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INVARIANT TORI FOR THE CUBIC SZEGÖ

EQUATION

PATRICK GÉRARD AND SANDRINE GRELLIER

Résumé. Nous poursuivons l’étude de l’équation hamiltonienne
suivante sur l’espace de Hardy du cercle

i∂tu = Π(|u|2u) ,
où Π désigne le projecteur de Szegö. Cette équation est un cas
modèle d’équation sans aucune propriété dispersive. Dans un tra-
vail précédent, nous avons montré qu’elle admettait une paire de
Lax et qu’elle était complètement intégrable. Dans cet article,
nous construisons les variables action-angle, ce qui nous permet
de ramener la résolution explicite de l’équation à un problème de
diagonalisation. Une conséquence de cette construction est la solu-
tion d’un problème spectral inverse pour les opérateurs de Hankel.
Nous établissons également la stabilité des tores invariants corre-
spondants. En outre, des formules explicites de résolution ainsi
obtenues, nous déduisons la classification des ondes progressives
orbitalement stables et instables.

Abstract. We continue the study of the following Hamiltonian
equation on the Hardy space of the circle,

i∂tu = Π(|u|2u) ,
where Π denotes the Szegö projector. This equation can be seen
as a toy model for totally non dispersive evolution equations. In
a previous work, we proved that this equation admits a Lax pair,
and that it is completely integrable. In this paper, we construct
the action-angle variables, which reduces the explicit resolution of
the equation to a diagonalisation problem. As a consequence, we
solve an inverse spectral problem for Hankel operators. Moreover,
we establish the stability of the corresponding invariant tori. Fur-
thermore, from the explicit formulae, we deduce the classification
of orbitally stable and unstable traveling waves.

The authors would like to thank L. Baratchart, T. Kappeler, S. Kuksin
for valuable discussions. They also acknowledge the supports of the fol-
lowing ANR projects : EDP dispersives (ANR-07-BLAN-0250-01) for
the first author, and AHPI (ANR-07-BLAN-0247-01) for the second
author.
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1. Introduction

1.1. The cubic Szegö equation. In the paper [2], we introduced the
evolution equation

(1) i∂tu = Π(|u|2u) ,
posed on the Hardy space of the circle

L2
+ = {u : u =

∞
∑

k=0

û(k) eikθ ,
∞
∑

k=0

|û(k)|2 < +∞ } ,

where Π denotes the Szegö projector from L2 to L2
+,

∀(ck) ∈ ℓ2(Z) , Π(
∞
∑

k=−∞

ck e
ikθ ) =

∞
∑

k=0

ck e
ikθ .

If L2
+ is endowed with the symplectic form

ω(u, v) = 4 Im(u|v) , (u|v) :=
∫

S1

uv
dθ

2π
,

this system is formally Hamiltonian, associated to the — densely defined—
energy

E(u) =

∫

S1

|u|4 dθ
2π

.

The study of this equation as a toy model of a totally non dispersive
Hamiltonian equation is motivated in the introduction of [2], to which
we refer for more detail. In [2], we proved that the Cauchy problem for
(1) is well-posed in the Sobolev spaces

Hs
+ = Hs ∩ L2

+

for all s ≥ 1
2
. The unexpected feature of this equation is the existence

of a Lax pair, in the spirit of Lax [7] for the Korteweg-de Vries equation,
and of Zakharov-Shabat [16] for the one-dimensional cubic nonlinear
Schrödinger equation. Let us describe this structure. For every u ∈
H

1/2
+ , we define (see e.g. Peller [13], Nikolskii [11]), the Hankel operator

of symbol u by
Hu(h) = Π(uh) , h ∈ L2

+ .

It is easy to check that Hu is a C -antilinear Hilbert-Schmidt operator
and satisfies the following symmetry condition,

(Hu(h1)|h2) = (Hu(h2)|h1) , h1, h2 ∈ L2
+ .

In [2], we proved that there exists a mapping u 7→ Bu, valued into
C-linear skew–symmetric operators on L2

+, such that u is a solution of
(1) if and only if

(2)
d

dt
Hu = [Bu, Hu] .
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An important consequence of this structure is that, if u is a solution
of (1), then Hu(t) is unitarily equivalent to Hu(0). In particular, the
spectrum of the C-linear positive self adjoint trace class operator H2

u

is conserved by the evolution. Moreover, one can prove that

(3) Bu = −iT|u|2 +
i

2
H2

u ,

where Tb denotes the Toeplitz operator of symbol b,

Tb(h) = Π(bh) .

This special form of Bu induces another consequence, namely that, for
every Borel function f bounded on the spectrum of H2

u, the quantity

(4) J [f ](u) := (f(H2
u)(1)|1)

is a conservation law. Here f(H2
u) is the bounded operator provided

by the spectral theorem. Let us mention some particular cases of such
conservation laws which are of special interest. If λ2 is an eigenvalue
of H2

u , denote by P the orthogonal projector onto the corresponding
eigenspace of H2

u. Then

‖P (1)‖2 = J [1{λ2}](u) .

A special role is also played by

(5) J2n(u) = (H2n
u (1)|1) , n ∈ Z+ ,

for which f(s) = sn, and by their generating function

(6) J(x)(u) = 1 +
∞
∑

n=1

xnJ2n(u) = ((I − xH2
u)

−1(1)|1) .

for which f(s) = (1− xs)−1. Notice that E = 2J4 − J2
2 .

A third consequence of the Lax pair structure is the existence of
finite dimensional submanifolds of L2

+ which are invariant by the flow
of (1). By a theorem due to Kronecker [5], the Hankel operator Hu is
of finite rank N if and only if u is a rational function of the complex
variable z, with no poles in the unit disc, and of the following form,

u(z) =
A(z)

B(z)
,

with A ∈ CN−1[z], B ∈ CN [z], B(0) = 1, d(A) = N − 1 or d(B) = N ,
A and B have no common factors, and B(z) 6= 0 if |z| ≤ 1. Here
CD[z] denotes the class of complex polynomials of degree at most D,
and d(A) denotes the degree of a polynomial A. We denote by M(N)
the set of such functions u. It is elementary to check that M(N)
is a 2N -dimensional complex submanifold of L2

+. In [2], we proved
that the functions J2n, n = 1, · · · , 2N , are in involution on M(N),
that their differentials are linearly independent outside a closed subset
of measure 0, and that the level sets of (J1, . . . , J2N ) are generically
compact in M(N). By the Liouville-Arnold theorem [1], the connected
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components of these generic level sets are Lagrangian tori, which are
invariant by the flow of (1).

The purpose of this paper is to study these invariant tori in detail by in-
troducing the corresponding action-angle variables. As a consequence,
this will provide explicit formulae for the resolution of the Cauchy
problem for (1). Notice that similar coordinates were introduced for
the Korteweg-de Vries equation by Kappeler-Pöschel [4] , and more
recently by Kuksin-Perelman [6] as an application of Vey’s theorem,
and, for the cubic one-dimensional nonlinear Schrödinger equation, by
Grébert-Kappeler–Pöschel [3]. Our method here is however completely
different, since it is based on specific properties of Hankel operators.
We now describe the results in more detail.

1.2. Action angle variables in the finite rank case. We denote
by M(N)gen the set of u ∈ M(N) such that 1 does not belong to
the range of Hu, and such that the vectors H2k

u (1), k = 1, . . . , N , are
linearly independent. We proved in [2], Theorem 7.1, that M(N)gen is
an open subset of M(N), whose complement is of Lebesgue measure
0. Moreover, it can be shown that M(N)gen is the set of u such that
H2

u admits exactly N simple positive eigenvalues λ2
1 > · · · > λ2

N with
the following additional property,

(7) νj > 0 for j = 1, . . . , N and
N
∑

j=1

ν2
j < 1 ,

where, for each j, we define the normalization constants

(8) νj := ‖Pj(1)‖ ,

and where Pj denotes the orthogonal projector onto the eigenspace Ej

of H2
u associated to λ2

j . Indeed, given an orthonormal basis (e1, . . . , eN)

of the range of Hu such that H2
uej = λ2

jej, the modulus of the determi-

nant of the vectors H2k
u (1), k = 1, . . . , N in this basis is equal to

|(1|e1)| . . . |(1|eN)| | det(λ2k
j )1≤j,k≤N | .

Moreover,
∑

j ν
2
j is the square of the norm of the orthogonal projection

of 1 onto the range of Hu, hence is < 1 if and only if 1 does not belong
to the range of Hu.

We then define our new variables. The first set of action variables is
given by

Ij(u) = 2λ2
j , j = 1, . . . , N.

We define the first set of angle variables as follows. Using the antilin-
earity of Hu there exists an orthonormal basis (e1, · · · , eN) of the range
of Hu such that

Hu(ej) = λjej , j = 1, · · · , N.
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Notice that the orthonormal system (e1, · · · , eN) is determined by u up
to a change of sign on some of the ej , in other words up to the action
of {±1}N acting as a group of isometries. Therefore we can define the
angles

ϕj(u) := arg(1|ej)2 j = 1, . . . , N .

Since M(N)gen is a symplectic manifold of real dimension 4N , it re-
mains to define N other action variables and N other angle variables.
We do the same analysis with the operator Ku = HuTz as the one we
did with Hu. Here Tz is nothing but the multiplication by z, namely
the shift operator on the Fourier coefficients. We will show that K2

u,
which turns out to be a self-adjoint positive operator, has N distinct
eigenvalues denoted by µ2

1 > µ2
2 > · · · > µ2

N . Furthermore, the µ2
j are

the N solutions of the equation in σ,

(9)
N
∑

j=1

λ2
jν

2
j

λ2
j − σ

= 1

satisfying

(10) λ2
1 > µ2

1 > λ2
2 > µ2

2 > · · · > λ2
N > µ2

N > 0.

As before, by the antilinearity of Ku there exists an orthonormal basis
(f1, · · · , fN) of the range of Ku such that

Ku(fm) = µmfm , m = 1, · · · , N,

and (f1, · · · , fN) is determined by u up to a change of sign on some of
the fm. We set

Lm(u) := 2µ2
m, j = 1, . . . , N and θm(u) := arg(u|fm)2, m = 1, . . . , N .

Define

ΩN := {(I1, . . . , IN , L1, . . . , LN ) ∈ R
2N ; I1 > L1 > I2 > · · · > IN > LN > 0} .

Our main result reads

Theorem 1.1. The mapping

χN := (I1, . . . , IN , L1, . . . , LN ;ϕ1, . . . , ϕN , θ1, . . . , θN)

is a symplectic diffeomorphism from M(N)gen onto ΩN × T2N , in the
sense that

(11) χN∗ω =

N
∑

j=1

dIj ∧ dϕj +

N
∑

m=1

dLm ∧ dθm

As we will see in the proof, a complement to this theorem is an
explicit formula giving u in terms of χN (u)— see Proposition 3 below.
As a first consequence of this result, we obtain an explicit solution to
the Cauchy problem for (1) for data in M(N)gen.
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Corollary 1. The cubic Szegö equation (1) is equivalent, in the above
variables, to the system

{

İj = 0, L̇m = 0

ϕ̇j =
1
2
Ij , θ̇m = −1

2
Lm

1.3. The infinite dimensional case. Theorem 1.1 and Corollary 1
admit natural generalizations to infinite dimension. In this case, we

define the set H
1/2
+,gen as the subset of functions u in H

1/2
+ so that H2

u

admits only simple positive eigenvalues

λ2
1 > λ2

2 > . . .

on the closure of its range, and such that, for any j ≥ 1,

νj := ‖Pj(1)‖ 6= 0.

We shall prove that H
1/2
+,gen is a dense Gδ set in H

1/2
+ and that the

motion stays on infinite dimensional invariant tori, leading to almost

periodic solutions valued in H
1/2
+ . More precisely, denoting by (µ2

m)m≥1

the sequence of positive eigenvalues of K2
u, and observing that

λ2
1 > µ2

1 > λ2
2 > µ2

2 > . . .,

we can define as before orthonormal systems (ej)j≥1 and (fm)m≥1, with

Hu(ej) = λjej , Ku(fm) = µmfm .

As before, we introduce the following sequences of angles,

ϕj = arg(1|ej)2 , θm = arg(u|fm)2 , j,m ≥ 1 .

We then have the following generalization of Theorem 1.1 and of Corol-
lary 1.

Theorem 1.2. The mapping

χ : u ∈ H
1

2

+,gen 7→ ((ζj := λj e
−iϕj )j≥1 , (γm := µm e−iθm)m≥1)

is a homeomorphism onto the subset of ℓ2 × ℓ2 defined by

Ξ :=
{

((ζj)j≥1, (γm)m≥1) ∈ ℓ2 × ℓ2, |ζ1| > |γ1| > |ζ2| > |γ2| > · · · > 0
}

.

Moreover, the evolution of (1) reads through χ as

iζ̇j = λ2
jζj , iγ̇m = −µ2

mγm .

This theorem is deduced from Theorem 1.1 through an approxima-
tion argument by the finite rank case. The convergence of this approx-
imation is a consequence of a compactness result on families of Hankel
operators— see Proposition 2 below.
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1.4. Application to inverse problems for Hankel operators.

Theorems 1.1 and 1.2 can be rephrased as solutions to inverse spec-
tral problems on Hankel operators. We denote by h1/2 the space of
sequences (cn)n≥0 of complex numbers such that

(12)

∞
∑

n=0

n|cn|2 < ∞ ,

endowed with its natural norm. Given c ∈ h1/2, we define the operator
Γc : ℓ

2(N) → ℓ2(N) by

∀x = (xn)n≥0 ∈ ℓ2(N) , Γc(x)n =

∞
∑

p=0

cn+pxp .

In view of (12), it is clear that Γc is Hilbert–Schmidt. We also introduce

Γ̃c := Γc̃

where

∀n ∈ N , c̃n := cn+1 .

Our first result concerns the prescription of positive singular values of
both Γc and Γ̃c. Recall that the positive singular values of an operator
A are the positive eigenvalues of the operator

√
AA∗.

Corollary 2. – Let (λj)1≤j≤N , (µj)1≤j≤N be N-tuples of real numbers
satisfying

λ1 > µ1 > λ2 > µ2 > · · · > λN > µN > 0 .

The set of sequences c ∈ h1/2 such that Γc has rank N and admits
λj , 1 ≤ j ≤ N, as simple positive singular values, and such that Γ̃c

has rank N and admits µj, 1 ≤ j ≤ N, as simple positive singular
values, is a Lagrangian torus of dimension 2N .

– Let (λj)j≥1, (µm)m≥1 be sequences of positive real numbers satisfy-
ing

λ1 > µ1 > λ2 > µ2 > · · · > 0 ,
∞
∑

j=1

λ2
j < ∞ .

The set of functions c ∈ h1/2 such that the positive singular values of
Γc are λj , j ≥ 1, and are simple, and such that the positive singular

values of Γ̃c are µm, m ≥ 1, and are simple, is an infinite dimensional
torus.

In the particular case of real values sequences c in h1/2, Γc is self-
adjoint and Corollary 2 has the following simple reformulation.

Corollary 3. – Let ζ1 . . . , ζN , γ1, . . . , γN be real numbers such that

|ζ1| > |γ1| > |ζ2| > |γ2| > ... > |ζN | > |γN | > 0 .
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There exists a unique sequence c = (cn)n≥0 of real numbers such that
Γc has rank N with non zero eigenvalues ζ1, . . . , ζN , and such that the
selfadjoint operator Γ̃c has rank N with non zero eigenvalues γ1, . . . , γN .

– Let (ζj)j≥1 , (γm)m≥1 be two sequences of real numbers such that

|ζ1| > |γ1| > |ζ2| > |γ2| > ... > 0 ,
∞
∑

j=1

ζ2j < ∞ .

There exists a unique sequence c ∈ h1/2 of real numbers such that the
non zero eigenvalues of the selfadjoint operator Γc are ζj, j ≥ 1, and

are simple, and the non zero eigenvalues of the selfadjoint operator Γ̃c

are γm, m ≥ 1, and are simple.

Notice that, in [14] and [15], Treil proved that any noninvertible
nonnegative operator on a Hilbert space, with simple discrete spectrum,
and which is either one to one or with infinite dimensional kernel, is
unitarily equivalent to the modulus of a Hankel operator. This implies
in particular that any decreasing sequence of positive numbers in ℓ2 is
the sequence of the positive singular values of a Hilbert-Schmidt Hankel
operator. In Corollary 2, we prove that it is possible to prescribe both
singular values of Γc and of Γ̃c, assuming that they are all simple and
distinct, and we describe the set of solutions as a torus.

As for Corollary 3, it has to be compared to the result by Megretskii,
Peller, Treil [9], who characterized in the widest generality the self-
adjoint operators which are unitarily equivalent to Hankel operators.
In the special case of Hilbert-Schmidt operators with simple non zero
eigenvalues, Corollary 3 establishes that it is possible to impose the
spectrum of both Γc and Γ̃c, and that this completely characterizes the
symbol.

Finally, let us emphasize that Corollaries 2 and 3 are completed by
an explicit formula which gives the sequences c, see Remark 3 below.

1.5. Stability of invariant tori and instability of traveling waves.

Given (I1, . . . , IN , L1, . . . , LN) ∈ ΩN , denote byT(I1, . . . , IN , L1, . . . , LN )
the corresponding Lagrangian torus in M(N)gen via χN . Our next re-
sult is a variational characterization of T(I1, . . . , IN , L1, . . . , LN ) which
implies its stability through the evolution of the cubic Szegö equation,
analogously to the result by Lax [8] for KdV. We recall the notation

∀u ∈ H
1/2
+ ,M(u) = (−i∂θu|u) =

∞
∑

k=0

k|û(k)|2 .

Theorem 1.3. For n = 1, . . . , 2N , define

(13) j2n =

N
∑

j=1

2−nInj

(

1− Lj

Ij

)

∏

k 6=j

(

Lk − Ij
Ik − Ij

)

.
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Then T(I1, . . . , IN , L1, . . . , LN) is the set of the solutions in H
1/2
+ of the

minimization problem

inf{M(u) : J2n(u) = j2n , n = 1, . . . , 2N} .

Consequently, T := T(I1, . . . , IN , L1, . . . , LN) is stable under the evo-
lution of (1), in the sense that, for every ε > 0, there exists δ > 0 such
that, if

inf
v∈T

‖u0 − v‖H1/2 ≤ δ ,

then the solution u of (1) with u(0) = u0 satisfies

sup
t∈R

inf
v∈T

‖u(t)− v‖H1/2 ≤ ε .

Let us mention that there is a similar result for the infinite dimen-
sional tori deduced from Theorem 1.2 — see Remark 4 below.

Our next observation concerns the case N = 1, where T(I1, L1) consists
exactly of functions

(14) uα,p(z) =
α

1− pz

where |α| and |p| are fixed positive numbers which depend on I1, L1.
In [2], it was observed that such functions u are traveling waves of
equation (1), in the sense that there exists (ω, c) ∈ R

2 such that

t 7→ e−iωtuα,p(ze
−ict)

is a solution to (1). Moreover, Proposition 5 and Corollary 4 of [2]
establish the orbital stability of this traveling wave as the solution
of a variational problem, which is exactly the statement of Theorem
1.3 in this case. Therefore it is natural to address the question of
orbital stability for all the traveling waves of (1), which were classified
in Theorem 1.4 of [2]. The next result gives a complete answer to this
question.

Theorem 1.4. If u is a traveling wave of (1) which is not of the form
uα,p as defined in (14), then u is orbitally unstable.

The proof of this theorem is based on the explicit resolution of Equa-
tion (1) when the Cauchy data are suitable perturbations of the trav-
eling wave u.

1.6. Organization of the paper. We close this introduction by de-
scribing the organization of the paper. In Section 2, we introduce some
fundamental tools which will be used in the paper, including the com-
pressed shift operator, a trace formula and a compactness result. In
Section 3, we prove Theorem 1.1 on action-angle variables in the finite
rank case and its corollary about the explicit solution of (1). Section
4 contains the generalization to infinite dimension stated in Theorem
1.2. Section 5 is devoted to the solution of inverse spectral problems
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for Hankel operators as stated in Corollaries 2 and 3. In Section 6, we
prove Theorem 1.3 about stability of invariant tori. Finally, Section 7
establishes the orbital instability of traveling waves.

2. Preliminaries

2.1. The compressed shift operator. We are going to use the well
known link between the shift operator and the Hankel operators. Namely,
if Tz denotes the shift operator — the Toeplitz operator of symbol
z 7→ z —, one can easily check the following identity,

(15) HuTz = T ∗
zHu.

With the notation introduced in the introduction, it reads

Ku = T ∗
z Hu.

Moreover,

K2
u = HuTzT

∗
z Hu = Hu(I − ( . |1))Hu = H2

u − ( . |u)u .

We introduce the compressed shift operator ([11], [12], [13])

S := PuTz ,

where Pu denotes the orthogonal projector onto the closure of the range
of Hu. By property (15), kerHu = kerPu is stable by Tz, hence

S = PuTzPu

so that S is an operator from the closure of the range of Hu into itself.
In the sequel, we shall always denote by S the induced operator on the
closure of the range of Hu, and by S∗ the adjoint of this operator.

Now observe that operator S arises in the Fourier series decomposition
of u, namely

(16) u(z) =

∞
∑

n=0

(u|zn)zn =

∞
∑

n=0

(u|T n
z (1))z

n =

∞
∑

n=0

(u|SnPu(1))z
n.

As a consequence, we have, for |z| < 1,

(17) u(z) = (u|(I − zS)−1Pu(1)).

which makes sense since ‖S‖ ≤ 1. In the next sections, we shall see
how the above formula leads to an inverse formula for the maps χN

and χ.

2.2. A trace formula and a compactness result. For every integer
j ≥ 1, we denote by Fj the set of subspaces of L

2
+ of dimension at most

j. Given u ∈ H
1/2
+ , we define λj(u) ≥ 0 by

λ2
j(u) = min

F∈Fj−1

max
h∈F⊥,‖h‖=1

(H2
u(h)|h) .

The following is a standard fact about nonnegative compact operators.
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• If H2
u has finite rank N , then λ2

j(u) = 0 for every j > N , and

λ2
1(u) ≥ λ2

2(u) ≥ · · · ≥ λ2
n(u) > 0 are the positive eigenvalues

of H2
u, listed according to their multiplicities.

• If H2
u has infinite rank, then λ2

1(u) ≥ λ2
2(u) ≥ · · · > 0 are the

positive eigenvalues of H2
u, listed according to their multiplici-

ties.

Likewise, we define µj(u) ≥ 0 by

µ2
j(h) = min

F∈Fj−1

max
h∈F⊥,‖h‖=1

(K2
u(h)|h) = min

F∈Fj−1

max
h∈F⊥,‖h‖=1

(H2
u(h)|h)−|(h|u)|2 .

From these formulae, it is easy to check that

λ1(u) ≥ µ1(u) ≥ λ2(u) ≥ µ2(u) ≥ . . .

The following result makes an important connection with function J(x)
introduced in (6).

Proposition 1. For every u ∈ H
1/2
+ , the following identities hold.

(18)

∞
∑

j=1

(

λ2
j

1− λ2
jx

−
µ2
j

1− µ2
jx

)

=
J ′(x)

J(x)
, x /∈

{

1

λ2
j

,
1

µ2
j

, j ≥ 1

}

.

(19) J(x) =
∞
∏

j=1

1− µ2
jx

1− λ2
jx

, x /∈
{

1

λ2
j

, j ≥ 1

}

.

Proof. First notice that (19) is a direct consequence of (18) by integra-
tion and the fact that J(0) = 1. It remains to prove (18), which we
shall interpret as a trace formula. Indeed, recall that

K2
u(h) = H2

u(h)− (h|u)u,
so that an elementary calculation yields

(I−xH2
u)

−1(f)−(I−xK2
u)

−1(f) =
x

J(x)
(f |(I−xH2

u)
−1(u))(I−xH2

u)
−1(u) .

Consequently,

Tr((I − xH2
u)

−1 − (I − xK2
u)

−1) =
x

J(x)
‖(I − xH2

u)
−1(u)‖2 .

Since, on the one hand,

‖(I−xH2
u)

−1(u)‖2 = ((I−xH2
u)

−1H2
u(1)|1) =

d

dx
((I−xH2

u)
−1(1)|1) = J ′(x) ,

and on the other hand

Tr((I − xH2
u)

−1 − (I − xK2
u)

−1) = xTr
(

H2
u(I − xH2

u)
−1 −K2

u(I − xK2
u)

−1
)

= x
∞
∑

j=1

(

λ2
j

1− λ2
jx

−
µ2
j

1− µ2
jx

)

,

Formula (18) follows. �
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From the above proposition, we infer the following compactness re-
sult, which will be of constant use throughout the paper.

Proposition 2. Let (up) be a sequence of H
1/2
+ weakly convergent to u

in H
1/2
+ . We assume that

(λj(up))j≥1 −→
p→∞

(λj)j≥1 , (µj(up))j≥1 −→
p→∞

(µj)j≥1 in ℓ2,

and the following simplicity assumptions :

• If j > k and λj > 0, then λj > λk.
• If j > k and µj > 0, then µj > µk.

• If λj > 0 for some j ≥ 1, then λj 6= µm for every m ≥ 1.

Then, for every j ≥ 1, λj(u) = λj, µj(u) = µj, and the convergence of

up to u is strong in H
1/2
+ .

Proof. Firstly, we make a connection between the sequences (λj)j≥1, (µj)j≥1

and (λj(u))j≥1, (µj(u))j≥1 by means of standard functional analysis.

Lemma 1. Let (Ap) be a sequence of compact selfadjoint nonnegative
operators on a Hilbert space H, which strongly converges to A, namely

∀h ∈ H , Aph −→
p→∞

Ah .

For every j ≥ 1, denote by Fj the set of subspaces of H of dimension
at most j, set

a
(p)
j = min

F∈Fj−1

max
h∈F⊥,‖h‖=1

(Ap(h)|h) ,

and assume

a
(p)
j → aj

with, if j > k and aj 6= 0, aj > ak. Then the positive eigenvalues of A
are simple and belong to the limit set {aj}.

Proof. Denote by (e
(p)
j ) an orthonormal basis of kerA⊥

p with Ape
(p)
j =

a
(p)
j e

(p)
j . For every h ∈ H, we decompose

h =
∑

j

(h|e(p)j )e
(p)
j + h

(p)
0

where h
(p)
0 ∈ kerAp. Let a ∈ R. Then, passing to the limit in

(20) ‖(Ap − a)h‖2 =
∑

j

(a
(p)
j − a)2|(h|e(p)j )|2 + a2‖h(p)

0 ‖2 ,

we get

‖(A− a)h‖ ≥ min(inf
j
|aj − a|, |a|)‖h‖
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and therefore, if a /∈ {aj} ∪ {0}, a is not an eigenvalue of A. Assume
now that a = aj , and come back to (20). If Ah = ajh, we infer

∑

k 6=j

|(h|e(p)k )|2 + ‖h(p)
0 ‖2 → 0

or ‖h− (h|e(p)j )e
(p)
j ‖2 → 0. Consequently, given eigenvectors h1, h2 of A

with eigenvalue aj , we have

|(h1|h2)| = lim |(h1|e(p)k )| |(h2|e(p)k )| = ‖h1‖ ‖h2‖ ,

which means that aj is a simple eigenvalue. �

Let us return to the proof of Proposition 2. By the Rellich theorem,
up tends to u strongly in L2

+, hence, for every h ∈ L2
+, we have

(21) Hup(h) −→
p→∞

Hu(h) .

Since the norm of Hup is bounded by its Hilbert-Schmidt norm, namely

the H1/2 norm of up, which is bounded, we conclude that (21) holds
uniformly for h in every compact subset of L2

+, hence

∀n ≥ 1, Hn
up
(h) −→

p→∞
Hn

u (h) .

In particular, for every n ≥ 1,

J2n(up) := (H2n
up
(1)|1) −→

p→∞
(H2n

u (1)|1) := J2n(u) ,

and there exists C > 0 such that

∀n ≥ 1, sup
p

J2n(up) ≤ Cn .

Choose δ > 0 such that δC < 1. Then, for every real number x such
that |x| < δ, we have, by dominated convergence,

J(x)(up) := 1 +

∞
∑

n=1

xnJ2n(up) −→
p→∞

1 +

∞
∑

n=1

xnJ2n(u) := J(x)(u) > 0 .

Similarly,

J ′(x)(up) −→
p→∞

J ′(x)(u) ,

and therefore
J ′(x)(up)

J(x)(up)
−→
p→∞

J ′(x)(u)

J(x)(u)
.

On the other hand, in view of the assumption about ℓ2 convergence of
(λj(up))j≥1 and (µj(up))j≥1, we also have, for |x| < δ,

∞
∑

j=1

(

λ2
j(up)

1− λ2
j(up)x

−
µ2
j(up)

1− µ2
j(up)x

)

−→
p→∞

∞
∑

j=1

(

λ
2

j

1− λ
2

jx
−

µ2
j

1− µ2
jx

)
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Using Formula (18) of Lemma 1 above, we infer
(22)

∞
∑

j=1

(

λ
2

j

1− λ
2

jx
−

µ2
j

1− µ2
jx

)

=
∞
∑

j=1

(

λ2
j(u)

1− λ2
j(u)x

−
µ2
j (u)

1− µ2
j(u)x

)

,

for |x| < δ, and hence for every x distinct from the poles, by analytic
continuation. By the assumption of the proposition, no cancellation
can occur in the left hand side of (22), and the pole are all distinct.
On the other hand, applying Lemma 1 to Ap = H2

up
and to Ap = K2

up
,

we know that

{λ2
j (u), j ≥ 1} ⊂ {λ2

j , j ≥ 1} , {µ2
j(u), j ≥ 1} ⊂ {µ2

j , j ≥ 1}
and that the multiplicity of positive eigenvalues is 1. Consequently,
there is no cancellation in the right hand side of (22) either, and all the
poles are simple. We conclude that λj(u) = λj, µj(u) = µj for every
j ≥ 1. Moreover,

Tr(H2
u) = lim

p→∞
Tr(H2

up
),

which, since Tr(H2
u) ≃ ‖u‖2

H1/2, implies the strong convergence in H1/2.
�

3. The action-angle variables

In this section we prove Theorem 1.1 and its corollaries 1 and 2.
The proof of Theorem 1.1 is split into five parts. Firstly, we study the
compressed shift operator in connection to the spectral theory of K2

u.
As a second step, using the compressed shift operator, we prove that the
unknown u can be recovered from χN (u), with an explicit formula. The
third step is devoted to calculating the Poisson brackets between action
functions (I, L) and angle functions (ϕ, θ), which implies in particular
that χN is a local diffeomorphism. This calculation is achieved thanks
to function J(x), the Hamiltonian flow of which satisfies a Lax pair
structure, as we proved in [2]. The surjectivity of χN is obtained in
the fourth step thanks to a topological argument, while the remaining
Poisson brackets are calculated in the fifth step.

3.1. Spectral theory of K2
u and the compressed shift operator.

As a first step, for u ∈ M(N)gen, we study the eigenvalues of K2
u on the

range of Hu. We first observe that 0 cannot be an eigenvalue. Indeed,
otherwise there would exist g in the range of Hu such that

Kug = 0 = TzHug,

which means that Hug is a non zero constant. This would imply
that 1 belongs to the range of Hu, which contradicts the definition
of M(N)gen. On the other hand, if g is an eigenvector associated to an
eigenvalue σ > 0, we have, from the identity K2

u = H2
u − ( . |u)u ,

(23) (H2
u − σI)g = (g|u)u .
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We first claim that σ does not belong to {λ2
1 . . . , λ

2
N}. Indeed, assume

σ = λ2
j in (23). If (g|u) = 0, (23) implies that g = kej for some k 6= 0,

therefore (g|u) = kλj(1|ej) and this would contradict the assumption
νj > 0 — see (7). If (g|u) 6= 0, (23) implies that u belongs to the range
of H2

u−λ2
jI, hence u is orthogonal to ej , which again is in contradiction

with the assumption νj > 0.
Therefore (23) yields

g = (g|u)(H2
u − σI)−1u ,

which is possible if and only if

((H2
u − σI)−1u|u) = 1 ,

or, by decomposing u on the ej ’s,

N
∑

j=1

λ2
jν

2
j

λ2
j − σ

= 1 ,

which is exactly (9). Notice that, as a function of σ, the left hand side
of the above equation increases from −∞ to +∞ on each interval be-
tween two successive λ2

j , hence the equation admits exactly N solutions

µ2
1, . . . , µ

2
m. Summing up, we have proved that the eigenvalues of K2

u

on the range of Hu are precisely the µ2
m, m = 1, . . . , N , defined by (9),

with eigenvectors

(24) gm = (H2
u − µ2

mI)
−1(u).

Since these eigenvalues are simple, and since Ku(gm) is also an eigen-
vector associated to µ2

m, we have

Ku(gm) = γmgm

with |γm|2 = µ2
m. Then an orthonormal basis (f1, . . . , fN) of the range

of Hu satisfying

Ku(fm) = µmfm

is given by

fm =
γ
1/2
m gm

µ
1/2
m ‖gm‖

,

so that, using that

(u|gm) = (u|(H2
u − µ2

mI)
−1(u)) = 1 ,

in view of (9), we have

θm := arg(u|fm)2 = arg(γm) .

Finally, we have proved that

Ku(gm) = µm e−iθmgm .
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Next we come to the link with operator S. Recalling the expression
(24) of gm and the fact that Ku = HuS, we infer, using the injectivity
of Hu on the range of Hu,

(25) S(gm) = µm eiθmhm

where
hm := (H2

u − µ2
mI)

−1Pu(1) .

We summarize the above result in the following lemma.

Lemma 2. The sequence (gm) defined by (24) is an orthogonal basis
of the range of Hu, on which the compressed shift operator acts as

S(gm) = µm eiθm hm , hm := (H2
u − µ2

mI)
−1Pu(1) .

3.2. The inverse spectral formula. We now prove that χN is one
to one, with an explicit formula describing u in terms of χN (u).

Proposition 3. If χN(u) = (2λ2
1, . . . , 2λ

2
N , 2µ

2
1, . . . , 2µ

2
N ;ϕ1, . . . , ϕN , θ1, . . . , θN)

then

(26) u(z) = X(I − zA)−1Y

where

X :=
(

λjνj e
−iϕj

)

1≤j≤N
,

Y := (νk)
T
1≤k≤N ,

A := (Aj,k)1≤j,k≤N is given by

Aj,k =
N
∑

ℓ=1

λkνjνk e
−i(ϕk+θℓ)

bℓ(λ
2
j − µ2

ℓ)(λ
2
k − µ2

ℓ)
µℓ ,

and

(27) νj :=

(

1−
µ2
j

λ2
j

)1/2
∏

k 6=j

(

λ2
j − µ2

k

λ2
j − λ2

k

)1/2

,

(28) bℓ =

N
∑

j=1

λ2
jν

2
j

(λ2
j − µ2

ℓ)
2
=

1

λ2
ℓ − µ2

ℓ

∏

k 6=ℓ

µ2
ℓ − µ2

k

µ2
ℓ − λ2

k

.

Proof. Our starting point is the formula (17) derived in the last section,

u(z) = (u|(I − zS)−1Pu(1)) , |z| < 1 .

We compute this inner product in the orthonormal basis (ẽj := eiϕj/2ej)1≤j≤N

of the range of Hu. By definition, we have

Pu(1) =
∑

1≤m≤N

(1|ej)ej =
∑

1≤j≤N

νj e
iϕj/2ej =

∑

1≤j≤N

νj ẽj

and

u = Hu(Pu(1)) =
∑

1≤j≤N

λjνj e
−iϕj/2ej =

∑

1≤j≤N

λjνj e
−iϕj ẽj.
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Let us compute S(ẽk). We expand ẽk in the orthonormal basis gℓ/‖gℓ‖.

ẽk =

N
∑

ℓ=1

(ẽk|gℓ)
gℓ

‖gℓ‖2
.

Moreover,

‖gℓ‖2 =
N
∑

j=1

λ2
jν

2
j

(λ2
j − µ2

ℓ)
2
:= bℓ .

Hence

ẽk =

N
∑

ℓ=1

λkνk e
iϕk

bℓ(λ2
k − µ2

ℓ)
gℓ

and, using Lemma 2,

S(ẽk) =
N
∑

ℓ=1

λkνk e
iϕk

bℓ(λ
2
k − µ2

ℓ)
µℓ e

iθℓhℓ.

As hℓ = (H2
u − µ2

ℓI)
−1(Pu(1)) we get

(S(ẽk)|ẽj) =
N
∑

ℓ=1

λkνkνje
i(ϕk+θℓ)

bℓ(λ
2
j − µ2

ℓ)(λ
2
k − µ2

ℓ)
µℓ.

Eventually, we obtain that

u(z) = X(I − zA)−1Y

where

X :=
(

λjνj e
−iϕj

)

1≤j≤N

Y := (νk)
T
1≤k≤N

and A := (Aj,k)1≤j,k≤N with Aj,k = (ẽj |S(ẽk)).
It remains to compute νj and bℓ in terms of λk, µm. To this aim,

we shall use the generating function J(x) defined by (6), which in this
case is given by

(29) J(x) = 1 + x

N
∑

j=1

λ2
jν

2
j

1− λ2
jx

=

N
∏

j=1

1− µ2
jx

1− λ2
jx

.

The second identity in (29) is (19).The first one comes from the expan-
sion of Pu(1) along the orthonormal basis (e1, . . . , eN ) :

J(x) = ((I − xH2
u)

−1(1)|1)
= ‖1− Pu(1)‖2 + (((I − xH2

u)
−1(Pu(1))|Pu(1))

= 1−
N
∑

j=1

ν2
j +

N
∑

j=1

ν2
j

1− λ2
jx

.
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Notice that these identities are valid for all complex values of x, except
the poles λ−2

j , j = 1, . . . , N . The value of ν2
j is then obtained by

computing the residue of J(x) at the pole 1/λ2
j , while the value of bℓ is

given by

bℓ =
1

µ4
ℓ

J ′

(

1

µ2
ℓ

)

.

�

We shall now prove that χN is a diffeomorphism from M(N)gen onto
Ω× T2N . The first step is to prove that χN is a local diffeomorphism.
This will be a consequence of a first set of identities on the Poisson
brackets of the actions and the angles.

3.3. First commutation identities. First we recall some standard
definitions. Given a smooth real-valued function F on a finite dimen-
sional symplectic manifold (M, ω), the Hamiltonian vector field of F
is the vector field XF on M defined by

∀m ∈ M, ∀h ∈ TmM, dF (m).h = ω(h,XF (m)) .

Given two smooth real valued functions F,G, the Poisson bracket of F
and G is

{F,G} = dG.XF = ω(XF , XG) .

The above identity is generalized to complex valued functions F,G by
C-bilinearity.

Proposition 4. For any j, k ∈ {1, . . . , N} , one has

{2λ2
j , ϕk} = δjk , {2µ2

j , ϕk} = 0 ,

{2λ2
j , θk} = 0 , {2µ2

j , θk} = δjk .

In order to compute for instance {2µ2
j , θk} one has to differentiate

θk along the direction of Xµ2
j
. As the expression of Xµ2

j
is fairly com-

plicated, we use the ”Szegö hierarchy” , formed by the sequence of
functions J2n, which we studied in [2]. More precisely, we use the gen-
erating function J(x) given by (29). In the sequel, we shall restrict
ourselves to real values of x, so that J(x) is a real valued function.

We proved in [2] that the Hamiltonian flow associated to J(x) as a
function of u has a Lax pair, which we recall in the next statement.
We set

w(x) := (I − xH2
u)

−1(1) .

Theorem 3.1 (Szegö hierarchy [2], Theorem 8.1 and Corollary 8). Let
s > 1

2
. The map u 7→ J(x) is smooth on Hs

+ and its Hamiltonian vector
field is given by

(30) XJ(x)(u) =
x

2i
w(x)Huw(x) .
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Moreover, the equation

(31) ∂tu = XJ(x)(u)

is equivalent to

(32) ∂tHu = [Bx
u , Hu] ,

with

Bx
u(h) =

x

4i

(

w(x)Π(w(x)h) + xHuw(x)Π(Hu(w)(x)h)− x(h|Huw(x))Huw(x)
)

.

Remark 1. Notice that, since Bx
u is skew-adjoint if x is real, we infer

that the spectrum of Hu is conserved by the Hamiltonian flow of J(x).
Moreover, since

(33) Bx
u(1) =

xJ(x)

4i
w(x) ,

we also deduce that the spectral measure of H2
u associated to vector 1 is

invariant. Since, by (9), the µ2
m are the solutions in σ of the equation

((H2
u − σI)−1H2

u(1)|1) = 1,

we conclude that the µ2
m’s are also invariant. We infer that the Poisson

brackets of J(x) with λ2
j or µ2

m are zero, which implies, in view of the
expression (19), that the brackets of λ2

k or µ2
ℓ with λ2

j or µ2
m are zero.

Thanks to this theorem, we can compute the Poisson brackets of
J(x) with the angles ϕj . The result is stated in the following lemma.

Lemma 3.

{J(x), ϕj} =
1

2

xJ(x)

1− λ2
jx

.

Proof. Let us make ej evolve according to the Hamiltonian flow of J(x).
Taking the derivative of Hu(ej) = λjej , we get

λj ėj = [Bx
u , Hu](ej) +Hu(ėj)

= λjB
x
u(ej)−Hu(B

x
uej) +Hu(ėj)

Hence, (Hu − λjI)(ėj − Bx
uej) = 0, as by assumption ker(Hu − λjI) =

Rej , there exists Cj ∈ R so that

ėj = Bx
uej + Cjej .

Using that Re(ėj |ej) = 0 as ej is normalized, and observing that
i(Bx

uej |ej) is real-valued because of the skew-symmetry of Bx
u , we ob-

tain Cj = 0 . Eventually, we have

ėj = Bx
uej

and

−4i(1|ėj) = (1|4iBx
u(ej)) = (4iBx

u(1)|ej) = xJ(x)(w(x)|ej) =
xJ(x)

1− λ2
jx

(1|ej) .
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As a consequence

ϕ̇j =
d

dt
arg(1|ej)2 =

1

2

xJ(x)

1− λ2
jx

.

�

To compute the bracket with θm, we are going to use the same
method but we have to replace the Hankel operator Hu by the shifted
Hankel operator Ku. We first establish that there is also a Lax pair
associated to Ku. We obtain it as a corollary of Theorem 3.1.

Corollary 4. The equation

(34) ∂tu = XJ(x)(u) .

implies

(35) ∂tKu = [Cx
u , Ku] ,

with

Cx
u(h) =

x

4i

(

w(x)Π(w(x)h) + xHuw(x)Π(Hu(w)(x)h)
)

.

Proof. One computes, by using Theorem 3.1,

∂tKu = ∂t(HuTz) = [Bx
u , Hu]Tz = Bx

uKu −HuB
x
uTz

= Bx
uKu −KuB

x
u +Hu[z, B

x
u ].

By the formula of Bx
u given in Theorem 3.1, and by the elementary

identity
∀g ∈ L2, Π(zg)− zΠ(g) = (zg|1),

we have

[z, Bx
u ](h) = − x

4i
((zh|w)w + x(h|Huw)zHuw) ,

so that

Hu[z, B
x
u ](h) =

x

4i
((w − 1|zh)Huw + x(Huw|h)KuHuw)

=
x

4i

(

(xH2
uw|zh)Huw + x(Huw|h)KuHuw

)

=
x

4i
(x(KuHuw|h)Huw + x(Huw|h)KuHuw)

=
x2

4i
((Kuh|Huw)Huw + (Huw|h)KuHuw)

= [Dx
u, Ku](h)

where

(36) Dx
u(h) =

x2

4i
(h|Huw)Huw .

Here we have used that, by definition of w, w − 1 = xH2
uw. Coming

back to the above expression for the derivative of Ku, we obtain the
claimed formula with Cx

u = Bx
u +Dx

u. This completes the proof. �
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This Lax pair allow us to obtain the analogous of Lemma 3.

Lemma 4.

{J(x), θm} = − 1

2

xJ(x)

1− µ2
mx

.

Proof. Let us look at the evolution of fm under the flow of XJ(x). Let
us take the derivative of the equation µmfm = Ku(fm). We get, using

the same arguments as for ėj , that ḟm = Cx
ufm. We obtain

d

dt
(u|fm) = (u̇|fm) + (u|ḟm)

= ([Bx
u , Hu](1)|fm) + (u|Cx

ufm)

= (Bx
u(u)|fm)− (Hu

(

xJ(x)

4i
w

)

|fm)− (Cx
uu|fm)

= −(Dx
u(u)|fm) +

xJ(x)

4i
(Huw|fm)

Using the above Formula 36 for Dx
u, we get

d

dt
(u|fm) = −x2

4i
(H2

uw|1)(Huw|fm) +
xJ(x)

4i
(Huw|fm)

= − x

4i
(w − 1|1)(Huw|fm) +

xJ(x)

4i
(Huw|fm)

=
x

4i
(Huw|fm) =

x

4i
(u|fm)(Huw|gm) .

At this stage we observe that

(H2
u−µ2

mI)
−1Huw = (H2

u−µ2
mI)

−1(I−xH2
u)

−1u =
1

1− µ2
mx

(gm+xHuw) .

This yields

(Huw|gm) = ((H2
u − µ2

mI)
−1Hu(w)|u)

=
1

1− µ2
mx

(1 + x(Huw|u)) =
J(x)

1− µ2
mx

,

it implies

d

dt
(u|fm) = (u|fm)

x

4i

J(x)

1− µ2
mx

and eventually

d

dt
arg(u|fm)2 =

d

dt
θm = −x

2

J(x)

1− µ2
mx

.

�
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From Lemma 3 and Lemma 4 above, we easily deduce Proposition
4. Indeed, from formula (29), we have

{J(x), ϕj} = J(x)

N
∑

k=1

(

x{λ2
k, ϕj}

1− λ2
kx

− x{µ2
k, ϕj}

1− µ2
kx

)

,

{J(x), θm} = J(x)
N
∑

k=1

(

x{λ2
k, θm}

1− λ2
kx

− x{µ2
k, θm}

1− µ2
kx

)

,

and the result follows from the comparison with the results of Lemma
3 and Lemma 4.

Corollary 5. The mapping χN is a local diffeomorphism.

Proof. Let us prove that the tangent map of χ is invertible. Assume
that there exist (αj)1≤j≤2N and (βj)1≤j≤2N so that

N
∑

j=1

αjdIj +

N
∑

j=1

αN+jdLj +

N
∑

j=1

βjdϕj +

N
∑

j=1

βN+jdθj = 0.

Since, by Remark 1 and Proposition 4, {Ij , Ik} = 0, {Lj , Ik} = 0,
{θj , Ik} = 0 and {ϕj , Ik} = −δjk, by applying the above identity to
XIk , we get βk = 0 for k = 1, . . . , N . Doing the same with XLk

, we get
βk = 0 for k = N + 1, . . . 2N . Applying this identity to Xϕk

and then
to Xθk , we get αk = 0, k = 1, . . . 2N , this completes the proof. �

3.4. The surjectivity of the mapping χN . In view of the inverse
formula of Proposition 17, the surjectivity of χN is equivalent to the
fact that, for every (I, L, ϕ, θ) in ΩN×T2N , if u is the right hand side of
(26), then χN(u) = (I, L, ϕ, θ). Though the formulae are explicit, this
fact is far from trivial and will lead to heavy calculations. Therefore we
shall use another approach. Indeed we already know from Corollary 5
that χN is an open mapping. Since ΩN × T2N is connected, it suffices
to prove that χN is proper hence closed to obtain that it is onto. Let
us take a sequence (I(p), L(p), ϕ(p), θ(p)) in ΩN × T

2N which converges
to (I, L, ϕ, θ) ∈ ΩN × T2N , and such that, for every p, there exists
up ∈ M(N)gen such that

χN(up) = (I(p), L(p), ϕ(p), θ(p)) .

Since

‖up‖2H1/2 =

N
∑

j=1

(λ
(p)
j )2 =

1

4

N
∑

j=1

(I(p))2

(up) is a bounded sequence inH
1/2
+ . Up to extracting a subsequence, we

may assume that (up)p∈N converges weakly to some u in H
1/2
+ . At this

stage we can appeal to Proposition 2 and conclude that the convergence
of up to u is strong and that

2λ2
j(u) = Ij , j = 1, . . . , N, 2µ2

m(u) = Lm, m = 1, . . . , N,
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with λj(u) = 0 if j > N , µm(u) = 0 if m > N . Therefore u ∈
M(N)gen . This completes the proof of the surjectivity of χN .

3.5. The remaining commutation identities. At this stage we proved
that χN is a global diffeomorphism. We are going to show that it is
symplectic. In view of Proposition 4, it suffices to prove that the Pois-
son brackets of {ϕj, ϕk}, {θk, θk′} and {ϕj , θℓ} cancel. We first remark
that, thanks to the first commutations properties and to the Jacobi
identity, these brackets are functions of the actions (I, L) only. Indeed,
applying

{f, {ϕj, ϕk}}+ {ϕj, {ϕk, f}}+ {ϕk, {f, ϕj}} = 0

to f = Iℓ and f = Lm, we obtain, in view of Proposition 4,

{Iℓ, {ϕj, ϕk}} = {Lm, {ϕj, ϕk}} = 0.

Writing {ϕj, ϕk} = g(I, L, ϕ, θ), we infer, by Remark 1 and Proposition
4,

∂g

∂ϕℓ

=
∂g

∂θm
= 0 .

The same holds for {θk, θk′} and {ϕj , θℓ} .
We now prove the remaining commutation laws by first establishing

the following result. Recall that Jn(u) := (Hn
u (1)|1).

Lemma 5. One has {J3, J1} = − i
2
J2
1 .

Proof. From the definition of J1, one has J1(u) = (u|1) so that dJ1(u)(h) =
(h|1). On the other hand, J3(u) = (H2

u(u)|1) so that

dJ3(u)(h) = (HhH
2
u(1)+HuHhHu(1)+H2

uHh(1)|1) = 2(h|H2
u(1))+(u2|h).

As dJ3(u)(h) = 4Im(h|XReJ3) + 4iIm(h|XImJ3), it implies that

XReJ3 = − i

2
H2

u(1)−
i

4
u2

XImJ3 =
1

2
H2

u(1)−
1

4
u2.

Thus, one obtains
{J3, J1} = dJ1(XReJ3) + idJ1(XImJ3) = − i

2
J2
1 and the lemma is

proved.
�

As a corollary, we get the following commutation laws.

Corollary 6. For any j, k, {ϕj, ϕk} = 0.

Proof. From the definitions of J1 and J3, we have J1 =
∑

j λjν
2
j e

−iϕj

and J3 =
∑

k λ
3
kν

2
ke

−iϕk so that

{J3, J1} =
∑

j,k

e−i(ϕj+ϕk)[−i{λ3
kν

2
k , ϕj}λjν

2
j+i{λjν

2
j , ϕk}λ3

kν
2
k−{ϕj, ϕk}λjν

2
j λ

3
kν

2
k ] .
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On the other hand, by Lemma 5, one also has

{J3, J1} = − i

2
J2
1 = − i

2

∑

j,k

λjλkν
2
j ν

2
ke

−i(ϕj+ϕk) .

As the commutators {ϕj, ϕk}, {λkν
2
k , ϕj} and {λ3

kν
3
k , ϕj} only depend

on the actions (I, L), we can identify the Fourier coefficients of the
function {J3, J1} as a trigonometric polynomial in the angle variables.
We focus on the Fourier coefficient for j 6= k. Since {λk, ϕj} = 0, one
gets

(37) (λ2
k − λ2

j)

[

−{ϕj , ϕk}+ i

({ν2
j , ϕk}
ν2
j

− {ν2
k , ϕj}
ν2
k

)]

= −i .

Taking the real part of both sides, we conclude

{ϕj , ϕk} = 0 .

�

We now compute the commutation laws between the ϕj ’s and the
θk’s. We shall make use of the functionals N2n+1(u) = (zu|H2n

u (1)).
Recall that the operator K2

u has the µ2
k’s as eigenvalues with associated

eigenfunctions gk = (H2
u − µ2

kI)
−1u, with ‖gk‖2 = bk =

∑

j

λ2
jν

2
j

(λ2
j−µ2

k)
2 .

Hence, by Formula (25),

Pu(zu) =
∑

k

1

bk
S(gk) =

∑

k

µk e
iθk

bk
hk

where hk = (H2
u − µ2

kI)
−1Pu(1). Hence we have

N2n+1(u) =
∑

k

µk e
iθk

bk
(hk|H2n

u (1)) =
∑

k

µk e
iθk

bk
Pn(µk)

where Pn(µ) =
∑

j

λ2n
j ν2j

λ2
j−µ2 . We first compute the commutator of N3 with

J1.

Lemma 6. One has {N3, J1} = 0.

Proof. As N3(u) = (zu|H2
u(1)), one has

dN3(u)(h) = (zh|H2
u(1)) + (zu|Hu(h) +Hh(u))

= 2(h|Hu(zu)) + (zu2|h).
So, one gets

XReN3
= − i

2
Hu(zu)−

i

4
zu2 ,

XImN3
=

1

2
Hu(zu)−

1

4
zu2 .
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It implies that

{N3, J1} = dJ1.XReN3
+ idJ1.XImN3

= − i

2
(zu2|1) = 0.

�

As a corollary, one gets

Corollary 7. For any k and j, {θk, ϕj} = 0.

Proof. The proof follows the same lines as before. One writes that
{N3, J1} = 0. One has

0 = {N3, J1} =
∑

j,k

{ 1

bk
µk e

iθk , λjν
2
j e

−iϕj}

=
∑

j,k

ei(θk−ϕj)[−i({µk

bk
, ϕj}+ {λjν

2
j , θk}) +

µk

bk
λjν

2
j {θk, ϕj}].

By cancelling the real part of the Fourier coefficient, one gets the result.
�

By computing the commutator of N3 and N5, one gets as well that
{θk, θk′} = 0. Let us give the proof for completeness. As N5(u) =
(zu|H4

u(1)), we have

dN5(u)(h) = (zh|H4
u(1)) + (zu|HhH

3
u(1) +HuHhH

2
u(1) +

+ H2
uHhHu(1) +H3

u(h))

= (h|Hu(zH
2
u(u)) +Hu(u)Hu(zu) +H3

u(zu)) +

+ (zuH3
u(1) +H2

u(zu)u|h).
So, using the expression of XReN3

and of XImN3
, we get

{N3, N5} = dN5(u)(XReN3
) + idN5(u)(XImN3

)

= − i

2
(zu2|Hu(zH

2
u(u)) +Hu(u)Hu(zu) +H3

u(zu))

+ i(zuH2
u(u) + uH2

u(zu)|Hu(zu))

= − i

2

[

(zH2
u(u) +H2

u(zu)|Hu(zu
2)) + (zu2|Hu(u)Hu(zu))

]

+ i(zuH2
u(u) + uH2

u(zu)|Hu(zu)).

Applying the formulae

(zf |g) = (zΠ(f)|Π(g)) + (Π(g)|Π(zf)) , HHu(a)(b) = Hu(ab) ,

we have

(zu2|Hu(u)Hu(zu)) = (zuHu(u)|uHu(zu))

= (zH2
u(u)|Hu(zu

2)) + (H2
u(zu)|Hu(zu

2)),

(uH2
u(zu)|Hu(zu)) = (H2

u(zu)|uHu(zu)) = (H2
u(zu)|Hu(zu

2)),

(zuH2
u(u)|Hu(zu)) = (zH2

u(u)|Hu(zu
2)) ,
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so that eventually
{N3, N5} = 0.

On the other hand, we have, as

N3(u) =
∑

ℓ

µℓ

bℓ
eiθℓ and N5(u) =

∑

k

µ2
k + J2

bk
µk e

iθk ,

0 = {N3, N5} =
∑

ℓ,k

ei(θℓ+θk)

[

i{µℓ

bℓ
, θk}

µ2
k + J2

bk
µk

− i{µk

bk
(µ2

k + J2), θℓ}
µℓ

bℓ
− µℓµk

bℓbk
(µ2

k + J2){θℓ, θk}
]

Now, as before, one can cancel the real part of the Fourier coefficients
to obtain

{θℓ, θk}
µℓµk

bℓbk
(µ2

k − µ2
ℓ) = 0

and hence, {θℓ, θk} = 0 .
We have therefore proved all the commutation relations between our

action angle variables.This proves that χN is a symplectomorphism and
completes the proof of Theorem 1.1.

3.6. The explicit solution of the cubic Szegö equation. We first
prove Corollary 1.

Proof. Let us compute

∆4 = Tr(H4
u)− Tr(K4

u) = Tr(H4
u)− Tr((H2

u − (·|u)u)2)
in terms of J2 and J4. We get ∆4 = 2J4 − J2

2 . On the other hand, we
already pointed out that 2J4−J2

2 = ‖u‖4L4. Since the cubic Szegö equa-
tion on M(N) is the Hamiltonian system associated to the functional
E(u) = ‖u‖4L4and to the symplectic form ω, and since χN is a symplec-
tomorphism, we obtain that the cubic Szegö equation is equivalent to
the Hamiltonian system associated to

E(I, L, ϕ, θ) =
1

4

N
∑

j=1

(I2j − L2
j ).

As the new coordinates are symplectic, we obtain that the cubic Szegö
equation is equivalent to the system

{

İj = 0 , L̇m = 0

ϕ̇j =
1
2
Ij , θ̇m = −1

2
Lm

�

Remark 2. Notice that the above system is explicitely solvable, and
therefore that we reduced the cubic Szegö equation to a spectral analysis
of the Hankel operator associated to the Cauchy datum u0. In [2],
section 4.1, we observed that the cubic Szegö equation on M(N) could
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be written as a system of 2N ordinary differential equations in the
variables given by the poles and the residues of the rational function
u. Therefore the above corollary provides an explicit resolution of this
system.

4. Extension to the infinite dimension

In this section, we prove Theorem 1.2. We begin with proving the

genericity of the set H
1/2
+,gen.

Lemma 7. The set H
1/2
+,gen is a dense Gδ subset of H

1/2
+ .

Proof. Let us consider the set UN which consists of functions u ∈ H
1/2
+

such that the first N eigenvalues of H2
u are simple, and such that, for

any j ∈ {1, . . . N}, νj := ‖Pj(1)‖ 6= 0. This set is obviously open in

H
1/2
+ . It is also dense in H

1/2
+,gen since any element u in H

1/2
+,gen may

be approximated by an element in M(N ′), N ′ > N , which can be
itself approximated by an element in M(N ′)gen ⊂ UN , since N ′ ≥ N .

Eventually, H
1/2
+,gen is the intersection of the UN ’s which are open and

dense, hence H
1/2
+,gen is a dense Gδ set. �

We can now begin the proof of Theorem 1.2. First of all, it is clear
that, because of the simplicity assumption on the eigenvalues λ2

j and

µ2
m, each function ζj and γm is continuous. Let (un) in H

1

2

+,gen be a

sequence so that un converges to some u in the topology of H
1

2 . Since
Hun converges to Hu in the Hilbert-Schmidt norm, the ℓ2 norm of
(λj(un)) tends to the ℓ2 norm of (λj(u)) in ℓ2. As Kun tends Ku in the
Hilbert-Schmidt norm as well, the ℓ2 norm of (γj(un)) tends to the ℓ2

norm of (γj(u)). This implies that χ(un) tends to χ(u) in ℓ2 × ℓ2.

We now show that χ is a homeomorphism. Let us first prove that χ is
onto. Let ((ζj), (γm)) ∈ Ξ. As χN is onto on M(N)gen, for any N ≥ 1,
to (|ζj|, |γj|, ϕj, θj)1≤j≤N corresponds a unique uN ∈ M(N)gen. Since

‖uN‖2H1/2 = Tr(H2
uN

) =

N
∑

j=1

λ2
j →

∞
∑

j=1

λ2
j ,

(uN) is bounded in H1/2 and there exists a subsequence, still denoted

by (uN), which converges weakly to some u ∈ H
1/2
+ . Appealing to

Proposition 2, we infer that u is the strong limit of (uN) in H1/2 and

that u belongs to H
1/2
+,gen with χ(u) = ((ζj), (γm)).

Let us prove that χ is one-to-one. Again we use the formula (17),

u(z) = (u|(I − zS)−1Pu(1)) .

Arguing as in Section 3, it is easy to check that Formula (26) may be
extended here so that u is uniquely determined from the data in Ξ, as
shown by the following result.
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Proposition 5. If χ(u) = ((ζj)j≥1, (γm)m≥1), then

(38) u(z) = X.(I − zA)−1Y

where

X := (νjζj)j≥1

Y := (νk)
T
k≥1 ,

A := (Aj,k)j,k≥1 is given by

Aj,k =
∞
∑

ℓ=1

νjνkζkγℓ
bℓ(|ζj|2 − |γℓ|2)(|ζk|2 − |γℓ|2)

,

and

νj =
1

|ζj|

∏∞
k=1(|ζj|2 − |γk|2)1/2

∏

k 6=j(|ζj|2 − |ζk|2)1/2
,

bℓ =
∞
∑

j=1

|ζj|2ν2
j

(|ζj|2 − |γℓ|2)2
=

1

|ζℓ|2 − |γℓ|2
∏

k 6=ℓ

|γℓ|2 − |γk|2
|γℓ|2 − |ζk|2

.

Proof. Since it is very similar to the proof of Proposition 3, we only
indicate the new features. Denote by Ru the closure of the range of Hu.
The main difference relies on the spectral theory of Ku on Ru. Indeed,

if u ∈ H
1/2
+,gen, it may happen that Ku has a kernel in Ru, which is

equivalent, as we noticed in Subsection 3.1, to the existence of g0 ∈ Ru

such that Hug0 = 1. In this case, an orthogonal basis of the Hilbert
space Ru is given by the sequence (gm)m≥0, where gm, m ≥ 1, is given
by the formula (24), and g0 is as above. However it turns out that the
existence of g0 does not affect the formulae in Proposition 5. Indeed,
since g0 ∈ Ru and Kug0 = 0 = HuSg0, we infer Sg0 = 0, hence, with
the notation of Proposition 3, the expression of S(ẽk) is still

S(ẽk) =

∞
∑

ℓ=1

λkνk e
iϕk

bℓ(λ2
k − µ2

ℓ)
µℓ e

iθℓhℓ , bℓ := ‖gℓ‖2 ,

and the expression of
Aj,k = (ẽj |S(ẽk))

then follows for every j, k ≥ 1. �

It remains to check that χ−1 is continuous on Ξ, that is if χ(up)
tends to χ(u) then up tends to u in H1/2. First, as χ(up) converges,
the sequence (up) is bounded in H1/2 and hence, admits a convergent
subsequence which weakly converges to some v. Appealing again to
Proposition 2, we conclude that up converges strongly to v. As χ is
continuous and one-to-one, we have u = v.

Finally, the evolution formulae of ζj and of γm for the cubic Szegö
equation (1) are immediate consequences of similar formulae for u ∈
M(N) derived in Corollary 1, combined with the approximation of u
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by elements uN in M(N)gen, and the continuity of the flow map of (1)

on H
1/2
+ , as proved in Theorem 2.1 of [2]. This completes the proof.

5. Inverse spectral problems for Hankel operators

As a byproduct of the existence of the diffeomorphism χN and of the
homeomorphism χ, we first prove Corollary 2.

Proof. Denote by F : u ∈ L2
+ 7→ c = (û(n))n≥0 ∈ ℓ2(N) the Fourier

transform. Notice that F realizes an isomorphism from H
1/2
+ onto h1/2.

Moreover, it easy to check that

F−1ΓcΓ
∗
cF = H2

u , F−1Γ̃cΓ̃
∗
cF = K2

u .

Therefore, the set of sequences c ∈ h1/2 such that Γc has rank N and
admits λj , 1 ≤ j ≤ N, as simple singular values, and such that Γ̃c has
rank N and admits µj, 1 ≤ j ≤ N, as simple singular values, is sent
by F−1 onto

χ−1
N ((I1, . . . , IN , L1, . . . , LN)× T

2N ) ,

with
Ij := 2λ2

j , Lm := 2µ2
m .

The same argument applies in the infinite dimensional case.This com-
pletes the proof. �

Restricting to the case of selfadjoint Hankel operators will give us
the proof of Corollary 3 as follows.

Proof. Via the Fourier transformation F ,

L2
+,r = {h ∈ L2

+ : ∀n ∈ N, ĥ(n) ∈ R} .

identifies to ℓ2
R
(N), and the operators Hu, Ku with u ∈ H

1/2
+ ∩ L2

+,r

respectively identify to Γc, Γ̃c with c = Fu. Moreover, for every (I, L) ∈
ΩN , one easily checks that

T(I, L) ∩ L2
+,r = χ−1

N ((I, L)× {0, π}2N} ,

and, if u belongs to this set, the non zero eigenvalues of Hu (resp. Ku)
on L2

+,r are

ζ1 = λ1e
−iϕ1 , . . . , ζn = λNe

−iϕN (resp. γ1 = µ1e
−iθ1 , . . . , γN = µNe

−iθN ) .

Indeed, on the one hand χ−1
N ((I, L) × {0, π}2N} ⊂ T(I, L) ∩ L2

+,r by

Proposition 3. On the other hand, if u ∈ T(I, L) ∩ L2
+,r, the operator

Hu is selfadjoint on L2
+,r, hence has real eigenvalues ζ1, . . . , ζN with

|ζj| = λj. The corresponding normalized eigenvectors ẽj in L2
+,r satisfy

Hu(ẽj) = ζj ẽj ,

therefore either ẽj = ±ej and ϕj = arg(1|ẽj)2 = 0 if ζj = λj , or
ẽj = ±iej and ϕj = arg[−(1|ẽj)2] = π if ζj = −λj . The same holds for
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Ku. The same argument applies in the infinite dimensional case. This
completes the proof. �

Remark 3. Notice that, in addition to Corollaries 2 and 3, the solu-
tions c are given by

cn = XAnY ,

with the notation of Proposition 3 in the finite rank case, and Proposi-
tion 5 in the infinite rank case.

6. Stability of Invariant Tori

In this section, we prove Theorem 1.3, which we state again for the
convenience of the reader.

Theorem 6.1. For n = 1, . . . , 2N , define

(39) j2n =
N
∑

j=1

2−nInj

(

1− Lj

Ij

)

∏

k 6=j

(

Lk − Ij
Ik − Ij

)

.

Then T(I1, . . . , IN , L1, . . . , LN) is the set of the solutions in H
1/2
+ of the

minimization problem

inf{M(u) : J2n(u) = j2n , n = 1, . . . , 2N} .

Consequently, T := T(I1, . . . , IN , L1, . . . , LN) is stable under the evo-
lution of (1), in the sense that, for every ε > 0, there exists δ > 0 such
that, if

inf
v∈T

‖u0 − v‖H1/2 ≤ δ ,

then the solution u of (1) with u(0) = u0 satisfies

sup
t∈R

inf
v∈T

‖u(t)− v‖H1/2 ≤ ε .

Proof. First of all, notice that Formula (39) expresses the common
value of J2n(u) as u ∈ T(I1, . . . , IN , L1, . . . , LN), in view of formulae
(27) and

J2n =
N
∑

j=1

λ2n
j ν2

j

with Ij = 2λ2
j , Lm = 2µ2

m.

Let us assume that the Lagrangian torus

T := T(I1, . . . , IN , L1, . . . , LN)

is the set of solutions in H
1/2
+ of the minimization problem

(40) inf{M(u) : J2n(u) = j2n, n = 1, . . . , 2N} := m

where the j2n’s are given by formula (39) and let us prove that it implies
the stability.
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Let u
(n)
0 so that infv∈T ‖u(n)

0 −v‖H1/2 tends to zero as n goes to infinity.
We are going to show that the solutions u(n) of the cubic Szegö equation

with u(n)(0) = u
(n)
0 are such that supt∈R infv∈T ‖u(n)(t) − v‖H1/2 tends

as well to zero as n goes to infinity. As the functionals u 7→ J2k(u)
are invariant under the cubic Szegö flow and are continuous for the

weak topology of H1/2 we get that J2k(u
(n)(t)) = J2k(u

(n)
0 ) tends to j2k.

Similarly, since M(u) is a conservation law, u(n) is bounded in H1/2

and M(u(n)) tends to m. Moreover, given any sequence (tn) of real
numbers, the sequence (u(n)(tn)) has a subsequence which converges

weakly to some u ∈ H
1/2
+ . By the weak continuity of the J2k and

the weak semi-continuity of M , J2k(u) = j2k and M(u) ≤ m. Hence,
since T is the solution of the minimization problem, M(u) = m, un(tn)
converges strongly to u and u belongs to T. This gives the stability.

It remains to prove that the set of minimizers is T. Recall that H2k
u (1),

k = 1, . . . , N are linearly independent if and only if the Gram determi-
nant

det(J2(n+m)(u))1≤n,m≤2N

is non-zero. By the choice of the sequence {j2n}1≤n≤2N , there ex-
ists u ∈ M(N)gen so that J2n(u) = j2n, 1 ≤ n ≤ 2N — any u ∈
χ−1
N ((I1, . . . , IN , L1, . . . , LN)×T

2N ) is convenient. Hence, the determi-
nant

det(j2(n+m))1≤n,m≤2N

is different from zero. Since Hu is one to one on its range, it follows that

if u satisfies J2n(u) = j2n, 1 ≤ n ≤ 2N then u,H2
u(u), . . . , H

2(N−1)
u (u)

are independent. As a first step, the following proposition implies that
the set of functions u with J2n(u) = j2n with M(u) minimal is a subset
of M(N).

Proposition 6. Let u ∈ H
1/2
+ and N ≥ 1 so that u,H2

u(u), . . . , H
2(N−1)
u (u)

are independent. Then the following inequality holds

M(u) ≥ det
(

(J2(k+ℓ+1)(u))0≤k,ℓ≤N−1, (J2(k+N+1)(u))0≤k≤N−1

)

det(J2(k+ℓ+1)(u))0≤k,ℓ≤N−1)

with equality if and only if u ∈ M(N).

Proof. This statement is a direct consequence of the following lemma
with A = H2

u and e = u. �

Lemma 8. Let A be a trace class positive self-adjoint operator de-
fined on a Hilbert space H and let e ∈ H, N ≥ 1. Assume that
A(e), A2(e), . . . , AN(e) are independent. Then,

Tr(A) ≥
det
(

(Ak+ℓ(e), e) 0≤k≤N−1

0≤ℓ≤N−2

, (Ak+N(e), e)0≤k≤N−1

)

det ((Ak+ℓ(e), e)0≤k,ℓ≤N−1))
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with equality if and only if the range of A is N dimensional and e
belongs to the range of A.

Proof. Denote by V the space spanned by e, A(e), . . . , AN−1e. Let P
be the orthogonal projector from H to V . Let Ã = PAP then Ã is
positive self adjoint and Tr(A) ≥ Tr(Ã). In fact, one has

Tr(Ã) = Tr(P 2A) = Tr(PA)

so that

Tr(A)−Tr(Ã) = Tr((I−P )A) = Tr((I−P )2A) = Tr((I−P )A(I−P )) ≥ 0.

By definition, Ã is at most of range N so that by Cayley-Hamilton,
there exist σ1 = Tr(Ã), σ2 . . . , σN so that

(Ã)N =
N
∑

j=1

(−1)j−1σj(Ã)
N−j .

In particular,

(Ã)N (e) =

N
∑

j=1

(−1)j−1σj(Ã)
N−j(e)

so that

PAN(e) =
N
∑

j=1

(−1)j−1σjA
N−j(e)

and taking the scalar product with Ak(e), 0 ≤ k ≤ N − 1, we get

(AN+k(e), e) =
N
∑

j=1

(−1)j−1σj(A
N−j+k(e), e).

Solving the corresponding system in (σ1, . . . , σN), we get that σ1 =

Tr(Ã) coincides with the right hand side of the inequality. Hence,
inequality of lemma 8 is proved. Furthermore, there is equality if and
only if

Tr((I − P )A(I − P )) = 0.

This is equivalent, since A is positive, to (I−P )A(I−P ) = 0 which, in
turn is equivalent to A(I − P ) = 0. Indeed, let w ∈ Im(I − P ) so that
(I − P )Aw = 0 then ((I − P )Aw,w) = 0 = (Aw,w) so that Aw = 0.
In particular, the range of A is a subspace of V . On the other hand, by
assumption the range of A is at least N dimensional, we obtain that
the range of A is exactly V . In particular, it implies that e belongs to
the range of A. Conversely, if the range of A is N dimensional and if e
belongs to the range of A, then V is a subspace of the range of A and is
N dimensional, hence V is the range of A. In particular, (I −P )A = 0

so that Tr(Ã) = Tr(A). �
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We now show that Proposition 6 implies the theorem, namely that
T is the solution of the minimization problem. It remains to prove
that, if u ∈ M(N) satisfies J2n(u) = j2n for n = 1, . . . , 2N , then
u ∈ T. Let u be such a function. Since det(J2(n+m)(u))1≤n,m≤N =
det(j2(n+m))1≤n,m≤N 6= 0, we already know that H2

u has N simple pos-

itive eigenvalues λ̃2
1 > · · · > λ̃2

N and its corresponding normalization
constants ν̃1, . . . , ν̃N are all > 0. Let us prove that

λ̃j = λj , ν̃j = νj , j = 1, . . . , N

where λ1, . . . , λN , ν1, . . . , νN correspond to any element u0 ∈ T. The
assumption J2n(u) = j2n for n = 1, . . . , 2N reads

N
∑

j=1

λ̃2n
j ν̃2

j =

N
∑

j=1

λ2n
j ν2

j , n = 1 . . . , 2N ,

or, for every polynomial P of degree ≤ 2N such that P (0) = 0,

N
∑

j=1

P (λ̃2
j)ν̃

2
j =

N
∑

j=1

P (λ2
j)ν

2
j .

Assume that for some j0, λ̃j0 is different from all the λj ’s. Then we
can select a polynomial P of degree 2N such that P (λ2

j) = 0 for every

j, P (λ̃2
j) = 0 for every j 6= j0 and P (0) = 0, but P (λ̃2

j0
) 6= 0. Plugging

these informations into the above identity, we get ν̃j0 = 0, a contradic-

tion. This implies λ̃j = λj for every j, and finally, by solving a Van der
Monde system, ν̃j = νj for every j. �

Remark 4. There is an analogous result of Theorem 1.3 in the infinite
dimensional case, though it is easier. Indeed, given two sequences I =
(Ij)j≥1, L = (Lm)m≥1 of numbers such that

I1 > L1 > I2 > L2 > · · · > 0 ,
∞
∑

j=1

Ij < ∞ ,

denote by T(I, L) the infinite dimensional torus of those u ∈ H
1/2
+,gen

such that χ(u) = ((ζj)j≥1, (γm)m≥1) with Ij = 2|ζj|2 and Lm = 2|γm|2
for all j,m. First of all, we observe that, for every n ≥ 1, J2n has a
constant value on T(I, L) given by

j2n =

∞
∑

j=1

2−nInj

(

1− Lj

Ij

)

∏

k 6=j

(

Lk − Ij
Ik − Ij

)

.

Then we claim that T(I, L) is precisely the solution of the minimization
problem

inf{M(u) : J2n(u) = j2n , n ≥ 1} .
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Indeed, if u ∈ H
1/2
+ is such that J2n(u) = j2n for every n ≥ 1, we

conclude that

∀x /∈
{

1

λ2
j

}

, J(x)(u) =

∞
∏

j=1

1− µ2
jx

1− λ2
jx

,

where

λ2
j :=

1

2
Ij , µ2

j :=
1

2
Lj .

From formula (19), we infer

(41)

∞
∏

j=1

1− µ2
j(u)x

1− λ2
j(u)x

=

∞
∏

j=1

1− µ2
jx

1− λ2
jx

.

Consequently, the sequence (λ2
j) is a subsequence of the sequence (λ2

j (u)),

and the sequence (µ2
j) is a subsequence of the sequence (µ2

j(u)). We de-
duce

M(u) = Tr(K2
u) =

∞
∑

m=1

µ2
m(u) ≥

∞
∑

m=1

µ2
m ,

with equality if and only if the sequences (µ2
j) and (µ2

j(u)) coincide.

In that case, in view of (41), we conclude that the sequences (λ2
j) and

(λ2
j(u)) coincide too, and finally that u ∈ T(I, L). The stability of

T(I, L) through the evolution of (1) therefore follows by the same com-
pactness arguments as in the proof of Theorem 1.3.

7. Instability of traveling waves

In contrast with the preceding section, we now establish instability
of traveling waves which are non minimal.

Theorem 7.1. The following traveling waves of the cubic Szegö equa-
tion are orbitally unstable :

ϕ(z) = α
N
∏

j=1

z − pj
1− pjz

, α 6= 0, N ≥ 1 , 0 ≤ |pj| < 1 ,

ϕ(z) = α
zℓ

1− pNzN
, α 6= 0 , N ≥ 2, N − 1 ≥ ℓ ≥ 0 , 0 < |p| < 1 .

Proof. We first deal with traveling waves with non zero velocity,

ϕ(z) =
zℓ

1− pNzN
, N ≥ 2, N − 1 ≥ ℓ ≥ 0 , 0 < |p| < 1 ,

where the constant α 6= 0 has been made 1 for simplicity, in view of
the invariances of the equation. Our strategy is to approximate ϕ by a
family (uε

0) in M(N)gen such that the family of corresponding solutions
(uε) do not satisfy

(42) sup
t∈R

inf
(α,β)∈T2

‖uε(t)− ϕα,β‖H1/2 −→
ε→0

0 ,
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where ϕα,β denotes the current point of the orbit of ϕ through the
action of T2,

ϕα,β(z) = eiαϕ(eiβz) .

Specifically, if (42) holds, then, for ε small enough, uε(t) belongs to a
compact subset of M(N), and consequently every continuous fonction
f on M(N) which vanishes on every ϕα,β satisfies

sup
t∈R

|f(uε(t))| −→
ε→0

0 .

We shall choose for f , the function σ defined by

u(z) =
A(z)

1− σ(u)z + z2R(z)
,

where A,R are polynomial functions. Notice that σ vanishes onto the
orbit of ϕ since N ≥ 2. We now compute σ(uε(t)) by means of the
explicit inverse formula for χN given in Proposition 3. This yields

σ(uε(t)) = tr(Γ) =
∑

1≤j,ℓ≤N

λjν
2
jµℓ

bℓ(λ2
j − µ2

ℓ)
2
e−i(ϕj+θℓ) .

Notice that, in the above formula, all the quantities depend on ε, but
only the angles ϕj, θℓ depend on t. Moreover, from Corollary 1, we
know that they depend linearly on t, with velocities

d

dt
(ϕj + θℓ) = λ2

j − µ2
ℓ .

We claim that we may assume that all these velocities are pairwise
distinct. Indeed, using the diffeomorphism χN of Theorem 1.1, this
just comes from the fact that, on the open set

ΩN = {I1 > L1 > I2 > L2 > · · · > IN > LN > 0}
of R2N , the quantities Ij − Lℓ are generically pairwise distinct. Conse-
quently,

1

T

T
∫

0

|σ(uε(t))|2 dt −→
T→∞

∑

1≤j,ℓ≤N

λ2
jν

4
jµ

2
ℓ

b2ℓ(λ
2
j − µ2

ℓ)
4
.

We now estimate the right hand side of the above identity from below
as ε tends to 0. An elementary spectral study of H2

ϕ and of K2
ϕ shows

that their eigenvectors are

ϕj =
zj

1− pNzN
, j = 0, 1, . . . , N − 1,

and that their eigenvalues belong to the pair
{ |p|2N
(1− |p|2N)2 ,

1

(1− |p|2N)2
}

hence are bounded from above and below. From the continuity deduced
from the min max formula, we infer that λ2

j , µ
2
ℓ are also bounded from
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above and below as ε tends to 0. Therefore, for some fixed positive
constant δ,

∑

1≤j,ℓ≤N

λ2
jν

4
jµ

2
ℓ

b2ℓ(λ
2
j − µ2

ℓ)
4
≥ δ

(

N
∑

j=1

ν4
j

)(

N
∑

ℓ=1

1

b2ℓ

)

≥ δ

N2

(

N
∑

j=1

ν2
j

)2( N
∑

ℓ=1

1

bℓ

)2

.

Moreover,

N
∑

ℓ=1

1

bℓ
= ‖uε

0‖2 −→
ε→0

‖ϕ‖2 ,
N
∑

j=1

ν2
j = ‖Puε

0
(1)‖2 −→

ε→0
‖Pϕ(1)‖2 = 1−|p|2N ,

as we proved in [2], Proposition 1. We conclude that

lim inf
ε→0

lim
T→∞

1

T

T
∫

0

|σ(uε(t))|2 dt > 0 ,

which contradicts

sup
t∈R

|σ(uε(t))| −→
ε→0

0 .

Hence ϕ is orbitally unstable.

We now deal with stationary waves, which are Blaschke products

ϕ(z) =

N−1
∏

j=1

z − pj
1− pjz

with N ≥ 2, 0 ≤ |pj| < 1. Once again, we want to prove that there

exists a sequence uε
0 in H

1/2
+ such that

‖uε
0 − ϕ‖H1/2 −→

ε→0
0

but the solution uε of the cubic Szegö equation with Cauchy datum uε
0

satisfies

(43) lim inf
ε→0

sup
t∈R

inf
α∈T

‖uε(t)− eiαϕ‖H1/2 > 0 .

Introduce the quantity

q := (1|ϕ) = (−1)N−1p1 . . . pN−1 .

We claim that we may assume that q ∈ R+. Indeed, by using invariance
of the cubic Szegö equation through multiplication by complex numbers
of modulus 1 and by rotations of the circle, property (43) for ϕ and
the sequence (uε

0) is equivalent to property (43) for

ϕ̃(z) = eiβϕ(eiγz)

and

ũε
0(z) = eiβuε

0(e
iγz) .
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If we choose β = −(N − 1)γ, we observe that

ϕ̃(z) =
N−1
∏

j=1

z − p′j
1− p′jz

, p′j := eiγpj ,

so that q̃ = ei(N−1)γq. Hence a convenient choice of γ ensures q̃ ≥ 0.
We therefore assume from now on that q ≥ 0.

We now introduce
uε
0 = ϕ+ ε .

Let us first determine the spectrum of H2
uε
0
on the vector space

< 1 >:= span(Hn
uε
0
(1), n ≥ 0).

We have
Huε

0
= Hϕ + εH1

which is identically 0 on kerHϕ. On the range of Hϕ, we have

H2
uε
0
= H2

ϕ + ε(HϕH1 +H1Hϕ) + ε2H2
1 = I +Rε

where Rε is the rank two operator defined by

Rε(h) = ε((h|1)ϕ+ (h|ϕ)) + ε2(h|1).
Notice that we used the identity H2

ϕ = 1 on the range of Hϕ, which
holds since ϕ is an inner function. We observe that Rε stabilizes
span(1, ϕ), which is therefore < 1 >, and that its matrix in the ba-
sis (1, ϕ) reads

Mε =

(

εq + ε2 ε+ ε2q
ε εq

)

Consequently, the eigenvalues of H2
uε
0
on span(1, ϕ) are the roots r± of

the equation

(r − 1)2 − (2εq + ε2)(r − 1)− ε2(1− q2) = 0

which are given by

r± = 1 + ε

(

q +
ε

2
± (1 + εq +

ε2

4
)1/2
)

= 1 + ε(q ± 1) +O(ε2) .

We therefore have

H4
uε
0
(1)− σ1H

2
uε
0
(1) + σ2 = 0 ,

σ1 = r+ + r− = 2 + 2εq + ε2 , σ2 = r+r− = (1 + εq)2 .

Applying the Lax pair property described in Formulae (2) and (3), we
infer

H4
uε(1)− σ1H

2
uε(1) + σ2 = 0

for every time t. Indeed, f = H4
uε(1)−σ1H

2
uε(1)+σ2 satisfies the linear

evolution equation
df

dt
= (Buε +

i

2
H2

uε)f
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and f(0) = 0. Denote by wε ∈< 1 > the unique vector such that
Huε(wε) = 1. In view of the above formula, we have

wε =
−H3

uε(1) + σ1Huε(1)

σ2

,

We now study the evolution of

Jε
−1(t) = (wε|1) , Jε

1(t) = (uε|1) .
Again by the Lax pair property, we have

iJ̇ε
−1 = Jε

1 , iJ̇ε
1 = σ1J

ε
1 − σ2J

ε
−1 ,

which implies that

Jε
1(t) = γ+e

−ir+t + γ−e
−ir−t ,

where γ± are given by initial conditions,

γ+ + γ− = q + ε ,
γ+
r+

+
γ−
r−

=
q

1 + εq
.

This leads to

γ± =
q ± 1

2
+O(ε) .

We infer, for every s > 0,

ε

s

s/ε
∫

0

|Jε
1(t)|2 dt =

1

s

s
∫

0

(γ2
+ + γ2

− + 2Re(γ+γ−e
−i(r+−r−)σ/ε)) dσ

−→
ε→0

1 + q2

2
− (1− q2) sin(2s)

4s
:= f(s) .

On the other hand, if ϕ is orbitally stable, we have

sup
t∈R

||Jε
1(t)|2 − q2| ≤ C sup

t∈R
inf
α∈T

‖uε(t)− eiαϕ‖L2 −→
ε→0

0 ,

which imposes f(s) = q2 for every s and contradicts the above formula
for f . We conclude that ϕ is orbitally unstable.

�
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lated from the Russian by Jaak Peetre. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], 273.
Springer-Verlag, Berlin, 1986.

[13] Peller, V. V.: Hankel operators and their applications. Springer Mono-
graphs in Mathematics. Springer-Verlag, New York, 2003.

[14] Treil, S. R. : Moduli of Hankel operators and a problem of Peller-
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E-mail address : Sandrine.Grellier@univ-orleans.fr


