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A full-parallel architecture for turbo decoding, which achieves ultra high data 

rates when using product codes as error correcting codes, is proposed. This 

architecture is able to decode product codes using binary BCH or m-ary Reed 

Solomon component codes. The major advantage of our architecture is that it 

enables the memory blocks between all half-iterations to be removed. 

Moreover, the latency of the turbo decoder is strongly reduced. In fact, the 

proposed architecture opens the way to numerous applications such as 

optical transmission and data storage. In particular, our block turbo decoding 

architecture can support optical transmission at data rates above 10 Gb/s. 

 

Introduction: In recent years, turbo codes [1] have been adopted by several 

digital communication applications. In fact, they are particularly attractive to 

increase transmission rates and/or to guarantee the Quality of Service (QoS). 

Currently, research is under way to use turbo codes to protect data stored on 

hard drive or DVD and in fiber optical transmission. The earliest FEC for 

optical communication [2] employed the well-known Reed-Solomon (RS) 

codes to recover the degradation in bit error rate (BER) due to the effects of 

fiber nonlinearity and polarization-dependent phenomena. A net coding gain 

of around 6 dB is provided by the RS(255,239) code. Very high-speed data 

transmission developed for fiber optical networking systems necessitate the 



implementation of ultra high-speed FEC architectures to meet the continuing 

demands for ever higher data rates. Currently, the RS(255, 239) code can be 

used in ultra high-speed (40 Gb/s [3] and 80 Gb/s [4]) fiber optic systems. 

More powerful FECs as Block Turbo Codes (BTC) have a theoretical potential 

net coding gain of around 10 dB with a redundant overhead of less than 25 % 

[5]. Typically, realistic block turbo codes can operate at less than 1 dB from 

the Shannon limit for a binary symmetric channel. In 2005, Mitsubishi Electric 

announced the development of the first block turbo decoder for 10 Gb/s 

optical transmission [6].  

 

Previous work: Many block turbo decoder architectures have been previously 

designed. The classical approach involves decoding all the rows or all the 

columns of a matrix before the next half-iteration. When an application 

requires high-speed decoders, an architectural solution is to cascade SISO 

elementary decoders for each half-iteration. In this case, memory blocks are 

necessary between each half-iteration to store channel data and extrinsic 

information. Each memory block is composed of four memories of qn2 

symbols where q is the number of bits to quantify the matrix symbols. Thus, 

duplicating a SISO elementary decoder (e_dec) results in duplicating the 

memory block which is very costly in terms of area. In 2002, a new 

architecture for turbo decoding product codes was proposed [7]. The idea is to 

store several data at the same address and to perform parallel decoding to 

increase the data rate. However, it is necessary to process these data by row 

and by column. Let us consider m adjacent rows and m adjacent columns of 

the initial matrix. The m2 data constitute a word of the new matrix that has m2 



times fewer addresses. This data organization does not require any particular 

memory architecture. The results obtained show that the turbo decoding is 

increased by m2 when m elementary decoders processing m data 

simultaneously are used and its latency is divided by m. The area of the m 

elementary decoders (m-e_dec) is increased by m2/2 while the memory is 

constant.  

 

Full-parallel turbo decoding principle:  The codewords of all rows (or all 

columns) of a matrix can be decoded in parallel. If the architecture is 

composed of n elementary decoders, an appropriate treatment of the matrix 

enables the elimination of the reconstruction of the matrix between each 

decoding. Let i and j be the indices of a row and a column of the n2 matrix. In 

full-parallel processing, the row decoder i begins the codeword decoding by 

the symbol in the ith position. Moreover, each row decoder processes the 

codeword symbols by increasing the index by one modulo n. Similarly, the 

column decoder j begins the codeword decoding by the symbol in the jth 

position. Besides, each column decoder processes the codeword symbols by 

decreasing the index by one modulo n. Thus only one time cycle is necessary 

between two successive decoding the matrix. The full-parallel decoding of a 

n2 product code matrix is detailed in Figure 1. A similar strategy was 

previously presented in [8]. In this case, the conflicts of n independent RAM 

memories are eliminated by the appropriate treatment of the matrix. The 

elementary decoder latency can be defined as the symbol number processed 

by the decoder during the decoding of one symbol. This latency L depends on 

the structure of the elementary decoder and the n codeword length. As the 



reconstruction matrix is removed, the latency between row and column 

decoding is null. 

 

Full-parallel turbo decoder for product codes:  The major advantage of our 

full-parallel architecture is that it enables the memory block of 4qn2 symbols 

between each half-iteration to be removed. But, the codeword symbols 

exchanged between the row and column decoders have to be switched. One 

solution is to use a connection network for this task. In our case, we have 

chosen an Omega network. The Omega network is one of several connection 

networks that are used in parallel machines [9]. It is composed of log2n 

stages, each having n/2 exchange elements. In fact, the Omega network 

complexity in terms of number of connections and of 2*2 switch transfer 

blocks is n*log2n and (n*log2n)/2 respectively. For example, the equivalent 

gate complexity of a 32x32 network can be estimated to be 200 per exchange 

bit. The proposed full-parallel architecture for product codes is presented in 

Figure 2. It is composed of cascaded modules for the block turbo decoder. 

Each module is dedicated to one iteration. However, it is possible to process 

several iterations by a same module. In our approach, 2n elementary 

decoders and 2 connection networks are necessary for one module. In fact, 

the full-parallel turbo decoder complexity essentially depends on the 

complexity of the elementary decoder. In order to compare our architectural 

solution with the previous solutions, Table 1 gives the features of these 

architectures. The features depend on different parameters: symbol codeword 

n, decoding iteration it, elementary decoder throughput Dref, elementary 

decoder latency L, symbol quantization bits q and adjacent symbol group m. 



The e_dec and m-e_dec architecture types correspond to the classical 

solution and the solution in [7] respectively. 

 

Towards the implementation of architectures for ultra high rates: By using the 

full-parallel decoding principle, block turbo decoders using BCH component 

codes have been implemented. An architecture of BCH(32,26)2 product codes 

with single correction power was synthesized. The decoding algorithm is 

chosen with q=4 quantization levels, 8 test vectors, 1 competitor and it=4 

iterations. The elementary decoding of a codeword is split into three pipelined 

phases. Each phase requires 32/m clock periods and the elementary decoder 

latency is equal to 64/m clock periods. Syntheses were performed using the 

Synopsys tool with an STMicrolectronics 0.09-νm CMOS process target 

library. Two architecture types were chosen: e_dec as the reference and 4-

e_dec where m=4 symbols are simultaneously processed by an elementary 

decoder. Elementary decoders have a clock period equal to 2 ns which 

corresponds to a frequency of 500 MHz. The estimated area complexity in 

terms of equivalent gates for the two elementary decoders are: 4400 for 

BCH(32,26) e_dec and 5700 for BCH(32,26) 4-e_dec. This complexity 

includes all the elementary decoder elements (processing and memorization). 

The processing unit gate numbers of the block turbo decoders are equivalent 

between previous and proposed architectures: 1.13 and 1.45 millions for 

e_dec and 4-e_dec respectively. The latency is strongly reduced for the 

proposed architecture. It decreases from 270336 to 512 for e_dec and from 

5120 to 128 for 4-e_dec. The memory complexity of the previous architecture 

in terms of equivalent gates is 126400. It corresponds to 10 percent of 



BCH(32,26)2 block turbo decoder complexity. On the other hand, the 

equivalent gate complexity of connection networks is only 5600 for the 

proposed architecture of BCH(32,26)2 block turbo decoder. 

 

Conclusion: A full-parallel turbo decoding architecture for product codes has 

been proposed. This architecture enables the memory blocks between all 

half-iterations to be removed. Moreover, the latency of the turbo decoder is 

strongly reduced. The ultra high-speed FEC architectures obtained meet the 

demands for ever-higher data rates. In particular, our architectural solution 

can support optical transmission at data rates above 10 Gb/s. In this context, 

using more powerful FEC as block turbo codes open up new opportunities for 

the next generation of optical communication systems. 
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Figure captions: 
 
 
Fig. 1 Full-parallel decoding of a product code matrix 
 
 
Fig. 2 Full-parallel architecture for product codes 
 
 
Table 1 : Features of different architectures for block turbo decoding  
 
 



Figure 1 
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Figure 2 
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Table 1 
 

 

Previous architectures Proposed architectures  
 e_dec m-e_dec e_dec m-e_dec 

latency  
(symbol number) 

n*(2it*n2+
2it*L) 

n/m*{2it*(n2/m2)
+2it*(L/m)} 2it*L 2it*(L/m) 

throughput 
(Gb/s) n*(2it*Dref) n/m*(m2

*2it*Dref) n*(2it*Dref) n/m*(m2
*2it*Dref) 

e_dec number n*2it n/m*(m*2it) n*2it n/m*(m*2it) 
memory size 

(Kb) 2it*4qn2 2it*4qn2 0 0 
connection  

network number 0 0 2it-1 2it-1 
 

 


