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Abstract

The purpose of this paper is to discuss the validity of the assumptions

(W) and (S) stated in [12], about the torsion in the modular ℓ-adic coho-

mology of Deligne-Lusztig varieties associated with Coxeter elements. We

prove that both (W) and (S) hold except for groups of type E7 or E8.

Introduction

Let G be a quasi-simple algebraic group defined over an algebraic closure

of a finite field of characteristic p. Let F be the Frobenius endomorphism of G

associated with a rational Fq-structure. The finite group G = GF of fixed points

under F is called a finite reductive group.

Let ℓ be a prime number different from p and Λ be a finite extension of

Zℓ. There is strong evidence that the structure of the principal ℓ-block of G is

encoded in the cohomology over Λ of some Deligne-Lusztig variety. Precise con-

jectures have been stated in [5] and [7], and much numerical evidence has been

collected. The representation theory of ΛG is highly dependent on the prime

number ℓ. In [12], we have studied a special case referred to as the Coxeter case.

The corresponding primes ℓ are those which divide the cyclotomic polynomial

Φh(q) where h is the Coxeter number of W . In that situation, it is to be ex-

pected that the cohomology of the Deligne-Lusztig variety Y(ċ) associated with

a Coxeter element c describes the principal ℓ-block bΛG. More precisely,

• Hiß-Lübeck-Malle conjecture: the Brauer tree of bΛG (which has a cyclic

defect group) can be recovered from the action of G and some power Fδ of

F on the cohomology groups Hi
c(Y(ċ),Qℓ) [16];

• Geometric version of Broué’s conjecture: the complex bRΓc(Y(ċ),Λ) induces

a derived equivalence between the principal ℓ-blocks of G and the normal-

izer NG(Tc) of a torus of type c [5].
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In [12] the author has given a general proof of both of these conjectures, but

under some assumptions on the torsion in the cohomology of Y(ċ). The weaker

assumption concerns only some eigenspaces of the Frobenius:

(W) For all minimal eigenvalues λ of Fδ, the generalized (λ)-eigenspace of

Fδ on bH•
c(Y(ċ),Λ) is torsion-free.

We call here "minimal" the eigenvalues of Fδ on the cohomology group in middle

degree. If this assumption holds, then we proved in [12] that the Brauer tree of

the principal block has the expected shape. However, a stronger assumption is

needed to obtain the planar embedding of the tree and Broué’s conjecture:

(S) The Λ-modules bHi
c(Y(ċ),Λ) are torsion-free.

The purpose of this paper is to discuss these assumptions for the Deligne-

Lusztig variety Y(c) and some interesting quotients, and to prove that they are

valid in the majority of cases. The main result in this direction is the following:

Theorem. Let b′ be the idempotent associated with the principal ℓ-block of Tc.
If the type of G is not E7 or E8, then the Λ-modules bHi

c(Y(ċ),Λ)b′ are torsion-free.

Furthermore, we can also include the groups of type E7 and E8 if we assume that

we already know the shape of the Brauer tree. These have been now determined

by the author and Raphaël Rouquier [13]. This proves a version of [12, Theo-

rem A] where bHi
c(Y(ċ),Λ) is replaced by bHi

c(Y(ċ),Λ)b′. Note that it does not

change the results in [12] which are implied by this theorem. Note also that the

assumption on p in [12, Theorem A] can be dropped, since we no longer use gen-

eralised Gelfand-Graev representations to study the torsion (unlike in [11]). In

particular, we obtain a significant number of new cases of the geometric version

of Broué’s conjecture (see Theorem 3.7). We also deduce new planar embeddings

of Brauer trees for the groups of type 2G2, F4 and 2F4 (see Theorem 3.8).

Our proof relies on Lusztig’s work on the geometry of Deligne-Lusztig vari-

eties associated with Coxeter elements [17]. Many constructions that are de-

rived from X(c), such as remarkable quotients and smooth compactifications,

can be expressed in terms of varieties associated with smaller Coxeter elements.

This provides an inductive method for finding the torsion in the cohomology of

X(c). A further refinement adapted from [2] is then used to lift the method up to

Y(ċ) and to show that the torsion part of bHi
c(Y(ċ),Λ)b′ is necessarily a cuspidal

module. This reduces the problem of finding the torsion to the problem of finding

where cuspidal composition factors can occur in the cohomology. We prove that

these cannot occur outside the middle degree.

This paper is organized as follows: the first section presents some prelim-

inaries. We have compiled the basic techniques that are used in the modular

Deligne-Lusztig theory. In the following section, we use the geometric results of

[17] to rephrase the assumption (S) into a more representation-theoretical con-

dition involving cuspidal modules. The last section is devoted to this problem.

We prove that the cohomology of X(c) has cuspidal composition factors in the

middle degree only whenever the shape of the Brauer tree is known.
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1 Preliminaries

In this preliminary section we set up the notation and introduce the main

techniques (homological and geometric) that we will use throughout this paper.

1.1 Homological methods

1.1.1. Module categories and usual functors. If A is an abelian category, we

will denote by C(A ) the category of cochain complexes, by K (A ) the correspond-

ing homotopy category and by D(A ) the derived category. We shall use the su-

perscript notation −, + and b to denote the full subcategories of bounded above,

bounded below or bounded complexes. We will always consider the case where

A = A-Mod is the module category over some ring A or the full subcategory

A-mod of finitely generated modules. This is actually not a strong restriction,

since any small abelian category can be embedded into some module category

[18]. Since the categories A-Mod and A-mod have enough projective objects, one

can define the usual derived bifunctors RHom•
A and

L
⊗A .

Let H be a finite group and ℓ be a prime number. We fix an ℓ-modular system

(K ,Λ, k) consisting of a finite extension K of the field of ℓ-adic numbers Qℓ, the

integral closure Λ of the ring of ℓ-adic integers in K and the residue field k of the

local ring Λ. We assume moreover that the field K is big enough for H, so that it

contains the e-th roots of unity, where e is the exponent of H. In that case, the

algebra KH is split semi-simple.

From now on, we shall focus on the case where A =OH, with O being any

ring among (K ,Λ, k). By studying the modular representation theory of H we

mean studying the module categories OH-mod for various O, and also the dif-

ferent connections between them. In this paper, most of the representations will

arise in the cohomology of some complexes and we need to know how to pass

from one coefficient ring to another. The scalar extension and ℓ-reduction have

a derived counterpart: if C is any bounded complex of ΛH-modules we can form

KC = C ⊗Λ K and C = kC = C
L
⊗Λk. Since K is a flat Λ-module, the cohomology

of the complex KC is exactly the scalar extension of the cohomology of C. How-

ever this does not apply to ℓ-reduction, but the obstruction can be related to the

torsion.

Theorem 1.1 (Universal coefficient theorem). Let C be a bounded complex of
ΛH-modules. Assume that the terms of C are free over Λ. Then for all n ≥ 1 and
i ∈Z, there exists a short exact sequence of ΛH-modules

0−→Hi(C)⊗ΛΛ/ℓnΛ−→Hi
(
C

L
⊗ΛΛ/ℓnΛ

)
−→TorΛ1 (Hi+1(C),Λ/ℓnΛ)−→ 0.

In particular, whenever there is no torsion in H•(C) (and the terms of C
are still assumed to be torsion-free) then the cohomology of C is exactly the ℓ-

reduction of the cohomology of C.
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1.1.2. Composition factors in the cohomology. Let C be a complex of kH-

modules and L be a simple kG-module. We denote by PL the projective cover of

L in kG-mod. We can determine the cohomology groups of C in which L occurs

as a composition factor using the following standard result.

Lemma 1.2. Given i ∈Z, the following assertions are equivalent:

(i) The i-th cohomology group of the complex RHom•
kH(PL,C) is non-zero;

(ii) HomKb(kH)(PL,C[i]) is non-zero;

(iii) L is a composition factor of Hi(C).

Proof. See for example [11, Section 1.1.2].

The formulation (i) is particularly adapted to our framework and will be ex-

tensively used in Section 3.

1.1.3. Generalized eigenspaces over Λ. Let M be a finitely generated Λ-

module and f ∈ EndΛ(M). Assume that the eigenvalues of f are in the ring Λ.

For λ ∈Λ, we have defined in [12, Section 1.2.2] the generalized (λ)-eigenspace

M(λ) of f on M. Here are the principal properties that we shall use:

• M(λ) is a direct summand of M and M is the direct sum of the generalized

(λ)-eigenspaces for various λ ∈Λ;

• if λ and µ are congruent modulo ℓ then M(λ) = M(µ);

• (kM)(λ) := M(λ) ⊗Λ k is the usual generalized λ̄-eigenspace of f̄ ;

• (K M)(λ) := M(λ) ⊗Λ K is the sum of the usual generalized µ-eigenspaces of

f where µ runs over the elements of Λ that are congruent to λ modulo ℓ.

1.2 Geometric methods

To any quasi-projective variety X defined over Fp and acted on by H, one

can associate a classical object in the derived category Db(OH-Mod), namely

the cohomology with compact support of X, denoted by RΓc(X,O). It is quasi-

isomorphic to a bounded complex of finitely generated OH-modules that are free

over O. Moreover, the cohomology complex behaves well with respect to scalar

extension and ℓ-reduction. We have indeed in Db(OH-Mod):

RΓc(X,Λ)
L
⊗ΛO ≃ RΓc(X,O).

In particular, the universal coefficient theorem (Theorem 1.1) will hold for ℓ-adic

cohomology with compact support.

We give here some quasi-isomorphisms we shall use in Sections 2 and 3. The

reader will find references or proofs of these properties in [1, Section 3].

Proposition 1.3. Let X and Y be two quasi-projective varieties acted on by H.
Then we have the following isomorphisms in the derived category Db(OH-Mod):
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(i) The Künneth formula:

RΓc(X×Y,O) ≃ RΓc(X,O)
L
⊗ RΓc(Y,O).

(ii) The quotient variety H\X exists. Moreover, if the order of the stabilizer of
any point of X is prime to ℓ, then

RΓc(H\X,O) ≃ O
L
⊗OH RΓc(X,O).

If N is a finite group acting on X on the right and on Y on the left, we can

form the amalgamated product X×N Y, as the quotient of X×Y by the diagonal

action of N. Assume that the actions of H and N commute and that the order of

the stabilizer of any point for the diagonal action of N is prime to ℓ. Then X×N Y

is an H-variety and we deduce from the above properties that

RΓc(X×N Y,O) ≃ RΓc(X,O)
L
⊗ON RΓc(Y,O)

in the derived category Db(OH-Mod).

Proposition 1.4. Assume that Y is an open subvariety of X, stable under the
action of H. Denote by Z=XrY its complement. Then there exists a distinguished
triangle in Db(OH-Mod):

RΓc(Y,O) −→ RΓc(X,O) −→ RΓc(Z,O)  

Moreover, if Y is both open and closed, then this triangle splits.

Finally, for a smooth quasi-projective variety, Poincaré-Verdier duality [8]

establishes a remarkable relation between the cohomology complexes RΓc(X,O)

and RΓ(X,O). We shall only need the weaker version for cohomology groups:

Theorem 1.5 (Poincaré duality). Let X be a smooth quasi-projective variety of
pure dimension d. Then if O is the field K or k, there exists a non-canonical
isomorphism of OH-modules

Hi
c(X,O)∗ = HomO

(
Hi

c(X,O),O
)
≃ H2d−i(X,O).

2 General results on the torsion

We present in this section some general results on the torsion in the coho-

mology of Deligne-Lusztig varieties associated with Coxeter elements. We are

motivated by the study of the principal ℓ-block of G in the Coxeter case, involving

only a specific class of prime numbers ℓ. We will only briefly review the results

that we will need about the principal ℓ-block but a fully detailed treatment of

the Coxeter case can be found in [12].

The problem of finding the torsion in the cohomology of a given variety is

a difficult problem. We shall use here all the features of the Deligne-Lusztig

varieties associated with Coxeter elements: smooth compactifications, filtrations

and remarkable quotients by some finite groups. These will be the principal
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ingredients to prove that the contribution of the principal ℓ-block to the torsion

in the cohomology is necessarily a cuspidal module (see Corollary 2.10). This

addresses the problem of finding where cuspidal composition factors can occur

in the cohomology. We will discuss this general problem in the next section.

2.1 Finite reductive groups

We keep the basic assumptions of the introduction, with some slight modi-

fication: G is a quasi-simple algebraic group, together with an isogeny F, some

power of which is a Frobenius endomorphism. In other words, there exists a pos-

itive integer δ such that Fδ defines an Fqδ-structure on G for a certain power qδ

of the characteristic p (note that q might not be an integer). Given an F-stable

algebraic subgroup H of G, we will denote by H the finite group of fixed points

HF .

We fix a Borel subgroup B containing a maximal torus T of G such that both

B and T are F-stable. We denote by U (resp. U−) the unipotent radical of B

(resp. the opposite Borel subgroup B−). These groups define a root sytem Φ with

basis ∆, and a set of positive (resp. negative) roots Φ+ (resp. Φ−). Note that

the corresponding Weyl group W is endowed with an action of F, compatible

with the isomorphism W ≃ NG(T)/T. Therefore, the image under F of a root is

a positive multiple of some other root, which will be denoted by φ−1(α), defining

thus a bijection φ : Φ −→Φ. Since B is also F-stable, this map preserves ∆ and

Φ+. We will also use the notation [∆/φ] for a set of representatives of the orbits

of φ on ∆.

2.2 Review of the Coxeter case

Recall that the p′-part of the order of G is a product of cyclotomic polynomials

Φd(q) for various divisors d of the degrees of W (some precautions must be taken

for Ree and Suzuki groups [4]). Therefore, if ℓ is any prime number different

from p, it should divide at least one of these polynomials. Moreover, if we assume

that ℓ is prime to WF , then there is a unique d such that ℓ |Φd(q).

In this paper we will be interested in the case where d is maximal. Since

W is irreducible, it corresponds to the case where d = h is the Coxeter number

of the pair (W ,F). Explicit values of h can be found in [12]. For a more pre-

cise statement − including the Ree and Suzuki groups − recall that a Coxeter

element of the pair (W ,F) is a product c = sβ1
· · · sβr where {β1, . . . ,βr} = [∆/φ] is

any set of representatives of the orbits of the simple roots under the action of φ.

Then the Coxeter case corresponds to the situation where ℓ is prime to |WF | and

satisfies:

• "non-twisted" cases: ℓ divides Φh(q);

• "twisted" cases (Ree and Suzuki groups): ℓ divides the order of Tc for some

Coxeter element c.
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Note that these conditions ensure that the class of q in k× is a primitive h-th

root of unity.

As in Section 1.1, the modular framework will be given by an ℓ-modular

system (K ,Λ, k), which we require to be big enough for G. We denote by b an

idempotent associated with be the principal block of ΛG. With the assumptions

made on ℓ, the ℓ-component of TcF is a Sylow ℓ-subgroup of G and as such is a

defect group of b. It will be denoted by Tℓ.

The structure of the block is closely related to the cohomology of the Deligne-

Lusztig varieties associated with c. Fix an Fδ-stable representative ċ of c in

NG(T) and define the varieties Y and X by

Y =
{
gU ∈G/U

∣∣ g−1F(g)∈UċU
}

X =
{
gB ∈G/B

∣∣ g−1F(g)∈BcB
}

πc /TcF

where πc denotes the restriction to Y of the canonical projection G/U −→ G/B.

They are both quasi-projective varieties endowed with a left action of G by left

multiplication. Furthermore, TcF acts on the right of Y and πc is isomorphic

to the corresponding quotient map, so that it induces a G-equivariant isomor-

phism of varieties Y/TcF →̃ X. Combining the results of [9], [17] and [6] we can

parametrize the irreducible characters of the principal ℓ-block:

• the non-unipotent characters of bKG are exactly the θ-isotypic components

Hr
c(Y,K )θ where θ runs over the Fδ-orbits in IrrTℓr {1Tℓ

};

• the unipotent characters of bKG are the eigenspaces of Fδ on H•
c(X,K ).

Each eigenvalue is congruent modulo ℓ to q jδ for a unique integer j ∈
{0, . . . , h/δ−1}. We denote by χ j the corresponding irreducible character.

Moreover, each Harish-Chandra series that intersects the block corresponds

to a root of unity ζ ∈ K and the characters in this series are arranged as

follows:

Hr
c(X,K ) Hr+1

c (X,K ) Hr+2
c (X,K ) · · · H

r+Mζ−mζ
c (X,K )

χmζ
χmζ+1 χmζ+2 · · · χMζ

Furthermore, the distinction "non-unipotent/unipotent" corresponds to the dis-

tinction "exceptional/non-exceptional" in the theory of blocks with cyclic defect

groups. The connection is actually much deeper: Hiß, Lübeck and Malle have

observed in [16] that the cohomology of the Deligne-Lusztig variety X should not

only give the characters of the principal ℓ-block, but also its Brauer tree Γ:

Conjecture HLM (Hiß-Lübeck-Malle). Let Γ• denote the graph obtained from
the Brauer tree of the principal ℓ-block by removing the exceptional node and all
edges incident to it. Then the following holds:

(i) The connected components of Γ• are labeled by the Harish-Chandra series,
hence by some roots of unity ζ ∈ K .
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(ii) The connected component corresponding to a root ζ is

χmζ
χmζ+1 χmζ+2 χMζ−1 χMζ

(iii) The vertices labeled by χmζ
are the only nodes connected to the exceptional

node.

The validity of this conjecture has been checked in all cases where the Brauer

tree was known, that is for all quasi-simple groups except the groups of type E7

and E8. A general proof has been exposed in [12], but under a precise assumption

on the torsion in the cohomology of Y:

(W) For all ζ ∈ K corresponding to an Harish-Chandra series in the block, the

generalized (qmζδ)-eigenspace of Fδ on bH•
c(Y,Λ) is torsion-free.

This assumption concerns only the "minimal" eigenvalues, that is the eigenval-

ues of Fδ on the cohomology of X in middle degree. Unfortunately, we will not be

able to prove it in its full generality for the variety Y, but only for the variety X

(see Proposition 2.12).

We have investigated in [12] the consequences of a stronger assumption, con-

cerning all the eigenvalues of Fδ:

(S) The Λ-modules bHi
c(Y,Λ) are torsion-free.

Such an assumption is known to be valid for groups with Fq-rank 1 (since the cor-

responding Deligne-Lusztig variety is an irreducible affine curve) and for groups

of type An [2]. The purpose of this paper is to prove that it is actually valid for

any quasi-simple group, including E7 and E8 if Conjecture (HLM) holds (see The-

orem 3.6). As a byproduct, we obtain a proof of the geometric version of Broué’s

conjecture in the Coxeter case. We also deduce the planar embedding of Brauer

trees for groups of type 2G2, F4 and 2F4.

2.3 Torsion and cuspidality

Let I ⊂∆ be a φ-stable subset of simple roots. We denote by PI the standard

parabolic subgroup, by UI its unipotent radical and by LI its standard Levi

complement. The corresponding Weyl group is the subgroup WI of W generated

by the simple reflexions in I. All these groups are F-stable. One obtains a

Coxeter element cI of (WI ,F) by removing in c the reflexions associated with the

simple roots which are not in I. Written with the Borel subgroup BI =B∩LI of

LI , the Deligne-Lusztig variety XI associated with cI is by definition

XI = XLI (cI ) =
{
gBI ∈LI /BI

∣∣ g−1F(g) ∈BI cIBI
}
.

Recall that the Harish-Chandra induction and restriction functors are de-

fined over any coefficient ring O among (K ,Λ, k) by
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and

RG
L I

: OL I-mod −→ OG-mod

N 7−→ O[G/UI]⊗OL I N
∗RG

L I
: OG-mod −→ OL I-mod

M 7−→ MUI .

By the results in [17], the restriction of the cohomology of X can be expressed

in terms of the cohomology of smaller Coxeter varieties, leading to an inductive

approach for studying the torsion. Given the assumptions made on ℓ in Section

2.2, we can prove the following:

Proposition 2.1. If I is a proper φ-stable subset of ∆, then the groups Hi
c(XI ,Λ)

are torsion-free.

Proof. By induction on the cardinality of I, the case I =∅ being trivial. Assume

that I is non-empty, and let J be any maximal proper φ-stable subset of I. By

[17, Corollary 2.10] there exists an isomorphism of varieties (UJ ∩LI)\XI ≃XJ ×
Gm which yields the following isomorphism of Λ-modules

∗R
L I
LJ

(
Hi

c(XI ,Λ)
)
≃ Hi−1

c (XJ ,Λ)⊕Hi−2
c (XJ ,Λ).

Consequently, the Harish-Chandra restriction to LJ of H•
c(XI ,Λ)tor is a torsion

submodule of H•
c(XJ ,Λ) and hence it is zero by assumption. In other words, any

torsion submodule of H•
c(XI ,Λ)tor is a cuspidal ΛL I-module.

Let r I = |I/φ| be the number of φ-orbits in I. Following [17], we can define

a smooth compactification XI of XI . It has a filtration by closed L I-subvarieties

XI = Dr I (I) ⊃ Dr I−1(I) ⊃ ·· · ⊃ D0(I) = L I /BI such that each pair (Da(I),Da−1(I))

leads to the following long exact sequences of kL I-modules:

· · · −→
⊕

J⊂I φ-stable

|J/φ|=a

R
L I
LJ

(
Hi

c(XJ , k)
)
−→ Hi(Da(I), k) −→ Hi(Da−1(I), k) −→ ···

Since kL I is a semi-simple algebra, we are in the following situation:

• any cuspidal composition factor of a kL I-module M is actually a direct

summand of M. Therefore we can naturally define the cuspidal part Mcusp

of M as the sum of all cuspidal submodules;

• if J 6= I then an induced module R
L I
LJ

(M) has a zero cuspidal part;

• by Poincaré duality (see Theorem 1.5) Hi(XI , k) is isomorphic to the k-dual

of the kL I-module H2r I−i(XI , k).

Consequently, we can argue as in [17] and use the following isomorphisms :

Hi
c(XI , k)cusp ≃ Hi(XI , k)cusp ≃ H2r I−i(XI , k)∗cusp ≃ H

2r I−i
c (XI , k)∗cusp

to deduce that Hi
c(XI , k) has a zero cuspidal part whenever i > r I .

Finally, Hi
c(XI ,Λ)tor ⊗Λ k is a cuspidal submodule of Hi

c(XI ,Λ)⊗Λ k which is

also a submodule of Hi
c(XI , k) by the universal coefficient theorem (see Theorem

1.1). Therefore it must be zero if i 6= r I and Hi
c(XI ,Λ) is torsion-free. Note that
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the cohomology group in middle degree is also torsion-free since XI is an irre-

ducible affine variety: we have indeed H
r I−1
c (XI , k) = 0 so that H

r I
c (XI ,Λ)tor = 0

by the universal coefficient theorem.

Remark 2.2. We have actually shown that the cohomology of a Deligne-Lusztig

variety associated with a Coxeter element is torsion-free whenever ℓ does not

divide the order of the corresponding finite reductive group. One can conjecture

that this should hold for any Deligne-Lusztig variety. Note that the assump-

tion on ℓ is crucial, otherwise an induced module can have cuspidal composition

factors. For example if ℓ divides Φh(q), then RG
T (k) = k[G/B] has at least one

cuspidal composition factor − denoted by S0 in [12].

As an immediate consequence of Proposition 2.1 and the isomorphism in [17,

Corollary 2.10], we obtain:

Corollary 2.3. The torsion part of any group Hi
c(X,Λ) is a cuspidal ΛG-module.

We can therefore reduce the problem of finding the torsion in the cohomology

of X to the problem of finding where cuspidal composition factors can occur in the

kG-modules Hi
c(X, k). This is the general approach that we shall use through-

out this paper. It is justified by the fact that if we assume that the modules

Hi
c(X,Λ) are torsion-free and that Conjecture (HLM) holds, then by [12] cuspidal

composition factors can occur only in Hr
c(X, k).

2.4 Reduction: from Y to X

In this section we shall give conditions on X ensuring that the principal part

of the cohomology of Y is torsion-free. Unlike Y, the variety X has a smooth

compactification (the compactification of Y constructed in [3] is only rationally

smooth in general). Therefore we can use duality theorems to study precise con-

centration properties of cuspidal modules in the cohomology of X (see Sections

2.5 and 3.1). We will not only restrict the cohomology of Y to the principal block

b of ΛG but also to the principal block b′ of ΛTcF . This is not a strong restriction

since the complexes bRΓc(Y,Λ) and bRΓc(Y,Λ)b′ are conjecturally isomorphic in

K b(ΛG-Mod). Note that this is already the case when the coefficient ring is K
(see [6, Theorem 5.24]). By Proposition 1.3 we have

RΓc(Y,Λ)b′ ≃ RΓc(Y,Λ)⊗ΛTℓ′ Λ ≃ RΓc(Y/Tℓ′ ,Λ)

where Tℓ′ is the ℓ′-component of the abelian group TcF . The quotient variety

Y/Tℓ′ will be denoted by Yℓ.

From now on, we shall work exclusively with Yℓ instead of Y . This will not

have any effect on the results we have deduced from (W) and (S) in [12]. We

start by proving an analog of [17, Corollary 2.10] for the variety Yℓ:

Proposition 2.4. Let I be a maximal proper φ-stable subset of ∆. Then there
exists an isomorphism of Λ-modules

Hi
c(UI\Yℓ,Λ) ≃ ∗RG

L I

(
Hi

c(Yℓ,Λ)
)
≃ Hi−1

c (XI ,Λ)⊕Hi−2
c (XI ,Λ).
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Proof. Recall that the isomorphism UI\X≃XI ×Gm constructed in [17] is not G-

equivariant. We can check that it is nevertheless VI-equivariant, where VI =U∩
LI is a maximal unipotent subgroup of LI . We argue as in [2]: the isomorphism

cannot be lifted up to Yℓ but only to an abelian covering of this variety. Let

Y◦ be the preimage in Y of a connected component of U\Y. It is stable by the

action of U but not necessarily by the action of TcF which permutes transitively

the connected components of U\Y (since U\Y/TcF ≃ U\X is connected). If we

denote by H the stabilizer of the component U\Y◦ in TcF , we have the following

VI × (TcF )op-equivariant isomorphism

UI\Y◦×H TcF ≃ UI\Y. (2.5)

By Abhyankar’s lemma, we can now lift the Galois covering U\Y◦ −→ U\X ≃
(Gm)r up to a covering ̟ : (Gm)r −→ (Gm)r with Galois group

∏
µmi . Details of

this construction are given in [2] and [10]. We define the variety Ỹ using the

following diagram in which all the squares are cartesian:

Ỹ (Gm)r

UI\Y◦ U\Y◦

UI\X U\X ≃ (Gm)r

̟ /N

/
∏
µmi

π◦ /H π◦ /H

/N

(2.6)

Under the isomorphism UI\X ≃ XI ×Gm the map UI\X −→ (Gm)r decomposes

into πI × idGm where πI : XI −→ VI\XI ≃ (Gm)r−1 is the quotient map associated

with XI . In particular, we can form the following fiber product

ỸI (Gm)r−1

XI (Gm)r−1

/ ∏
i 6= j

µmi

/ ∏
i 6= j

µmi

πI
(2.7)

in order to decompose the variety Ỹ into a product Ỹ ≃ ỸI ×Gm which is compat-

ible with the group decomposition
∏
µmi ≃

(∏
i 6= j µmi

)
×µm j .

Recall from [2] that the cohomology of Gm endowed with the action of µm can

be represented by a complex concentrated in degrees 1 and 2:

0−→Λµm
ζ−1−→Λµm −→ 0

where ζ is any primitive m-th root of 1. Such a complex will be denoted by

Z(µm)[−1] so that the cohomology of Z(µm) vanishes outside the degrees 0 and

1. As in [2, Section 3.3.2], we shall write ZTcF (µm) for Z(µm)⊗Λµm ΛTcF .
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Using Proposition 1.3, we can now express the previous constructions in co-

homological terms. Equation 2.5 together with Diagram 2.6 leads to

RΓc(UI\Y,Λ) ≃ RΓc(UI\Y◦,Λ)
L
⊗ΛH ΛTcF

≃ RΓc(Ỹ,Λ)
L
⊗Λ

∏
µmi

ΛTcF

Using the isomorphism Ỹ ≃ ỸI ×Gm and the notation that we have introduced,

it can be written as

RΓc(UI\Y,Λ) ≃
(
RΓc(ỸI ,Λ)

L
⊗Λ

∏
i 6= j

µmi
ΛTcF

)
L
⊗ΛTcF

(
RΓc(Gm,Λ)

L
⊗Λµm j

ΛTcF
)

≃
(
RΓc(ỸI ,Λ)

L
⊗Λ

∏
i 6= j

µmi
ΛTcF

)
L
⊗ΛTcF ZTcF (µm j )[−1]

(2.8)

in the derived category Db(Mod-ΛTcF ).

In general, the cohomology groups of the complex ZTcF (µm j) are endowed

with a non-trivial action of TcF since the map µm j −→TcF is not surjective. One

can actually compute explicitly the image of this map: by [2, Proposition 3.5] it is

precisely the group Nc(Yc,cI ) (see [1, Section 4.4.2] for the definition). Therefore

we obtain

H0(ZTcF (µm j ))=H1(ZTcF (µm j )) ≃ Λ
[
TcF /Nc(Yc,cI )

]
.

By [1, Proposition 4.4], the quotient TcF /Nc(Yc,cI ) is isomorphic to TcI F /NcI (Yc,cI )

which has order prime to ℓ. In particular, the image of the map µm j −→ TcF

contains the ℓ-Sylow subgroup of TcF and the map µm j −→ TcF /Tℓ′ is definitely

onto. Since ZTcF (µm j ) fits into the following distinguished triangle in Db(ΛTcF -

Mod)

Λ
[
TcF /Nc(Yc,cI )

]
−→ ZTcF (µm j)−→Λ

[
TcF /Nc(Yc,cI )

]
[−1] 

we deduce that the coinvariants under Tℓ have a relatively simple shape

Λ−→ ZTcF (µm j )
L
⊗ΛTℓ′ Λ−→Λ[−1] (2.9)

Together with the expression of RΓc(ỸI ,Λ)
L
⊗Λ

∏
i 6= j

µmi
ΛTcF given in Formula 2.8,

this triangle yields

RΓc(ỸI ,Λ)
L
⊗Λ

∏
i 6= j

µmi
Λ[−1]−→RΓc(UI\Yℓ,Λ)−→RΓc(ỸI ,Λ)

L
⊗Λ

∏
i 6= j

µmi
Λ[−2] 

and then simply

RΓc(XI ,Λ)[−1]−→RΓc(UI\Yℓ,Λ)−→RΓc(XI ,Λ)[−2] 

by definition of ỸI .

We claim that the connecting maps Hi−2
c (XI ,Λ) −→ Hi

c(XI ,Λ) coming from

the long exact sequence associated with the previous triangle are actually zero.

Since the triangle 2.9 splits over K , the scalar extension of these morphisms are
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zero. But by Proposition 2.1 the modules Hi
c(XI ,Λ) are torsion-free, so that the

connecting morphisms are indeed zero over Λ. Consequently, we obtain short

exact sequences

0−→Hi−1
c (XI ,Λ)−→Hi

c(Yℓ,Λ)UI −→Hi−2
c (XI ,Λ)−→ 0

which finishes the proof.

Corollary 2.10. The torsion part of any cohomology group Hi
c(Yℓ,Λ) is a cuspi-

dal ΛG-module.

As a consequence, Assumption (S) holds for Yℓ if every cuspidal module in

the block occurs in the cohomology group in middle degree only. By construction

of Yℓ, it is actually sufficient to consider the cohomology of X:

Corollary 2.11. Assume that one of the following holds:

(1) The cohomology of X over Λ is torsion-free and Conjecture (HLM) holds.

(2) Cuspidal composition factors occur in Hi
c(X, k) for i = r only.

Then the cohomology of Yℓ over Λ is torsion-free.

Proof. We have already mentioned at the end of Section 2.3 that assertions (1)

and (2) are equivalent. Denote by πℓ : Yℓ −→ X the quotient map by the ℓ-Sylow

subgroup of TcF . The push-forward of the constant sheaf kYℓ
on Yℓ is obtained

from successive extensions of constant sheaves kX:

(πℓ)∗(kYℓ
) ≃

kX

kX
...

kX

·

In the derived category, the complex RΓc(Yℓ, k) = RΓc(X, (πℓ)∗(kYℓ
)) can also be

obtained from extensions of RΓc(X, k)’s. In other words, there exists a family of

complexes RΓc(Yℓ, k) = C0,C1, . . . ,Cn = RΓc(X, k) that fit into the following dis-

tinguished triangles in Db(kG-Mod-kTℓ):

C i+1 −→ C i −→RΓc(X, k) 

If we apply the functor RHom•
kG(P,−) to each of these triangles, we can de-

duce that the complexes RHom•
kG(P,C i) are concentrated in degree r whenever

RHom•
kG(P,Cn) is. Taking P to be the projective cover of any cuspidal kG-

module, we conclude that cuspidal composition factors of the cohomology of Yℓ

can only occur in middle degree.

2.5 On the assumption (W) for X

We give here a proof of the analog of the assumption (W) for the Deligne-

Lusztig variety X, using the smooth compactification X constructed in [9].
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Proposition 2.12. If λ is an eigenvalue of Fδ on Hr
c(X,K ), then the Λ-modules

Hi
c(X,Λ)(λ) are all torsion-free.

Proof. In line with [17], we shall denote by D = Dr−1(∆) the complement of X

in X. Let I be a φ-stable subset of ∆. By [17, Section 7], the generalized (λ)-

eigenspaces of Fδ on Hi
c(XI ,K ) are zero whenever i 6= |I/φ|. By Proposition 2.1,

this remains true for cohomology groups with coefficients in k. From the long

exact sequences

· · · −→
⊕

I φ-stable
|I/φ|=a

RG
L I

(
Hi

c(XI , k)
)
−→Hi

c(Da(∆), k)−→Hi
c(Da−1(∆), k)−→ ··· (2.13)

we deduce that Hi
c(D, k)(λ) is zero if i ≥ r. Consequently, for all i > r we have

Hi
c(X, k)(λ) ≃ Hi(X, k)(λ).

The eigenvalue µ= q2rλ−1 is a "maximal" eigenvalue of Fδ and as such does

not occur in the cohomology of the varieties XI for proper subsets I. From the

previous long exact sequences we deduce that the generalized µ̄-eigenspace of Fδ

on Hi
c(D, k) is always zero. Since X is a smooth variety, we can apply Poincaré

duality (see Thereom 1.5) in order to obtain the following isomorphisms:

Hi
c(X, k)(λ) ≃ Hi(X, k)(λ) ≃

(
H2r−i(X, k)(µ)

)∗ ≃
(
H2r−i

c (X, k)(µ)

)∗
.

Since X is an irreducible affine variety, the cohomology of X vanishes outside the

degrees r, . . . ,2r. This proves that Hi
c(X, k)(λ) = 0 whenever i > r, and the result

follows from the universal coefficient theorem.

Remark 2.14. One cannot deduce that the assumption (W) holds for Yℓ using

this result. The method that we used in the proof of Corollary 2.11 does not

preserve the generalized eigenspaces of Fδ.

Note however that Bonnafé and Rouquier have constructed in [3] a compacti-

fication Yℓ of Yℓ such that YℓrYℓ ≃XrX. This compactification is only rationally

smooth in general, but if it happened to be k-smooth, the previous method would

extend to Yℓ and finish the proof of the conjecture of Hiß-Lübeck-Malle.

3 Cuspidal composition factors in H•
c(X,k)

We have reduced the proof of the assumption (S) to showing that the kG-

modules Hi
c(X, k) have no cuspidal composition factors unless i = r. In other

words, the cohomology of RHom•
kG

(
PL,RΓc(X, k)

)
should vanish outside the de-

gree r whenever L is cuspidal.

Throughout this section and unless otherwise specified, we shall alway as-

sume that Conjecture (HLM) holds for (G,F) (which is known to be true ex-

cept for the groups of type E7 or E8). In that case, the above result can be

deduced from the characteristic zero case if we can show that the cohomology of
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RHom•
ΛG

(
PL,RΓc(X,Λ)

)
is torsion-free. Indeed, the irreducible unipotent com-

ponents of [PL] are the characters χmζ
’s, and they occur in the cohomology of X

in middle degree only. We shall divide the proof according to the depth of χmζ
: if

χmζ
is cuspidal, we prove that the contribution of PL to the cohomology of X and

its compactification X are the same. In the case where χmζ
is not cuspidal, it is

induced from the cohomology of a smaller Coxeter variety and we show that the

contribution of PL can be computed in terms of this cohomology, which we know

to be torsion-free.

3.1 Harish-Chandra series of length 1

We start by dealing with the case of cuspidal kG-modules that occur as ℓ-

reductions of cuspidal unipotent characters. By Conjecture (HLM), these corre-

spond to subtrees of the Brauer tree of the form

χexc χ
L

where χ is a cuspidal unipotent character and L is the unique composition factor

of the ℓ-reduction of χ. By [17, Proposition 4.3], the character χ occurs only in

the cohomology of X in middle degree. The following is a modular analog of this

result.

Proposition 3.1. Assume that Conjecture (HLM) holds for (G,F). Let χ be a
cuspidal character of G occurring in Hr

c(X,K ). The ℓ-reduction of χ gives a unique
simple cuspidal kG-module and it occurs as a composition factor of Hi

c(X, k) for
i = r only.

Proof. We keep the notation used in the course of the proof of Proposition 2.12:

D is the complement of X in the compactification X. Recall that the cohomology

of D can be computed in terms of induced characters afforded by the cohomology

of smaller Coxeter varieties. Since χ is cuspidal, we can therefore use the long

exact sequences 2.13 to show that χ does not occur in H•
c(D,K ).

Denote by L the unique composition factor of the ℓ-reduction of χ. By Con-

jecture (HLM), L does not appear in the ℓ-reduction of any other unipotent char-

acter of the block. Therefore, using Proposition 2.1 and the long exact sequences

2.13 again, we deduce that L cannot occur as a composition factor of H•
c(D, k). In

particular, if we denote by PL ∈ kG-mod the projective cover of L then

HomkG
(
PL,Hi

c(X, k)
)
≃ HomkG

(
PL,Hi

c(X, k)
)
.

Moreover, since duality preserve cuspidality, the same argument applies for the

dual of the cohomology of D. Subsequently, using Poincaré duality, we obtain

HomkG
(
PL,Hi

c(X, k)
)
≃ HomkG

(
PL,H2r−i

c (X, k)∗
)
≃ HomkG

(
PL,H2r−i

c (X, k)∗
)
.

Now the cohomology of the irreducible affine variety X vanishes outside the de-

grees r, . . . ,2r. It follows that HomkG
(
PL,Hi

c(X, k)
)
= 0 whenever i > r.
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3.2 Induced characters

We now turn to the case of cuspidal kG-modules occurring as composition fac-

tors of the ℓ-reduction of a non-cuspidal unipotent character. If we assume that

Conjecture (HLM) holds, then by the results of [12] the situation corresponds to

branches of the following form:

χexc χmζL
χmζ+1 χMζ−1 χMζ

where mζ < Mζ.

At the level of characters, χmζ
is obtain by inducing a cuspidal unipotent

character occurring in the cohomology of a smaller Coxeter variety XI . The pro-

jective cover of L can in turn be obtained by a suitable induction using the fol-

lowing result.

Lemma 3.2. Let I be an F-stable subset of ∆, and J be its complement. Let
VI = LI ∩U (resp. VJ = LJ ∩U) be the maximal unipotent subgroup of LI (resp.
LJ) contained in U. Then there is an isomorphism of varieties, compatible with
the actions of Fδ and VI ×VJ

(UI ∩UJ)\X ≃ XI ×XJ .

Proof. For α ∈Φ+ we denote by Uα the corresponding one-parameter subgroup

of U and we put U
♯
α = Uαr {1}. By [17, Theorem 2.6], there is a U-equivariant

isomorphism of varieties

X ≃
{
u ∈U

∣∣ u−1F(u)∈
∏

α∈I
U

♯
α

∏

β∈J
U

♯

β

}
.

The method used in [10, Proposition 1.2] to describe the quotient of B by the

group D(U)F extends to any unipotent normal subgroup of B normalized by T

instead of D(U) (see [11, Section 2.3.2] for more details). Using the isomorphism

(UI ∩UJ )\U ≃ VI ×VJ , we can therefore realize the quotient of the Deligne-

Lusztig variety by UI ∩UJ as:

(UJ ∩UJ)\X ≃





(ū,v1,v2) ∈U×VI ×VJ

∣∣∣∣∣∣∣

πUI∩UJ (ū)= v−1
1 F(v1)v−1

2 F(v2)

ū ∈
∏

α∈I
U

♯
α

∏

β∈J
U

♯

β





.

This can be rephrased in the VI ×VJ-equivariant isomorphism V\X ≃ XLI (cI)×
XLJ (cJ) ≃ XI ×XJ .

Recall that a regular character VJ is any linear character of VJ , trivial on

D(VJ)F such that the induced character on the abelian group VJ /D(VJ )F is a

product of non-trivial characters (see [2, Section 2] for more details). If ψ is such

a character, and Λψ is the corresponding one-dimensional ΛVJ-module we define

ΓI = IndG
U Res

VI×VJ
U (ΛVI ⊗ΛΛψ)

where the restriction is taken through the map U −→U /UI ∩UJ ≃VI ×VJ .
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Lemma 3.3. Let I to be the minimal F-stable subset of ∆ such that ∗RG
L I

(χmζ
) 6= 0.

Then PL is a direct summand of ΓI .

Proof. Since ΓI is projective, it is enough to show that χmζ
is the only constituent

of [ΓI] in the Harish-Chandra series corresponding to ζ (cut by the principal

block). To this end, we can compute the contribution of ΓI to the cohomology of

the Coxeter variety using the previous lemma.

RHom•
ΛG(ΓI ,RΓc(X,Λ)) ≃ RHom•

ΛU

(
Res

VI×VJ
U (ΛVI ⊗ΛΛψ),RΓc(X,Λ)

)

≃ RHom•
Λ(VI×VJ )

(
ΛVI ⊗ΛΛψ,RΓc((UI ∩UJ)\X,Λ)

)

≃ RΓc(XI ,Λ)⊗Λ RHom•
ΛVJ

(Λψ,RΓc(XJ ,Λ)).

From [2, Theorem 3.10] we deduce that the complex RHom•
ΛVJ

(Λψ,RΓc(XJ ,Λ))

is quasi-isomorphic to the trivial module shifted in degree rJ = dimXJ and we

obtain finally

RHom•
ΛG(ΓI ,RΓc(X,Λ)) ≃ RΓc(XI ,Λ)[−rJ]. (3.4)

Tensoring this quasi-isomorphism with K gives the contribution of the char-

acter of ΓI to the graded character afforded by the cohomology of X. In particular,

a character χ in the series associated to ζ and in the principal ℓ-block occurs in

ΓI if and only if the corresponding eigenvalue of Fδ occurs in H•
c(XI ,K ). Since I

is chosen to be minimal for ζ, then by [17, Theorem 7.1] this eigenvalue is nec-

essarily ζqδdimXI /2 and it occurs in degree r = dimX= dimXI +dimXJ only. This

forces χ to be the unique character of the series occuring in Hr
c(X,K ), that is χmζ

.

Finally, using the shape of the Brauer tree, any projective indecomposable

module that has χmζ
as its only constituent in the Harish-Chandra series asso-

ciated to ζ must be the projective cover of L.

Proposition 3.5. Assume that Conjecture (HLM) holds. Let L be the unique
simple cuspidal kG-module that occur in any ℓ-reduction of χmζ

. Then L occurs
as a composition factor of Hi

c(X, k) for i = r only.

Proof. Let I be minimal such that ∗RG
L I

(χmζ
) 6= 0. By 3.4 and Proposition 2.1 the

cohomology of RHom•
ΛG

(
ΓI ,RΓc(X,Λ)

)
is torsion-free. Since PL is a direct sum-

mand of ΓI the same holds for PL. Consequently, the cohomology of RHom•
ΛG

(
PL,RΓc(X,Λ)

)

vanishes outside the degree r since it already does over K by [17, Proposition

4.3].

3.3 Main results

We now have all the ingredients for proving that there is no torsion in the co-

homology of Yℓ. Recall that we have shown that the torsion part of the cohomol-

ogy is necessarily a cuspidal ΛG-module (see Corollary 2.10). By the universal

coefficient theorem, it is therefore sufficient to prove that the module Hi
c(Yℓ, k)

has no cuspidal composition factors if i > r. By Corollary 2.11, this property

holds whenever it holds for the Deligne-Lusztig variety X. In the framework of
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derived categories, we are then reduced to show that for any cuspidal kG-module

L lying in the block, the complex

RHom•
ΛG

(
PL,RΓc(X, k)

)

is quasi-isomorphic to a complex concentrated in degree r. If L happens to be a

composition factor of the ℓ-reduction of a cuspidal unipotent character, then by

Proposition 3.1 it cannot occur outside the cohomology in middle degree. Corol-

lary 3.5 deals with the case where L is a composition factor of the ℓ-reduction of

an induced character, but we have to assume that Conjecture (HLM) holds.

Theorem 3.6. Let G be a quasi-simple group. Assume that Conjecture (HLM)
holds. Then in the set-up of Section 2.2, the Λ-modules bHi

c(Yℓ,Λ) are torsion-
free.

We deduce from [12, Theorem 4.12] the geometric version of Broué’s conjec-

ture holds for any quasi-simple group except E7 and E8. This extends signifi-

cantly the previous results of Puig [19] (for ℓ |q−1), Rouquier [20] (for ℓ |φh(q)

and r = 1) and Bonnafé-Rouquier [2] (for ℓ |φh(q) and (G,F) of type An).

Theorem 3.7. Let (G,F) be a quasi-simple group different from E7 and E8 and
c be a Coxeter element of (W ,F). Let ℓ be a prime number not dividing the order
of WF and satisfying one of the two following assumptions, depending on the type
of (G,F):

• "non-twisted" cases: ℓ divides Φh(q);

• "twisted" cases: ℓ divides the order of Tc.

Then the complex bRΓc(Y(ċ),Λ)b′ induces a splendid and perverse equivalence
between the principal ℓ-blocks bΛG and b′ΛNG(Tc)

Using [12, Theorem 4.14] we also deduce the planar embedding of the Brauer

tree of the principal ℓ-block for groups of type 2G2, 2F4 and F4 (compare with [14]

and [15]).

Theorem 3.8. (i) Assume that ℓ is odd and divides q2−q
p

3+1. Then the planar
embedded Brauer tree of the principal ℓ-block of the Ree group 2G2(q2) is

StG 1G

2G2[i]

2G2[−i]

2G2[ξ]

2G2[ξ]
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where i= ξ3 and ξ is the unique 12-th root of unity in Λ× congruent to q5 modulo
ℓ.

(ii) Assume that ℓ divides q4 −
p

2q3 + q2 −
p

2q+1. Then the planar embedded
Brauer tree of the principal ℓ-block of the simple group of type 2F4(q) is

StG φ2,1 1G
2FII

4 [−1]

2F4[−θ2]

2FII
4 [i]

2B2[η3]ε

2B2[η3]1

2F4[−θ]
2FII

4 [−i]

2B2[η5]ε

2B2[η5]1

where θ (resp. i, resp. η) the unique primitive 3-rd (resp. 4-th, resp. 8-th) root of
unity in Λ× congruent to q8 (resp. q6, resp. q3) modulo ℓ.

(iii) Assume that ℓ 6= 2,3 and divides q4 − q2 + 1. Then the planar embedded
Brauer tree of the principal ℓ-block of the simple group of type F4(q) is

StG φ4,13 φ′′
6,6 φ4,1 1GB2,1 B2,r B2,ε

F4[i]

F4[−i]

F4[θ]

F4[θ2]

where θ (resp. i) is the unique third (resp. fourth) root of unity in Λ× congruent
to q4 (resp. q3) modulo ℓ.
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