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The aim of this work is to formulate a model for the study of the dynamics of curved beams undergoing large oscillations. In Part 1, the interest was oriented to the formulation of a consistent analytical model and to obtain the equations of motion in weak form. In Part 2, a case-study is considered and the response for various initial curved configurations, obtained by varying the initial curvature, are analyzed. Both the free and forced problems are considered: the linear free dynamics are studied to detect how the initial configuration affects the modal properties and to enlighten typical phenomena of frequency coalescence and avoidance; the forced dynamics are then studied for different internal resonance conditions to enlighten the phenomenon of the dynamic instability under a shear periodic tip follower force and to describe the various classes of post-critical motion. The results of experimental tests conducted on a slightly imperfect straight beam prototype are eventually discussed.

Introduction

The non-linear dynamics of a straight beam, subjected to time-periodic forces, were studied in Bolotin [START_REF] Bolotin | The Dynamic Stability of Elastic Systems[END_REF], where the interest was focused on the flexuraltorsional instability under a shear periodic force and on bifurcation phenomena between different classes of post-critical motion. The solution given therein puts into evidence strong modal-interaction phenomena and the existence of coupled motions in wide regions of the excitation parameters plane. Moreover, the possible presence of internal resonance-tuning mechanisms of 1:1 and/or A c c e p t e d m a n u s c r i p t 1:3 types makes the dynamics even more rich and varied within the instability regions. In different works by Crespo da Silva et al. [START_REF] Crespo Da Silva | Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. Forced motions[END_REF][START_REF] Zaretzky | Experimental investigation of nonlinear modal coupling in the response of cantilever beams[END_REF], the forced dynamics of straight beams were studied by using both the analytical and experimental approaches, to examine the contribution of the nonlinear inertia and nonlinear curvature terms. In Lee [START_REF] Lee | Effects of initial curvature on the dynamic stability of a beam with tip mass subjected to axial pulsating loads[END_REF], an initially curved beam subjected to dynamic pulsating axial load was considered, analyzing the contribution of the magnitude of the tip mass to the instability regions. In Maewal [START_REF]Chaos in a harmonically excited elastic beam[END_REF], chaotic modulation of the response of a straight beam, harmonically excited along one transverse direction, was detected and analyzed by the Lyapunov exponents. In Nayfeh and Balachandran [START_REF] Nayfeh | Applied Nonlinear Dynamics[END_REF] techniques for the stability analysis in non-linear problems were discussed and in Moon [START_REF] Moon | Chaotic and Fractal Dynamics[END_REF] techniques for meaningful experimental observations were provided.

In Part 1 of this work, a model able to describe the 3-dimensional finite dynamics of initially curved beams is presented. In particular, the weak form of the equations of motion is written explicitly in terms of the initial curvature components k := { k1 , k2 , k3 }, in the case of inextensible and shear-indeformable beam. The dependent variables are u := {u 1 , u 2 , u 3 }, ϑ := {ϑ 1 , ϑ 2 , ϑ 3 }, T := {N, T 2 , T 3 } describing, respectively, the displacement of the axis line, the rotation of the rigid sections, and the internal reaction to the kinematic constraints for inextensible and shear-indeformable beam.

In this Part 2 such equations are applied to the case-study of a cantilever beam, analyzed in different initial configurations corresponding to different values of initial curvature. The free linear dynamic problem is considered in order to analyze how the modal properties (frequencies and modal shapes) are modified by the initial curvatures and to detect possible veering phenomena between contiguous modes. Then, after a Galerkin projection on a reduced basis, the forced problem is considered for three different initial configurations, focusing the attention on the flexural-torsional dynamic instability phenomenon, typical in thin-walled beams, and on the description of the post-critical evolution. Direct integrations are performed to show the quality of the solution inside and outside the instability regions. The Multiple Time Scale technique is then applied, in order to obtain amplitude and phase modulation equations (APMEs in the following), describing the slow-time dynamics and able to provide frequency-response curves and to detect the bifurcation scenario. Eventually, an experimental test on a slightly imperfect straight beam, designed in the Nonlinear Dynamics Laboratory at University of L'Aquila (Italy), is conducted in order to supply information to validate and calibrate the analytical model.

A c c e p t e d m a n u s c r i p t 2 The analyzed case

The case-study, corresponding to an experimental model described in a subsequent Section, is a clamped-free elastic beam, having a span = 1 m, a rectangular cross-section 8 mm × 100 mm ((ā 3 , ā2 )-plane), bending stiffnesses EI 2 = 2.770 × 10 The initial curvatures are chosen as

k1 = α 1 κ1 k2 = α 2 κ2 k3 = α 3 κ3 (1)
where α := {α 1 , α 2 , α 3 } are non-dimensional coefficients, referred in the following as curvature amplification factors, able, in principle, to assume all possible real values, while {κ 1 , κ2 , κ3 } are curvature components corresponding to a reasonably slightly imperfect configuration of a straight, untwisted beam. Guessing a realistic initial curvature of an imperfect thin-walled beam, they are assumed as

κ1 = 1 5 κ2 = 8 50 κ3 = 1 50 (2) 
When α = {0, 0, 0}, the untwisted rectilinear configuration is considered; in this case the position of the centroid of the tip section is xo1 ( ) = , xo2 ( ) = 0, xo3 ( ) = 0. When α = {0.5, 0.5, 0.5}, the assumed curvatures are coherent with a straight but slightly geometrically imperfect beam. In this case the position of the centroid of the tip section is xo1 ( ) = 0.999 , xo2 ( ) = 0.006 , xo3 ( ) = -0.040 . In the case α = {1, 1, 1} the position of the centroid of the tip section is xo1 ( ) = 0.995 , xo2 ( ) = 0.015 , xo3 ( ) = -0.079 , corresponding to a more imperfect configuration; in this case interesting internal resonance conditions arise. Different possible initial configurations, obtained for various values of α, are reported in Fig. 1, by using the expressions for the parameterization of the initial configuration given in Appendix A of Part 1. A scheme of the specific initial configurations considered in this work is shown in Fig. 2. 

Free vibrations

The homogeneous linearized problem, obtained from the non-linear problem (Eqs. (67)-(68) of Part 1) by omitting the forcing term and linearizing around the natural configuration, is considered in this Section. The corresponding equations are reported in Appendix A. The continuous eigenvalue problem cannot be solved in closed form and a numerical procedure has to be applied to obtain the eigensolutions. First, under the hypothesis of separation of variables, synchronous solutions of the type

u(ζ 1 , t) = e iωt ũ(ζ 1 ) ϑ(ζ 1 , t) = e iωt θ(ζ 1 ) T(ζ 1 , t) = e iωt T(ζ 1 ) (3) 
are searched, where ω is an unknown modal frequency and i is the imaginary unit. Substituting the solution (3) in Eq. (A.1) and transforming the obtained system in an equivalent first-order form leads to the following equation where the state variables are

x (ζ 1 ) = A(ω)x(ζ 1 ) ( 4 ) 
x 1 (ζ 1 ) := ũ1 (ζ 1 ) x 2 (ζ 1 ) := ũ2 (ζ 1 ) x 3 (ζ 1 ) := ũ3 (ζ 1 ) x 4 (ζ 1 ) := Ñ (ζ 1 ) x 5 (ζ 1 ) := T2 (ζ 1 ) x 6 (ζ 1 ) := T3 (ζ 1 ) x 7 (ζ 1 ) := θ1 (ζ 1 ) x 8 (ζ 1 ) := θ 1 (ζ 1 ) x 9 (ζ 1 ) := θ2 (ζ 1 ) x 10 (ζ 1 ) := θ 2 (ζ 1 ) x 11 (ζ 1 ) := θ3 (ζ 1 ) x 12 (ζ 1 ) := θ 3 (ζ 1 ) (5) 
and A(ω) is an algebraic matrix of order 12 × 12, depending on the unknown ω (see Appendix A). In the same way, the boundary conditions at ζ 1 = 0 and

ζ 1 = become B 0 x(0) = 0 B (ω)x( ) = 0 ( 6 
)
where B 0 and B (ω) are algebraic matrices of order 6×12. To solve the system (4) with boundary conditions [START_REF] Nayfeh | Applied Nonlinear Dynamics[END_REF], a solution of type

x(ζ 1 ) = ce λζ 1 (7) 
A c c e p t e d m a n u s c r i p t is assumed, where c is a vector of constant amplitudes and λ is a scalar parameter. Substituting the solution [START_REF] Moon | Chaotic and Fractal Dynamics[END_REF] in system ( 4)-( 6) provides a classical eigenvalue problem (A(ω) -λI)c = 0

The characteristic equation det(A(ω) -λI) = 0 [START_REF]IMSL Fortran Library User's Guide MATH/LIBRARY[END_REF] providing a relation between λ and the frequency, is of order six and cannot be solved in closed form. Therefore a trial frequency ω is used, corresponding couples ( λ1 , ĉ1 ), . . . , ( λ12 , ĉ12 ) of eigenvalues and eigenvectors of A(ω) are computed, and a trial solution of the system (4) assumes the form

x(ζ 1 ) = 12 i=1 η i ĉi e λi ζ 1 (10) 
where η i are unknown coefficients to be determined by applying the boundary conditions. Using Eq. ( 10), the boundary conditions (6) become

B(ω)η = 0 (11) 
where B(ω) is the following matrix

B(ω) := ⎡ ⎢ ⎣ B 0 ĉ1 B 0 ĉ2 . . . B 0 ĉ12 e λ1 B (ω)ĉ 1 e λ2 B (ω)ĉ 2 . . . e λ12 B (ω)ĉ 12 ⎤ ⎥ ⎦ (12) 
and η := {η 1 , . . . , η 12 } T . If the trial frequency ω corresponds to a natural frequency, Eq. ( 11) admits a non-trivial solution. In this case det(B(ω)) = 0 [START_REF] Aps | ARTeMIS Extractor software ver. 3.2[END_REF] If Eq. ( 13) is not verified (within a chosen tolerance), a new trial frequency ω must be chosen and the algorithm recursively repeated.

The problem is solved for different values of α corresponding to different initial configurations. Only non-negative values of α i , i = 1, 2, 3, are considered, being the eigenfrequencies independent of their sign.

When α 1 = 0 and α 2 = α 3 = 0, i.e., the beam is initially straight but twisted, the eigenvalue problem can be split into three simpler uncoupled sub-problems, respectively describing the axial, twist, and bending free oscillations. In the particular condition α = {0, 0, 0}, bending can also be split into two uncoupled planar sub-problems.

In the considered cases: Because of the low sensitivity of modal frequencies and shapes to small variations of α 3 (the curvature amplification factor in the highest inertia plane), in the parametric discussion all the results are reported assuming a fixed value for this parameter. In Fig. 3 the frequencies are reported as functions of α 1 and α 2 . One can observe an increasing sensitivity of the frequencies to the curvature amplification factors for higher modes. Some sections of Figure 3, in the (α 1 , ω) and (α 2 , ω) planes, are presented in Figures 4 and5, respectively, evidencing veering phenomena and significant changes in terms of frequency ratios among the considered modes. In particular, a veering phenomenon between the second and the third mode is detected, referring to Fig. 4a, for α 1 ∼ = 4 when α 2 = 0. The same veering phenomenon moves to higher values of α 1 as the value of α 2 is increased; indeed when α 2 = 5 (Fig. 4b), the veering phenomenon occurs for values of α 1 exceeding the values reported in the diagram. Similar situations appear, for different values of the parameters and modes, in Figs. 5a and5b. Indeed a veering phenomenon between the third and fourth modes occurs for α 2 ∼ = 3 when α 1 = 0 (Fig. 5a), but when α 1 = 5 (Fig. 5b), the veering phenomenon occurs for values of α 2 exceeding again the values reported in the diagram.

Therefore, significant changes in the ratios between the natural frequencies, and consequently on the internal resonance conditions, are found if the parameters α 1 and α 2 are, even slightly, modified.

The modal shapes in the case α = {1, 1, 1} are reported in Figs. [START_REF] Nayfeh | Applied Nonlinear Dynamics[END_REF], where they are superimposed on results obtained by using a FEM code; the agreement is generally good, except for the modal components which are less relevant, in terms of maximum amplitude, with respect to the dominant component, probably because those components can be more sensitive to numerical error (i.e., u 1 for all the cases, and also u 2 for case a). using the first four eigenvectors as shape functions. In particular we assume

u(ζ 1 , t) = n j=1 q j (t)ũ j (ζ 1 ) ϑ(ζ 1 , t) = n j=1 q j (t) θj (ζ 1 ) T(ζ 1 , t) = n j=1 q j (t) Tj (ζ 1 ) (14) 
where ũj

(ζ 1 ) = {ũ j 1 , ũj 2 , ũj 3 }, θj (ζ 1 ) = { θj 1 , θj 2 , θj 3 } and Tj (ζ 1 ) = { Ñj , T j 2 , T j 3 }
are the known components of the j-th eigenvector, and the functions q j (t) are the relevant time-dependent amplitudes. Generally in the literature, when dealing with the flexural-torsional coupling of straight and compact cross-section beams [START_REF] Crespo Da Silva | Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. Forced motions[END_REF], only the first three eigenvectors, describing the first in-plane and out-of plane bending and the first torsional mode, respectively, are considered. The former assumption is due to the higher value of the fourth frequency with respect to the range spanned by the first three, a circumstance destroying all the possible mechanisms of modal interaction (primary internal resonance, sub-super harmonic resonances). On the contrary, in the case of thin-walled beams, the second out-of-plane bending mode, due to the low value assumed by its frequency, is generally strongly involved in the dynamics. Hence, the number n of shape functions considered in this work is four; indeed, in our cases, the second bending mode in the lowest inertia plane has a frequency
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value comparable to the first three. Therefore, in the case α = {0, 0, 0}, one trial function describes the bending oscillations in the highest inertia plane, two trial functions the bending oscillations in the lowest inertia plane, and one describes the twist.

By using the Galerkin projection, the partial differential boundary-value problem is reduced to a corresponding ordinary one. This is obtained by substituting the expressions (14) in Eq. ( 65) of Part 1 and then imposing the vanishing of the total power for any act of motion, described by { q1 , q2 , q3 , q4 }. Hence, four 2 nd -order non-linear ordinary differential equations are obtained. The equations are further approximated with a Mac Laurin polynomial expansion up to the third order. Modal linear damping is then introduced by means of damping factors ξ j , j = 1, . . . 4. In the considered case-study the values of the damping factors identified by experimental tests on the companion prototype described in Section 5 are used.

A dynamic tip shear force of follower type is assumed to excite the beam, in direction coincident, in any configuration, to the principal axis of the crosssection at which corresponds the lowest moment of inertia; that produces both external and parametric forcing terms in the equations of motion. The time evolution of the force is considered sinusoidal, with known amplitude and frequency.

The equations for the case α = {0, 0, 0}, using a non-dimensional time τ = ω 3 t, are reported in Appendix B. On the contrary, the equations for different values of α, being very cumbersome, are reported in [START_REF] Zulli | Dynamic instability of an initially curved elastic beam (Orig. title: Instabilità dinamica di una trave elastica a curvatura iniziale non nulla)[END_REF]. It is worth noticing how, when initial curvatures are considered, quadratic terms of type q 2 j , not present in the case α = {0, 0, 0}, appear in the equations, consistently with the loss of symmetry of the problem.

In the following, the cases α = {0, 0, 0}, α = {0.5, 0.5, 0.5}, and α = {1, 1, 1} are considered, and direct integrations [START_REF]IMSL Fortran Library User's Guide MATH/LIBRARY[END_REF] of the equations of motion and path-following algorithms [START_REF] Doedel | Auto 2000: continuation and bifurcation software for ordinary differential equations[END_REF] for the solutions of the APMEs, obtained by using the Multiple Time Scales technique [START_REF] Nayfeh | Nonlinear oscillations[END_REF], are applied in some meaningful resonance cases.

Direct integrations

With the aim of unfolding the behavior of the system for a given excitation amplitude and varying the excitation frequency around the meaningful resonance conditions, direct integrations of the discretized equations of motion are used in order to draw bifurcation diagrams and behavior charts. To characterize the quality of the solution, some corresponding Poincaré sections are reported in Fig. 8. It can be seen that, starting from a one-mode T -periodic solution (Fig. 8a) where only the directly-excited component q 3 is present, an increase of the exciting frequency brings the solution to the left boundary of the instability region, where the periodicity of the solution is lost and a more complex quasi-periodic evolution in time is activated (Fig. 8b,c). Inside the instability region, all the four components of the motion are involved in the dynamics. Further increasing the exciting frequency (Fig. 8d,e) the solution gradually reduces the complexity until the right boundary of the instability region is reached (Hopf bifurcation) and only the directly-excited component remains, again with a T -periodic evolution (Fig. 8f). In Fig. 10 some Poincaré sections, corresponding to the bifurcation diagram in Fig. 9a, are showed. Differently from the previous case, all of the four components are active, in the T -periodic solution (Fig. 10a), also outside the instability region, because of the modal coupling due to the initially curved shape.

For increasing forcing frequency, the T -periodic directly excited solution loses stability through a Hopf bifurcation; the following quasi-periodic response (Fig. 10b,c), stable in a thin range, ends due to a phase-locking phenomenon through a 4T -periodic solution on a resonant 2-torus (Fig. 10d), stable in the range α , β shown in Fig. 9a. Slightly increasing the excitation frequency, the
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motion, starting from the 4T -periodic evolution, becomes more complex and appears as a non-periodic slight perturbation of the originating 4T -periodic motion (Fig. 10e). Indeed, in the Poincaré map (Fig. 10d) a 4T -periodic solu- tion is detected by the presence of four isolated points while, in Fig. 10e, the evolution appears as a chaotic perturbation of the 4T -periodic motion by the presence of four well separated regions of points, each one centered around the phantom of the originating 4T -periodic points. This occurrence is confirmed by the corresponding Fourier spectra in Fig. 11. On the right part of the insta- bility region, a wide region of non-regular response occurs. Further increasing the excitation frequency, the right boundary of the instability region is reached and the motion becomes again T -periodic (Fig. 10f). Other instability regions are found in this case near the external resonance with the second (Fig. 12) and the fourth mode (Fig. 13), therefore out of the range of frequencies shown The bifurcation diagram obtained in this case is depicted in Fig. 14a, for fixed excitation amplitude and increasing values of the non-dimensional exciting frequency := Ω/ω 2 , near the value = 1, i.e., in correspondence to the external 1:1 resonance condition with the 2 nd mode. As already mentioned, in this case nearly internal resonance conditions of type 1:2 between 2 nd and 4 th mode and 2:3 between the 2 nd and 3 rd occur. The first instability boundary in thef plane is shown in Fig. 14b.

In Fig. 15, some Poincaré sections, corresponding to the bifurcation diagram Fig. 14a, are plotted. The T -periodic solution (Fig. 15a) reaches, for increasing frequency, a fold followed by a jump to a different T -periodic solution (Fig. 15c), coexisting and competing with more complex responses (Fig. 15b,d,e). On the right part of the instability region, a 2T -periodic solution appears. This response is likely to trace back to the presence of a combination resonance. Spectral analysis of the 2T -periodic flow (Fig. 16) highlights the presence of fractional harmonic pairs ( 12 , 3 2 ), as occurs for systems with cubic nonlinearities in the presence of a combination resonance.

A c c e p t e d m a n u s c r i p t

Moreover, some non-regular orbits, picked out around the value α in Fig. 14a, show a typical evolution due to a homoclinic tangency [START_REF] Glendinning | Local and global behavior near homoclinic orbits[END_REF]. Fig. 17a shows the presence, on the map, of an unstable fixed point, characterized by a 2dimensional stable manifold, responsible for the re-injection of the flow, and a 1-dimensional unstable manifold, responsible for the ejection. Spectral analysis (Fig. 17b) highlights the effect of a chaotic modulation.

- 

Multiple Time Scales Method

To obtain an approximate solution, the Multiple Time Scales Method [START_REF] Nayfeh | Nonlinear oscillations[END_REF] is applied to the discrete equations of motion. The dependent variables q j are expanded as

q j (T 0 , T 1 , T 2 ) = 3 h=1 h q (j) h (T 0 , T 1 , T 2 ) ( 15 
)
where

T 0 = t, T 1 = t, T 2 = 2 t.
An ordering of the relevant coefficients of the system is done and the perturbation equations at orders 1 , 2 and 3 are obtained. They are solved in sequence, imposing the solvability conditions by vanishing the secular producing terms at orders 2 and 3 . The solvability conditions provide approximate equations describing the evolution of the amplitude and phase of the solution in the slow-varying time scale (APMEs).

4.2.1

The case α = {0, 0, 0}

In the case α = {0, 0, 0}, as previously mentioned, an internal 1:1 resonance condition between the 3 rd and 4 th modes occurs. When an external 1:1 condition with the 3 rd mode is considered, the resonance conditions are expressed as external: Ω = ω 3 + σ internal:

ω 4 = ω 3 + ρ (16)
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where σ and ρ are respectively external and internal detuning parameters. In this way, according to the perturbation procedure, only q 3 and q 4 are active components of the evolutive system. Frequency-response curves are shown in Fig. 18, for different values of the forcing amplitude (the term a is a norm of the solution). It is enlightened how the 1-mode softening solution switches to a 2-mode solution and how, increasing the forcing amplitude f , the bifurcation points modify their position. The instability domain in the excitation parameters plane is depicted in Fig. 19. 

4.2.2

The case α = {0.5, 0.5, 0.5}

For the sake of completeness, the case α = {0.5, 0.5, 0.5} is also presented, where no internal resonance conditions occur and a non-resonant hard excitation is responsible of the 4T -modal T -periodic solution. The same ordering of the case α = {0, 0, 0} is used to study the case Ω = ω 3 + σ. Only the component q 3 is active, and in Fig. 20 the obtained hardening frequency-response curve is shown. 

4.2.3

The case α = {1, 1, 1}

In the case α = {1, 1, 1}, the combination resonance condition

Ω = ω 2 + σ ω 3 = 3 2 ω 2 + ρ 1 ω 4 = 2ω 2 + ρ 2 (17) 
is considered. In Fig. 21a the corresponding frequency-response curve is plotted, where two Hopf bifurcation points are highlighted. Inside the region between these two points, a behavior corresponding to homoclinic tangency is found, coherently with the numerical results reported in Section 4.1.3. The corresponding phase portrait is reported in Fig. 21 b .

- 

Experimental tests

To test the reliability of the analytical model in reproducing the overall phenomenon of the dynamic instability, a beam prototype has been constructed and tested in the Nonlinear Dynamics Laboratory of DISAT at University of L'Aquila (Italy).

A c c e p t e d m a n u s c r i p t

The aluminum cantilever beam, having a cross section of 100 × 8 mm 2 and a span of 1000 mm, is shown in Fig. 22a. A bar carrying two brass masses is applied to the free end to tune the model in a 1:1 internal resonance condition between the 3 rd and 4 th modes. A dynamic exciter, constituted of a step controlled electrical engine moving two counter-rotating masses, is applied at the free end (Fig. 22b) furnishing the external follower sinusoidal excitation considered in the analytical model (Eq. ( 61) of Part 1). The experimental analysis was started with the identification of the modal properties. The modal identification was conducted mounting four accelerometers on the beam in two different setups, able to identify, respectively, the vertical modes (Fig. 23a) and the torsional and horizontal ones (Fig. 23b). The identification procedure is based on the Enhanced Frequency Domain decomposition and was conducted using the commercial software ARTeMIS [START_REF] Aps | ARTeMIS Extractor software ver. 3.2[END_REF]. The contemporaneous time series, acquired by the 4 accelerometers and obtained by exciting the system with white-noise excitation, were processed. First, the spectral density matrix was obtained; then, by applying singular value decomposition, the system response was decomposed in a series of equivalent 1 d.o.f. systems, each one representing the contribution of a single identified mode.

Even if the identification procedure is able to identify, in principle, all the In Fig. 24, the spectral density functions for the two considered setups are reported in the meaningful frequency ranges. One and three spectral lines are easily recognizable respectively and correspond to the first vertical mode (Fig. 24a) and to the first horizontal, first torsional, and second horizontal modes (Fig. 24b). For each identified frequency, the corresponding modal shape has been evaluated and depicted in Fig. 25. The identified modal properties are listed in Table 1. It is worth noticing how the modal frequencies and shapes correspond to the results obtained for the analytical case α = {0, 0, 0}. Response curves, varying the amplitude and the frequency of the excitation, are obtained. These curves allow one to highlight, in the fcontrol parameters plane, the regions of existence of the one-mode, directly excited, simple flexural solution, the relevant stability boundaries (and their kind), and the characteristic of the multi-mode post-critical motion, and to trace the relevant behavior chart. In Fig. 26 the behavior chart, obtained around the primary external resonance condition of the vertical bending mode, is shown (nondimensional frequency about 1). In the figure, the dash-dot line around the nominal 1:1 resonance condition represents the limit of a Hopf bifurcation for the uni-modal solution, obtained increasing the frequency values. After the bifurcation point, the motion becomes multimodal and the relevant timeevolution increases complexity, starting from a quasi-periodic behavior and further evolving towards chaotic motions. Further increasing the excitation frequency, the dashed line on the right represents the stability limit for the multi-modal motions. Above this frequency limit, the motion is again recognizable as uni-modal. On the contrary, decreasing the excitation frequency, the uni-modal solution becomes unstable after a pitchfork bifurcation, shown in Fig. 26 with the continuous curve, after which the motion is multi-modal and periodic. Further decreasing the excitation frequency, the motion, after a Hopf bifurcation, becomes multi-modal with complex time-evolution. The dashed line on the left represents the existence limit of such complex multimodal solution decreasing the excitation frequency. Inside the post-critical region, the response seems to involve, besides the two 1:1 resonant modes (3 rd and 4 th ), also shapes close by resembling 1 st and 2 nd modes. This occurrence furnishes hints toward the further inclusion of, at least, these two modes in the reduced order model. A further instability region of the 1-mode solution, limited by two Hopf lines, is located around the non-dimensional frequency value = 0.80. The corresponding boundaries are represented by two dash- dot lines. This region is not found analytically in the case α = {0, 0, 0}, but is present when initial curvature is assumed (Fig. 12).

Conclusions

In this work the free and forced finite dynamics of curved beams were studied.

In Part 1 the formulation of an analytical model for initially curved beams, based on the Cosserat's special theory of rods, was introduced. In particular the case of uniform initial curvature was considered. In Part 2, this model was applied to a case-study cantilever beam, considering various different initial configurations, with the aim of observing how modifications of the initial curvature can change the dynamical behavior. The free dynamics were analyzed in terms of natural frequencies of the first four modes, observing an increasing sensitivity to variations of initial configuration as the number of mode increases. Moreover, definite changes in internal resonance conditions occur when the initial curvature is modified. The forced dynamics were studied for three cases: one corresponds to the straight non-twisted beam, while the remaining two cases can be assumed as slight modifications of the first one. After a Galerkin reduction of the system, the analysis was carried out both by means of direct integrations of the equations of motion and of path-following procedures applied to the solution of the Amplitude and Phase Modulation Equations, obtained via the Method of Multiple Scales. The different dynamical behavior in the three considered cases was described in terms of the width of the instability regions and quality of the solution. The description of the
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results obtained from an experimental prototype of a straight cantilever beam were reported. Although the natural frequencies of the experimental model correspond to the analytical straight and non-twisted case, the forced response shows some features peculiar to initially curved beams, meaning that imperfections in the initial configurations could affect in noticeble way the non-linear behavior.

A Equations for free vibrations

The equations of motion are The first equation is ω 2 1 q 1 + a(2) q 1 3 + a(3) p(1) sin(t Ω) q 2 + a(4) p(1) sin(t Ω) q 1 2 q 2 + a(5) q 1 q 2 2 + a(6) p(1) sin(t Ω) q 2 3 + a(7) q 2 q 3 + a(8) q 1 q 3 2 + a(9) q 1 2 q 4 + a(10) p(1) sin(t Ω) q 1 q 2 q 4 + a(11) q 2 2 q 4 + a(12) q 3 2 q 4 + a(13) q 1 q 4 2 + a(14) p(1) sin(t Ω) q 2 q 4 2 + a(15) q 4 3 + a(16) ξ 1 q1 + a(17) q 2 q1 q2 + a(18) q2 q3 + a(19) q 1 q2 3 + a(20) q 4 q2 3 + a(21) q 2 q2 q4 + q1 + a(23) q 2 2 q1 + a(24) q 2 q3 + a(25) q 2 2 q4 = 0 (B.1)

N -k3 T 2 + k2 T 3 -ρAü 1 = 0 T 2 + k2 N -k1 T 3 -ρAü 2 = 0 T 3 + k2 N -k1 T 3 -ρAü 3 = 0 EI 3 k2 2 ϑ 1 + EI 2 k2 3 ϑ 1 -EI 3 k1 k2 ϑ 2 -EI 2 k1 k3 ϑ 3 + EI 2 k3 ϑ 2 + + GJ 1 k3 ϑ 2 -EI 3 k2 ϑ 3 -GJ 1 k2 ϑ 3 -GJ 1 ϑ 1 + ρ(I 2 + I 3 ) θ1 = 0 T 3 -EI 3 k1 k2 ϑ 1 + EI 3 k2 1 ϑ 2 + GJ 1 k2 3 ϑ 2 -GJ 1 k2 k3 ϑ 3 + -EI 2 k3 ϑ 1 -GJ 1 k3 ϑ 1 + EI 2 k1 ϑ 3 + EI 3 k1

A c c e p t e d m a n u s c r i p t

The second equation is ω 2 2 q 2 + b(2) q 1 2 q 2 + b(3) q 1 q 3 + b(4) q 2 q 3 2 + b(5) q 1 q 2 q 4 + b(6) q 3 q 4 + b(7) q 2 q 4 2 + b(8) q 2 q2 1 + b(9) ξ 2 q2 + b(10) q1 q3 + b(11) q 2 q2 3 + b(12) q 2 q1 q4 + b(13) q3 q4 + b(14) q 2 q2 4 + q2 + b(16) q 1 q3 + b(17) q 4 q3 = 0 (B.2)

The third equation is c(1) p(3) sin(t Ω) + c(2) q 1 q 2 + c(3) p(3) sin(t Ω) q 2 2 + ω 2 3 q 3 + c(5) q 1 2 q 3 + c(6) p( 3) sin(t Ω) q 1 q 2 q 3 + c(7) q 2 2 q 3 + c(8) p( 3) sin(t Ω) q 3 2 + c(9) q 3 3 + c(10) q 2 q 4 + c(11) q 1 q 3 q 4 + c( 12) p( 3) sin(t Ω) q 2 q 3 q 4 + c(13) q 3 q 4 2 + c(14) q1 q2 + c(15) ξ 3 q3 + c(16) q 1 q1 q3 + c(17) q 4 q1 q3 + c(18) q 2 q2 q3 + c(19) q2 q4 + c(20) q 1 q3 q4 + c(21) q 4 q3 q4 + c(22) q 2 q1 + c(23) q 1 q2 + c(24) q 4 q2 + q3 + c(26) q 1 2 q3 + c(27) q 2 2 q3 + c(28) q 1 q 4 q3 + c(29) q 4 2 q3 + c(30) q 2 q4 (B.

3)

The fourth equation is d(1) q 1 3 + d(2) p(4) sin(t Ω) q 2 + d(3) p(4) sin(t Ω) q 1 2 q 2 + d(4) q 1 q 2 2 + d( 5) p(4) sin(t Ω) q 2 3 + d(6) q 2 q 3 + d(7) q 1 q 3 2 + ω 2 4 q 4 + d(9) q 1 2 q 4 + d(10) p(4) sin(t Ω) q 1 q 2 q 4 + d(11) q 2 2 q 4 + d(12) q 3 2 q 4 + d(13) q 1 q 4 2 + d(14) p(4) sin(t Ω) q 2 q 4 2 + d(15) q 4 3 + d(16) q 2 q1 q2 + d(17) q2 q3 + d(18) q 1 q2 3 + d(19) q 4 q2 3 + d(20) ξ 4 q4 + d(21) q 2 q2 q4 + d(22) q 2 2 q1 + d(23) q 2 q3 + q4 + d(25) q 2 2 q4 = 0 (B.4)

2

 2 Nm 2 and EI 3 = 43.333 × 10 3 Nm 2 , twist stiffness GJ 1 = 4.280 × 10 2 Nm 2 , initial volume mass density ρ = 2.550 × 10 3 Kg m 3 , tip mass at ζ 1 = with the following inertial properties: m = 4.568 Kg and principal mass moments of inertia I 2m = 2.8 • 10 -3 m 4 , I 3m = 1.07 • 10 -2 m 4 .

Figure 1 .

 1 Figure 1. Some possible initial configurations: (a) α = {0.5, 0.5, 0.5}; (b) α = {3, 3, 3}; (c) α = {10, 10, 10}; (d) α = {7.5, 0, 150}.

Figure 2 .

 2 Figure 2. Superposition of three initial configurations: (a) α = {0, 0, 0}, (b) α = {0.5, 0.5, 0.5}, (c) α = {1, 1, 1}.

A c c e p t e d m a n u s c r i p t •

 t When α = {0, 0, 0}, the first four eigensolutions represent the 1 st bending mode in the (ā 1 , ā3 ) plane (ω 1 = 12.79 rad/s), 1 st twist mode (ω 2 = 104.27 rad/s), 1 st bending mode in the (ā 1 , ā2 ) plane (ω 3 = 158.70 rad/s) and 2 nd bending mode in the (ā 1 , ā3 ) plane (ω 4 = 163.59 rad/s). A nearly 1:1 internal resonance condition between the 3 rd and 4 th mode occurs.• When α = {0.5, 0.5, 0.5}, the eigenfrequencies are: ω 1 = 12.80 rad/s, ω 2 = 102.23 rad/s, ω 3 = 143.31 rad/s, ω 4 = 179.70 rad/s. No internal resonance conditions occur. • When α = {1, 1, 1} the eigenfrequencies are: ω 1 = 12.82 rad/s, ω 2 = 95.78 rad/s, ω 3 = 131.05 rad/s, ω 4 = 195.13 rad/s: a nearly 1:2 internal resonance condition between the 2 nd and 4 th modes and a nearly 2:3 internal resonance condition between the 2 nd and 3 th modes appear.

4 ωFigure 3 . 4 Figure 4 . 4 Figure 5 .= 5 4Figure 6 .

 43444556 Figure 3. Modal frequencies rad s as functions of α 1 and α 2 for α 3 = 0
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 411 The case α = {0, 0, 0}The bifurcation diagram obtained in this case is reported in Fig.7a, for a fixed value of the excitation amplitude and increasing values of the non-dimensional excitation frequency := Ω/ω 3 , near the value = 1, i.e., in correspondence of the external 1:1 resonance condition with the 3 rd mode. As already mentioned, in this case an internal resonance condition between the 3 rd and 4 th mode occurs as well. The presence of a wide instability region of the directlyexcited 1-mode T -periodic in-plane solution is evident, and the relevant boundaries are reported in Fig.7bfor different values of excitation amplitudes. In this figure, the dotted line represents the path of the bifurcation diagram in Fig.7a.

Figure 7 .

 7 Figure 7. Case α = {0, 0, 0}: (a) bifurcation diagram; (b) instability boundaries (s stands for stable, u for unstable).

4. 1 . 2 Figure 8 .

 128 Figure 8. Case α = {0, 0, 0}: Poincaré sections in the (q 3 , q3 ) plane near the resonance condition with the third mode; (a) = 0.999; (b) = 1.002; (c) = 1.005; (d) = 1.009; (e) = 1.010; (f ) = 1.011.

3Figure 9 .

 9 Figure 9. Case α = {0.5, 0.5, 0.5}: (a) bifurcation diagram; (b) instability boundaries (s stands for stable, u for unstable).

Figure 10 .

 10 Figure 10. Case α = {0.5, 0.5, 0.5}: Poincaré sections in the (q 3 , q3 ) plane near the resonance condition with the third mode; (a) = 0.9952; (b) = 0.9959; (c) = 0.9961; (d) = 0.9990; (e) = 0.9992; (f ) = 1.018.

Figure 11 .

 11 Figure 11. Case α = {0.5, 0.5, 0.5}; Fourier spectrum of q 3 : (a) = 0.9990; (b) = 0.9992.

Figure 12 .Figure 13 .

 1213 Figure 12. Case α = {0.5, 0., 0.5}: Poincaré sections in the (q 3 , q3 ) plane near the resonance condition with the second mode; (a) = 0.7102; (b) = 0.7107; (c) = 0.7109.
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 13 The case α = {1, 1, 1}

Figure 14 .Figure 15 .

 1415 Figure 14. Case α = {1, 1, 1}: (a) bifurcation diagram; (b) instability boundaries.

Figure 16 .Figure 17 .

 1617 Figure 16. Case α = {1, 1, 1}; Fourier spectrum for = 0.999 : (a) component q 2 ; (b) component q 1 .

Figure 18 .Figure 19 .

 1819 Figure 18. Frequency-response curve in case α = {0, 0, 0}. (a) f = 25 N; (b) f = 40 N. Continuous curve: stable solution; dashed curve: unstable solution.

Figure 20 .

 20 Figure 20. Frequency-response curve in case α = {0.5, 0.5, 0.5}.

Figure 21 .

 21 Figure 21. Case α = {1, 1, 1}. (a) frequency-response curve for f = 25 N (continuous curve: stable solution; dashed curve: unstable solution); (b) phase portrait for the homoclinic tangency in the plane (q 2 , q2 ).

Figure 22 .

 22 Figure 22. The experimental prototype: (left) the beam; (right) the exciter

Figure 23 .

 23 Figure 23. The accelerometers' layout: (a) setup 1; (b) setup 2.

A c c e p t e d m a n u s c r i p t

  modes of the continuous structure, in the following the attention is focused on the first 4 modes, because they are mainly involved in the nonlinear phenomena described in the paper and correspond to the 4 d.o.f. analytical companion model.

1

 1 Figure 24. The power spectral density functions: (left) setup 1; (right) setup 2.

Figure 25 .A c c e p t e d m a n u s c r i p t

 25 Figure 25. The identified modal shapes: (a) 1 st horizontal bending; (b) 1 st torsional; (c) 1 st vertical bending; (d) 2 nd horizontal bending;

Figure 26 .

 26 Figure 26. Experimental behavior chart.

ϑ 3 -A c c e p t e d m a n u s c r i p t 2 )/EI 3 a 8 , 9 = 1 , 1 = b 2 , 2 = b 3 , 3 = b 4 , 7 = b 5 , 9 = b 6 , 11 = 1 (A. 5 ) 1 , 1 = b 2 , 2 = b 3 , 3 = mω 2 b 1 , 4 = b 2 , 5 = b 3 , 6 -1 b 4 , 7 = I 1m ω 2 b 4 , 8 = -GJ 1 b 4 , 9 =b 5 , 9 = I 2m ω 2 b 5 , 10 = -EI 2 b 5 , 11 = EI 2 k1 b 6 , 7 = 3 (A. 6 )B

 32389112233475961115112233142536474849595105116736 EI 2 ϑ 2 + ρI 2 θ2 = 0 -T 2 -EI 2 k1 k3 ϑ 1 -GJ 1 k2 k3 ϑ 2 + EI 2 k2 1 ϑ 3 -GJ 1 k2 2 ϑ 3 + + EI 3 k2 ϑ 1 + GJ 1 k2 ϑ 1 -EI 2 k1 ϑ 2 -EI 3 k1 ϑ 2 -EI 3 ϑ 3 + ρI 3 θ3 = 0 u 1 -k3 u 2 + k2 u 3 = 0 u 2 + k3 u 1 -k1 u 3ϑ 3 = 0 u 3 -k2 u 1 + k1 u 2 + ϑ 2 = 0 (A.1) with boundary conditions in ζ 1 = mü 1 + N = 0 mü 2 + T 2 = 0 mü 3 + T 3 = 0 (I 2m + I 3m ) θ1 + GJ 1 ϑ 1 -GJ 1 k3 ϑ 2 + GJ 1 k2 ϑ 3 = 0 I 2m θ2 + EI 2 ϑ 2 + EI 2 k2 ϑ 1 -EI 2 k1 ϑ 3 = 0 I 3m θ3 + EI 3 ϑ 3 -EI 3 k2 ϑ 1 + EI 3 k1 ϑ 2 = 0 (A.2) and in ζ 1 = 0 u 1 = u 2 = u 3 = ϑ 1 = ϑ 2 = ϑ 3 = 0 (A.3)In the state space form, the non-null terms of the dynamic matrix A(ω) = {a i,j } i,j=1,...12 are a 1,2 = a 4,4 = -a 2,1 = -a 5,4 = k3 a 2,3 = a 5,6 = -a 3,2 = -a 6,5 = k1 a 2,11 = a 7,8 = a 9,10 = a 11,12a 3,9 = 1 a 8,7 = -(ρI 1 ω 2 + EI 3 k2 2 + EI 2 k2 3 )/GJ 1 a 3,1 = a 6,4a 1,3 = -a 4,5 = k2 a 4,1 = a 5,2 = a 6,3 = -ρAω 2 a 10,11 = -GJ 1 k2 k3 /EI 2 a 10,12 = k1 + I 3 k1 I 2 a 10,9 = (-ρI 2 ω 2 + EI 3 k2 1 + GJ 1 k2 3 )/EI 2 a 12,11 = (-ρI 3 ω 2 + EI 2 k2 1 + GJ 1 k2 -EI 3 k1 k2 /GJ 1 a 8,10 = k3 + EI 2 k3 /GJ 1 a 10,6 = 1/EI 2 a 10,7 = -I 3 k1 k2 /I 2 a 10,8 = -k3 -GJ 1 k3 /EI 2 a 12,8 = k2 + GJ 1 k2 /EI 3 a 12,9 = -GJ 1 k2 k3 /EI 3 a 12,5 = -1/EI 3 a 12,7 = -I 2 k1 k3 /I 3 a 12,10 = -k1 -I 2 k1 /I 3 (A.4) The non-null terms of B 0 are b The not-null terms of B (ω) are b GJ 1 k3 b 4,11 = -GJ 1 k2 b 5,7 = -EI 2 k3 EI 3 k3 b 6,9 = -EI 3 k1 b 6,11 = I 3m ω 2 b 6,12 = -EI Discrete equations in the case α i = 0

Table 1

 1 Experimental modal properties and analytical frequencies for the case α = {0, 0, 0}

	Mode n. Freq. (rad/s) An. Freq. (rad/s) Error (%) Damp. ratio	Description
	1	12.63	12.79	1.2	5.0E-3	1 st bend. (a 1 , a 3 )-plane
	2	105.43	104.27	1.1	4.2E-3	1 st twist
	3	154.82	158.70	2.4	4.0E-3	1 st bend. (a 1 , a 2 )-plane
	4	159.09	163.59	2.7	3.0E-3	2 st bend. (a 1 , a 3 )-plane

A c c e p t e d m a n u s c r i p t

The coefficients are ω 2 1 = 0.0065, a(2) = -0.0126, a(3) = -7.8550 * 10 -6 , a(4) = 8.4803 * 10 -6 , a(5) = 0.0964, a(6) = 1.2837 * 10 -6 , a( 7