew angular velocity tensor, w(x) := ẋ and wo :=
w(xo) = ẋo.

2.5 Internal power; stress and strain measures

The expression of the internal power (i.e., the power expended by the internal
stress for the gradient of the velocity field) is deduced, in the case of the beam,
from the corresponding well-known expression for the 3-D Cauchy continuum,
applying the kinematic description of the beam developed in the previous
paragraphs.

8
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For a 3-D Cauchy continuum of shape R, the internal power reads [14]

W int = −
∫
R
T ·GdV (26)

where T is the Cauchy stress tensor, G := ∇w is the gradient of the velocity
field, the dot represents the tensor inner product (T ·G := tr(TTG)) and dV
is a measure of R.

In the spirit of the referential description, the integral in Eq. (26) must be
evaluated in the reference set R̄. Hence, it becomes

W int = −
∫
R̄
T ·G detFdV̄ (27)

where dV̄ is a measure of R̄.

As seen before, the shape R̄ of the beam can be parameterized on I ×S and,
accordingly, Eq. (27) can be written as

W int = −
∫
I

[∫
S
T ·G detFdA

]
dζ1 (28)

where dA is a measure of the area of S. It can be proved [15] that, stating the
principle of material frame-indifference, Eq. (28) is equivalent to

W int = −
∫
I
[t ·Rγ̇ + m ·Rχ̇] dζ1 (29)

where the dot, here, represents the inner product in V, and

t :=
∫
S
Ta1dA

m :=
∫
S
(x− x̄)×Ta1dA

(30)

are respectively the internal force and couple (the symbol × stands for vector
product in V), and

γ := RTx′o − x̄′o
χ := ax(RTR′)

(31)

are the right strain measures (ax( ) is the axial vector of a skew tensor).

To express the components of γ

γ = εā1 + γ2ā2 + γ3ā3 (32)

it is useful to introduce the vector u ∈ V describing the translations of the
axis curve from the reference configuration and defined such that

xo = x̄o + u (33)

9
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The objective is to express all the kinematic terms as functions of the three
components of u with respect to {āi} and the three angles {ϑ1, ϑ2, ϑ3}. These
six scalar functions are the Lagrangian parameters describing the deformation
of the beam.

By differentiating Eq. (33) with respect to ζ1 and using Eq. (3), one obtains

x′o = ā1 + u′ (34)

Using Eqs. (32) and (34), Eq. (31)1 becomes

εā1 + γ2ā2 + γ3ā3 = RT ā1 + RTu′ − ā1 (35)

If u =
∑3

i=1 uiāi, the expression for u′ is (see Eq. (4))

u′ =
3∑

i=1

(
u′iāi + uiK̄āi

)
(36)

and applying the inner product in both the members of Eq. (35) to ā1, ā2 and
ā3, alternatively, it follows that

ε = RT ā1 · ā1 +
3∑

i=1

(
u′iR

T
i + uiR

T K̄
)
āi · ā1 − 1

γ2 = RT ā1 · ā2 +
3∑

i=1

(
u′iR

T
i + uiR

T K̄
)
āi · ā2

γ3 = RT ā1 · ā3 +
3∑

i=1

(
u′iR

T
i + uiR

T K̄
)
āi · ā3

(37)

Using Eqs. (5) and (12), Eq. (37) eventually becomes

ε =(k̄2s2 + c2k̄3s3)u1 + (−c2c3k̄3 − k̄1s2)u2 + (c2c3k̄2 − c2k̄1s3)u3

+ c2c3(1 + u′1) + c2s3u
′
2 − s2u

′
3 − 1

γ2 =(k̄3(c1c3 + s1s2s3)− c2k̄2s1)u1 + (c2k̄1s1 − k̄3(c3s1s2 − c1s3))u2

+ (k̄2(c3s1s2 − c1s3)− k̄1(c1c3 + s1s2s3))u3

+ (c3s1s2 − c1s3)(1 + u′1) + (c1c3 + s1s2s3)u
′
2 + c2s1u

′
3

γ3 =(k̄3(c1s2s3 − c3s1)− c1c2k̄2)u1 + (c1c2k̄1 − k̄3(c1c3s2 + s1s3))u2

+ (k̄2(c1c3s2 + s1s3)− k̄1(c1s2s3 − c3s1))u3

+ (c1c3s2 + s1s3)(1 + u′1) + (−c3s1 + c1s2s3)u
′
2 + c1c2u

′
3

(38)

in which ci := cos ϑi and si := sin ϑi, i = 1, 2, 3.

In Eq. (38), the components of the vector γ are expressed in terms of u :=
{u1, u2, u3}, ϑ := {ϑ1, ϑ2, ϑ3} and k̄ := {k̄1, k̄2, k̄3}.

10
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The components of χ

χ = χ1ā1 + χ2ā2 + χ3ā3 (39)

can be expressed in an explicit way from Eq. (31)2.

To this end, the representation of the tensor RTR′ with respect to the vectors
āi (i = 1, 2, 3) is needed. In particular, the rotation R can be written as

R =
3∑

i,j=1

rijāj ⊗ āi (40)

where rij is the (i, j)-th component of the matrix [R] (Eq. (12)) and ⊗ is the
tensor product (∀v ∈ V, (āj ⊗ āi)v := (āj · v)āi).

Using Eq.(4) and the properties of the tensor product, the differentiation of
both the members of Eq. (40) with respect to ζ1 provides

R′ =
3∑

i,j=1

(r′ijāj ⊗ āi + rij(āj ⊗ āi)K̄
T + rijK̄(āj ⊗ āi)) (41)

hence, considering that K̄T = −K̄, it follows that

[RTR′]āi
= [R]T [R]′ − [K̄] + [R]T [K̄][R] (42)

Thus, the expressions of χi are obtained from the matrix on the right hand
side of Eq. (42), extracting the axial vector

χ1 =− k̄1 + c2c3k̄1 − k̄3s2 + c2k̄2s3 + ϑ′1 − s2ϑ
′
3

χ2 =− k̄2 + c1c3k̄2 + c2k̄3s1 + c3k̄1s1s2 − c1k̄1s3+

+ k̄2s1s2s3 + c1ϑ
′
2 + c2s1ϑ

′
3

χ3 =− k̄3 + c1c2k̄3 − c3k̄2s1 + c1c3k̄1s2 + k̄1s1s3+

+ c1k̄2s2s3 − s1ϑ
′
2 + c1c2ϑ

′
3

(43)

These components are explicitly expressed in terms of ϑ and k̄.

Starting from Eq. (22), it can be useful to express the determinant of F in
terms of the strain components. Combining Eqs. (16)1 and (31)1, it follows
that

x′o = (1 + ε)a1 + γ2a2 + γ3a3 (44)

Hence, evaluating λ = x′ · a1 one gets

λ = (1 + ε) + ζ2(R
TR′ + K̄)ā2 · ā1 + ζ3(R

TR′ + K̄)ā3 · ā1 (45)
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and after some tensor algebra

λ = (1 + ε)− ζ2(χ3 + k̄3) + ζ3(χ2 + k̄2) (46)

Accordingly, an explicit expression for det F is derived

detF =
1 + ε− ζ2(χ3 + k̄3) + ζ3(χ2 + k̄2)

1− ζ2k̄3 + ζ3k̄2

(47)

It is worth noticing that, in correspondence to the axis curve, i.e., when con-
sidering ζ2 = 0 and ζ3 = 0, Eq. (47) reduces to detF = 1 + ε, therefore the
effect of the initial curvature is present only in the definition of ε.

2.6 Inertia forces

As for the description of the internal stress and strain, the expression of the
inertia forces is deduced from the corresponding terms valid for the 3-D Cauchy
continuum.

In particular, the expression of the (external) power expended by the inertia
forces for the velocity field, for a 3-D Cauchy continuum of shape R, is

Wext = −
∫
R
ρẍ ·wdV (48)

where ρ is the volume mass density in the current configuration, ẍ is the
acceleration of a point of the body occupying the position x, and w is the
velocity field.

The integration in Eq. (48) must be evaluated in the reference shape R̄, so

Wext = −
∫
R̄
ρẍ ·w detFdV̄ (49)

Moreover, considering the principle of conservation of mass

ρ̄ = ρ detF (50)

ρ̄ being the volume mass density in the initial configuration, Eq. (49) becomes

Wext = −
∫
R̄
ρ̄ẍ ·wdV̄ (51)
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From Eq. (23) and by using the orthogonality of R, the expression for the
acceleration is

ẍ = ẍo + R̈RT (x− xo) (52)

Using Eq. (25) and Eq. (52), the external power reads

Wext = −
∫
R̄
ρ̄

(
ẍo + R̈RT (x− xo)

)
· (wo + W(x− xo)) dV̄ (53)

Using the properties of the tensor product, Eq. (53) can be written as

Wext =−
∫
R̄
ρ̄

[
(ẍo + R̈RT (x− xo)) ·wo

+[(x− xo)⊗ ẍo + R̈RT ((x− xo)⊗ (x− xo))] ·W
]
dV̄

(54)

Considering R̄ as parameterized on I × S and the axis curve crossing the
sections in their centroid (

∫
S(x − xo)dA = 0), if ρ̄ is considered as uniform,

Eq. (54) becomes

Wext = −ρ̄
[
A

∫
I
ẍo ·wodζ1 +

∫
I
R̈RT

∫
S
(x− xo)⊗ (x− xo)dA ·Wdζ1

]
(55)

where A is the area of the generic cross-section.

If ā2 and ā3 are principal axes for the section and I2, I3 are the respective
principal moments of inertia, Eq. (55) becomes

Wext = −ρ̄
[
A

∫
I
ü ·wodζ1 +

∫
I
R̈[I3(ā2 ⊗ ā2) + I2(ā3 ⊗ ā3)]R

T ·Wdζ1

]
(56)

being ẍo = ü from Eq. (33).

Thus, the inertia forces are described, by means of Eq. (56), in terms of the six
components u and ϑ. Equation (56) can be written in a more compact form
as

Wext = −
∫
I
(b · u̇ + c · ω̇)dζ1 (57)

where

b := −ρ̄Aü

c := 2ρ̄ ax(skw(R̈[I3(ā2 ⊗ ā2) + I2(ā3 ⊗ ā3)]R
T ))

(58)

and where u̇ = w, ω := ax(W).

Therefore, when expressing the inertia forces and couples in terms of volume
mass density in the initial configuration ρ̄, they do not depend on the initial
curvatures.
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3 Equations of motion

The objective is to obtain the equations of motion for a beam having double-
symmetric cross-section and initial length �, constituted by linear elastic isotropic
material, with mass density ρ̄ in the reference configuration, carrying possible
tip masses m0 and m� and subjected to tip forces f0 and f�, and couples μ0 and
μ�. The subscripts 0 and � indicate terms relevant to ζ1 = 0 and ζ1 = �, re-
spectively. The equations of motion are obtained using the Principle of Virtual
Power.

The internal power has the form of Eq. (29) and can be written, in scalar
form, as

W int = −
∫
I
(Nε̇ + T2γ̇2 + T3γ̇3 + M3χ̇1 + M2χ̇2 + M3χ̇) dζ1 (59)

where the act of motion is described by u̇ := {u̇1, u̇2, u̇3} and ϑ̇ := {ϑ̇1, ϑ̇2, ϑ̇3}
after using Eqs. (38) and (43).

The external power contains terms due to distributed and concentrated tip
masses and terms due to tip forces and couples

Wext =−
∫
I
(b · u̇ + c · ω)dζ1 + b0 · u̇0 + c0 · ω̇0+

+ b� · u̇� + c� · ω̇� + f0 · u̇0 + f� · u̇� + μ0 · ω̇0 + μ� · ω̇�

(60)

In the following, the case of a clamped-free beam is reported as example. In
this case m0 = 0, u̇0 = 0, and ω̇0 = 0 are considered. Moreover, a tip force f�
is assumed parallel to the axis a2(�), sinusoidally varying in time and having
an amplitude f

f� := f sin(Ωt)a2� (61)

The internal constraints, to describe vanishing of the extension and of the
shear deformations, are

ε = 0

γ2 = 0

γ3 = 0

(62)

and the corresponding stress quantities T := {N, T2, T3} are considered as
reactive forces. A linear elastic uncoupled relation is considered to express
{M1, M2, M3} in terms of the strain components

M1 = GJχ1

M2 = EI2χ2

M3 = EI3χ3

(63)
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For a subsequent Galerkin projection, it is useful to express the internal con-
straint in weak form by introducing a constraint functional

Vc :=
∫
I

(
εÑ + γ2T̃2 + γ3T̃3

)
dζ1 (64)

In order to consider the internal constraint (62), this term needs to vanish for
every trial function Ñ , T̃2, T̃3. If the internal constraint is not used, this term
is not considered and constitutive relations for T must be added.

Hence, the boundary value problem governing the dynamics of the beam can
be obtained by the vanishing of both the total power and constraint term

W :=W int +Wext = 0

Vc = 0
(65)

for every act of motion, described by the nine independent parameters u̇, ϑ̇,
T̃ := {Ñ, T̃2, T̃3}, defined in I, and the six independent boundary parameters
u�, ϑ�. Moreover, the six boundary conditions at the clamped end must be
added

u(0) = ϑ(0) = 0 (66)

The expressions of the total power and constraint term (65) are manipulated
by means of the software Mathematica� [16] to obtain the coefficients of u̇, ϑ̇,
T̃ and of u̇�, ϑ̇�. The separate vanishing of these coefficients provides the equa-
tions of motions and the boundary conditions on the tip section, respectively.
The equations of motion appear as

Ji(u, u̇, ü, ϑ, ϑ̇, ϑ̈) +Hi(u, u
′, ϑ, ϑ′, ϑ′′, T, T′, k̄) = 0 i = 1, . . . , 6

ε(u, u′, ϑ, k̄) = 0

γ2(u, u
′, ϑ, k̄) = 0

γ3(u, u
′, ϑ, k̄) = 0

(67)

where Ji contain inertia terms while Hi contain elastic terms. The boundary
conditions in ζ1 = 0, � are of the form

u(0) = ϑ(0) = 0

Ji(u�, u̇�, ü�, ϑ�, ϑ̇�, ϑ̈�) +Ki(u�, ϑ�, ϑ
′
�, T�, f, k̄) = Pi i = 1, . . . , 6

(68)

where Ki contain elastic and parametric-exciting boundary terms while Pi

contain direct-exciting terms. The full expressions of the equations of motion,
omitted here for sake of space, are reported in [15].
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4 Conclusions

In this work a geometrically non-linear elastic beam, with double-symmetric,
rigid planar cross-sections and uniform initial curvature was considered. In
Part 1 of this work, the geometry of the beam was defined in terms of the axis
curve and directors. The initial curvature parameters were introduced to spec-
ify the initial configuration. The description of the deformation and of inertia
terms was deduced from a corresponding 3-dimensional Cauchy continuum.
The weak form of the equations of motion was obtained. These equations are
valid, with slight modifications, both for extensible and inextensible beams,
and both for shear-deformable and shear-indeformable beams. The internal
constraints were introduced with a relevant power term in the expression of
the total power and considering the internal forces as reactive.

Investigations on free and forced dynamics for a case-study, and how these are
affected by initial curvatures, are described in Part 2 of this work.

A Expressions of the terms describing the initial configuration

Defining

κ :=
√

k̄2
1 + k̄2

2 + k̄2
3 (A.1)

the components of ā1(ζ1) on {e1, e2, e3} are

ā11(ζ1) =
1

κ2

[
k̄2

1 + (k̄2
2 + k̄2

3) cos(κζ1)
]

ā12(ζ1) =
1

κ3

[
κk̄1k̄2 (1− cos(κζ1)) + κ2k̄3 sin(κζ1)

]

ā13(ζ1) =
1

κ3

[
κk̄1k̄3 (1− cos(κζ1))− κ2k̄2 sin(κζ1)

]
(A.2)

The components of ā2(ζ1) on {e1, e2, e3} are

ā21(ζ1) =
1

κ3

[
κk̄1k̄2 (1− cos(κζ1))− κ2k̄3 sin(κζ1)

]

ā22(ζ1) =
1

κ2

[
k̄2

2 + (k̄2
1 + k̄2

3) cos(κζ1)
]

ā23(ζ1) =
1

κ3

[
κk̄2k̄3 (1− cos(κζ1)) + κ2k̄1 sin(κζ1)

]
(A.3)
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The components of ā3(ζ1) on {e1, e2, e3} are

ā31(ζ1) =
1

κ3

[
κk̄1k̄3 (1− cos(κζ1)) + κ2k̄2 sin(κζ1)

]

ā32(ζ1) =
1

κ3

[
κk̄2k̄3 (1− cos(κζ1))− κ2k̄1 sin(κζ1)

]

ā33(ζ1) =
1

κ2

[
k̄2

3 + (k̄2
1 + k̄2

2) cos(κζ1)
]

(A.4)

Eventually, the components of x̄o(ζ1) on {e1, e2, e3} are

x̄o1(ζ1) =
1

κ3

[
k̄2

1κζ1 + (k̄2
2 + k̄2

3) sin(κζ1)
]

x̄o2(ζ1) =
1

κ3

[
κk̄3(1− cos(κζ1) + k̄1k̄2(κζ1 − sin(κζ1))

]

x̄o3(ζ1) =
1

κ3

[
−κk̄2(1− cos(κζ1) + k̄1k̄3(κζ1 − sin(κζ1))

]
(A.5)
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