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Abstract—Stochastic computation is a technique in which
operations on probabilities are performed on random bit streams.
Stochastic decoding of Forward Error-Correction (FEC) codes is
inspired by this technique. This paper extends the application of
the stochastic decoding approach to the families of convolutional
codes and turbo codes. It demonstrates that stochastic compu-
tation is a promising solution to improve the data throughput
of turbo decoders with very simple implementations. Stochastic
fully-parallel turbo decoders are shown to achieve the error
correction performance of conventional A Posteriori Probability
(APP) decoders. To our knowledge, this is the first stochastic
turbo decoder which decodes a state-of-the-art turbo code.
Additionally, an innovative systematic technique is proposed to
cope with stochastic additions, responsible for the throughput
bottleneck.
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I. INTRODUCTION

Iterative Soft-Input Soft-Output (SISO) decoding was first

presented by Berrou et al in 1993 [1] for the turbo decoding of

two parallel concatenated convolutional codes, widely known

as turbo codes. Since their invention, turbo codes have received

considerable attention due to their performance close to the

theoretical limits. They are especially attractive for mobile

communication systems and have been adopted as part of

several channel coding standards for high data rates such as

UMTS and CDMA2000 (third-generation) or 3GPP-LTE (the

last step toward the 4th generation). The general concept of

iterative SISO decoding has been extended to other families of

error-correcting codes such as product codes. It also prompted

the rediscovery of Low-Density Parity-Check (LDPC) codes.

After many years of research, many decoding algorithms,

decoder architectures and circuits were proposed. Although the

industrial products were digitally designed, J. Hagenauer [2]

and H.-A. Loeliger [3] simultaneously proposed to apply the

SISO concept to a continuous-time continuous-value decoding

scheme with analog circuits to provide high decoding speeds

and/or low power consumptions with extremely simple compu-

tation units working in parallel. In 2003, V. Gaudet, a member

of the analog decoding community, and A. Rapley, proposed

a novel approach [4] based on stochastic computation.

Principles of stochastic computation were described in the

1960’s by Gaines [5] and Poppelbaum et al. [6] as a method to

carry out complex operations with a low hardware complexity.

The main feature of this method is that the probabilities

are converted into streams of stochastic bits using Bernoulli

sequences, in which the information is given by the statistics

of the bit streams. As a result, complex arithmetic operations

on probabilities such as multiplication and division are trans-

formed into operations on bits using elementary logic gates.

This advantage allows architectures to be designed with low

computational complexity and enables high data rates to be

achieved.

Stochastic computations have been recently considered to

decode FEC codes. Early stochastic decoding has been ap-

plied to some short error correcting codes such as the (7,4)

Hamming code [4] and a (256,121) block turbo code based on

two (16,11) Hamming codes [7]. The first implementation of

a stochastic decoder with a (16,8) LDPC code was described

in [8]. An improved stochastic decoding approach was then

proposed to decode practical LDPC codes [9], [10]. This

approach was also extended to well-known linear block codes

with high-density parity-check matrices, namely BCH codes,

Reed Solomon codes and product codes [11]. When compared

with conventional Sum-Product implementations, stochastic

decoding could provide near-optimal performance for practical

LDPC codes. The potential of the stochastic technique for low

complexity and high throughput was recently demonstrated

by the FPGA implementation of a (1056,528) LDPC decoder

[12] which achieved a throughput of 1.66Gb/s. Thus, state-of-

the-art decoders combine high throughput and low complexity

thanks to the stochastic approach.

This paper proposes to extend stochastic computation to

the design of turbo decoders. A major challenge in the im-

plementation of turbo decoders is to achieve high-throughput

decoding. Indeed, the next generations of mobile communi-

cation systems will require data rates of 1 Gb/s and beyond.

Thanks to stochastic decoding, a fully-parallel architecture is

a promising response to this challenge. In order to provide

a typical study case, the investigation is limited to a single-

binary turbo code similar to the ones adopted for the next

generation of mobile systems (3GPP-LTE).

This paper is organized as follows. Section II provides a

brief overview of the turbo codes, the APP algorithm and

the principles of stochastic computation. Section III describes

the APP-based stochastic processing applied to the iterative

decoding of practical turbo codes. Section IV introduces a

method to increase the stochastic decoding throughput. Some

simulation results are given in section V to compare the

stochastic processing with a conventional decoding using the
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Fig. 1: (a) Turbo encoder; (b) Trellis diagram; (c) Turbo

decoder architecture.

A Posteriori Probability algorithm.

II. BACKGROUND

A. Turbo codes

Fig. 1a shows the structure of a turbo encoder made up

of two tail-biting Recursive Systematic Convolutional (RSC)

encoders concatenated in parallel thanks to an interleaver. Each

RSC code has a coding rate R=1/2, a codeword length n = 2k
and a constraint length ν = 4. It can be represented by means

of a trellis diagram as shown in Fig. 1b. The overall code rate

of the turbo code is R = 1/3. At each time i, the information

bit (or systematic bit) di and two redundancies (or parity bits)

yi1 and yi2 corresponding to the contributions of each RSC code

are provided by the encoder.

The architecture of the turbo decoder illustrated in Fig. 1c

is composed of two SISO decoders that exchange some

probabilities thanks to an interleaver (Π) and a de-interleaver

(Π−1). Each SISO decoder is fed with three different inputs:

the channel output corresponding to the systematic bit (ui), the

parity bit produced by the corresponding component encoder

(vi1 or vi2), and the extrinsic probabilities computed by the

other component decoder. The iterative exchange of extrinsic

probabilities between the SISO decoders greatly improves the

error correction performance.

B. SISO decoding algorithm

In order to decode convolutional codes, an algorithm known

as BCJR was introduced by Bahl et al. [13]. It was adapted by

Anderson and Hladik to deal with tail-biting codes [14]. The

APP decoding process performed by each SISO component

decoder can be summarized by the following steps.

1) Branch metric computation: First, the branch metrics

γi (s′, s) can be expressed as:

γi (s′, s) = Pra
(
di = j

)

×Prexin
(
di = j|u, v2

)

×Pr
(
ui, vi1|d

i, yi
)

(1)

where di is the information bit for the transition from state

s′ to state s of the trellis at time i. Pra(di = j) is the a

priori probability corresponding to the transition di = j. If a

uniform source is considered, all the symbols have the same

probability during the transmission, then Pra(di = j) = 1/2.

Prexin
(
di = j|u, v2

)
is the incoming extrinsic probability com-

puted by the other component decoder. It is calculated from

the input sequences u and v2. In the case of an Additive White

Gaussian Noise (AWGN) channel, the third factor is given by:

Pr
(
ui, vi1|d

i, yi
)
= exp

(〈
ui, di

〉
+
〈
vi1, y

i
1

〉

σ2

)
(2)

where σ2 is the variance of the AWGN and 〈a, b〉 represents

the scalar product of two symbols a and b.
2) State metric computation: Second, the forward and

backward metrics are recursively calculated as follows:

αi+1 (s) =

2ν−1
−1∑

s′=0

αi (s′) γi (s′, s) (3)

βi (s′) =

2ν−1
−1∑

s=0

βi+1 (s) γi (s, s′) (4)

The state metric values are initialized at the same probability,

i.e. α0(s) = βk(s) = 1/2ν−1 for any s ∈ [0..2ν−1−1]. During

the decoding process, the state metrics have to be kept in a

given range and therefore are normalized regularly.

3) Extrinsic probability computation: Third, in the context

of an iterative process, the component decoders exchange

extrinsic probabilities calculated as:

Prex
out

(
di = j|u, v1

)
=

∑

(s′,s)/di(s′,s)=j

φi
e (s

′, s)

∑

(s′,s)

φi
e (s

′, s)
(5)

where

φi
e (s

′, s) = αi (s′)βi+1 (s) γi
e (s

′, s) (6)

γi
e(s

′, s) = exp

(〈
vi1, y

i
1

〉

σ2

)
(7)

4) A posteriori probability computation: Finally, a poste-

riori probabilities are computed so that:

Pr (di = j|u, v1) =
∑

(s′,s)/di(s′,s)=j

φi (s′, s) (8)

where

φi (s′, s) = αi (s′)βi+1 (s) γi (s′, s) (9)
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The decoded symbol d̂i at time i is equal to the value j that

maximizes this a posteriori probability.

A sub-optimal version in the logarithmic domain with an

acceptable loss of performance referred to as Max-Log-MAP

(or Sub-MAP) algorithm was introduced by Robertson et al.

[15].

C. Stochastic decoding principles

1) Stochastic computation: In a stochastic computing pro-

cess, the probabilities are converted into Bernoulli sequences

using random number generators and comparators [5]. The

number of bits at ”1” in a stream represents the corresponding

probability. For instance, a 10-bit sequence with 4 bits equal

to ”1” represents a probability of 0.4. Therefore, different

stochastic streams may represent the same probability. In

order to obtain a good precision, the length of a sequence

has to be large. The conventional arithmetic operations, such

as multiplication or division, are thus processed by simple

logic gates. For instance, the multiplication of a set of N
probabilities p0, p1, . . . , pN−1 can be achieved by an N -input

AND logic gate fed with N mutually independent stochastic

streams. The output probability of the AND logic gate is

exactly equal to
N−1∏
i=0

pi. At each time, the bit of each input

sequence contributes directly to the output bit. Similarly, the

normalisation of two Bernoulli sequences is carried out by

means of JK flip-flops [4].

2) The thorny addition: From the equations of the APP

algorithm, it can be noted that besides the multiplication and

division operations, a huge number of additions is necessary.

Since the addition of N values in the interval [0,1] may take

values bigger than 1, this operation cannot be done directly

with stochastic streams. The addition operands can be scaled

equally so that the sum always lays in the interval [0,1]. In

practice, a multiplexer that randomly selects one of the N
inputs with probability 1/N will produce an output stream

that is the scaled sum of the input probabilities
N−1∑
i=0

1
N pi.

At each time, each input bit does not contribute directly to

the output bit. Consequently, the output sequence length has

to be about N times larger than the input sequence lengths

to achieve the same precision. This constraint is particularly

problematic for the APP-based decoding process. Indeed,

many additions are necessary to normalize the state metrics

and to compute the extrinsic probabilities. Thus, processing

addition operations with multiplexers severely slows down the

decoding convergence speed of a turbo decoder.

III. STOCHASTIC DECODING APPLIED TO TURBO CODES

A. SISO component decoder architecture

The stochastic decoding of turbo codes requires the stochas-

tic computation to be applied to a tail-biting APP algorithm,

which relies on the trellis representation. Fig. 2 details the

exchange of information between the various sections of a tail-

biting APP decoder. There are as many sections as symbols

to decode and each section is made up of four modules. A

Γ module is fed by the channel outputs ui and vi, which are

B

A

Γ

Extr

Dec

fixed point
domain

stochastic decoding
process

stochastic
domain

ui

vi

Prexin

αi+1αi

βi+1
βi

d̂
i

Prexout

Fig. 2: Stochastic tail-biting APP decoder.

associated with the ith transmitted symbol di and its parity bit

yi. This module converts ui and vi into a priori probabilities,

represented by two stochastic streams to compute the branch

metrics and then the forward metrics in an A module and the

backward metrics in a B module. These modules are involved

in a recursive process since they use the forward and backward

metrics αi and βi+1 from their neighbors and provide them

αi+1 and βi. A Dec module decides the final value of each

binary symbol, d̂
i

for the transmitted symbol di. A last

module is also required if the APP decoder is part of a turbo

decoder: the Ext module. This module computes the output

extrinsic probability Prexout which is then used by a Γ module

of the second APP decoder as the input Prexin . All the modules

exchange stochastic streams over a logic gate network based

on the code trellis representation. Each stochastic decoding

step is referred to as a decoding cycle (DC) and corresponds

to the output of one new bit for each stochastic unit. The

decoding process terminates when a maximum number of DCs

is reached.

B. Hardware complexity

One major problem in stochastic decoding that deeply

degrades the decoding performance is known as the latching

problem [7]. It is related to the sensitivity to the level of

random switching activity (bit transition) [16]. This problem

can be easily observed at high Signal-to-Noise Ratios

(SNRs). Different solutions have been suggested to solve the

latching problem, and thus, to improve the BER performance

of stochastic decoding, such as : using supernodes [7],

scaling the received Log-Likelihood Ratios (LLRs) up to a

maximum value [16], Edge Memories (EMs) insertion and

Noise-Dependant Scaling (NDS) [12]. The APP decoders

proposed in this paper take advantage of EMs and NDS.

In particular, EMs are assigned to stochastic streams that

represent forward and backward metric values αi and βi to

break the correlation using re-randomization. Similarly, EMs

are assigned to stochastic streams used for the output extrinsic

computation in the module Ext. Overall, ten 32-bit EMs are

necessary for each section of the stochastic SISO decoder
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TABLE I: Complexity of one section of a stochastic single-binary 8-state turbo decoder with multiplexers for additions.

Module
Elementary hardware resources Random bits

NAND2 AND2 OR2 XOR2 Mux2:1 Mux8:1 3-bit counter D Flip-flop 7 bits 1 bit

Γ 34 12 2

A / B 32 8 8 24 8 256 96

Ext 32 2 2 4 2 64 16

Dec 37 2 2 2 6

Total 167 32 18 52 20 2 576 2 214

...

G

x1

x2

xn

x′

y
exp(−x)

exp(−x)

exp(−x)

− log(y)

Fig. 3: Principle of exponential-domain computation.

to circumvent the latching problem. The complexity of one

section of the stochastic decoder in terms of elementary

hardware resources and random bits is detailed in Table I.

Vectors of 7 random bits are used by the stochastic SISO

decoder to convert the channel outputs into stochastic streams.

As already mentioned in this paper, the main drawback of this

architecture is the need of N -to-1 multiplexers to perform

additions. For this reason, solutions have to be investigated

to replace these large multiplexers.

IV. STOCHASTIC ADDITION IN THE EXPONENTIAL

COMPUTATION DOMAIN

In order to remove N -to-1 multiplexers for stochastic addi-

tion operations, a novel approach is proposed. The main idea

is to carry out a critical operation F in the exponential domain

thanks to the exp(−x) function. The output values of exp(−x)
modules are then processed by using a simple operation G.

Then, the result is converted back into a probability thanks

to the function − log(x) as illustrated in Fig. 3. If F is the

addition operation, then G is the multiplication operation, pro-

cessed by an AND logic gate. Therefore, no large multiplexer

is required to perform the stochastic addition operation.

A. Exponential and logarithmic transformations

The idea of processing stochastic streams in the exponen-

tial domain was first introduced by Janer et al. [17]. The

exp(−x) function is chosen instead of exp(x) so that the

output value can be represented by stochastic streams. In

practice, the exponential function can be easily approximated

by the first terms of its Taylor’s expansion. In [17], the

authors described some circuits for the first-, second- and

third-order approximations. They also demonstrated that the

accuracy of this approximation does not depend on the number

of input probabilities that are being added. Therefore, this

stochastic exponential transformation opens an efficient way to

carry out the conversion of stochastic additions into stochastic

multiplications.

In [17], the result in the exponential domain was sufficient

to end the data processing. Unfortunately in a turbo decoder

architecture, the result of the addition operation has to be used

by another module. Thus, the exponential stochastic stream has

to be converted back into a conventional stochastic stream that

corresponds to the addition of n terms. A logarithm function is

necessary to perform this transformation. A Taylor’s expansion

is also considered in this case.

B. Hardware complexity

Table II gives a summary of the complexity of one section

of the stochastic single-binary 8-state turbo decoder with

additions in the exponential domain. Expanding the Taylor

series to the second order is sufficient for both exponential and

logarithmic modules. The additional cost of addition opera-

tions in the exponential domain in terms of hardware resources

is reasonable. Indeed, 162 NAND2 logic gates, 205 AND2

logic gates, 98 D Flip-flops and eighteen 2-to-1 multiplexers

are necessary to replace the twenty 8-to-1 multiplexers used for

addition operations in the probability domain. The hardware

complexity of one section of a stochastic single-binary 8-

state turbo decoder has to be compared with an fixed-point

Sub-MAP counterpart. For such a SISO decoder, the received

symbols are 5-bit quantized while the extrinsic information

and state metrics are both 7-bit quantized to achieve almost

ideal performance [18]. A conventional Sub-MAP decoder is

composed of three main parts, namely processing, memory

and control. The major problem of the turbo decoders is the

memory bottleneck. In order to reduce the state metric memory

size, the sliding window principle can be applied, where each

received frame has to be divided into several sliding windows.

Such a sub-block processing is constrained by the sliding

window initialization. To solve this constraint, additional costs

in terms of resources and/or latency have to be considered.

For a stochastic decoder, a randomization engine is necessary

for providing random bits. These random bits are used in 2-

to-1 multiplexers and as the addresses of stochastic stream

generators. Although this amount of random bits for one

section might seem large, as shown in Table II, random bits can

be significantly shared by different modules without having an

impact in terms of BER performance [12]. Moreover, random

number generators using unreliable device behavior have to

be considered since they require less hardware resources than

conventional linear feedback shift registers. It means that a

direct comparison between the two decoding techniques can

only be done for the processing unit of one section. The FPGA

implementation cost of a fixed-point Sub-MAP decoder must
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TABLE II: Complexity of one section of a stochastic single-binary 8-state turbo decoder with additions in the exponential

domain.

Module
Elementary hardware resources Random bits

NAND2 AND2 OR2 XOR2 Mux2:1 Mux8:1 3-bit counter D Flip-flop 7 bits 1 bit

Γ 34 12 2

A / B 48 120 8 8 32 288 88

Ext 34 52 2 2 6 82 16

Dec 32 46 1 1 16 16

Total 162 372 30 19 70 1 674 2 208
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Fig. 4: Performance of the stochastic decoding of a rate-1/2 convolutional code for codewords of 400 bits (a) and 4000 bits

(b) and of a rate-1/3 turbo code for codewords of 600 bits (c).

be compared with the results given in Table II. One LUT is

allocated for each elementary hardware resources of the Table

II. In this case, 633 and 638 LUTs are necessary for the fixed-

point Sub-MAP and the stochastic versions, respectively. In

contrast, the stochastic decoding of one section is less costly

in terms of flip-flops. Indeed, the flip-flop number can be

decreased from 1398 down to 680 if a stochastic decoder is

considered. It means that stochastic decoding is competitive

in terms of hardware complexity for turbo codes.

V. SIMULATION RESULTS

In this section, the decoding performance is given for

different versions of stochastic decoders for both convolutional

and turbo codes. Fig. 4a shows the BER performance of

the stochastic decoding of a tail-biting RSC code (n = 400
bits, code rate R = 1/2) with 30K DCs and different

optimizations. A decoder combining NDS and EMs provides

a BER performance similar to the one of a conventional APP

floating-point algorithm. Moreover, processing additions in the

exponential domain enables a decrease of the number of DCs

from 30K to 4K with an acceptable performance loss of 0.1dB
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when compared with the floating-point APP algorithm. Similar

conclusions are obtained with a 4000-bit RSC code as shown

in Fig. 4b. Thus, the extension of the stochastic decoding

to convolutional codes is possible. The BER performance of

the proposed stochastic decoding method is provided also

for a (n = 600, R = 1/3) turbo code in Fig. 4c. The

turbo code is designed with an S-Random interleaver [19].

The EM and NDS techniques are required to achieve good

decoding performance. Stochastic turbo decoding needs 250K

DCs to achieve the performance of the floating-point Sub-

MAP decoding with 6 iterations. Fortunately, the exponen-

tial stochastic approach proposed in this paper enables the

number of DCs to be reduced from 250K to 32K without

any performance degradation. Thus, the proposed summation

is a necessary step toward the implementation of high-speed

stochastic turbo decoders. To compete with state-of-the-art

turbo decoders, a stochastic decoder requires a higher level

of parallelism. Two ways have to be explored. First, parallel

processing of larger frames of a few thousands of bits – as

in wireless communications standards – would be of major

interest. Second, representing any probability with p parallel

independent streams could divide the number of DCs by p and

multiply the throughput by p. Naturally, a higher parallelism

will impact the decoder complexity, which is the price to pay

for high throughput devices.

VI. CONCLUSION

This paper extends the application of the stochastic decod-

ing to the families of convolutional codes and turbo codes.

Simulation results show performance close to the floating-

point Sub-MAP decoding algorithm for (n = 600, R = 1/3)

turbo codes. One major problem of a conventional stochastic

decoding of turbo codes is the large number of decoding

cycles. To reduce the number of cycles, a novel technique

for implementing the stochastic addition operation has been

investigated. It consists in transforming the stochastic additions

into stochastic multiplications in the exponential domain. The

number of decoding cycles is thus considerably reduced with

no performance degradation. The results provided in this paper

validate the potential of stochastic decoding as a practical

approach for high-throughput turbo decoders and encourage

to keep on investigating in this way.
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