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The dynamics of lagrangian systems is formulated with a differential geometric approach and according to a new paradigm of the calculus of variations. Discontinuities in the trajectory, non-potential force systems and linear constraints are taken into account with a coordinate-free treatment. The law of dynamics, characterizing the trajectory in a general nonlinear configuration manifold, is expressed in terms of a variational principle and of differential and jump conditions. By endowing the configuration manifold with a connection, the general law is shown to be tensorial in the velocity of virtual flows and to depend on the torsion of the connection. This result provides a general expression of the Euler-Lagrange operator. Poincaré and Lagrange forms of the law are recovered as special cases corresponding respectively to the connection induced by natural and mobile reference frames. For free motions, the geodesic property of the trajectory is directly inferred by adopting the Levi-Civita connection induced by the kinetic energy.

Introduction

In recent times the interest for geometric formulations of dynamics has considerably grown up in the literature on mathematical and physical aspects of the theory (see e.g. [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF][START_REF] Abraham | Manifolds, Tensor Analysis, and Applications[END_REF][START_REF] Oliva | Geometric Mechanics[END_REF]). Anyway most treatments still refer to newtonian dynamics of a finite system of point-mass particles and are expressed in terms of coordinates, a point of view which prevents to get a clear geometric picture of the theory [START_REF] Romano | On Maupertuis' principle in dynamics[END_REF][START_REF] Romano | A new paradigm in the calculus of variations[END_REF]. We contribute here a treatment of lagrangian dynamics, in the wake of guidelines and ideas exposed in [START_REF] Romano | A new paradigm in the calculus of variations[END_REF][START_REF] Romano | Continuum Mechanics on Manifolds[END_REF], where a new paradigm in variational calculus is illustrated with the purpose to provide a remedy to otherwise unsatisfactory statements of variational principles in dynamics and in optics. The paradigm consists in a new definition of the extremality of the geometric action integral, i.e. the integral of a one-form along a path,
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according to which it is required that the rate of change of the action integral, when the path is dragged by a virtual flow, must be equal to the boundary integral of the outward flux of the virtual velocity field plus the virtual power performed by the force forms. This definition, together with a suitably refined definition of virtual velocities and the addition of the terms representing the effect of regular and impulsive forces, covers the case of piecewise regular paths and yields Euler's differential conditions at regular points and the related jump conditions at singular points. The standard format, which substantially reproduces Euler's original treatment [START_REF] Euler | Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti, additamentum II[END_REF] by considering the restricted class of variations with fixed end points, is not adequate from the epistemological point of view and does not directly yield the jump conditions at singular points [START_REF] Romano | A new paradigm in the calculus of variations[END_REF][START_REF] Romano | Continuum Mechanics on Manifolds[END_REF]. Indeed, extremality of subsequent portions of a path does not imply extremality of their union, a natural requirement to be fulfilled by a well-posed definition. The assumption of fixed end points has naturally suggested to identify the extremality property of the action functional with a stationarity or minimum property [START_REF] Goldschmidt | The Hamilton-Cartan formalism in the calculus of variations[END_REF]. The new definition of extremality for the geometric action integral yields in a natural way the general form of the law of constrained dynamics. By assuming an arbitrary linear connection in the configuration manifold, the extension of the classical Euler's differential condition is directly derived by making recourse to an intrinsic decomposition formula, due to the first author [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF]. This coordinate-free formula is valid on a general manifold with a connection and performs the split of the variation of the Lagrangian functional in terms of a fiber-covariant derivative and of a base derivative. It takes the role played by the partial derivative formula in coordinates. No symmetry of the second covariant derivative of scalar functions is assumed and this fact eventually results in the appearence of the torsion of the adopted connection in the expression of the law of dynamics. The usual Lagrange coordinate form of the law is recovered as a special case by taking the torsion-free connection induced by a coordinate system. The Poincaré form of the law is got by assuming that the connection is induced by a mobile reference frame. Finally the Levi-Civita connection associated with the metric provided by the kinetic energy is considered. The specialization of the law of dynamics leads to an expression of the law of motion in terms of the Weingarten map of the constraint distribution and, for free motions in absence of constraints, yields the geodesic property of the trajectory. In the conclusions the debated issue of commutativity between the δ and ()˙operations is discussed and clarified. In conclusion we observe that in the framework of geometric formulations of dynamics, principles and variational conditions may be defined and discussed in precise mathematical terms. As a consequence most longly debated issues, often affected by ill-defined terms, may be answered.

A c c e p t e d m a n u s c r i p t 2 Preliminary notions

A dot • denotes linear dependence on subsequent arguments, a superscript star * denotes the dual quantity and the crochet , is the duality pairing. For an exposition of calculus on manifolds we refer e.g. to [START_REF] Abraham | Manifolds, Tensor Analysis, and Applications[END_REF][START_REF] Romano | Continuum Mechanics on Manifolds[END_REF][START_REF] Choquet-Bruhat | Analysis, Manifolds and Physics[END_REF]. Let us consider a dynamical system whose configuration manifold M is modeled on a Banach space and denote by π M ∈ C 1 (TM ; M) and π * M ∈ C 1 (T * M ; M) the dual tangent and cotangent bundles over M . The Whitney sum of two fiber bundles p E ∈ C 1 (E ; M) and p F ∈ C 1 (F ; M) over the same base manifold M , denoted by E ⊕ F (or by E × M F ), is the bundle whose fiber over x ∈ M is the cartesian product E x × F x . The Pontryagin vector bundle over M is the Whitney sum of the tangent and the cotangent bundles over M [START_REF] Yoshimura | Dirac structures in Lagrangian mechanics Part II: Variational structures[END_REF]. The evaluation map eval ∈ C 1 (TM ⊕ T * M ; ) is then defined by the assignment

eval(v , v * ) := v * , v , ∀ (v , v * ) ∈ TM ⊕ T * M .
The tangent map T ϕ ∈ C 1 (TM ; TN) to a morphism ϕ ∈ C 1 (M ; N) between manifolds is the vector bundle homomorphism (fiber preserving and fiber linear map) defined by the differential: 

(T ϕ • v)(x) = T x ϕ • v(x) , ∀ v(x) ∈ T x M . Two vector fields v ∈ C 1 (M ; TM) and u ∈ C 1 (N ; TN) are ϕ-related if T ϕ • v = u • ϕ . Then u =
* = T * ϕ• u * • ϕ . The cotangent map T * ϕ ∈ C 1 (T * N ; T * M) is the dual homomorphism fiberwise defined by u * , T ϕ• v = T * ϕ • u * , v for any v ∈ C 1 (M ; TM)
. Push-forward of vectors and pull-back of arbitrary tensors by a morphism ϕ ∈ C 1 (M ; N) may be similarly defined and are denoted by ϕ↑ and ϕ↓ and for diffeomorphisms it is ϕ↓ = ϕ -1 ↑ . The usual notation for push and pull in differential geometry is ϕ * = ϕ↑ and ϕ * = ϕ↓ but then too many stars do appear in the geometrical sky (duality, Hodge star operator). The natural derivative 

T v s ∈ C 1 (M ; TE) of a section s ∈ C 1 (M ; E) of the fiber bundle p ∈ C 1 (E ; M) along a vector v ∈ TM is defined by T v s = T s• v
H v s := H • T v • s , ∇ v s := V • T v • s , so that T v s = H v s + ∇ v s and T p(s) • Hs = id T p(s) M , where Hs • v = H v s .
The horizontal lift is tensorial in s and is an isomorphism between the tangent bundle TM and the horizontal bundle HE . The push of a section s ∈ C 1 (M ; E) along the flows generated by the pair (v , X) with v ∈ C 0 (M ; TM) and X ∈ C 0 (E ; TE) , is given by: Fl

(v ,X) λ ↑s := Fl X λ • s • Fl v -λ ∈ C 1 (M ; E) and the parallel transport Fl v λ ⇑ s ∈ C 1 (M ; E) of a section s ∈ C 1 (M ; E) of the fiber bundle p ∈ C 1 (E ; M) along the flow Fl v λ ∈ C 1 (M ; M
) is defined by [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF]:

Fl v λ ⇑ s := Fl Hv λ • s = (Fl {v ,Hv} λ ↑s) • Fl v λ , so that p • Fl v λ ⇑ s = p • Fl Hv λ • s = Fl v λ • p • s = Fl v λ . We set Fl v λ ⇓ := Fl v -λ ⇑ . The Legendre transform associated with a Lagrangian L ∈ C 1 (TM ; ) is the morphism d f L ∈ C 1 (TM ; T * M) defined by d f L(v) • w := ∂ λ=0 L(v + λw) = T L(v) • vl TM (v) • w , for all (v , w) ∈ TM ⊕ TM . The vertical lift at v ∈ TM is the linear map vl TM (v) ∈ C 1 (T π M (v) M ; T v TM) defined by vl TM (v) • w := ∂ λ=0 (v + λw) .
It is a fiberwise invertible homomorphism between the bundles TM and VTM .

The Legendre transform induces a covariant functor Leg between the categories of tangent and cotangent bundles over the base manifold M . The lagrangian functional is regular if its fiber derivative is a diffeomorphism between the bundles TM and T * M . More in general, the Fenchel-Legendre transform relates Hamiltonian H ∈ C 1 (T * M ; ) and Lagrangian L ∈ C 1 (TM ; ) according to the conjugacy relations [START_REF] Moreau | Fonctionelles Convexes, Lecture Notes, Séminaire Equationes aux dérivées partielles[END_REF][START_REF] Ioffe | The Theory of Extremal Problems[END_REF]:

H(v * ) = sup v∈T π * M (v * ) M { v * , v -L(v)} , L(v) = sup v * ∈T * π M (v) M { v * , v -H(v * )} .
The Fenchel-Legendre transform holds under the assumption that the functionals are convex and fiber-subdifferentiable. This means that the definition of the fiber derivative must be rewritten as [START_REF] Romano | New Results in Subdifferential Calculus with Applications to Convex Optimization[END_REF]:

d + f L(v) • w := ∂ λ=0 L(v + λw)
, λ ≥ 0 , and that the unilateral derivative is a sublinear (i.e. positively homogeneuos and subadditive) function of the vector w ∈ TM . Then conjugacy is equivalent to the subdifferential rules:

v * ∈ ∂L(v) , v ∈ ∂H(v * ) , (v , v * ) ∈ TM ⊕ T * M ,
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where the graph of the maps ∂L and ∂H is monotone maximal and conservative [START_REF] Romano | A potential theory for monotone multi-valued operators[END_REF]. Non-differentiable but fiber-subdifferentiable Lagrangians arise naturally in the analysis of problems of calculus of variations involving extremality of a lenght, as in Fermat's principle in optics [START_REF] Romano | A new paradigm in the calculus of variations[END_REF]. In continuum mechanics fiber-subdifferentiable Lagrangians must be introduced to simulate anelastic constitutive behaviours of the materials and most usual kinds of boundary constraints [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF].

Basic tools of calculus on manifolds

The first tool is the Poincaré-Stokes' formula which states that the integral of a (k -1)-form ω k-1 on the boundary chain ∂Σ of a kD submanifold Σ of M is equal to the integral of its exterior derivative dω k-1 , a k-form, on Σ i.e.

Σ dω k-1 = ∂Σ ω k-1 .
This equality can be assumed to be the very definition of the exterior derivative of a k-form. The second tool is Lie's derivative of a vector field w ∈

C 1 (M ; TM) along a flow ϕ λ ∈ C 1 (M ; M) with velocity v = ∂ λ=0 ϕ λ : L v w = ∂ λ=0 (ϕ λ ↓w) ,
which is equal to the antisymmetric Lie-bracket:

L v w = [v, w] = -[w, v] defined by: d [v,w] f = d v d w f -d w d v f , for any f ∈ C 2 (M ; ) . The Lie derivative of a differential form ω k ∈ C 1 (M ; Λ k (TM)) is similarly defined by L v ω k = ∂ λ=0 (ϕ λ ↓ω k ) .
The third tool is Reynolds' transport formula:

ϕ λ (Σ) ω k = Σ ϕ λ ↓ω k =⇒ ∂ λ=0 ϕ λ (Σ) ω k = Σ L v ω k ,
and the fourth tool is the integral extrusion formula [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF]:

∂ λ=0 ϕ λ (Σ) ω k = Σ (dω k ) • v + ∂Σ ω k • v ,
and the related differential Henri Cartan's magic formula [START_REF] Abraham | Manifolds, Tensor Analysis, and Applications[END_REF][START_REF] Oliva | Geometric Mechanics[END_REF][START_REF] Kolar | Natural operations in differential geometry[END_REF] (also called homotopy formula [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF]):

L v ω k = (dω k ) • v + d(ω k • v) ,
where ω k • v denotes the (k -1) -form which is the contraction performed by taking v as the first argument of the form ω k . The homotopy formula may be readily inverted to get Palais formula for the exterior derivative. Indeed, by Leibniz rule for the Lie derivative, we have that, for any two vector fields
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v, w ∈ C 1 (M ; TM) :

dω 1 • v • w = (L v ω 1 ) • w -d(ω 1 • v) • w = d v (ω 1 • w) -ω 1 • [v, w] -d w (ω 1 • v) .
The expression at the r.h.s. of Palais formula fulfills the tensoriality criterion, see e.g. [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF][START_REF] Kolar | Natural operations in differential geometry[END_REF][START_REF] Michor | Topics in Differential Geometry[END_REF]. The exterior derivative of a differential one-form is thus welldefined as a differential two-form, since its value at a point depends only on the values of the argument vector fields at that point. The same algebra may be repeatedly applied to deduce Palais formula for the exterior derivative of a k-form [START_REF] Palais | Definition of the exterior derivative in terms of the Lie derivative[END_REF].

Action principle and Euler conditions

Let a status of the system be described by a point of a manifold M , the state space. In both theory and applications, there are many instances in which it is compelling to consider fields which are only piecewise regular on M . To this end, we give the following definition. The disjoint union of the boundaries of the elements, deprived of the boundary of M , is the set of singularity interfaces I(M) associated with the patchwork T (M) . A field is said to be piecewise regular on M if it is regular, say C 1 , on each element of a patchwork on M which is called a regularity patchwork. In the family of all patchworks on M we may define a partial ordering by saying that a patchwork Pat 1 is finer than a patchwork Pat 2 if every element of Pat 1 is included in an element of Pat 2 . Given two patchworks it is always possible to find a patchwork finer than both by taking as elements the nonempty pairwise intersections of their elements. This property is expressed by saying that the family of all patchworks on M is an inductive set. Then, let T (I) be a time-patchwork, i.e. a patchwork of a time interval I . The evolution of the system along a piecewise regular path γ ∈ C 1 (T (I) ; M) is assumed to be governed by a variational condition on its signed-length, evaluated according to the piecewise regular differential action one-form ω 1 ∈ Λ 1 (T (M) ; T * M) , with T (M) a regularity patchwork. We assume, without loss in generality, that the trajectory γ ∈ C 1 (T (I) ; M) is regular in each element of the time-patchwork T (I) . Let us denote by Γ := γ(I) the geometric trajectory and by T Γ M the vector bundle which is the restriction of the tangent bundle TM to Γ .

A c c e p t e d m a n u s c r i p t Definition 2

The action integral associated with a geometrical path Γ in the state-space M is the signed-length of the 1D oriented submanifold Γ , evaluated according to the action one-form ω 1 on M : Γ ω 1 .

A general statement of the action principle requires a suitable definition of the virtual flows along which the trajectory is assumed to be varied.

Definition 3

The virtual flows of Γ are flows ϕ λ ∈ C 1 (M ; M) whose velocities v ϕ ∈ C 1 (Γ ; T Γ M) are tangent to interelement boundaries of the regularity patchwork T (M) . Velocities of virtual flows are virtual velocities.

In formulating an action principle, the velocities at Γ of the test flows are assumed to belong to a vector subbundle test Γ of the vector bundle T Γ M . Force systems are represented by a differential two-form α 2 on T Γ M , the regular-force-form, which provides an abstract description of a possibly nonpotential system of forces acting along the trajectory. The force-form α 2 is potential if it is defined on a neighbourhood U(Γ) ⊂ M of the path and there is exact. This amounts to assume that there exists a differential oneform

β 1 ∈ C 1 (U(Γ) ; T * M) such that α 2 = dβ 1
, where d is the exterior differentiation. We consider also a differential one-form α 1 on T I(Γ) M , the impulsive-force-form, which provides an abstract description of an impulsive system of forces acting at singular points on the trajectory.

Definition 4 (Geometric action principle)

A trajectory of the system governed by a piecewise regular differential one-form ω 1 on M , is a piecewise regular path Γ ∈ C 1 (T (I) ; M) such that:

∂ λ=0 ϕ λ •Γ ω 1 = ∂Γ ω 1 • v ϕ + Γ α 2 • v ϕ + I(Γ) α 1 • v ϕ , for all virtual flows ϕ λ ∈ C 1 (M ; M) with virtual velocities v ϕ = ∂ λ=0 ϕ λ taking values in a test subbundle test Γ ⊂ T Γ M .
This means that the initial rate of increase of the ω 1 -length of the trajectory Γ along a virtual flow is equal to the outward flux of virtual velocities at end points plus the virtual power performed by the force forms. Denoting by x 1 and x 2 the initial and final end points of Γ , it is ∂Γ = x 2x 1 (a 0-chain) and the boundary integral may be written as

∂Γ ω 1 • v ϕ = (ω 1 • v ϕ )(x 2 ) -(ω 1 • v ϕ )(x 1 ) .
The action principle is purely geometrical since it characterizes the trajectory Γ to within an arbitrary reparametrization. A necessary and sufficient differential condition for a path to be a trajectory is provided by the next theorem and will be called 

(dω 1 -α 2 ) • v Γ • v ϕ = 0 , ∀ v ϕ ∈ test Γ ,
and, at the singularity interfaces I(Γ) , the jump conditions

[[ω 1 • v ϕ ]] = α 1 • v ϕ , ∀ v ϕ ∈ test Γ .
Euler's conditions show that the geometry of the trajectory is uniquely determinate if the exact two-form dω 1 has a 1D kernel at each point. This is the basic assumption to ensure local existence and uniqueness of the trajectory through a point of the state-space.

The law of dynamics

In continuum dynamics, the configurations of the body are depicted as points of a differentiable manifold C modeled on a Banach space. The associated tangent bundle is denoted by π C ∈ C 1 (TC ; C) . The geometric action principle of dynamics is formulated by considering as state-space the product tangent bundle TC × TI or the product cotangent bundle T * C × T * I to the configuration-time product manifold C × I . We will denote by pr TC and pr TI the cartesian projectors associated with TC × TI and similarly for the product cotangent bundle. The canonical or Liouville one-form on the cotangent bundle over the configuration manifold is given by θ

= T * π * C ∈ C 1 (T * C ; T * T * C
) with the basic property that its exterior derivative is a two-form with a trivial kernel. The counterpart in the tangent bundle is the Poincaré-Cartan one-form θ L := d f L↓θ . In the hamiltonian description, the action one-form is

ω 1 := pr T * C ↓θ -η ∈ T * T * C × T * T * I with η(v * , t) := H(v * , t) pr T * I ↓dt . The Hamiltonian H t ∈ C 1 (T * C ; ) is
Fenchel-Legendre conjugate to the Lagrangian L t ∈ C 1 (TC ; ) . In the lagrangian description, the action one-form is ω 1 In the hamiltonian formulation, non-potential forces acting on the mechanical system, are taken into account by introducing a force two-form given by

L := pr TC ↓θ L -η L ∈ T * TC × T * TI where η L (v, t) := E(v, t) pr TI ↓dt with E t (v) = H t (d f L(v))
α 2 f (v * , t) := -(f ∧ dt)(v * , t) , π * C (v * ) ∈ γ(t) .
Given a force one-form F t ∈ C 1 (C ; T * C) on the configuration manifold, the induced force one-form on the cotangent bundle is:

f t := T * π * C • (F t • π * C ) = θ • (F t • π * C ) ∈ C 1 (T * C ; T * T * C) . Then: f t , Y := θ • (F t • π * C ), Y = F t • π * C , T π * C • Y ∈ C 1 (T * C ; ) , i.e. f t (v * ) • Y(v * ) := θ • F t (π * C (v * )), Y(v * ) , = F t (π * C (v * )), T π * C • Y(v * ) , ∀ Y(v * ) ∈ T v * T * C .
Our definition differs from the one given in [START_REF] Oliva | Geometric Mechanics[END_REF][START_REF] Yoshimura | Dirac structures in Lagrangian mechanics Part II: Variational structures[END_REF] where forces fields are considered as fiber preserving maps F ∈ C 1 (TC ; T * C) . Indeed, given the configuration manifold C of a mechanical system, forces are elements of the cotangent manifold T * C and force fields are sections of the cotangent bundle π * C ∈ C 1 (T * C ; C) , that is, to any placement x ∈ C they assign a forcecovector acting on that placement. So-called velocity dependent forces acting on a body do in fact depend on relative velocity fields between the body and its sorroundings. Dependence of forces on parameters, such as relative velocity fields, friction coefficients, electric charges, electromagnetic fields etc., is to be modeled as a constitutive property, that is a multivalued monotone relation between dual fields of force and velocities depending on physical parameters. There is no place for velocities in the very definition of force. Impulsive forces at singular points are one-forms α 1 ∈ T * T * C defined by

α 1 = θ • A t ⇐⇒ α 1 • Y := A t , T π * C • Y ∈ C 1 (T * C ; ) ,
where A t (x) ∈ T * x C . Non-potential forces in lagrangian formulation are similarly introduced or may be deduced with a pull back by the Legendre transform. In the tangent bundle TC , the subbundle of infinitesimal isometries is denoted by rig . These are the tangent vector fields v ∈ C 1 (C ; TC) fulfilling the condition L v g = 0 where g is the euclidean metric. Note that the property of the Lie derivative [START_REF] Abraham | Manifolds, Tensor Analysis, and Applications[END_REF][START_REF] Romano | Continuum Mechanics on Manifolds[END_REF]:

L [u,v] g = [L u , L v ]g ,
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ensures that the bundle rig is involutive and hence by Frobenius theorem, integrable, see e.g. [START_REF] Romano | On Frobenius theorem[END_REF]. The geometric action principle is stated as follows.

Proposition 5.1 (Geometric Hamilton's principle)

The lifted trajectory in the velocity-time state-space, fulfils the action principle:

∂ λ=0 (T ϕ λ ×T id I )(Γ I ) ω 1 L = ∂Γ I ω 1 L • (v T ϕ , 0) + Γ I α 2 • (v T ϕ , 0) + I(Γ I ) α 1 • (v T ϕ , 0) , for any flow ϕ λ ∈ C 1 (C ; C) whose velocity v ϕ = ∂ λ=0 ϕ λ ∈ C 1 (Γ ; Δ Γ ∩ rig) is a conforming infinitesimal isometry at Γ .
In the action principle of Proposition 5.1 the variations of the lifted trajectory in the velocity-time state-space are performed by lifted virtual flows which are differentials of flows in the configuration manifold and no flows along the time axis are considered (synchronous variations). It can be shown that the action principle so formulated is equivalent to the one in which a larger class of flows are considered by allowing fiber-respecting, fiber-linear flows in the velocity phase-space and time-flows. A thorough discussion on this topic is performed in [START_REF] Romano | A new paradigm in the calculus of variations[END_REF]. On the paths drifted by the flow, the Lagrangian functional is computed by evaluating the velocity of the synchronously varied trajectory which is equal to the push of the velocity of the trajectory. Indeed, by the chain rule we have:

∂ τ =t (ϕ λ • γ)(τ ) = (T ϕ λ • v γ )(γ(t)) = (ϕ λ ↑v γ • ϕ λ )(γ(t)) .
It is convenient to consider the operator F ϕ ∈ C 1 (TΓ ; T Σϕ (Γ) C) which performs the extension of the trajectory speed v γ ∈ C 1 (Γ ; TΓ) to a vector field

F ϕ • v γ ∈ C 1 (Σ ϕ (Γ) ; T Σϕ (Γ) C) ,
where Σ ϕ (Γ) := ∪ |λ|≤ε ϕ λ (Γ) is the ε-sheet through Γ generated by the flow ϕ λ and ε > 0 . For each λ with |λ| ≤ ε , the extension is defined by the push:

(F ϕ • v γ ) • ϕ λ := ϕ λ ↑v γ • ϕ λ = T ϕ λ • v γ .
Hence the Lie bracket [F ϕ • v γ , v ϕ ] vanishes [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF].

The geometric action principle of proposition 5.1 can be written in a nongeometric form, i.e. in a form depending on the time-parametrization. In the next proposition we show that the new paradigm of variational calculus yields directly the differential condition equivalent to the extremality principle, without requiring neither partial differentiation nor integration by parts, which are not available unless a connection is defined on the configuration manifold.

A c c e p t e d m a n u s c r i p t Proposition 5.2 (Action principle and general law of dynamics)

The trajectory of a dynamical system in the configuration manifold is a piecewise regular path γ ∈ C 1 (T (I) ; C) fulfilling the extremality principle:

∂ λ=0 I L t • T ϕ λ • v γ • γ dt = ∂I d f L t • v γ , v ϕ • γ - I F t , v ϕ • γ dt - I(I) A t , v ϕ • γ .
This non-geometric form of the action principle is equivalent to the differential condition

d vγ d f L t • v γ , v ϕ -T (L t • F ϕ • v γ ), v ϕ = F t , v ϕ -∂ τ =t d f L τ • v γ , v ϕ ,
and the jump conditions

[[d f L t • v γ ]], v ϕ = A t , v ϕ , for any virtual flow ϕ λ ∈ C 1 (C ; C) whose virtual velocity v ϕ = ∂ λ=0 ϕ λ ∈ C 1 (Γ ; Δ Γ ∩ rig) is a conforming infinitesimal isometry at Γ .
Proof. For any regular element P of a patchwork of the time-interval I finer than the regularity patchwork T (I) we have that:

∂ λ=0 P L t • T ϕ λ • v γ • γ dt = P ∂ λ=0 (L t • T ϕ λ • v γ • γ) dt = P ∂ λ=0 (L t • F ϕ • v γ • ϕ λ • γ) dt = P T (L t • F ϕ • v γ ), v ϕ • γ dt , ∂P d f L t • v γ , v ϕ • γ = P ( ∂ τ =t d f L τ • v γ , v ϕ + d vγ d f L t • v γ , v ϕ ) • γ dt .
The equivalence then follows by evaluating the variational condition in each element of the patchwork and summing up.

We remark that the differential law of dynamics is independent of the values of the virtual velocity field outside the trajectory. In fact the r.h.s. is tensorial in the virtual velocity field and the l.h.s is tensorial too, even if the two addends are not such. An alternative tensorial expression of the terms at the l.h.s are will be provided in Proposition 5.3 by introducing a connection in the configuration manifold. Moreover, recalling that

v T ϕ = ∂ λ=0 T ϕ λ = k•T v ϕ = k • T ∂ λ=0 ϕ λ , with k ∈ C 1 (TTC ; TTC) the canonical flip, we have that ∂ λ=0 (L t • T ϕ λ • v γ • γ) = T L t • v γ , v T ϕ • v γ = T L t • v γ , k • T v ϕ • v γ ,
and the differential condition in Proposition 5.2 may be rewritten as:

d vγ d f L t • v γ , v ϕ -T L t • v γ , v T ϕ • v γ = F t , v ϕ -∂ τ =t d f L τ • v γ , v ϕ .
The deduction of the law of dynamics from the action principle, in the nongeometric form of Proposition 5.2, is based on the following intrinsic result A c c e p t e d m a n u s c r i p t [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF]. A somewhat ambiguous special expression in coordinates is reported in [START_REF] Ju | Dynamics of Nonholonomic Systems[END_REF][START_REF] Papastavridis | Time-Integral Variational Principles for Nonlinear Nonholonomic Systems[END_REF].

Lemma 5.1 (A split formula)

Let N be a manifold, p ∈ C 1 (E ; M) a fiber bundle with a connection ∇ and f ∈ C 1 (E ; N) a morphism. Then, for any section s ∈ C 1 (M ; E) of the fiber bundle, the map tangent to the composition f • s ∈ C 1 (M ; N) may be uniquely split as sum of the fiber-covariant derivative and the base derivative:

T (f • s) = T f • T s = d f f(s) • ∇s + d b f(s) .
Proof. Denoting by Fl v λ ⇑ = Fl Hv λ ∈ C 1 (E ; E) the parallel transport along the flow associated with a vector field v ∈ C 1 (M ; TM) , by the definitions and the chain rule we get:

d f f(s(x)) • ∇ v(x) s = (T f • ∇ v(x) s)(x) = (T f • V • T s • v)(x) = T s(x) f • ∂ λ=0 (Fl v λ ⇓ s)(Fl v λ (x)) = ∂ λ=0 (f • Fl v λ ⇓ s • Fl v λ )(x) , d b f(s(x)) • v(x) = (T f • H v(x) s)(x) = (T f • H • T s • v)(x) = (T f • ∂ λ=0 Fl v λ ⇑ s)(x) = ∂ λ=0 (f • Fl v λ ⇑ s)(x) , so that T (f • s) • v(x) = d f f(s(x)) • ∇ v(x) s + d b f(s(x)) • v(x) .

Proposition 5.3 (General law of dynamics in terms of a connection)

The trajectory of a dynamical system in the configuration manifold is a piecewise regular path γ ∈ C 1 (T (I) ; C) which, for any given connection ∇ on C , fulfils the differential condition

∇ vγ (d f L t • v γ ), v ϕ -d b L t • v γ , v ϕ -d f L t • v γ , tors(v γ , v ϕ ) = F t , v ϕ -∂ τ =t d f L τ • v γ , v ϕ , for any virtual flow ϕ λ ∈ C 1 (C ; C) with v ϕ = ∂ λ=0 ϕ λ ∈ C 1 (Γ ; Δ Γ ∩ rig) a conforming infinitesimal isometry at Γ .
Proof. The split formula in Lemma 5.1 yields:

T (L t • F ϕ • v γ ), v ϕ = d f L t • v γ , ∇ vϕ (F ϕ • v γ ) + d b L t • v γ , v ϕ .

A c c e p t e d m a n u s c r i p t

Moreover, by Leibniz rule we have that

d vγ d f L t • v γ , v ϕ = ∇ vγ (d f L t • v γ ), v ϕ + d f L t • v γ , ∇ vγ v ϕ .
Then, setting F gen := F t -∂ τ =t (d f L τ • v γ ) , the differential condition in Proposition 5.2 may be written as:

∇ vγ (d f L t • v γ ), v ϕ = d b L t • v γ , v ϕ + F gen , v ϕ + d f L t • v γ , ∇ vγ v ϕ -∇ vϕ (F ϕ • v γ ) .
Since the bracket [(F ϕ • v γ ), v ϕ ] vanishes, we have that

tors(v γ , v ϕ ) := ∇ vγ v ϕ -∇ vϕ (F ϕ • v γ ) -[(F ϕ • v γ ), v ϕ ] = ∇ vγ v ϕ -∇ vϕ (F ϕ • v γ ) .
and the differential law takes the tensorial form in the statement.

Remark 5.1 Given a trajectory γ ∈ C 1 (I ; C) , the Euler-Lagrange map associates the differential one-form

E Lt •v γ ∈ T * Γ C to the field v γ ∈ C 1 (Γ ; TΓ) : E Lt • v γ , v ϕ := d vγ d f L t • v γ , v ϕ -T L t • v γ , v T ϕ • v γ = ∇ vγ (d f L t • v γ ), v ϕ -d b L t • v γ , v ϕ -d f L t • v γ , tors(v γ , v ϕ ) , ∀ v ϕ ∈ C 1 (Γ ; T Γ C) .
The differential law of dynamics is then written:

E Lt • v γ , v ϕ = F gen , v ϕ .
In [START_REF] Gràcia | Some geometric aspects of variational calculus in constrained systems[END_REF] the negative of former expression is taken to be the Euler-Lagrange operator, but tensoriality in v ϕ is not proved.

There are some special, but important, contexts in dynamics where the variational law of motion may be written as an equation. This situation occurs when the test virtual velocities are exactly the vector fields tangent to the configuration manifold at the trajectory. We shall refer to these contexts as perfect dynamical systems. Two main instances of perfect dynamical systems are rigid body dynamics and elastodynamics. In the former, the configuration manifold is a leaf of the foliation induced by the (integrable) rigidity constraint and the sections of the tangent bundle to such a leaf are exactly the infinitesimal isometries. In the latter, the bundle of test fields is enlarged to the whole tangent bundle to the configuration manifold by introducing a stress tensor field as Lagrange multiplier in duality with the eulerian implicit description of the rigidity constraint, according to which the Lie derivative of the metric tensor is the field characterizing the lack of rigidity. This extension is at the very heart of continuum mechanics. The stress tensor field is then related to the strain tensor field by a pointwise elastic law in the body. By adding the negative elastic potential energy and the force potential to the kinetic energy, the Lagrangian for the field theory of elastodynamics is formulated.

A c c e p t e d m a n u s c r i p t 6 Special forms of the law of dynamics

The original Lagrange's law of dynamics is immediately recovered from the general expression by endowing the configuration manifold with the local connection induced by a coordinate system. This connection is conveniently described by considering the distant parallel transport obtained by pushing the standard translation in the model linear space by the coordinate map. Both curvature and torsion tensor fields vanish for the standard connection in the model linear space and the diffeomorphic coordinate map simply pushes the curvature and torsion tensors to the ones of the induced connection in the configuration manifold which hence vanish too [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF]. By the vanishing of the torsion of the induced connection, the law of dynamics specializes to the invariant form of Lagrange law

∇ vγ (d f L t • v γ ), v ϕ -d b L t • v γ , v ϕ = F t , v ϕ -∂ τ =t d f L τ • v γ , v ϕ ,
and for perfect dynamical systems takes the standard aspect of Lagrange equation [START_REF] Arnold | Dynamical Systems III, Encyclopaedia of Mathematical Sciences[END_REF]:

∇ vγ (d f L t • v γ ) -d b L t • v γ = F t -∂ τ =t d f L τ • v γ .
The more general form of the laws of dynamics due to Poincaré holds when the reference system is a mobile frame whose base vectors are not necessarily the velocities along the coordinate lines. A common instance of this occurrence is provided by the so called engineering reference systems which consist in curvilinear coordinate systems with velocity base vectors normalized to a unit lenght. In a mobile frame the induced connection in the configuration manifold is such that the related distant parallel transport S ∈ C 1 (TC ; TC) is defined by the property that the components of a vector do not change when the frame base-point is displaced. The torsion of this connection is evaluated on a given pair of vectors u x , v x ∈ T x C by extending them to a pair of vector fields S(u x ), S(v x ) ∈ C 1 (C ; TC) according to the distant parallel transport. Then, by tensoriality:

tors(u x , v x ) := ∇ ux S(v x ) -∇ vx S(u x ) -[S(u x ), S(v x )] = -[S(u x ), S(v x )] .
The law of dynamics then takes the form

∂ τ =t d f L τ • v γ , v ϕ + ∇ vγ (d f L t • v γ ), v ϕ = d b L t • v γ , v ϕ + F t , v ϕ -d f L t • v γ , [S • v γ , S • v ϕ ] ,
which for perfect systems gives Poincaré law [START_REF] Arnold | Dynamical Systems III, Encyclopaedia of Mathematical Sciences[END_REF] in invariant form.

Let us now consider the standard case in which the Lagrangian is the sum L = K + P • π ∈ C 1 (TC ; ) of the positive definite quadratic functional

A c c e p t e d m a n u s c r i p t 7 Conclusions

The Heun-Hamel central equation, quoted in [START_REF] Ju | Dynamics of Nonholonomic Systems[END_REF][START_REF] Papastavridis | Time-Integral Variational Principles for Nonlinear Nonholonomic Systems[END_REF] as δL = d dt (p • dq) (recall that in the standard notation in analytical dynamics q is the vector of Lagrangian variables and p = dL/d q the vector of momenta) is the coordinate expression, in the special context of discrete systems and time independent Lagrangian without nonpotential forces, of the differential law of dynamics formulated in invariant terms in Proposition 5.2. In [START_REF] Ju | Dynamics of Nonholonomic Systems[END_REF][START_REF] Papastavridis | Time-Integral Variational Principles for Nonlinear Nonholonomic Systems[END_REF] the variation δL of the Lagrangian is evaluated as δL = (dL/d q)δ q + (dL/dq)δq and the law is deduced from the Lagrange variational law of dynamics (see section 6 below) relying on the key property δ q = (δq)˙which is also resorted to in standard treatments, to deduce Lagrange's equations from Hamilton's principle [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF]. Alas, the δ -()˙notation, although adopted in most textbooks and articles, does not unambiguously clarify the operations to be performed especially when dealing with a nonlinear configuration manifold. Let speed denote the timerate. Then the rate of variation of the speed is defined by ∂ λ=0 ∂ τ =t (ϕ λ •γ)(τ ) and the speed of the rate of variation is defined by ∂ τ =t ∂ λ=0 (ϕ λ • γ)(τ ) . They are respectively equal to the evaluations of the vector fields v T ϕ ∈ C 1 (TM ; TTM) and T v ϕ ∈ C 1 (TM ; TTM) at the point v γ (γ(t)) ∈ T γ(t) M :

∂ λ=0 ∂ τ =t (ϕ λ • γ)(τ ) = ∂ λ=0 (T ϕ λ • v γ )(γ(t)) = (v T ϕ • v γ )(γ(t)) ∈ T vγ T γ(t) M , ∂ τ =t ∂ λ=0 (ϕ λ • γ)(τ ) = ∂ τ =t (v ϕ • γ)(τ ) = (T v ϕ • v γ )(γ(t)) ∈ T vγ T γ(t) M .
These vectors, which belong to the second tangent bundle TTM , are related one another by the canonical involutive flip operation k TTM ∈ C 1 (TTM ; TTM) according to the formula v T ϕ = k TTM • T v ϕ , see e.g. [START_REF] Kolar | Natural operations in differential geometry[END_REF][START_REF] Romano | Continuum Mechanics on Manifolds[END_REF]. If the manifold M is a linear space, each tangent space T γ(t) M is identified with the linear space itself. Hence T vγ T γ(t) M is identified with M and the flip involution collapses to the identity by the Euler-Schwarz theorem [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF]. This is the case when working in coordinates, so that the terms δ q and (δq)˙coincide. Anyway, as shown in Proposition 5.3 and in section 6, in relating the general law of dynamics to Lagrange's law, the symmetry property to be invoked is ∇ vγ v ϕ = ∇ vϕ (F ϕ • v γ ) . Here the covariant derivatives are performed according to the connection defined by pushing the standard connection in the linear model space. This property is a consequence of the vanishing of the torsion of the induced connection and of the vanishing of the Lie bracket [F ϕ • v γ , v ϕ ] , due to the extension of the trajectory speed, which give

tors(v γ , v ϕ ) = ∇ vγ v ϕ -∇ vϕ (F ϕ • v γ ) -[(F ϕ • v γ ), v ϕ ] = ∇ vγ v ϕ -∇ vϕ (F ϕ • v γ ) = 0 .

A c c e p t e d m a n u s c r i p t

If the manifold M is a linear space, the identifications discussed above result in killing the horizontal subspaces in TTM and in the consequent identification of vertical subspaces with tangent spaces, so that the covariant derivative equals the natural derivative [START_REF] Romano | Connection and curvature on a fiber bundle[END_REF] and then:

∇ vγ v ϕ = T v ϕ • v γ , ∇ vϕ (F ϕ • v γ ) = T (F ϕ • v γ ) • v ϕ , with T (F ϕ • v γ ) • v ϕ = ∂ λ=0 T ϕ λ • v γ = v T ϕ • v γ .
We conclude that, far from being a question of points of view, as affirmed in [START_REF] Ju | Dynamics of Nonholonomic Systems[END_REF][START_REF] Papastavridis | Time-Integral Variational Principles for Nonlinear Nonholonomic Systems[END_REF], the equality δ q = (δq)ḣ olds in coordinates with the standard connection. In the general, nonlinear case Lagrange's law must be substituted by the law of dynamics provided in Proposition 5.3, whose expression depends on the torsion of the adopted connection. These results confirm that geometric formulations of dynamics, powered by the tools of differential geometry and calculus on manifolds, are able to define and discuss in precise mathematical terms the relevant principles and variational conditions. As a consequence most longly debated issues may be answered and clarified. 

  ϕ↑v is the push forward. Two scalar fields f ∈ C 1 (M ; ) and g ∈ C 1 (N ; ) are ϕ-related if f = g • ϕ and f = ϕ↓g is the pull back. Two covector fields v * ∈ C 1 (M ; T * M) and u * ∈ C 1 (N ; T * N) are ϕ-related if v * , v = ϕ↓ u * , ϕ↑v for any v ∈ C 1 (M ; TM) . Then the pull back is given by the formula ϕ↓u

  and meets the property p↑T v := v , i.e. T p• T v = v • p . The fibers of the vertical subbundle VE of the tangent bundle TE are the kernels of the tangent fibration map T p ∈ C 1 (TE ; E) . Vertical vectors V ∈ VE are characterized by a null velocity π E ↑V = 0 of their base point in M . A connection on a fiber bundle is a projector V ∈ C 1 (TE ; TE) on the vertical bundle VE , i.e. a vector bundle homomorphism P(e) ∈ BL (T e E ; T e E) such that P(e)•P(e) = P(e) , im(P(e)) = V e E . The projector H = I -V defines the horizontal subbundle HE ⊂ TE . The horizontal lift H v s ∈ C 1 (M ; HE) and the covariant derivative ∇ v s ∈ C 1 (M ; VE) of a section s ∈ C 1 (M ; E) field v ∈ C 0 (M ; TM) are respectively the horizontal and the vertical components of the natural derivative [6,11]:

Definition 1 A

 1 patchwork T (M) on M is a finite family of disjoint open subsets of M such that the union of their closures is a covering of M . The closure of each subset in the family is called an element of the patchwork.

A c c e p t e d m a n u s c r i p t statement introduced in [ 5 ]

 5 Euler's condition. The classical result of Euler deals with regular paths and fixed end points and is formulated in coordinates. The new deals with the more general case of non-fixed end points and piecewise regular paths, and extremality is expressed in terms of coordinate-free differential and jump conditions.

Theorem 4 . 1 (

 41 Euler's conditions) A path Γ ⊂ M is a trajectory if and only if the tangent vector field v Γ ∈ C 1 (T (Γ) ; TΓ) meets, in each element of a regularity partition T (Γ) , the differential condition

A c c e p t e d m a n u s c r i p t

  the energy. Let us then consider a compact time interval I , a piecewise regular time-parametrized path γ ∈ C 1 (I ; C) in the configuration manifold and its image Γ = γ(I) . The speed along the path is the vector field v γ ∈ C 1 (Γ ; TΓ) defined by v γ (γ(t)) := ∂ τ =t γ(τ ) . Conforming virtual speeds of the body are assumed to belong to a vector subbundle Δ Γ of the tangent bundle T Γ C to the trajectory. The trajectory in the configuration-time state-space is then given by (γ , id I ) ∈ C 1 (I ; C×I) , with image Γ I = (γ , id I )(I) , and the lifted trajectory in the velocity-time state-space is (T γ , id TI ) ∈ C 1 (TI ; TC × TI) . A virtual flow ϕ λ ∈ C 1 (C ; C) in the configuration manifold induces a synchronous flow ϕ λ × id I ∈ C 1 (C × I ; C × I) in the configuration-time statespace and a tangent synchronous flow with velocity (v T ϕ , 0) ∈ TTC × TTI .

A c c e p t e d m a n u s c r i p t

  

A c c e p t e d m a n u s c r i p t

kinetic energy K ∈ C 1 (TC ; ) and of the load potential P • π ∈ C 1 (TC ; ) . By polarization, a metric tensor g ∈ BL (TC, TC ; ) can then be associated with the kinetic energy, so that K = 1 2 g•diag , with diag(v) := (v , v) , with g := d f K ∈ BL (TC ; T * C) and g := d f K -1 ∈ BL (T * C ; TC) . Adopting the Levi-Civita connection ∇ in the riemannian manifold {C , g} we have that: ∇d f K = ∇g = 0 and tors = 0 . Moreover, from the invariance of the norm of a vector field which is parallel transported according to a metric connection, we infer that

= 0 and, by definition of fiber and base derivative, we have that

Recalling that Δ Γ is the subbundle of T Γ C described by the virtual velocities at Γ which are conforming to the (also non-holonomic) linear constraint, and setting

dP , the law of motion for a perfect dynamical system becomes:

Denoting by Π, Π ⊥ ∈ C 1 (TC ; TC) the fiberwise orthogonal projectors on Δ Γ and Δ ⊥ Γ , the law of motion may be rewritten as Π(∇ vγ v γ -g F gen ) = 0 . Introducing in the Whitney sum Δ Γ ⊕Δ ⊥ Γ the tensorial Weingarten map: W(u, v) := Π ⊥ (∇ u v) , we may write the law of motion for a perfect dynamical system as in [START_REF] Oliva | Geometric Mechanics[END_REF][START_REF] Kupka | The Non-Holonomic Mechanics[END_REF]:

In the free dynamics of a perfect system with no mass-loss time-rate, we have that F gen = 0 and, the law of dynamics becomes

In absence of constraints it is W(v γ , v γ ) = 0 and the law of dynamics yields the differential equation of a geodesic ∇ vγ v γ = 0 .

The jump conditions then give [[d f L t • v γ ]], v ϕ = 0 , which, recalling that the virtual velocities are required to be tangent to the discontinuity interfaces in the configuration manifold, directly yield the conservation of the tangent component of the momentum at the singularity interfaces. We remark that the constrained dynamics formulated above is the classical one which is also called d'Alembertian [START_REF] Kupka | The Non-Holonomic Mechanics[END_REF] as opposed to the recently proposed vakonomic constrained dynamics [START_REF] Arnold | Dynamical Systems III, Encyclopaedia of Mathematical Sciences[END_REF].