
HAL Id: hal-00538609
https://hal.science/hal-00538609

Submitted on 22 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Gb/s turbo decoding of product code onto an
FPGA device

Camille Leroux, Christophe Jego, Patrick Adde, Michel Jezequel

To cite this version:
Camille Leroux, Christophe Jego, Patrick Adde, Michel Jezequel. Towards Gb/s turbo decoding of
product code onto an FPGA device. Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on, May 2007, New Orleans, United States. pp.909 -912, �10.1109/ISCAS.2007.378073�.
�hal-00538609�

https://hal.science/hal-00538609
https://hal.archives-ouvertes.fr


Toward Gb/s turbo decoding of product code onto an 
FPGA device. 

Camille LEROUX, Christophe JEGO, Patrick ADDE and Michel JEZEQUEL 
GET/ENST Bretagne, CNRS TAMCIC UMR 2872, Brest, France 

firstname.lastname@enst-bretagne.fr 
  

Abstract—This paper presents the implementation, on an 
FPGA device of an ultra high rate block turbo code decoder. 
First, a complexity analysis of the elementary decoder leads to 
a low complexity decoder architecture (area divided by 2) for a 
negligible performance degradation. The resulting turbo 
decoder is implemented on a Xilinx Virtex II-Pro FPGA in a 
communication experimental setup. Based on an innovative 
architecture which enables the memory blocks between all 
half-iterations to be removed and clocked at only 37.5 MHz the 
turbo decoder processes input data at 600Mb/s. The 
component code is an extended Bose, Ray-Chaudhuri, 
Hocquenghem (eBCH(16,11)) code. Ultra high-speed block 
turbo decoder architectures meet the demand for even higher 
data rates and open up new opportunities for the next 
generations of communication systems such as fiber optic 
transmissions. 

I. INTRODUCTION 
In telecommunications, forward error correction (FEC) is 

a system of error control that improves digital communication 
quality. A recent development in error correction is turbo 
coding. Block turbo codes (BTC) are an alternative solution 
to convolutional turbo codes (CTC) introduced in 1993 by 
C.Berrou [1]. BTC were proposed by R. Pyndiah [2] in 1994. 
The coding scheme uses a serial concatenation of systematic 
linear block codes (product codes introduced by P. Elias [3]) 
and the decoding is carried out using soft input-soft output 
(SISO) elementary decoders. Recently, BTC have been 
included in the specifications of the Wireless Metropolitan 
Area Networks (IEEE 802.16) standard to increase 
transmission rates and/or to guarantee the Quality of Service 
(QoS). Some processes like optical transmission or data 
storage require ultra high speed above 10 Gb/s data coding 
and decoding. The first codes used in optical transmission 
were the well-known Reed-Solomon codes [4] which allow 
respectable throughput for a Net Coding Gain (NGC) up to 
6dB. In such contexts, BTC are an attractive solution since 
product codes structure present a high parallelism rate and a 
theoretical NCG of 10dB [5][6]. However, FEC decoders 
achieving multi-gigabit throughputs require new massively 
parallel architecture with reduced complexity.  

In BTC, the iterative decoding algorithm of a matrix 
(product code) involves performing the successive decoding 
of all rows and all columns (two half-iterations). To increase 
the data rate, it is possible to perform all the rows (columns) 
in parallel during a half-iteration. However in classical 
approaches [7], a reconstruction of the data is necessary 
between two successive half-iterations. This requires a large 

amount of memory (up to 75% of the design) and limits the 
implementation possibilities. In [8], an innovative 
architecture that enables the memory blocks between each 
half-iteration to be removed has been proposed. In such an 
architecture, the remaining complexity is in the decoding 
processors: the number of required SISO decoders is DECn = 
2×it×n, where it and n are the number of decoding iterations 
and the code size respectively. Therefore, implementing a 
full parallel BTC decoder requires to decrease the complexity 
of the elementary SISO decoder architecture.  

This paper is organized as follows. Section II recalls the 
basic principles of decoding for product codes: their 
construction and the turbo decoding process. In section III, 
we propose a complexity and performance analysis of the 
elementary decoder which allows a rapid and efficient 
estimation of the decoder complexity. Finally, in section IV, 
an implementation of the resulting turbo decoder onto a 
FPGA target is presented. 

II. BTC CODING AND DECODING PRINCIPLES 
In this section, the concept of product codes, their 

construction and the principle of the decoding algorithm are 
presented. 
A.  Construction of product codes 

The concept of product codes is a simple and efficient 
method to construct powerful codes with a large minimum 
Hamming distance δ  using conventional linear block codes. 
Let us consider two identical systematic linear block codes C 
having parameters (n,k), where n and k stand for code length 
and number of information symbols respectively. The 
product code P=C×C is obtained by placing k2 information 
bits in a matrix of k rows and k columns, coding the k rows 
and k columns using code C. It is shown that all n  rows are 
codewords of C exactly as all n columns. Furthermore, the 
parameters of the resulting product code P are given by 
np=n2, kp=k2 and the code rate Rp is given by Rp=R2. Thus, it 
is possible to construct powerful product codes using linear 
block codes. As a general rule, the more powerful a code, the 
more difficult the decoding process.  

B. SISO decoding of product codes 
Product code decoding involves sequentially decoding 

rows and columns using SISO decoders. Repeating this soft 
decoding over several iterations enables a decrease of the Bit 
Error Rate (BER). It is known as the block turbo decoding 
process. Each decoder has to compute soft information 
[R’]k+1 from the channel received information [R] and the 



previous half-iteration computed information [R’]k. A SISO 
decoder of an eBCH code based on the Chase-Pyndiah 
algorithm [2][9] is concisely summarized below: 

1- Search for the Lr least reliable binary bits and 
compute the syndrome S0 of [R’]k, 

2- Generate Tv test vectors obtained by inverting some 
of the Lr least reliable binary symbols, 

3- Binary decoding of each test vector using the 
syndrome computation, 

4- For each test vector, compute the square Euclidian 
distance (metric) Mi(i=0,…,Tvn-1) between [R’]k and 
the considered test vector. 

5- Select the Decided Word (DW) having the minimal 
distance with [R’]k and choose Cw concurrent words 
having the closest distance with [R’]k. 

6- Compute reliability [F]k for each symbol of the DW, 
7- Compute extrinsic information [W]k=[F]k-[R’]k for 

each symbol of the DW. 
8- Add extrinsic information (multiplied by αk) to the 

channel received word, [R’]k+1=[R]k+αk[W]k 
An αk coefficient allows us to damp decoding decisions 

during the first iterations. It should be noted that decoding 
parameters Lr, Tv, and Cw has a notable effect on 
performance. 

III. COMPLEXITY AND PERFORMANCE ANALYSIS             
FOR eBCH SISO DECODERS 

Syntheses for the complexity estimations were performed 
using the Synopsys tool with an STMicrolectronics 0.09 μm 
CMOS process target. Elementary decoders are clocked at 
f=500MHz. BER performance was simulated using C-ANSI 
models of a turbo decoder for the product codes 
eBCH(16,11)² and eBCH(32,26)² after 6 iterations.  

A. Complexity analysis of BCH SISO decoders 

All the soft information within the decoder is quantized 
and processed with Q bits (1 sign bit and Q-1 reliability bits). 
The SISO decoder architecture is structured in three 
pipelined stages identified as reception, processing and 
emission units. Each stage processes n symbols in n clock 
periods. The resulting latency is then equal to 2n clock 
periods. The reception unit computes the syndrome S0 and 
the Lr least reliable bits of the word received [R’]k. The 
processing unit computes the syndrome of the Tv test vectors 
and their metric values. Finally, the emission unit calculates 
new reliabilities from the metrics of the decided word and 
the Cw concurrent words. Extrinsic information [W]k and 
soft output [R’]k+1 are also processed during the same clock 
period. A new Q-bits symbol is then transmitted at each 
clock period. The decoding process needs to access the [R]k 
and [R’]k values during the three decoding phases. For this 
reason, these words are implemented in Random Access 
Memories (RAM) of size Q*n.  

The proposed SISO decoder is composed of twelve 
processing parts. Running conventional decoder designs 
through logic synthesis showed that only four parts were 
critical in terms of logical gate complexity (75% of the area). 
As a result, our study is focused on these parts. One of these 
parts is the alpha multiplication unit. In classical 
architectures, it is implemented as a conversion table. The 

input can be multiplied by 0.55 < αk < 0.75, the value 
depending on the current iteration. Keeping αk = 0.5 for each 
iteration enables the unit to be removed since the 
multiplication becomes a simple bit shifting. Therefore, the 
elementary decoder area is decreased by 8%. The induced 
loss of performance Δα is very low (0<Δα<0.1 dB). 
Consequently, the complexity analysis will now be focused 
on the three remaining parts. By analyzing the architecture of 
these critical parts, five parameters appear to directly affect 
their complexities. Table 1 sums up the order of complexity 
of the three critical parts that depends on the parameters 
introduced in section II. B. 

TABLE I.  ORDER OF COMPLEXITY OF THE THREE CRITICAL PARTS 

Parts n Q Lr Tv Cw 

DW-Cw 
sorting O(log(n)) O(Q) O(Lr) O(Tv) O(Cw)

Least reliable 
sorting  O(Q) O(Lr) O(Tv)  

Reliability 
computation O(log(n)) O(Q) O(Lr) O(Tv) O(Cw)

 
Decoding parameters Lr, Tv, Cw, as well as the code size 

n and the number of quantization bits Q has a direct impact 
on the decoder complexity (area or number of logical gates). 
Considering a code size n, let us define a set pi of decoding 
parameters: 

pi = { Qi, Cwi , Tvi , Lri}. (1) 

Varying pi, directly affects both the hardware complexity and 
the decoding algorithm performance. Increasing these 
parameter values improves performance while the 
complexity increases. The purpose of our analysis is to be 
able to compute easily the complexity of a SISO decoder for 
any set of parameters pi  with reasonable accuracy. 
Considering a code size n, the most favorable configuration 
is: 

p0={Cw0=3,Q0=5,Tv0=16,Lr0=5}. (2) 

Actually, increasing p0 parameters values would increase 
complexity without significantly improve performances. For 
this reason, this configuration is the reference for our 
decoder architecture complexity. Synthesis showed that, in 
this case, the four critical parts represent 75% of the decoder 
area whatever the code size n. In addition, assuming that the 
remaining 25% of the decoder is almost not affected by the 
variation of a set pi (as verified during syntheses), it can be 
demonstrated that the SISO decoder complexity Cpi(n) can 
be expressed as: 

Cpi(n) = 1/3 (C’p0(n)) + C’pi(n), (3) 

where C’pi(n) is the cumulated complexity of the four critical 
parts in terms of logical gates for a parameter set pi. 

Synthesizing generic descriptions of the critical parts and 
carrying out a multiple linear regression analysis led to an 
expression of C’pi(n) only depending on the decoding 
parameters. This expression represents the cumulated 



complexity C’pi(n) of the four critical parts in terms of 
logical gates for a parameter set pi. 

C’pi(n) = 462(Cwi-1) + 261(log(n)-4) + 183(Qi-4) + 
55(Tvi-4) + 46(Lri-2) + 1019  .  (4) 

The model’s accuracy was measured a posteriori. The 
maximum and average errors (between model and synthesis 
results) are 8% and 2.5% respectively. Table II gives four 
examples of estimated complexity for code size n=16 and 32. 

 
TABLE II.  COMPLEXITY IN TERMS OF LOGICAL GATES OF THE 

CRITICAL PARTS 

Parameter set pi n Q Lr Tv Cw C’pi(n) Cpi(n)
p0 16 6 5 16 3 3107 4143 
p1 16 4 2 4 1 1019 2055 
p0 32 6 5 16 3 3368 4491 
p1 32 4 2 4 1 1742 2865 

 
Using this model immediately gives the complexity of an 

eBCH SISO decoder for any set of decoding parameters. 
Therefore, taking into account the implementation and 
performance constraints, it becomes very straightforward to 
select a code size n and a decoding parameter set pi. 

B. Selection of a parameter set and a code size 

Simulations showed that for a small size of product code 
(eBCH(32,26)² and eBCH(16,11)²), the performance 
degradation associated with the particular set p1 ={Cw=1, 
Q=4, Tv=4, Lr=2} was only about 0.3 dB at BER=10-4. 
Furthermore, for n=16, simulations showed that the loss of 
performance became negligible for SNR > 4dB. It can be 
seen that decoding parameters in p1 have low values. The 
complexity of the SISO decoder is then highly reduced for 
reasonable performance loss. Using (3) and (4), Cp1(16) = 
2055 logical gates and Cp1(32) = 2865 logical gates were 
obtained. Compared with the decoder complexity reference 
Cp0(16) and Cp0(32), gains of 50% and 36% were  achieved 
respectively.  

A block turbo decoder designed according to the 
complexity analysis results has to be integrated. Currently, a 
typical hardware design approach is to use an FPGA 
development board to first prototype the turbo decoder 
design and its experimental setup. The low cost Virtex II-Pro 
XUP [10] development system from Digilent was selected 
for our experimentation. These boards contains a Xilinx 
Virtex II-Pro XC2VP30 FPGA device with 13696 slices. 
Preliminary syntheses show that only a half-iteration of the 
eBCH(32,26)² block turbo decoder would fit onto the Virtex 
II-Pro XC2VP30 device. Indeed, some elements of the 
experimental setup have to fit onto the same FPGA device as  
the block turbo decoder. In the case of BCH(16,11)², up to 3 
half-iterations (48 SISO decoders) can be implemented on 
the same device. For this reason, the BCH(16,11)² was 
finally chosen for our experimentation. The parameter set 
p1={Cw=1, Q=4, Tv=4, Lr=2} was selected for each 
elementary decoder. 

IV. IMPLEMENTATION OF A BLOCK TURBO DECODER IN AN 
ULTRA HIGH RATE COMMUNICATION SETUP 

A. Experimental setup 
The experimental setup is composed of two identical 

development boards XUP linked with a Serial ATA 
communication bus. BER measurement facilities are 
implemented in order to rapidly verify the decoding 
performance.  Each board contains a Xilinx XC2VP30 
device that can transmit data at a 2.4 Gbits/s rate. Indeed, 
encoded noisy data are sent from the transmitter FPGA to the 
receiver FPGA using the high speed Xilinx Aurora protocol. 
Each board has its own digital clock management system 
operating at 50MHz. Synchronization between the two 
boards is carried out by Aurora protocol control signals. The 
Aurora protocol is clocked at f1=75MHz and the rest of the 
setup is clocked at f0=37.5MHz. Figure 1 shows the different 
components of the communication setup implemented onto 
the FPGA.  

1) The components implemented on the transmitter 
FPGA device 

A Pseudo Random Generator (PRG) sends out eleven 
pseudo random data streams at each clock period (f0). It is 
composed of eleven different LFSR. An eBCH(16,11)2 
encoder processes the eleven data streams in parallel. This 
innovative architecture avoid the use of memory between 
row and column encoding [8]. Classical sequential encoders 
are cascaded with a parallel encoder. 256 data (equivalent to 
a matrix 16×16) are generated in 16 clock periods (f0). The 
noise generator models 16 uncorrelated White Gaussian 
Noise (WGN) samples and adds them to the previously 
encoded data [11]. Each output sample is a 4 bit vector 
resulting in 64 bits to be sent in 1 clock period (f0). The 
Signal to Noise Ratio (SNR) is controllable via on-board 
switches 0<SNR<15.75dB with a pitch of 0.25dB. The 
Aurora protocol emission module handles a set of control 
signals. It receives 64 data in 2 clock cycles and sends 32 
data every clock cycle (f1). The output rate is then 2.4Gb/s. 

2) The components implemented on the receiver FPGA 
device 

The Aurora protocol reception module receives data at 
2.4 Gbits/s and sends out 64 bits every two clock cycles (f1). 
The turbo decoder is composed of 32 SISO (16 SISO 
decoders per half-iteration) and two omega networks used to 
route data between half-iterations. More information about 
the decoder architecture and the omega network can be 
found in [8]. Data arrive at 2.4Gb/s while the working 
frequency is only 37.5 MHz. The same PRG is also 
implemented in the receiver. It generates the exact same data 
as in the transmitter in order to compare data before and after 
decoding. A BER block is finally used to measure the error 
rate comparing data from the PRG and the decoder output. It 
guarantees a minimum of 1000 errors before outputting the 
BER value. This value is then displayed on an LCD module. 
The minimum reliable BER value is 10-9. 

B. Toward very high rate implementation 

The purpose of this first implementation is to show that a 
block turbo decoder can effectively work without memories 



between half-iterations at high throughput. Clocked at only 
37.5MHz, the turbo decoder processes input data at 
600Mb/s. This frequency is limited by the communication 
protocol. The turbo decoder can actually perform up to 
70MHz on this target, which corresponds to 1.12 Gb/s. 
Using an FPGA device optimized for high-performance logic 

would lead to even higher frequency. Regarding the output 
rate, it is defined as:  

Dout = P  f  R .  (5) 
P is the parallelism rate (max(P)=n), f the decoder 

frequency and R the code rate. 
 

  

Figure 1.  Multi-gigabit experimental setup 

In our case, P=16, f=f0=37.5MHz and R=0.473, the 
resulting throughput is then 284Mb/s. Several solutions exist 
to increase the throughput, the more straightforward is to use a 
larger code (in order to increase P) with a larger rate R. For 
instance, assuming we are using an eBCH(32,26)2 at 
frequency f0=70MHz, the input and output data rates become 
2.24Gb/s and 1.48Gb/s respectively. In our architecture, SISO 
decoders process data sequentially. Designing SISO decoders 
which decode several data in one clock period, as in [12], 
would again improve throughput and with a limited 
complexity overhead. Moreover, enhancing our study to non 
binary component codes like RS codes [13] can increase data 
rate even more. The turbo decoder was synthesized and 
implemented on a Virtex II Pro FPGA using Xilinx ISE 7.1i 
tools. The decoder occupied 7300 slices. So far, one iteration 
(32 SISO decoders and 2 omega networks) has been fully 
implemented. The available target (xc2vp30) was insufficient 
to implement several iterations. Duplicating the decoders 
simply requires a larger FPGA target. Implementing a 6-
iterations full-parallel turbo decoder represents 43800 FPGA 
slices with a maximum throughput. Such a design can for 
instance, fit onto a Xilinx Virtex 4.  

V. CONCLUSION 
This article shows how we implemented a memory free, 

high-throughput, full-parallel, block turbo decoder on a FPGA 
target. In such parallel architectures, it is necessary to use low 
complexity SISO decoders. We first proposed a complexity 
analysis for the eBCH(16,11) SISO decoder. The complexity 
expression gives a rapid estimation of the SISO area, for a 
fixed set of decoding parameters. Then, depending on the 
required level of performances, it becomes easy to decide on a 

set of parameters to implement. This analysis led to a low 
complexity SISO decoder (-50%) to be duplicated in the 
parallel turbo decoder. Next, we describe the experimental 
setup designed to test the turbo decoder. Using a more 
efficient communication protocol the turbo decoder can 
process input data at 1.2Gb/s. Using a larger code, with a 
higher rate and parallel SISO decoders, would again, increase 
the data rate. Moreover non binary codes like RS codes enable 
even higher throughputs to be reached. 
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