
HAL Id: hal-00538609
https://hal.science/hal-00538609

Submitted on 22 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Gb/s turbo decoding of product code onto an
FPGA device

Camille Leroux, Christophe Jego, Patrick Adde, Michel Jezequel

To cite this version:
Camille Leroux, Christophe Jego, Patrick Adde, Michel Jezequel. Towards Gb/s turbo decoding of
product code onto an FPGA device. Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on, May 2007, New Orleans, United States. pp.909 -912, �10.1109/ISCAS.2007.378073�.
�hal-00538609�

https://hal.science/hal-00538609
https://hal.archives-ouvertes.fr

Toward Gb/s turbo decoding of product code onto an
FPGA device.

Camille LEROUX, Christophe JEGO, Patrick ADDE and Michel JEZEQUEL
GET/ENST Bretagne, CNRS TAMCIC UMR 2872, Brest, France

firstname.lastname@enst-bretagne.fr

Abstract—This paper presents the implementation, on an
FPGA device of an ultra high rate block turbo code decoder.
First, a complexity analysis of the elementary decoder leads to
a low complexity decoder architecture (area divided by 2) for a
negligible performance degradation. The resulting turbo
decoder is implemented on a Xilinx Virtex II-Pro FPGA in a
communication experimental setup. Based on an innovative
architecture which enables the memory blocks between all
half-iterations to be removed and clocked at only 37.5 MHz the
turbo decoder processes input data at 600Mb/s. The
component code is an extended Bose, Ray-Chaudhuri,
Hocquenghem (eBCH(16,11)) code. Ultra high-speed block
turbo decoder architectures meet the demand for even higher
data rates and open up new opportunities for the next
generations of communication systems such as fiber optic
transmissions.

I. INTRODUCTION
In telecommunications, forward error correction (FEC) is

a system of error control that improves digital communication
quality. A recent development in error correction is turbo
coding. Block turbo codes (BTC) are an alternative solution
to convolutional turbo codes (CTC) introduced in 1993 by
C.Berrou [1]. BTC were proposed by R. Pyndiah [2] in 1994.
The coding scheme uses a serial concatenation of systematic
linear block codes (product codes introduced by P. Elias [3])
and the decoding is carried out using soft input-soft output
(SISO) elementary decoders. Recently, BTC have been
included in the specifications of the Wireless Metropolitan
Area Networks (IEEE 802.16) standard to increase
transmission rates and/or to guarantee the Quality of Service
(QoS). Some processes like optical transmission or data
storage require ultra high speed above 10 Gb/s data coding
and decoding. The first codes used in optical transmission
were the well-known Reed-Solomon codes [4] which allow
respectable throughput for a Net Coding Gain (NGC) up to
6dB. In such contexts, BTC are an attractive solution since
product codes structure present a high parallelism rate and a
theoretical NCG of 10dB [5][6]. However, FEC decoders
achieving multi-gigabit throughputs require new massively
parallel architecture with reduced complexity.

In BTC, the iterative decoding algorithm of a matrix
(product code) involves performing the successive decoding
of all rows and all columns (two half-iterations). To increase
the data rate, it is possible to perform all the rows (columns)
in parallel during a half-iteration. However in classical
approaches [7], a reconstruction of the data is necessary
between two successive half-iterations. This requires a large

amount of memory (up to 75% of the design) and limits the
implementation possibilities. In [8], an innovative
architecture that enables the memory blocks between each
half-iteration to be removed has been proposed. In such an
architecture, the remaining complexity is in the decoding
processors: the number of required SISO decoders is DECn =
2×it×n, where it and n are the number of decoding iterations
and the code size respectively. Therefore, implementing a
full parallel BTC decoder requires to decrease the complexity
of the elementary SISO decoder architecture.

This paper is organized as follows. Section II recalls the
basic principles of decoding for product codes: their
construction and the turbo decoding process. In section III,
we propose a complexity and performance analysis of the
elementary decoder which allows a rapid and efficient
estimation of the decoder complexity. Finally, in section IV,
an implementation of the resulting turbo decoder onto a
FPGA target is presented.

II. BTC CODING AND DECODING PRINCIPLES
In this section, the concept of product codes, their

construction and the principle of the decoding algorithm are
presented.
A. Construction of product codes

The concept of product codes is a simple and efficient
method to construct powerful codes with a large minimum
Hamming distance δ using conventional linear block codes.
Let us consider two identical systematic linear block codes C
having parameters (n,k), where n and k stand for code length
and number of information symbols respectively. The
product code P=C×C is obtained by placing k2 information
bits in a matrix of k rows and k columns, coding the k rows
and k columns using code C. It is shown that all n rows are
codewords of C exactly as all n columns. Furthermore, the
parameters of the resulting product code P are given by
np=n2, kp=k2 and the code rate Rp is given by Rp=R2. Thus, it
is possible to construct powerful product codes using linear
block codes. As a general rule, the more powerful a code, the
more difficult the decoding process.

B. SISO decoding of product codes
Product code decoding involves sequentially decoding

rows and columns using SISO decoders. Repeating this soft
decoding over several iterations enables a decrease of the Bit
Error Rate (BER). It is known as the block turbo decoding
process. Each decoder has to compute soft information
[R’]k+1 from the channel received information [R] and the

previous half-iteration computed information [R’]k. A SISO
decoder of an eBCH code based on the Chase-Pyndiah
algorithm [2][9] is concisely summarized below:

1- Search for the Lr least reliable binary bits and
compute the syndrome S0 of [R’]k,

2- Generate Tv test vectors obtained by inverting some
of the Lr least reliable binary symbols,

3- Binary decoding of each test vector using the
syndrome computation,

4- For each test vector, compute the square Euclidian
distance (metric) Mi(i=0,…,Tvn-1) between [R’]k and
the considered test vector.

5- Select the Decided Word (DW) having the minimal
distance with [R’]k and choose Cw concurrent words
having the closest distance with [R’]k.

6- Compute reliability [F]k for each symbol of the DW,
7- Compute extrinsic information [W]k=[F]k-[R’]k for

each symbol of the DW.
8- Add extrinsic information (multiplied by αk) to the

channel received word, [R’]k+1=[R]k+αk[W]k
An αk coefficient allows us to damp decoding decisions

during the first iterations. It should be noted that decoding
parameters Lr, Tv, and Cw has a notable effect on
performance.

III. COMPLEXITY AND PERFORMANCE ANALYSIS
FOR eBCH SISO DECODERS

Syntheses for the complexity estimations were performed
using the Synopsys tool with an STMicrolectronics 0.09 μm
CMOS process target. Elementary decoders are clocked at
f=500MHz. BER performance was simulated using C-ANSI
models of a turbo decoder for the product codes
eBCH(16,11)² and eBCH(32,26)² after 6 iterations.

A. Complexity analysis of BCH SISO decoders

All the soft information within the decoder is quantized
and processed with Q bits (1 sign bit and Q-1 reliability bits).
The SISO decoder architecture is structured in three
pipelined stages identified as reception, processing and
emission units. Each stage processes n symbols in n clock
periods. The resulting latency is then equal to 2n clock
periods. The reception unit computes the syndrome S0 and
the Lr least reliable bits of the word received [R’]k. The
processing unit computes the syndrome of the Tv test vectors
and their metric values. Finally, the emission unit calculates
new reliabilities from the metrics of the decided word and
the Cw concurrent words. Extrinsic information [W]k and
soft output [R’]k+1 are also processed during the same clock
period. A new Q-bits symbol is then transmitted at each
clock period. The decoding process needs to access the [R]k
and [R’]k values during the three decoding phases. For this
reason, these words are implemented in Random Access
Memories (RAM) of size Q*n.

The proposed SISO decoder is composed of twelve
processing parts. Running conventional decoder designs
through logic synthesis showed that only four parts were
critical in terms of logical gate complexity (75% of the area).
As a result, our study is focused on these parts. One of these
parts is the alpha multiplication unit. In classical
architectures, it is implemented as a conversion table. The

input can be multiplied by 0.55 < αk < 0.75, the value
depending on the current iteration. Keeping αk = 0.5 for each
iteration enables the unit to be removed since the
multiplication becomes a simple bit shifting. Therefore, the
elementary decoder area is decreased by 8%. The induced
loss of performance Δα is very low (0<Δα<0.1 dB).
Consequently, the complexity analysis will now be focused
on the three remaining parts. By analyzing the architecture of
these critical parts, five parameters appear to directly affect
their complexities. Table 1 sums up the order of complexity
of the three critical parts that depends on the parameters
introduced in section II. B.

TABLE I. ORDER OF COMPLEXITY OF THE THREE CRITICAL PARTS

Parts n Q Lr Tv Cw

DW-Cw
sorting O(log(n)) O(Q) O(Lr) O(Tv) O(Cw)

Least reliable
sorting O(Q) O(Lr) O(Tv)

Reliability
computation O(log(n)) O(Q) O(Lr) O(Tv) O(Cw)

Decoding parameters Lr, Tv, Cw, as well as the code size

n and the number of quantization bits Q has a direct impact
on the decoder complexity (area or number of logical gates).
Considering a code size n, let us define a set pi of decoding
parameters:

pi = { Qi, Cwi , Tvi , Lri}. (1)

Varying pi, directly affects both the hardware complexity and
the decoding algorithm performance. Increasing these
parameter values improves performance while the
complexity increases. The purpose of our analysis is to be
able to compute easily the complexity of a SISO decoder for
any set of parameters pi with reasonable accuracy.
Considering a code size n, the most favorable configuration
is:

p0={Cw0=3,Q0=5,Tv0=16,Lr0=5}. (2)

Actually, increasing p0 parameters values would increase
complexity without significantly improve performances. For
this reason, this configuration is the reference for our
decoder architecture complexity. Synthesis showed that, in
this case, the four critical parts represent 75% of the decoder
area whatever the code size n. In addition, assuming that the
remaining 25% of the decoder is almost not affected by the
variation of a set pi (as verified during syntheses), it can be
demonstrated that the SISO decoder complexity Cpi(n) can
be expressed as:

Cpi(n) = 1/3 (C’p0(n)) + C’pi(n), (3)

where C’pi(n) is the cumulated complexity of the four critical
parts in terms of logical gates for a parameter set pi.

Synthesizing generic descriptions of the critical parts and
carrying out a multiple linear regression analysis led to an
expression of C’pi(n) only depending on the decoding
parameters. This expression represents the cumulated

complexity C’pi(n) of the four critical parts in terms of
logical gates for a parameter set pi.

C’pi(n) = 462(Cwi-1) + 261(log(n)-4) + 183(Qi-4) +
55(Tvi-4) + 46(Lri-2) + 1019 . (4)

The model’s accuracy was measured a posteriori. The
maximum and average errors (between model and synthesis
results) are 8% and 2.5% respectively. Table II gives four
examples of estimated complexity for code size n=16 and 32.

TABLE II. COMPLEXITY IN TERMS OF LOGICAL GATES OF THE

CRITICAL PARTS

Parameter set pi n Q Lr Tv Cw C’pi(n) Cpi(n)
p0 16 6 5 16 3 3107 4143
p1 16 4 2 4 1 1019 2055
p0 32 6 5 16 3 3368 4491
p1 32 4 2 4 1 1742 2865

Using this model immediately gives the complexity of an

eBCH SISO decoder for any set of decoding parameters.
Therefore, taking into account the implementation and
performance constraints, it becomes very straightforward to
select a code size n and a decoding parameter set pi.

B. Selection of a parameter set and a code size

Simulations showed that for a small size of product code
(eBCH(32,26)² and eBCH(16,11)²), the performance
degradation associated with the particular set p1 ={Cw=1,
Q=4, Tv=4, Lr=2} was only about 0.3 dB at BER=10-4.
Furthermore, for n=16, simulations showed that the loss of
performance became negligible for SNR > 4dB. It can be
seen that decoding parameters in p1 have low values. The
complexity of the SISO decoder is then highly reduced for
reasonable performance loss. Using (3) and (4), Cp1(16) =
2055 logical gates and Cp1(32) = 2865 logical gates were
obtained. Compared with the decoder complexity reference
Cp0(16) and Cp0(32), gains of 50% and 36% were achieved
respectively.

A block turbo decoder designed according to the
complexity analysis results has to be integrated. Currently, a
typical hardware design approach is to use an FPGA
development board to first prototype the turbo decoder
design and its experimental setup. The low cost Virtex II-Pro
XUP [10] development system from Digilent was selected
for our experimentation. These boards contains a Xilinx
Virtex II-Pro XC2VP30 FPGA device with 13696 slices.
Preliminary syntheses show that only a half-iteration of the
eBCH(32,26)² block turbo decoder would fit onto the Virtex
II-Pro XC2VP30 device. Indeed, some elements of the
experimental setup have to fit onto the same FPGA device as
the block turbo decoder. In the case of BCH(16,11)², up to 3
half-iterations (48 SISO decoders) can be implemented on
the same device. For this reason, the BCH(16,11)² was
finally chosen for our experimentation. The parameter set
p1={Cw=1, Q=4, Tv=4, Lr=2} was selected for each
elementary decoder.

IV. IMPLEMENTATION OF A BLOCK TURBO DECODER IN AN
ULTRA HIGH RATE COMMUNICATION SETUP

A. Experimental setup
The experimental setup is composed of two identical

development boards XUP linked with a Serial ATA
communication bus. BER measurement facilities are
implemented in order to rapidly verify the decoding
performance. Each board contains a Xilinx XC2VP30
device that can transmit data at a 2.4 Gbits/s rate. Indeed,
encoded noisy data are sent from the transmitter FPGA to the
receiver FPGA using the high speed Xilinx Aurora protocol.
Each board has its own digital clock management system
operating at 50MHz. Synchronization between the two
boards is carried out by Aurora protocol control signals. The
Aurora protocol is clocked at f1=75MHz and the rest of the
setup is clocked at f0=37.5MHz. Figure 1 shows the different
components of the communication setup implemented onto
the FPGA.

1) The components implemented on the transmitter
FPGA device

A Pseudo Random Generator (PRG) sends out eleven
pseudo random data streams at each clock period (f0). It is
composed of eleven different LFSR. An eBCH(16,11)2
encoder processes the eleven data streams in parallel. This
innovative architecture avoid the use of memory between
row and column encoding [8]. Classical sequential encoders
are cascaded with a parallel encoder. 256 data (equivalent to
a matrix 16×16) are generated in 16 clock periods (f0). The
noise generator models 16 uncorrelated White Gaussian
Noise (WGN) samples and adds them to the previously
encoded data [11]. Each output sample is a 4 bit vector
resulting in 64 bits to be sent in 1 clock period (f0). The
Signal to Noise Ratio (SNR) is controllable via on-board
switches 0<SNR<15.75dB with a pitch of 0.25dB. The
Aurora protocol emission module handles a set of control
signals. It receives 64 data in 2 clock cycles and sends 32
data every clock cycle (f1). The output rate is then 2.4Gb/s.

2) The components implemented on the receiver FPGA
device

The Aurora protocol reception module receives data at
2.4 Gbits/s and sends out 64 bits every two clock cycles (f1).
The turbo decoder is composed of 32 SISO (16 SISO
decoders per half-iteration) and two omega networks used to
route data between half-iterations. More information about
the decoder architecture and the omega network can be
found in [8]. Data arrive at 2.4Gb/s while the working
frequency is only 37.5 MHz. The same PRG is also
implemented in the receiver. It generates the exact same data
as in the transmitter in order to compare data before and after
decoding. A BER block is finally used to measure the error
rate comparing data from the PRG and the decoder output. It
guarantees a minimum of 1000 errors before outputting the
BER value. This value is then displayed on an LCD module.
The minimum reliable BER value is 10-9.

B. Toward very high rate implementation

The purpose of this first implementation is to show that a
block turbo decoder can effectively work without memories

between half-iterations at high throughput. Clocked at only
37.5MHz, the turbo decoder processes input data at
600Mb/s. This frequency is limited by the communication
protocol. The turbo decoder can actually perform up to
70MHz on this target, which corresponds to 1.12 Gb/s.
Using an FPGA device optimized for high-performance logic

would lead to even higher frequency. Regarding the output
rate, it is defined as:

Dout = P f R . (5)
P is the parallelism rate (max(P)=n), f the decoder

frequency and R the code rate.

Figure 1. Multi-gigabit experimental setup

In our case, P=16, f=f0=37.5MHz and R=0.473, the
resulting throughput is then 284Mb/s. Several solutions exist
to increase the throughput, the more straightforward is to use a
larger code (in order to increase P) with a larger rate R. For
instance, assuming we are using an eBCH(32,26)2 at
frequency f0=70MHz, the input and output data rates become
2.24Gb/s and 1.48Gb/s respectively. In our architecture, SISO
decoders process data sequentially. Designing SISO decoders
which decode several data in one clock period, as in [12],
would again improve throughput and with a limited
complexity overhead. Moreover, enhancing our study to non
binary component codes like RS codes [13] can increase data
rate even more. The turbo decoder was synthesized and
implemented on a Virtex II Pro FPGA using Xilinx ISE 7.1i
tools. The decoder occupied 7300 slices. So far, one iteration
(32 SISO decoders and 2 omega networks) has been fully
implemented. The available target (xc2vp30) was insufficient
to implement several iterations. Duplicating the decoders
simply requires a larger FPGA target. Implementing a 6-
iterations full-parallel turbo decoder represents 43800 FPGA
slices with a maximum throughput. Such a design can for
instance, fit onto a Xilinx Virtex 4.

V. CONCLUSION
This article shows how we implemented a memory free,

high-throughput, full-parallel, block turbo decoder on a FPGA
target. In such parallel architectures, it is necessary to use low
complexity SISO decoders. We first proposed a complexity
analysis for the eBCH(16,11) SISO decoder. The complexity
expression gives a rapid estimation of the SISO area, for a
fixed set of decoding parameters. Then, depending on the
required level of performances, it becomes easy to decide on a

set of parameters to implement. This analysis led to a low
complexity SISO decoder (-50%) to be duplicated in the
parallel turbo decoder. Next, we describe the experimental
setup designed to test the turbo decoder. Using a more
efficient communication protocol the turbo decoder can
process input data at 1.2Gb/s. Using a larger code, with a
higher rate and parallel SISO decoders, would again, increase
the data rate. Moreover non binary codes like RS codes enable
even higher throughputs to be reached.

REFERENCES
[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit

error-correcting coding and decoding : Turbo-codes (1),” IEEE Int.
Conf. on Comm.ICC' 93, vol 2/3, May 1993, pp. 1064-1071.

[2] R. Pyndiah, “Near optimum decoding of product codes : Block Turbo
Codes”, IEEE Trans. on Comm., vol 46, n° 8, August 1998, pp. 1003-
1010.

[3] P. Elias, “Error-free coding”, IRE Trans. on Inf. Theory, vol. IT-4, pp.
29-37, Sept. 1954.

[4] K. Azadet, E.F. Haratsch, H. Kim, F. Saibi, J.H. Saunders, M. Shaffer,
L. Song, Meng-Lin Yu, “Equalization and FEC techniques for optical
transceivers”, Solid-State Circuits, IEEE Journal of Volume 37, Issue
3, March 2002, pp. 317-327.

[5] O. Ait Sab, O. V. Lemaire, “Block turbo code performances for long-
haul DWDM optical transmission systems”, Optical Fiber
Communication Conference,Volume 3, March 2000 pp. 280-282.

[6] T. Mizuochi, “Recent Progress in Forward Error Correction for Optical
Communication Systems”, IEICE Transactions on Communications,
Volume E88-B, Number 5, May 2005.

[7] S. Kerouedan, P. Adde, “Implementation of a Block Turbo Decoder on
a Single Chip”, 2nd International Symposium on Turbo Codes &
Related Topics, Brest, France, 2000. p. 243-246.

[8] C. Jego, P. Adde, C. Leroux, “Full-parallel architecture for turbo
decoding of product codes”, Electronics Letters Volume 42, Issue 18,
31 August 2006 pp. 55 – 56.

[9] D. Chase, “A class of algorithms for decoding block codes with
channel measurement information”, IEEE Trans. Inform. Theory, vol
IT-18, Jan. 1972, pp 170-182

[10] .http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User
_Guide.pdf

[11] J.L Danger, A. Ghazel, E. Boutillon H. Laamari, “Efficient FPGA
Implementation of Gaussian Noise Generator for Communication
Channel Emulation” (ICECS'2K), Kaslik, Lebanon, Dec 2000.

[12] J.Cuevas, P.Adde, S.Kerouedan, “Very powerful block turbo codes for
high data rates applications”, 3rd International Symposium On Turbo
Codes & Related Topics, Brest, France, 1-5 septembre, 2003. p 251-
254.

[13] E.Piriou, C. Jego, P. Adde, R. Le Bidan, M. Jezequel, “Efficient
architecture for Reed Solomon block turbo code”, ISCAS 2006 :
International Symposium on Circuits and Systems, Kos, Greece, May
21-24, 2006. p. 3682-3685.

