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Abstract

The dynamics of lagrangian systems is formulated with a differential geometric ap-
proach and according to a new paradigm of the calculus of variations. Discontinuities
in the trajectory, non-potential force systems and linear constraints are taken into
account with a coordinate-free treatment. The law of dynamics, characterizing the
trajectory in a general nonlinear configuration manifold, is expressed in terms of
a variational principle and of differential and jump conditions. By endowing the
configuration manifold with a connection, the general law is shown to be tensorial
in the velocity of virtual flows and to depend on the torsion of the connection. This
result provides a general expression of the Euler-Lagrange operator. Poincaré

and Lagrange forms of the law are recovered as special cases corresponding re-
spectively to the connection induced by natural and mobile reference frames. For
free motions, the geodesic property of the trajectory is directly inferred by adopting
the Levi-Civita connection induced by the kinetic energy.

Key words: Dynamics, connection, torsion, Poincaré law, Lagrange law.

1 Introduction

In recent times the interest for geometric formulations of dynamics has con-
siderably grown up in the literature on mathematical and physical aspects of
the theory (see e.g. [1–3]). Anyway most treatments still refer to newtonian
dynamics of a finite system of point-mass particles and are expressed in terms
of coordinates, a point of view which prevents to get a clear geometric picture
of the theory [4,5]. We contribute here a treatment of lagrangian dynamics,
in the wake of guidelines and ideas exposed in [5,6], where a new paradigm
in variational calculus is illustrated with the purpose to provide a remedy
to otherwise unsatisfactory statements of variational principles in dynamics
and in optics. The paradigm consists in a new definition of the extremality
of the geometric action integral, i.e. the integral of a one-form along a path,
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according to which it is required that the rate of change of the action integral,
when the path is dragged by a virtual flow, must be equal to the boundary
integral of the outward flux of the virtual velocity field plus the virtual power
performed by the force forms. This definition, together with a suitably re-
fined definition of virtual velocities and the addition of the terms representing
the effect of regular and impulsive forces, covers the case of piecewise reg-
ular paths and yields Euler’s differential conditions at regular points and
the related jump conditions at singular points. The standard format, which
substantially reproduces Euler’s original treatment [7] by considering the
restricted class of variations with fixed end points, is not adequate from the
epistemological point of view and does not directly yield the jump conditions
at singular points [5,6]. Indeed, extremality of subsequent portions of a path
does not imply extremality of their union, a natural requirement to be fulfilled
by a well-posed definition. The assumption of fixed end points has naturally
suggested to identify the extremality property of the action functional with a
stationarity or minimum property [8]. The new definition of extremality for
the geometric action integral yields in a natural way the general form of the
law of constrained dynamics. By assuming an arbitrary linear connection in
the configuration manifold, the extension of the classical Euler’s differential
condition is directly derived by making recourse to an intrinsic decomposition
formula, due to the first author [6]. This coordinate-free formula is valid on
a general manifold with a connection and performs the split of the variation
of the Lagrangian functional in terms of a fiber-covariant derivative and of a
base derivative. It takes the role played by the partial derivative formula in co-
ordinates. No symmetry of the second covariant derivative of scalar functions
is assumed and this fact eventually results in the appearence of the torsion of
the adopted connection in the expression of the law of dynamics. The usual
Lagrange coordinate form of the law is recovered as a special case by taking
the torsion-free connection induced by a coordinate system. The Poincaré

form of the law is got by assuming that the connection is induced by a mobile
reference frame. Finally the Levi-Civita connection associated with the met-
ric provided by the kinetic energy is considered. The specialization of the law
of dynamics leads to an expression of the law of motion in terms of the Wein-

garten map of the constraint distribution and, for free motions in absence
of constraints, yields the geodesic property of the trajectory. In the conclu-
sions the debated issue of commutativity between the δ and ()̇ operations is
discussed and clarified. In conclusion we observe that in the framework of geo-
metric formulations of dynamics, principles and variational conditions may be
defined and discussed in precise mathematical terms. As a consequence most
longly debated issues, often affected by ill-defined terms, may be answered.
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2 Preliminary notions

A dot · denotes linear dependence on subsequent arguments, a superscript
star ∗ denotes the dual quantity and the crochet 〈 , 〉 is the duality pairing. For
an exposition of calculus on manifolds we refer e.g. to [2,6,9]. Let us consider a
dynamical system whose configuration manifold M is modeled on a Banach

space and denote by πM ∈ C1(TM ; M) and π∗
M
∈ C1(T∗M ; M) the dual

tangent and cotangent bundles over M . The Whitney sum of two fiber
bundles pE ∈ C1(E ; M) and pF ∈ C1(F ; M) over the same base manifold
M , denoted by E⊕F (or by E×M F ), is the bundle whose fiber over x ∈ M

is the cartesian product Ex×Fx . The Pontryagin vector bundle over M is
the Whitney sum of the tangent and the cotangent bundles over M [10]. The
evaluation map eval ∈ C1(TM⊕T∗M ;�) is then defined by the assignment

eval(v ,v∗) := 〈v∗,v〉 , ∀ (v ,v∗) ∈ TM⊕ T
∗
M .

The tangent map Tϕ ∈ C1(TM ; TN) to a morphism ϕ ∈ C1(M ; N) between
manifolds is the vector bundle homomorphism (fiber preserving and fiber linear
map) defined by the differential:

(Tϕ ◦ v)(x) = Txϕ · v(x) , ∀v(x) ∈ TxM .

Two vector fields v ∈ C1(M ; TM) and u ∈ C1(N ; TN) are ϕ-related if
Tϕ ◦ v = u ◦ ϕ . Then u = ϕ↑v is the push forward. Two scalar fields
f ∈ C1(M ;�) and g ∈ C1(N ;�) are ϕ-related if f = g ◦ϕ and f = ϕ↓g is
the pull back. Two covector fields v∗ ∈ C1(M ; T∗M) and u∗ ∈ C1(N ; T∗N) are
ϕ-related if 〈v∗,v〉 = ϕ↓〈u∗, ϕ↑v〉 for any v ∈ C1(M ; TM) . Then the pull
back is given by the formula ϕ↓u∗ = T ∗ϕ◦u∗ ◦ϕ . The cotangent map T ∗ϕ ∈
C1(T∗N ; T∗M) is the dual homomorphism fiberwise defined by 〈u∗, Tϕ ·v〉 =
〈T ∗ϕ ·u∗,v〉 for any v ∈ C1(M ; TM) . Push-forward of vectors and pull-back
of arbitrary tensors by a morphism ϕ ∈ C1(M ; N) may be similarly defined
and are denoted by ϕ↑ and ϕ↓ and for diffeomorphisms it is ϕ↓ = ϕ−1↑ . The
usual notation for push and pull in differential geometry is ϕ∗ = ϕ↑ and ϕ∗ =
ϕ↓ but then too many stars do appear in the geometrical sky (duality, Hodge

star operator). The natural derivative Tvs ∈ C1(M ; TE) of a section s ∈
C1(M ; E) of the fiber bundle p ∈ C1(E ; M) along a vector v ∈ TM is defined
by Tvs = T s◦v and meets the property p↑Tv := v , i.e. Tp◦Tv = v◦p . The
fibers of the vertical subbundle VE of the tangent bundle TE are the kernels
of the tangent fibration map Tp ∈ C1(TE ; E) . Vertical vectors V ∈ VE

are characterized by a null velocity πE↑V = 0 of their base point in M . A
connection on a fiber bundle is a projector V ∈ C1(TE ; TE) on the vertical
bundle VE , i.e. a vector bundle homomorphism P(e) ∈ BL (TeE ; TeE) such
that P(e)◦P(e) = P(e) , im(P(e)) = VeE . The projector H = I−V defines
the horizontal subbundle HE ⊂ TE . The horizontal lift Hvs ∈ C1(M ; HE)
and the covariant derivative ∇vs ∈ C1(M ; VE) of a section s ∈ C1(M ; E)
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along a vector field v ∈ C0(M ; TM) are respectively the horizontal and the
vertical components of the natural derivative [6,11]:

Hvs := H ◦ Tv ◦ s , ∇vs := V ◦ Tv ◦ s ,

so that Tvs = Hvs + ∇vs and Tp(s) ◦ Hs = idTp(s)M
, where Hs ◦ v =

Hvs . The horizontal lift is tensorial in s and is an isomorphism between the
tangent bundle TM and the horizontal bundle HE . The push of a section s ∈
C1(M ; E) along the flows generated by the pair (v ,X) with v ∈ C0(M ; TM)

and X ∈ C0(E ; TE) , is given by: Fl
(v ,X)
λ ↑s := FlXλ ◦s◦Fl

v

−λ ∈ C1(M ; E) and
the parallel transport Flvλ⇑ s ∈ C1(M ; E) of a section s ∈ C1(M ; E) of the
fiber bundle p ∈ C1(E ; M) along the flow Flvλ ∈ C1(M ; M) is defined by [6]:

Flvλ⇑ s := FlHv

λ ◦ s = (Fl
{v ,Hv}
λ ↑s) ◦ Flvλ ,

so that p◦Flvλ⇑ s = p◦FlHv

λ ◦ s = Flvλ ◦p◦ s = Flvλ . We set Flvλ⇓ := Flv−λ⇑ .
The Legendre transform associated with a Lagrangian L ∈ C1(TM ;�) is
the morphism dfL ∈ C1(TM ; T∗M) defined by

dfL(v) ·w := ∂λ=0 L(v + λw) = TL(v) · vlTM(v) ·w ,

for all (v ,w) ∈ TM ⊕ TM . The vertical lift at v ∈ TM is the linear map
vlTM(v) ∈ C1(TπM(v)M ; TvTM) defined by vlTM(v) ·w := ∂λ=0 (v + λw) . It
is a fiberwise invertible homomorphism between the bundles TM and VTM .

The Legendre transform induces a covariant functor Leg between the cat-
egories of tangent and cotangent bundles over the base manifold M . The la-
grangian functional is regular if its fiber derivative is a diffeomorphism between
the bundles TM and T∗M . More in general, the Fenchel-Legendre trans-
form relates Hamiltonian H ∈ C1(T∗M ;�) and Lagrangian L ∈ C1(TM ;�)
according to the conjugacy relations [12,13]:

H(v∗) = sup
v∈T

π
∗

M
(v∗)M

{〈v∗,v〉 − L(v)} ,

L(v) = sup
v∗∈T∗

πM(v)
M

{〈v∗,v〉 −H(v∗)} .

The Fenchel-Legendre transform holds under the assumption that the
functionals are convex and fiber-subdifferentiable. This means that the defi-
nition of the fiber derivative must be rewritten as [14]:

d+
f
L(v) ·w := ∂λ=0 L(v + λw) , λ ≥ 0 ,

and that the unilateral derivative is a sublinear (i.e. positively homogeneuos
and subadditive) function of the vector w ∈ TM . Then conjugacy is equiva-
lent to the subdifferential rules:

v∗ ∈ ∂L(v) , v ∈ ∂H(v∗) , (v ,v∗) ∈ TM⊕ T
∗
M ,

4
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where the graph of the maps ∂L and ∂H is monotone maximal and con-
servative [15]. Non-differentiable but fiber-subdifferentiable Lagrangians arise
naturally in the analysis of problems of calculus of variations involving ex-
tremality of a lenght, as in Fermat’s principle in optics [5]. In continuum
mechanics fiber-subdifferentiable Lagrangians must be introduced to simulate
anelastic constitutive behaviours of the materials and most usual kinds of
boundary constraints [6].

3 Basic tools of calculus on manifolds

The first tool is the Poincaré-Stokes’ formula which states that the integral
of a (k − 1)-form ωk−1 on the boundary chain ∂Σ of a kD submanifold Σ
of M is equal to the integral of its exterior derivative dωk−1 , a k-form, on
Σ i.e. ∫

Σ
dωk−1 =

∮
∂Σ

ωk−1 .

This equality can be assumed to be the very definition of the exterior deriva-
tive of a k-form. The second tool is Lie’s derivative of a vector field w ∈
C1(M ; TM) along a flow ϕλ ∈ C1(M ; M) with velocity v = ∂λ=0 ϕλ :

Lvw = ∂λ=0 (ϕλ↓w) ,

which is equal to the antisymmetric Lie-bracket: Lvw = [v,w] = −[w,v]
defined by: d[v,w]f = dvdwf − dwdvf , for any f ∈ C2(M ;�) . The Lie

derivative of a differential form ωk ∈ C1(M ; Λk(TM)) is similarly defined
by Lvω

k = ∂λ=0 (ϕλ↓ω
k) . The third tool is Reynolds’ transport formula:

∫
ϕλ(Σ)

ωk =
∫
Σ

ϕλ↓ω
k =⇒ ∂λ=0

∫
ϕλ(Σ)

ωk =
∫
Σ
Lv ωk ,

and the fourth tool is the integral extrusion formula [6]:

∂λ=0

∫
ϕλ(Σ)

ωk =
∫
Σ
(dωk) · v +

∫
∂Σ

ωk · v ,

and the related differential Henri Cartan’s magic formula [2,3,16] (also
called homotopy formula [1]):

Lv ωk = (dωk) · v + d(ωk · v) ,

where ωk ·v denotes the (k− 1) -form which is the contraction performed by
taking v as the first argument of the form ωk . The homotopy formula may
be readily inverted to get Palais formula for the exterior derivative. Indeed,
by Leibniz rule for the Lie derivative, we have that, for any two vector fields

5
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v,w ∈ C1(M ; TM) :

dω1 · v ·w= (Lv ω1) ·w− d(ω1 · v) ·w

= dv (ω1 ·w)− ω1 · [v,w]− dw (ω1 · v) .

The expression at the r.h.s. of Palais formula fulfills the tensoriality criterion,
see e.g. [6,16,17]. The exterior derivative of a differential one-form is thus well-
defined as a differential two-form, since its value at a point depends only on
the values of the argument vector fields at that point. The same algebra may
be repeatedly applied to deduce Palais formula for the exterior derivative of
a k-form [18].

4 Action principle and Euler conditions

Let a status of the system be described by a point of a manifold M , the state
space. In both theory and applications, there are many instances in which it is
compelling to consider fields which are only piecewise regular on M . To this
end, we give the following definition.

Definition 1 A patchwork T (M) on M is a finite family of disjoint open
subsets of M such that the union of their closures is a covering of M . The
closure of each subset in the family is called an element of the patchwork.

The disjoint union of the boundaries of the elements, deprived of the boundary
of M , is the set of singularity interfaces I(M) associated with the patch-
work T (M) . A field is said to be piecewise regular on M if it is regular,
say C1 , on each element of a patchwork on M which is called a regularity
patchwork. In the family of all patchworks on M we may define a partial or-
dering by saying that a patchwork Pat1 is finer than a patchwork Pat2 if
every element of Pat1 is included in an element of Pat2 . Given two patch-
works it is always possible to find a patchwork finer than both by taking as
elements the nonempty pairwise intersections of their elements. This prop-
erty is expressed by saying that the family of all patchworks on M is an
inductive set. Then, let T (I) be a time-patchwork, i.e. a patchwork of a
time interval I . The evolution of the system along a piecewise regular path
γ ∈ C1(T (I) ; M) is assumed to be governed by a variational condition on
its signed-length, evaluated according to the piecewise regular differential ac-
tion one-form ω1 ∈ Λ1(T (M) ; T∗M) , with T (M) a regularity patchwork.
We assume, without loss in generality, that the trajectory γ ∈ C1(T (I) ; M)
is regular in each element of the time-patchwork T (I) . Let us denote by
Γ := γ(I) the geometric trajectory and by TΓM the vector bundle which is
the restriction of the tangent bundle TM to Γ .

6
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Definition 2 The action integral associated with a geometrical path Γ in
the state-space M is the signed-length of the 1D oriented submanifold Γ ,
evaluated according to the action one-form ω1 on M :

∫
Γ

ω1 .

A general statement of the action principle requires a suitable definition of the
virtual flows along which the trajectory is assumed to be varied.

Definition 3 The virtual flows of Γ are flows ϕλ ∈ C1(M ; M) whose
velocities vϕ ∈ C1(Γ ; TΓM) are tangent to interelement boundaries of the
regularity patchwork T (M) . Velocities of virtual flows are virtual velocities.

In formulating an action principle, the velocities at Γ of the test flows are
assumed to belong to a vector subbundle testΓ of the vector bundle TΓM .
Force systems are represented by a differential two-form α2 on TΓM , the
regular-force-form, which provides an abstract description of a possibly non-
potential system of forces acting along the trajectory. The force-form α2 is
potential if it is defined on a neighbourhood U(Γ) ⊂ M of the path and
there is exact. This amounts to assume that there exists a differential one-
form β1 ∈ C1(U(Γ) ; T∗M) such that α2 = dβ1 , where d is the exterior
differentiation. We consider also a differential one-form α1 on TI(Γ)M , the
impulsive-force-form, which provides an abstract description of an impulsive
system of forces acting at singular points on the trajectory.

Definition 4 (Geometric action principle) A trajectory of the system gov-
erned by a piecewise regular differential one-form ω1 on M , is a piecewise
regular path Γ ∈ C1(T (I) ; M) such that:

∂λ=0

∫
ϕλ◦Γ

ω1 =
∮

∂Γ
ω1 · vϕ +

∫
Γ

α2 · vϕ +
∫
I(Γ)

α1 · vϕ ,

for all virtual flows ϕλ ∈ C1(M ; M) with virtual velocities vϕ = ∂λ=0 ϕλ

taking values in a test subbundle testΓ ⊂ TΓM .

This means that the initial rate of increase of the ω1-length of the trajectory
Γ along a virtual flow is equal to the outward flux of virtual velocities at end
points plus the virtual power performed by the force forms. Denoting by x1

and x2 the initial and final end points of Γ , it is ∂Γ = x2 − x1 (a 0-chain)
and the boundary integral may be written as

∮
∂Γ

ω1 · vϕ = (ω1 · vϕ)(x2)− (ω1 · vϕ)(x1) .

The action principle is purely geometrical since it characterizes the trajectory
Γ to within an arbitrary reparametrization. A necessary and sufficient differ-
ential condition for a path to be a trajectory is provided by the next theorem
and will be called Euler’s condition. The classical result of Euler deals with
regular paths and fixed end points and is formulated in coordinates. The new

7



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

statement introduced in [5] deals with the more general case of non-fixed end
points and piecewise regular paths, and extremality is expressed in terms of
coordinate-free differential and jump conditions.

Theorem 4.1 (Euler’s conditions) A path Γ ⊂ M is a trajectory if and
only if the tangent vector field vΓ ∈ C1(T (Γ) ; TΓ) meets, in each element of
a regularity partition T (Γ) , the differential condition

(dω1 −α2) · vΓ · vϕ = 0 , ∀vϕ ∈ testΓ ,

and, at the singularity interfaces I(Γ) , the jump conditions

[[ω1 · vϕ]] = α1 · vϕ , ∀vϕ ∈ testΓ .

Euler’s conditions show that the geometry of the trajectory is uniquely de-
terminate if the exact two-form dω1 has a 1D kernel at each point. This is the
basic assumption to ensure local existence and uniqueness of the trajectory
through a point of the state-space.

5 The law of dynamics

In continuum dynamics, the configurations of the body are depicted as points
of a differentiable manifold C modeled on a Banach space. The associated
tangent bundle is denoted by πC ∈ C1(TC ; C) . The geometric action prin-
ciple of dynamics is formulated by considering as state-space the product
tangent bundle TC × TI or the product cotangent bundle T∗C × T∗I to
the configuration-time product manifold C × I . We will denote by prTC

and prTI the cartesian projectors associated with TC × TI and similarly
for the product cotangent bundle. The canonical or Liouville one-form
on the cotangent bundle over the configuration manifold is given by θ =
T ∗π∗

C
∈ C1(T∗C ; T∗T∗C) with the basic property that its exterior deriva-

tive is a two-form with a trivial kernel. The counterpart in the tangent bun-
dle is the Poincaré-Cartan one-form θL := dfL↓θ . In the hamiltonian
description, the action one-form is ω1 := prT∗C↓θ − η ∈ T∗T∗C × T∗T∗I
with η(v∗, t) := H(v∗, t) prT∗I↓dt . The Hamiltonian Ht ∈ C1(T∗C ;�) is
Fenchel-Legendre conjugate to the Lagrangian Lt ∈ C1(TC ;�) . In the
lagrangian description, the action one-form is ω1

L := prTC↓θL−ηL ∈ T
∗
TC×

T∗TI where ηL(v, t) := E(v, t) prTI↓dt with Et(v) = Ht(dfL(v)) the en-
ergy. Let us then consider a compact time interval I , a piecewise regular
time-parametrized path γ ∈ C1(I ; C) in the configuration manifold and its
image Γ = γ(I) . The speed along the path is the vector field vγ ∈ C1(Γ ; TΓ)
defined by vγ(γ(t)) := ∂τ=t γ(τ) . Conforming virtual speeds of the body are
assumed to belong to a vector subbundle ΔΓ of the tangent bundle TΓC

8



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

to the trajectory. The trajectory in the configuration-time state-space is then
given by (γ , id I) ∈ C1(I ; C×I) , with image ΓI = (γ , id I)(I) , and the lifted
trajectory in the velocity-time state-space is (Tγ , idTI) ∈ C1(TI ; TC×TI) .
A virtual flow ϕλ ∈ C1(C ; C) in the configuration manifold induces a syn-
chronous flow ϕλ × id I ∈ C1(C× I ; C× I) in the configuration-time state-
space and a tangent synchronous flow with velocity (vTϕ , 0) ∈ TTC × TTI .
In the hamiltonian formulation, non-potential forces acting on the mechanical
system, are taken into account by introducing a force two-form given by

α2
f
(v∗, t) := −(f ∧ dt)(v∗, t) , π∗

C
(v∗) ∈ γ(t) .

Given a force one-form Ft ∈ C1(C ; T∗C) on the configuration manifold, the
induced force one-form on the cotangent bundle is:

ft := T ∗π∗
C
· (Ft ◦ π∗

C
) = θ · (Ft ◦ π∗

C
) ∈ C1(T∗C ; T∗T∗C) .

Then: 〈ft,Y 〉 := 〈θ · (Ft ◦ π∗C),Y 〉 = 〈Ft ◦ π∗C, Tπ∗C ·Y 〉 ∈ C1(T∗C ;�) , i.e.

ft(v
∗) ·Y(v∗) := 〈θ · Ft(π

∗
C
(v∗)),Y(v∗)〉 ,

= 〈Ft(π
∗
C
(v∗)), Tπ∗

C
·Y(v∗)〉 , ∀Y(v∗) ∈ Tv∗T∗C .

Our definition differs from the one given in [3,10] where forces fields are con-
sidered as fiber preserving maps F ∈ C1(TC ; T∗C) . Indeed, given the con-
figuration manifold C of a mechanical system, forces are elements of the
cotangent manifold T∗C and force fields are sections of the cotangent bundle
π∗

C
∈ C1(T∗C ; C) , that is, to any placement x ∈ C they assign a force-

covector acting on that placement. So-called velocity dependent forces acting
on a body do in fact depend on relative velocity fields between the body and
its sorroundings. Dependence of forces on parameters, such as relative velocity
fields, friction coefficients, electric charges, electromagnetic fields etc., is to be
modeled as a constitutive property, that is a multivalued monotone relation
between dual fields of force and velocities depending on physical parameters.
There is no place for velocities in the very definition of force. Impulsive forces
at singular points are one-forms α1 ∈ T∗T∗C defined by

α1 = θ ·At ⇐⇒ α1 ·Y := 〈At, Tπ∗
C
·Y 〉 ∈ C1(T∗C ;�) ,

where At(x) ∈ T∗
x
C . Non-potential forces in lagrangian formulation are sim-

ilarly introduced or may be deduced with a pull back by the Legendre

transform. In the tangent bundle TC , the subbundle of infinitesimal isome-
tries is denoted by rig . These are the tangent vector fields v ∈ C1(C ; TC)
fulfilling the condition Lvg = 0 where g is the euclidean metric. Note that
the property of the Lie derivative [2,6]:

L[u,v]g = [Lu,Lv]g ,
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ensures that the bundle rig is involutive and hence by Frobenius theorem,
integrable, see e.g. [19]. The geometric action principle is stated as follows.

Proposition 5.1 (Geometric Hamilton’s principle) The lifted trajectory
in the velocity-time state-space, fulfils the action principle:

∂λ=0

∫
(Tϕλ×T id I)(ΓI)

ω1
L =

∮
∂ΓI

ω1
L · (vTϕ , 0)

+
∫
ΓI

α2 · (vTϕ , 0) +
∫
I(ΓI )

α1 · (vTϕ , 0) ,

for any flow ϕλ ∈ C1(C ; C) whose velocity vϕ = ∂λ=0 ϕλ ∈ C1(Γ ;ΔΓ∩rig)
is a conforming infinitesimal isometry at Γ .

In the action principle of Proposition 5.1 the variations of the lifted trajectory
in the velocity-time state-space are performed by lifted virtual flows which
are differentials of flows in the configuration manifold and no flows along the
time axis are considered (synchronous variations). It can be shown that the
action principle so formulated is equivalent to the one in which a larger class
of flows are considered by allowing fiber-respecting, fiber-linear flows in the
velocity phase-space and time-flows. A thorough discussion on this topic is
performed in [5]. On the paths drifted by the flow, the Lagrangian functional
is computed by evaluating the velocity of the synchronously varied trajectory
which is equal to the push of the velocity of the trajectory. Indeed, by the
chain rule we have:

∂τ=t (ϕλ ◦ γ)(τ) = (Tϕλ ◦ vγ)(γ(t)) = (ϕλ↑vγ ◦ϕλ)(γ(t)) .

It is convenient to consider the operator Fϕ ∈ C1(TΓ ; TΣϕ(Γ)C) which per-
forms the extension of the trajectory speed vγ ∈ C1(Γ ; TΓ) to a vector field

Fϕ ◦ vγ ∈ C1(Σϕ(Γ) ; TΣϕ(Γ)C) ,

where Σϕ(Γ) := ∪|λ|≤ε ϕλ(Γ) is the ε-sheet through Γ generated by the flow
ϕλ and ε > 0 . For each λ with |λ| ≤ ε , the extension is defined by the push:

(Fϕ ◦ vγ) ◦ϕλ := ϕλ↑vγ ◦ϕλ = Tϕλ ◦ vγ .

Hence the Lie bracket [Fϕ ◦ vγ,vϕ] vanishes [6].

The geometric action principle of proposition 5.1 can be written in a non-
geometric form, i.e. in a form depending on the time-parametrization. In the
next proposition we show that the new paradigm of variational calculus yields
directly the differential condition equivalent to the extremality principle, with-
out requiring neither partial differentiation nor integration by parts, which are
not available unless a connection is defined on the configuration manifold.

10
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Proposition 5.2 (Action principle and general law of dynamics) The
trajectory of a dynamical system in the configuration manifold is a piecewise
regular path γ ∈ C1(T (I) ; C) fulfilling the extremality principle:

∂λ=0

∫
I
Lt ◦ Tϕλ ◦ vγ ◦ γ dt=

∮
∂I
〈dfLt ◦ vγ,vϕ〉 ◦ γ

−
∫

I
〈Ft,vϕ〉 ◦ γ dt−

∫
I(I)

〈At,vϕ〉 ◦ γ .

This non-geometric form of the action principle is equivalent to the differential
condition

dvγ
〈dfLt ◦ vγ,vϕ〉− 〈T (Lt ◦Fϕ ◦vγ),vϕ〉 = 〈Ft,vϕ〉− 〈∂τ=t dfLτ ◦vγ,vϕ〉 ,

and the jump conditions 〈 [[dfLt ◦ vγ]],vϕ〉 = 〈At,vϕ〉 , for any virtual flow
ϕλ ∈ C1(C ; C) whose virtual velocity vϕ = ∂λ=0 ϕλ ∈ C1(Γ ;ΔΓ ∩ rig) is a
conforming infinitesimal isometry at Γ .

Proof. For any regular element P of a patchwork of the time-interval I finer
than the regularity patchwork T (I) we have that:

∂λ=0

∫
P

Lt ◦ Tϕλ ◦ vγ ◦ γ dt =
∫
P

∂λ=0 (Lt ◦ Tϕλ ◦ vγ ◦ γ) dt

=
∫
P

∂λ=0 (Lt ◦ Fϕ ◦ vγ ◦ϕλ ◦ γ) dt =
∫
P
〈T (Lt ◦ Fϕ ◦ vγ),vϕ〉 ◦ γ dt ,

∮
∂P
〈dfLt ◦ vγ,vϕ〉 ◦ γ =

∫
P
(〈∂τ=t dfLτ ◦ vγ,vϕ〉+ dvγ

〈dfLt ◦ vγ,vϕ〉) ◦ γ dt .

The equivalence then follows by evaluating the variational condition in each
element of the patchwork and summing up. �

We remark that the differential law of dynamics is independent of the values of
the virtual velocity field outside the trajectory. In fact the r.h.s. is tensorial in
the virtual velocity field and the l.h.s is tensorial too, even if the two addends
are not such. An alternative tensorial expression of the terms at the l.h.s
are will be provided in Proposition 5.3 by introducing a connection in the
configuration manifold. Moreover, recalling that vTϕ = ∂λ=0 Tϕλ = k◦Tvϕ =
k ◦ T∂λ=0 ϕλ , with k ∈ C1(TTC ; TTC) the canonical flip, we have that

∂λ=0 (Lt ◦ Tϕλ ◦ vγ ◦ γ) = 〈TLt ◦ vγ,vTϕ ◦ vγ 〉 = 〈TLt ◦ vγ,k ◦ Tvϕ ◦ vγ 〉 ,

and the differential condition in Proposition 5.2 may be rewritten as:

dvγ
〈dfLt ◦ vγ,vϕ〉 − 〈TLt ◦ vγ,vTϕ ◦ vγ 〉 = 〈Ft,vϕ〉 − 〈∂τ=t dfLτ ◦ vγ,vϕ〉 .

The deduction of the law of dynamics from the action principle, in the non-
geometric form of Proposition 5.2, is based on the following intrinsic result

11
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[6]. A somewhat ambiguous special expression in coordinates is reported in
[20,21].

Lemma 5.1 (A split formula) Let N be a manifold, p ∈ C1(E ; M) a fiber
bundle with a connection ∇ and f ∈ C1(E ; N) a morphism. Then, for any
section s ∈ C1(M ; E) of the fiber bundle, the map tangent to the composi-
tion f ◦ s ∈ C1(M ; N) may be uniquely split as sum of the fiber-covariant

derivative and the base derivative:

T (f ◦ s) = T f ◦ T s = dff(s) · ∇s+ dbf(s) .

Proof. Denoting by Flvλ⇑ = FlHv

λ ∈ C1(E ; E) the parallel transport along
the flow associated with a vector field v ∈ C1(M ; TM) , by the definitions and
the chain rule we get:

dff(s(x)) · ∇v(x)s= (T f ◦ ∇v(x)s)(x)

= (T f ◦V ◦ T s ◦ v)(x)

= Ts(x)f · ∂λ=0 (Flvλ⇓ s)(Fl
v

λ(x))

= ∂λ=0 (f ◦ Flvλ⇓ s ◦ Fl
v

λ)(x) ,

dbf(s(x)) · v(x) = (T f ◦Hv(x)s)(x)

= (T f ◦H ◦ T s ◦ v)(x)

= (T f ◦ ∂λ=0 Fl
v

λ⇑ s)(x)

= ∂λ=0 (f ◦ Flvλ⇑ s)(x) ,

so that T (f ◦ s) · v(x) = dff(s(x)) · ∇v(x)s+ dbf(s(x)) · v(x) . �

Proposition 5.3 (General law of dynamics in terms of a connection)
The trajectory of a dynamical system in the configuration manifold is a piece-
wise regular path γ ∈ C1(T (I) ; C) which, for any given connection ∇ on C ,
fulfils the differential condition

〈∇vγ
(dfLt ◦ vγ),vϕ〉−〈dbLt ◦ vγ,vϕ〉 − 〈dfLt ◦ vγ,tors(vγ,vϕ)〉

= 〈Ft,vϕ〉 − 〈∂τ=t dfLτ ◦ vγ,vϕ〉 ,

for any virtual flow ϕλ ∈ C1(C ; C) with vϕ = ∂λ=0 ϕλ ∈ C1(Γ ;ΔΓ ∩ rig) a
conforming infinitesimal isometry at Γ .

Proof. The split formula in Lemma 5.1 yields:

〈T (Lt ◦ Fϕ ◦ vγ),vϕ〉 = 〈dfLt ◦ vγ,∇vϕ
(Fϕ ◦ vγ)〉+ 〈dbLt ◦ vγ,vϕ〉 .

12
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Moreover, by Leibniz rule we have that

dvγ
〈dfLt ◦ vγ,vϕ〉 = 〈∇vγ

(dfLt ◦ vγ),vϕ〉+ 〈dfLt ◦ vγ,∇vγ
vϕ〉 .

Then, setting Fgen := Ft − ∂τ=t (dfLτ ◦ vγ) , the differential condition in
Proposition 5.2 may be written as:

〈∇vγ
(dfLt ◦ vγ),vϕ〉= 〈dbLt ◦ vγ,vϕ〉+ 〈Fgen,vϕ〉

+〈dfLt ◦ vγ,∇vγ
vϕ−∇vϕ

(Fϕ ◦ vγ)〉 .

Since the bracket [(Fϕ ◦ vγ),vϕ] vanishes, we have that

tors(vγ,vϕ) :=∇vγ
vϕ−∇vϕ

(Fϕ ◦ vγ)− [(Fϕ ◦ vγ),vϕ]

=∇vγ
vϕ−∇vϕ

(Fϕ ◦ vγ) .

and the differential law takes the tensorial form in the statement. �

Remark 5.1 Given a trajectory γ ∈ C1(I ; C) , the Euler-Lagrange map
associates the differential one-form ELt

◦vγ ∈ T∗
Γ
C to the field vγ ∈ C1(Γ ; TΓ) :

〈ELt
◦ vγ,vϕ〉 := dvγ

〈dfLt ◦ vγ,vϕ〉 − 〈TLt ◦ vγ,vTϕ ◦ vγ 〉

= 〈∇vγ
(dfLt ◦ vγ),vϕ〉 − 〈dbLt ◦ vγ,vϕ〉

−〈dfLt ◦ vγ,tors(vγ,vϕ)〉 , ∀vϕ ∈ C1(Γ ; TΓC) .

The differential law of dynamics is then written: 〈ELt
◦vγ,vϕ〉 = 〈Fgen,vϕ〉 .

In [22] the negative of former expression is taken to be the Euler-Lagrange

operator, but tensoriality in vϕ is not proved.

There are some special, but important, contexts in dynamics where the vari-
ational law of motion may be written as an equation. This situation occurs
when the test virtual velocities are exactly the vector fields tangent to the
configuration manifold at the trajectory. We shall refer to these contexts as
perfect dynamical systems. Two main instances of perfect dynamical systems
are rigid body dynamics and elastodynamics. In the former, the configuration
manifold is a leaf of the foliation induced by the (integrable) rigidity constraint
and the sections of the tangent bundle to such a leaf are exactly the infinites-
imal isometries. In the latter, the bundle of test fields is enlarged to the whole
tangent bundle to the configuration manifold by introducing a stress tensor
field as Lagrange multiplier in duality with the eulerian implicit description
of the rigidity constraint, according to which the Lie derivative of the metric
tensor is the field characterizing the lack of rigidity. This extension is at the
very heart of continuum mechanics. The stress tensor field is then related to
the strain tensor field by a pointwise elastic law in the body. By adding the
negative elastic potential energy and the force potential to the kinetic energy,
the Lagrangian for the field theory of elastodynamics is formulated.
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6 Special forms of the law of dynamics

The original Lagrange’s law of dynamics is immediately recovered from
the general expression by endowing the configuration manifold with the local
connection induced by a coordinate system. This connection is conveniently
described by considering the distant parallel transport obtained by pushing
the standard translation in the model linear space by the coordinate map.
Both curvature and torsion tensor fields vanish for the standard connection in
the model linear space and the diffeomorphic coordinate map simply pushes
the curvature and torsion tensors to the ones of the induced connection in
the configuration manifold which hence vanish too [6]. By the vanishing of
the torsion of the induced connection, the law of dynamics specializes to the
invariant form of Lagrange law

〈∇vγ
(dfLt ◦ vγ),vϕ〉 − 〈dbLt ◦ vγ,vϕ〉 = 〈Ft,vϕ〉 − 〈∂τ=t dfLτ ◦ vγ,vϕ〉 ,

and for perfect dynamical systems takes the standard aspect of Lagrange

equation [23]:

∇vγ
(dfLt ◦ vγ)− dbLt ◦ vγ = Ft − ∂τ=t dfLτ ◦ vγ .

The more general form of the laws of dynamics due to Poincaré holds when
the reference system is a mobile frame whose base vectors are not necessarily
the velocities along the coordinate lines. A common instance of this occurrence
is provided by the so called engineering reference systems which consist in
curvilinear coordinate systems with velocity base vectors normalized to a unit
lenght. In a mobile frame the induced connection in the configuration manifold
is such that the related distant parallel transport S ∈ C1(TC ; TC) is defined
by the property that the components of a vector do not change when the
frame base-point is displaced. The torsion of this connection is evaluated on
a given pair of vectors ux,vx ∈ TxC by extending them to a pair of vector
fields S(ux),S(vx) ∈ C1(C ; TC) according to the distant parallel transport.
Then, by tensoriality:

tors(ux,vx) := ∇ux
S(vx)−∇vx

S(ux)− [S(ux),S(vx)] = −[S(ux),S(vx)] .

The law of dynamics then takes the form

∂τ=t 〈dfLτ ◦ vγ,vϕ〉+ 〈∇vγ
(dfLt ◦ vγ),vϕ〉= 〈dbLt ◦ vγ,vϕ〉+ 〈Ft,vϕ〉

− 〈dfLt ◦ vγ, [S ◦ vγ,S ◦ vϕ]〉 ,

which for perfect systems gives Poincaré law [23] in invariant form.

Let us now consider the standard case in which the Lagrangian is the sum
L = K + P ◦ π ∈ C1(TC ;�) of the positive definite quadratic functional

14
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kinetic energy K ∈ C1(TC ;�) and of the load potential P ◦π ∈ C1(TC ;�) .
By polarization, a metric tensor g ∈ BL (TC, TC ;�) can then be associated
with the kinetic energy, so that K = 1

2
g◦diag , with diag(v) := (v ,v) , with

g� := dfK ∈ BL (TC ; T∗C) and g� := dfK
−1 ∈ BL (T∗C ; TC) . Adopting the

Levi-Civita connection ∇ in the riemannian manifold {C , g} we have that:
∇dfK = ∇g� = 0 and tors = 0 . Moreover, from the invariance of the norm
of a vector field which is parallel transported according to a metric connection,
we infer that dbK = db( 1

2
g ◦ diag) = 0 and, by definition of fiber and base

derivative, we have that

df(P ◦ π)(v)= TP (π(v)) · Tπ(v) · ∇v = 0 ,

db(P ◦ π)(v)= TP (π(v)) · Tπ(v) ·Hv = dP (π(v)) .

Recalling that ΔΓ is the subbundle of TΓC described by the virtual velocities
at Γ which are conforming to the (also non-holonomic) linear constraint, and
setting Fgen := −∂τ=t (dfLτ ◦ vγ) +Ft + dP , the law of motion for a perfect
dynamical system becomes:

∇vγ
vγ − g

�Fgen ∈Δ⊥
Γ

.

Denoting by Π,Π⊥ ∈ C1(TC ; TC) the fiberwise orthogonal projectors on
ΔΓ and Δ⊥

Γ
, the law of motion may be rewritten as Π(∇vγ

vγ−g
�Fgen) = 0 .

Introducing in the Whitney sum ΔΓ⊕Δ
⊥
Γ

the tensorial Weingarten map:
W(u,v) := Π⊥(∇uv) , we may write the law of motion for a perfect dynamical
system as in [3,24]:

∇vγ
vγ −W(vγ,vγ) = Πg�Fgen .

In the free dynamics of a perfect system with no mass-loss time-rate, we have
that Fgen = 0 and, the law of dynamics becomes

∇vγ
vγ = W(vγ,vγ) .

In absence of constraints it is W(vγ,vγ) = 0 and the law of dynamics yields
the differential equation of a geodesic ∇vγ

vγ = 0 .

The jump conditions then give 〈 [[dfLt ◦ vγ]],vϕ〉 = 0 , which, recalling that
the virtual velocities are required to be tangent to the discontinuity interfaces
in the configuration manifold, directly yield the conservation of the tangent
component of the momentum at the singularity interfaces. We remark that the
constrained dynamics formulated above is the classical one which is also called
d’Alembertian [24] as opposed to the recently proposed vakonomic constrained
dynamics [23].
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7 Conclusions

The Heun-Hamel central equation, quoted in [20,21] as δL = d
dt

(p · dq)
(recall that in the standard notation in analytical dynamics q is the vector of
Lagrangian variables and p = dL/dq̇ the vector of momenta) is the coordinate
expression, in the special context of discrete systems and time independent
Lagrangian without nonpotential forces, of the differential law of dynamics
formulated in invariant terms in Proposition 5.2. In [20,21] the variation δL
of the Lagrangian is evaluated as δL = (dL/dq̇)δq̇ +(dL/dq)δq and the law is
deduced from the Lagrange variational law of dynamics (see section 6 below)
relying on the key property δq̇ = (δq)̇ which is also resorted to in standard
treatments, to deduce Lagrange’s equations from Hamilton’s principle [1].
Alas, the δ - ()̇ notation, although adopted in most textbooks and articles,
does not unambiguously clarify the operations to be performed especially when
dealing with a nonlinear configuration manifold. Let speed denote the time-
rate. Then the rate of variation of the speed is defined by ∂λ=0 ∂τ=t (ϕλ◦γ)(τ)
and the speed of the rate of variation is defined by ∂τ=t ∂λ=0 (ϕλ ◦ γ)(τ) .
They are respectively equal to the evaluations of the vector fields vTϕ ∈
C1(TM ; TTM) and Tvϕ ∈ C1(TM ; TTM) at the point vγ(γ(t)) ∈ Tγ(t)M :

∂λ=0 ∂τ=t (ϕλ ◦ γ)(τ) = ∂λ=0 (Tϕλ ◦ vγ)(γ(t))

= (vTϕ ◦ vγ)(γ(t)) ∈ Tvγ
Tγ(t)M ,

∂τ=t ∂λ=0 (ϕλ ◦ γ)(τ) = ∂τ=t (vϕ ◦ γ)(τ)

= (Tvϕ ◦ vγ)(γ(t)) ∈ Tvγ
Tγ(t)M .

These vectors, which belong to the second tangent bundle TTM , are related
one another by the canonical involutive flip operation kTTM ∈ C1(TTM ; TTM)
according to the formula vTϕ = kTTM ◦ Tvϕ , see e.g. [16,6]. If the manifold
M is a linear space, each tangent space Tγ(t)M is identified with the linear
space itself. Hence Tvγ

Tγ(t)M is identified with M and the flip involution
collapses to the identity by the Euler-Schwarz theorem [6]. This is the
case when working in coordinates, so that the terms δq̇ and (δq)̇ coincide.
Anyway, as shown in Proposition 5.3 and in section 6, in relating the general
law of dynamics to Lagrange’s law, the symmetry property to be invoked is
∇vγ

vϕ = ∇vϕ
(Fϕ ◦vγ) . Here the covariant derivatives are performed accord-

ing to the connection defined by pushing the standard connection in the linear
model space. This property is a consequence of the vanishing of the torsion of
the induced connection and of the vanishing of the Lie bracket [Fϕ ◦vγ,vϕ] ,
due to the extension of the trajectory speed, which give

tors(vγ,vϕ) = ∇vγ
vϕ−∇vϕ

(Fϕ ◦ vγ)− [(Fϕ ◦ vγ),vϕ]

= ∇vγ
vϕ−∇vϕ

(Fϕ ◦ vγ) = 0 .
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If the manifold M is a linear space, the identifications discussed above result in
killing the horizontal subspaces in TTM and in the consequent identification
of vertical subspaces with tangent spaces, so that the covariant derivative
equals the natural derivative [11] and then:

∇vγ
vϕ = Tvϕ ◦ vγ , ∇vϕ

(Fϕ ◦ vγ) = T (Fϕ ◦ vγ) ◦ vϕ ,

with T (Fϕ◦vγ)◦vϕ = ∂λ=0 Tϕλ ◦vγ = vTϕ◦vγ . We conclude that, far from
being a question of points of view, as affirmed in [20,21], the equality δq̇ = (δq)̇
holds in coordinates with the standard connection. In the general, nonlinear
case Lagrange’s law must be substituted by the law of dynamics provided
in Proposition 5.3, whose expression depends on the torsion of the adopted
connection. These results confirm that geometric formulations of dynamics,
powered by the tools of differential geometry and calculus on manifolds, are
able to define and discuss in precise mathematical terms the relevant principles
and variational conditions. As a consequence most longly debated issues may
be answered and clarified.
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