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Abstract

The purpose of this paper is to discuss the validity of the assumptions

(W) and (S) stated in [13], about the torsion in the modular ℓ-adic cohomol-

ogy of Deligne-Lusztig varieties associated to Coxeter elements. We prove

that both (W) and (S) hold whenever the characteristic of the ground field

is a good prime number except for groups of type E7 or E8.

Introduction

Let G be a quasi-simple algebraic group defined over an algebraic closure

of a finite field of characteristic p. Let F be the Frobenius endomorphism of

G associated to a split rational Fq-structure. The finite group G = GF of fixed

points under F is called a (split) finite reductive group.

Let ℓ be a prime number different from p and Λ be a finite extension of

Zℓ. There is strong evidence that the structure of the principal ℓ-block of G is

encoded in the cohomology over Λ of some Deligne-Lusztig variety. Precise con-

jectures have been stated in [5] and [7], and much numerical evidence has been

collected. The representation theory of ΛG is highly dependent on the prime

number ℓ. In [13], we have studied a special case referred to as the Coxeter case.

The corresponding primes ℓ are those which divide the cyclotomic polynomial

Φh(q) where h is the Coxeter number of W . In that situation, it is to be expected

that the cohomology of the Deligne-Lusztig variety Y(ċ) associated to a Coxeter

element c describes the principal ℓ-block bΛG. More precisely,

• Hiss-Lübeck-Malle conjecture: the Brauer tree of bΛG (which has a cyclic

defect group) can be recovered from the action of G and F on the cohomol-

ogy groups Hi
c(Y(ċ),Qℓ) [19];

• Geometric version of Broué’s conjecture: the complex bRΓc(Y(ċ),Λ) induces

a derived equivalence between the principal ℓ-blocks of G and the normal-

izer NG(Tc) of a torus of type c [5].
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In [13] the author has given a general proof of both of these conjectures, but

under some assumptions on the torsion in the cohomology of Y(ċ). The weaker

assumption concerns only some eigenspaces of the Frobenius:

(W) For all minimal eigenvalues λ of F, the generalized (λ)-eigenspace of F
on bH•

c(Y(ċ),Λ) is torsion-free.

We call here "minimal" the eigenvalues of F on the cohomology group in middle

degree. If this assumption holds, then we proved in [13] that the Brauer tree of

the principal block has the expected shape. However, a stronger assumption is

needed to obtain the planar embedding of the tree and Broué’s conjecture:

(S) The Λ-modules bHi
c(Y(ċ),Λ) are torsion-free.

The purpose of this paper is to discuss these assumptions for the Deligne-

Lusztig variety Y(c) and some interesting quotients, and to prove that they are

valid in the majority of cases. The main result in this direction is the following:

Theorem. Assume that p is a good prime number for G. Let b′ be the idempotent
associated to the principal ℓ-block of Tc. If the type of G is not E7 or E8, then the
Λ-modules bHi

c(Y(ċ),Λ)b′ are torsion-free.

A more general statement is given in Theorem 3.9, with more precise bounds on

p in some types. Furthermore, we can also include the groups of type E7 and E8

if we assume that we already know the shape of the Brauer tree. Note that the

results of [13] remain valid if we consider bHi
c(Y(ċ),Λ)b′ instead of bHi

c(Y(ċ),Λ)

in the assumptions (W) and (S). In particular, we obtain a significant number of

new cases of the geometric version of Broué’s conjecture (see Theorem 3.11). We

also deduce new planar embeddings of Brauer trees for the groups of type 2G2

and F4 with p 6= 2,3 (see Theorem 3.12).

Our proof relies on Lusztig’s work on the geometry of Deligne-Lusztig vari-

eties associated to Coxeter elements [22]. Many constructions that are derived

from X(c), such as remarkable quotients and smooth compactifications, can be

expressed in terms of varieties associated to smaller Coxeter elements. This pro-

vides an inductive method for finding the torsion in the cohomology of X(c). A

further refinement adapted from [2] is then used to lift the method up to Y(ċ) and

to show that the torsion part of bHi
c(Y(ċ),Λ)b′ is necessarily a cuspidal module.

This reduces the problem of finding the torsion to the problem of finding where

cuspidal composition factors can occur in the cohomology. Under some restric-

tions on p and G, we prove that these cannot occur outside the middle degree.

To this end, we determine the generalized Gelfand-Graev modules which have

a simple cuspidal module in their head and compute their contribution to the

cohomology of X(c) again using smaller varieties. When no reduction is possible,

we can argue as in [22] to deduce the concentration property.

This paper is organized as follows: the first section presents some preliminar-

ies. We have compiled the basic techniques that are used in the modular Deligne-

Lusztig theory, together with standard results on the generalized Gelfand-Graev
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representations. In the following section, we use the geometric results of [22] to

rephrase the assumption (S) into a more representation-theoretical condition in-

volving cuspidal modules. The last section is devoted to this problem. We prove

that under some restrictions on p and G, the cohomology of X(c) has cuspidal

composition factors in the middle degree only.

1 Preliminaries

In this preliminary section we set up the notation and introduce the main

techniques that we will use throughout this paper. These fall into three cat-

egories, depending on whether they come from homological algebra, algebraic

geometry or Lie theory.

1.1 Homological methods

1.1.1. Module categories and usual functors. If A is an abelian category,

we will denote by C(A ) the category of cochain complexes, by K (A ) the corre-

sponding homotopy category and by D(A ) the derived category. We shall use

the superscript notation −, + and b to denote the full subcategories of bounded

above, bounded below or bounded complexes. We will always consider the case

where A = A-Mod is the module category over any ring A or the full subcategory

A-mod of finitely generated modules. This is actually not a strong restriction,

since any small category can be embedded into some module category [26]. Since

the categories A-Mod and A-mod have enough projective objects, one can define

the usual derived bifunctors RHom•
A and

L
⊗A.

Let H be a finite group and ℓ be a prime number. We fix an ℓ-modular system

(K ,Λ, k) consisting of a finite extension K of the field of ℓ-adic numbers Qℓ, the

integral closure Λ of the ring of ℓ-adic integers in K and the residue field k of the

local ring Λ. We assume moreover that the field K is big enough for H, so that it

contains the e-th roots of unity, where e is the exponent of H. In that case, the

algebra KH is split semi-simple.

From now on, we shall focus on the case where A =OH, with O being any

ring between (K ,Λ, k). By studying the modular representation theory of H we

mean studying the module categories OH-mod for various O, and also the dif-

ferent connections between them. In this paper, most of the representations will

arise in the cohomology of some complexes and we need to know how to pass

from one coefficient ring to another. The scalar extension and ℓ-reduction have

a derived counterpart: if C is any bounded complex of ΛH-modules we can form

KC = C ⊗Λ K and C = kC = C
L
⊗Λk. Since K is a flat Λ-module, the cohomology

of the complex KC is exactly the scalar extension of the cohomology of C. How-

ever this does not apply to ℓ-reduction, but the obstruction can be related to the

torsion:
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Theorem 1.1 (Universal coefficient theorem). Let C be a bounded complex of
ΛH-modules. Assume that the terms of C are free over Λ. Then for all n ≥ 1 and
i ∈Z, there exists a short exact sequence of ΛH-modules

0−→Hi(C)⊗ΛΛ/ℓn
Λ−→Hi

(
C

L
⊗ΛΛ/ℓn

Λ
)
−→TorΛ1 (Hi+1(C),Λ/ℓn

Λ)−→ 0.

In particular, whenever there is no torsion in both C and H•(C) then the

cohomology of C is exactly the ℓ-reduction of the cohomology of C.

1.1.2. Composition factors in the cohomology. Let C be a complex of kH-

modules and L be a simple kG-module. We denote by PL the projective cover of

L in kG-mod. We can determine the cohomology groups of C in which L occurs

as a composition factor using the following standard result:

Lemma 1.2. Given i ∈Z, the following assertions are equivalent:

(i) the i-th cohomology group of the complex RHom•
kH(PL,C) is non-zero;

(ii) HomKb(kH)(PL,C[i]) is non-zero;

(iii) L is a composition factor of Hi(C).

Proof. See for example [14, Section 1.1.2].

The formulation (i) is particularly adapted to our framework and will be ex-

tensively used in Section 3.

1.1.3. Generalized eigenspaces over Λ. Let M be a finitely generated Λ-

module and f ∈ EndΛ(M). Assume that the eigenvalues of f are in the ring Λ.

For λ ∈Λ, we have defined in [13, Section 1.2.2] the generalized (λ)-eigenspace

M(λ) of f on M. Here are the principal properties that we shall use:

• M(λ) is a direct summand of M and M is the direct sum of the generalized

(λ)-eigenspaces for various λ ∈Λ;

• if λ and µ are congruent modulo ℓ then M(λ) = M(µ);

• (kM)(λ) := M(λ) ⊗Λ k is the usual generalized λ̄-eigenspace of f̄ ;

• (K M)(λ) := M(λ) ⊗Λ K is the sum of the usual generalized µ-eigenspace of f
where µ runs over the elements of Λ that are congruent to λ modulo ℓ.

1.2 Geometric methods

To any quasi-projective variety X defined over Fp and acted on by H, one

can associate a classical object in the derived category Db(OH-Mod), namely

the cohomology with compact support of X, denoted by RΓc(X,O). It is quasi-

isomorphic to a bounded complex of modules that have finite rank over O. More-

over, the cohomology complex behaves well with respect to scalar extension and

ℓ-reduction. We have indeed in Db(OH-Mod):

RΓc(X,Λ)
L
⊗ΛO ≃ RΓc(X,O).
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In particular, the universal coefficient theorem (Theorem 1.1) will hold for ℓ-adic

cohomology with compact support.

We give here some quasi-isomorphisms we shall use in Sections 2 and 3. The

reader will find references or proofs of these properties in [1, Section 3].

Proposition 1.3. Let X and Y be two quasi-projective varieties acted on by H.
Then one has the following isomorphisms in the derived category Db(OH-Mod):

(i) The Künneth formula:

RΓc(X×Y,O) ≃ RΓc(X,O)
L
⊗ RΓc(Y,O).

(ii) The quotient variety H\X exists. Moreover, if the order of the stabilizer of
any point of X is prime to ℓ, then

RΓc(H\X,O) ≃ O
L
⊗OH RΓc(X,O).

If N is a finite group acting on X on the right and on Y on the left, we can

form the amalgamated product X×N Y, as the quotient of X×Y by the diagonal

action of N. Assume that the actions of H and N commute and that the order of

the stabilizer of any point for the diagonal action of N is prime to ℓ. Then X×N Y

is an H-variety and we deduce from the above properties that

RΓc(X×N Y,O) ≃ RΓc(X,O)
L
⊗ON RΓc(Y,O)

in the derived category Db(OH-Mod).

Proposition 1.4. Assume that Y is an open subvariety of X, stable by the action
of H. Denote by Z = XrY its complement. Then there exists a distinguished
triangle in Db(OH-Mod):

RΓc(Y,O) −→ RΓc(X,O) −→ RΓc(Z,O)  

Moreover, if Y is both open and closed, then this triangle splits.

Finally, for a smooth quasi-projective variety, Poincaré-Verdier duality [9]

establishes a remarkable relation between the cohomology complexes RΓc(X,O)

and RΓ(X,O). We shall only need the weaker version for cohomology groups:

Theorem 1.5 (Poincaré duality). Let X be a smooth quasi-projective variety of
pure dimension d. Then if O is the field K or k, there exists a non-canonical
isomorphism of OH-modules

Hi
c(X,O)∗ = HomO

(
Hi

c(X,O),O
)
≃ H2d−i(X,O).

1.3 Lie-theoretic methods

Following [21], we recall the construction of the generalized Gelfand-Graev

representations for finite reductive groups GF . The standard results on nilpo-

tent orbits that we need here require that p − the characteristic of the ground
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field − is a good prime number for G. We shall always assume that it is the case

when working with unipotent classes or nilpotent orbits.

1.3.1. Finite reductive groups. We keep the basic assumptions of the in-

troduction, with some slight modification: G is a quasi-simple algebraic group,

together with an isogeny F, some power of which is a Frobenius endomorphism.

In other words, there exists a positive integer δ such that Fδ defines an Fqδ-

structure on G for a certain power qδ of the characteristic p (note that q might

not be an integer). For all F-stable algebraic subgroup H of G, we will denote by

H the finite group of fixed points HF .

We fix a Borel subgroup B containing a maximal torus T of G such that

both B and T are F-stable. They define a root sytem Φ with basis ∆, and a set

of positive (resp. negative) roots Φ
+ (resp. Φ

−). Note that the corresponding

Weyl group W is endowed with a action of F, compatible with the isomorphism

W ≃ NG(T)/T. Therefore, the image by F of a root is a positive multiple of some

other root, which will be denoted by φ−1(α), defining thus a bijection φ :Φ−→Φ.

Since B is also F-stable, this map preserves ∆ and Φ
+. We will also use the

notation [∆/φ] for a set of representatives of the orbits of φ on ∆.

Let U (resp. U−) be the unipotent radical of B (resp. the opposite Borel

subgroup B−). Each root α defines a one-parameter subgroup Uα, and we will

denote by uα : F−→Uα an isomorphism of algebraic group. The groups Uα might

not be F-stable in general although the groups U and U− are. However we

may, and we will, choose the family (uα)α∈Φ such that the action of F satisfies

F(uα(ζ))= uφ(α)(ζ
qα) for some power qα of p.

1.3.2. Generalized Gelfand-Graev representations. Let g (resp. t) be the

Lie algebra of G (resp. T) over Fp. The action of F on G induces a morphism

F : g −→ g, which is compatible with the adjoint action of G. Moreover, one can

choose a family (eα)α∈Φ of tangent vectors to the unipotent groups (Uα)α∈Φ such

that F(eα) = eφ(α). Finally, we fix a non-degenerate G-equivariant associative

bilinear form κ : g×g−→ F and a representative ẇ0 of w0 in NG(T) that will play

the rôle of the opposition automorphism used in [21].

We assume now that the characteristic p of Fp is good for G. Then it is known

(see for example [8, Chapter 5]) that to each unipotent class of G can be naturally

attached a weighted Dynkin diagram, that is, an additive map d : Φ−→ Z such

that d(α) ∈ {0,1,2} for all α ∈ ∆. Given such a Dynkin diagram, we define the

subgroups

Ld =
〈
T,Uα | d(α)= 0

〉
and Ui =

∏

α∈Φ+
d(α)≥i

Uα

for all positive integer i ≥ 1. The corresponding Lie subalgebras will be denoted

by ld = Lie(Ld) and u(i)= Lie(Ui). The connection between unipotent and nilpo-

tent elements will be restricted to the map φ : U2 −→ u(2) defined by:
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φ
( ∏

α∈Φ+
d(α)≥2

uα(ζα)
)
=

∑

α∈Φ+
d(α)=2

ζαeα

Note that this definition does not depend on any order on Φ, since the group

U2/U3 is abelian. Then, by [27] the nilpotent class corresponding to d is the

unique class O such that O∩u(2) is dense in u(2). Moreover, if we set Pd =LdU1,

then O ∩u(2) is a single Pd-conjugacy class and for any nilpotent element N ∈
O ∩u(2), we have CG(N) = CPd (N). Therefore, a complete set of representatives

for the G-orbits in OF can be found inside OF ∩u(2).

We fix a non-trivial linear character χ : Fδq −→ Λ
× of Fδq. Following [21], we

define for all N ∈O
F ∩u(2), a linear character ϕN : U2 −→Λ

× of U2 by

∀x ∈U2 ϕN (x)= χ
(
κ(ẇ0 N,φ(x))

)
.

Remark 1.6. If α is a positive root of weight 2, the restriction of ϕN to the

finite group Vα =
(
Uα ·Uφ(α) · · ·Uφ−1(α)

)F ⊂ U2/U3 is non-trivial if and only if the

coordinate of N on eα is non-zero. Note also that ϕN depends only on the image

of N in u(2)/u(3).

Finally, Kawanaka showed that there exist an F-stable unipotent subgroup

U1.5 of U1 containing U2 such that [U1.5 : U2]= [U1 : U1.5] and an extension ϕ̃N of

ϕN to a linear character of U1.5. The generalized Gelfand-Graev representation
of G associated to N is then defined to be

ΓN = IndG
U1.5

ΛN

where ΛN denotes the module Λ on which U1.5 acts by ϕ̃N . It is a projective

ΛG-module, which depends only on the G-conjugacy class of N. The character

of this module will be denoted by γN .

1.3.3. Unipotent support and wave front set. In [23, Section 13.4], Lusztig

has defined a function from the set of unipotent characters to the set of unipo-

tent classes. If ρ is a unipotent character, there exists a unique special character

E ∈ (IrrW)F such that the Alvis-Curtis dual DG(ρ) of ρ has a non-trivial scalar

product with the almost character RE associated to E. Under the Springer corre-

spondence, E correspond to the trivial local system on a special unipotent class

(note that we use Lusztig’s convention: the trivial character of W correspond to

the regular orbit of G). When p is assumed to be good, this unipotent class coin-

cides with the unipotent support of ρ, defined as the unipotent class of maximal

dimension on which the average value of ρ is non-zero (see [24] and [15]). Using

the bijection between unipotent classes and nilpotent orbits in good character-

istic, we will denote by O(ρ) the nilpotent orbit corresponding to the unipotent

support of ρ.

By [21] and [24, Theorem 11.2] there exists a precise relation between the

nilpotent orbit associated to a generalized Gelfand-Graev representation ΓN and

the orbits O(ρ) of the unipotent components ρ of its character γN = [ΓN].
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Theorem 1.7 (Kawanaka, Lusztig). Assume that p is a good prime number for
G. Let O be an F-stable nilpotent orbit of G and ρ be a unipotent character of G.
Then

(i) if dimO(ρ)≤ dimO and O 6=O(ρ) then for all N ∈OF , 〈ρ ;γN〉 = 0;

(ii) if N ∈O(ρ)F then the multiplicity of ρ in γN is bounded by |W |2;

(iii) there exists N ∈O(ρ)F such that 〈ρ ;γN〉 6= 0

Remark 1.8. The argument used in [24] is valid only if p is assumed to be

large enough. However, Lusztig has communicated to the author that he had a

proof of Theorem 1.7 when p is a good prime number, but unfortunately he has

not published it. Note that the case of split groups of type An, En, F4 or G2 is

already contained in [20, Theorem 2.4.1].

2 General results on the torsion

We present in this section some general results on the torsion in the coho-

mology of Deligne-Lusztig varieties associated to Coxeter elements. We are mo-

tivated by the study of the principal ℓ-block of G in the Coxeter case, involving

only a specific class of prime numbers ℓ. We will only briefly review the results

that we will need about the principal ℓ-block but a fully detailed treatment of

the Coxeter case can be found in [13].

The problem of finding the torsion in the cohomology of a given variety is a

difficult problem. We shall use here all the specificities of the Deligne-Lusztig

varieties associated to Coxeter elements: smooth compactifications, filtrations

and remarkable quotients by some finite groups. These will be the principal

ingredients to prove that the contribution of the principal ℓ-block to the torsion

in the cohomology is necessarily a cuspidal module (see Corollary 2.10). This

addresses the problem of finding where cuspidal composition factors can occur

in the cohomology. We will discuss this general problem in the next section.

2.1 Review of the Coxeter case

Recall that the p′-part of the order of G is a product of cyclotomic polynomials

Φd(q) for various divisors d of the degrees of W (some precautions must be taken

for Ree and Suzuki groups [4]). Therefore, if ℓ is any prime number different

from p, it should divide at least one of these polynomials. Moreover, if we assume

that ℓ is prime to WF , then there is a unique d such that ℓ |Φd(q).

In this paper we will be interested in the case where d is maximal. Since

W is irreducible, it corresponds to the case where d = h is the Coxeter number

of the pair (W ,F). Explicit values of h can be found in [13]. For a more pre-

cise statement − including the Ree and Suzuki groups − recall that a Coxeter

element of the pair (W ,F) is a product c = sβ1
· · · sβr where {β1, . . . ,βr} = [∆/φ] is

any set of representatives of the orbits of the simple roots under the action of φ.
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Then the Coxeter case corresponds to the situation where ℓ is prime to |WF | and

satisfies:

• "non-twisted" cases: ℓ divides Φh(q);

• "twisted" cases (Ree and Suzuki groups): ℓ divides the order of Tc for some

Coxeter element c.

Note that these conditions ensure that the class of q in k× is a primitive h-th

root of unity.

As in Section 1.1, the modular framework will be given by an ℓ-modular

system (K ,Λ, k), which we require to be big enough for G. We denote by b an

idempotent associated to be the principal block of ΛG. With the assumptions

made on ℓ, the ℓ-component of TcF is a Sylow ℓ-subgroup of G and as such is the

defect of b. It will be denoted by Tℓ.

The structure of the block is closely related to the cohomology of the Deligne-

Lusztig varieties associated to c. Fix a representative ċ of c in NG(T) and define

the varieties Y and X by

Y =
{
gU ∈G/U

∣∣ g−1F(g)∈UċU
}

X =
{
gB ∈G/B

∣∣ g−1F(g)∈BcB
}

πc /TcF

where πc denotes the restriction to Y of the canonical projection G/U −→ G/B.

They are both quasi-projective varieties endowed with a left action of G by left

multiplication. Furthermore, TcF acts on the right of Y and πc is isomorphic

to the corresponding quotient map, so that it induces a G-equivariant isomor-

phism of varieties Y/TcF ≃ X. Combining the results of [10], [22] and [6] we can

parametrize the irreducible characters of the principal ℓ-block:

• the non-unipotent characters of bKG are exactly the θ-isotypic components

Hr
c(Y,K )θ where θ runs over the Fδ-orbits in IrrTℓr {1Tℓ

};

• the unipotent characters of bKG are the eigenspaces of Fδ on H•
c(X,K ).

Each eigenvalue is congruent modulo ℓ to q jδ for a unique integer j ∈
{0, . . . , h/δ−1}. We denote by χ j the corresponding irreducible character.

Moreover, each Harish-Chandra series that intersects the block corresponds

to a root of unity ζ ∈ K and the characters in this series are arranged as

follows:

Hr
c(X,K ) Hr+1

c (X,K ) Hr+2
c (X,K ) · · · H

r+Mζ−mζ
c (X,K )

χmζ
χmζ+1 χmζ+2 · · · χMζ

Furthermore, the distinction "non-unipotent/unipotent" corresponds to the dis-

tinction "exceptional/non-exceptional" in the theory of blocks with cyclic defect

groups. The connection is actually much deeper: Hiss, Lübeck and Malle have

observed in [19] that the cohomology of the Deligne-Lusztig variety X should not

only give the characters of the principal ℓ-block, but also its Brauer tree Γ:
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Conjecture HLM (Hiss-Lübeck-Malle). Let Γ• denote the graph obtained from
the Brauer tree of the principal ℓ-block by removing the exceptional node and all
edges incident to it. Then the following holds:

(i) The connected components of Γ• are labeled by the Harish-Chandra series,
hence by some roots of unity ζ ∈ K .

(ii) The connected component corresponding to a root ζ is:

χmζ
χmζ+1 χmζ+2 χMζ−1 χMζ

(iii) The vertices labeled by χmζ
are the only nodes connected to the exceptional

node.

The validity of this conjecture has been checked in all cases where the Brauer

tree was known, that is for all quasi-simple groups except the groups of type E7

and E8. A general proof has been exposed in [13], but under a precise assumption

on the torsion in the cohomology of Y:

(W) For all ζ ∈ K corresponding to an Harish-Chandra series in the block, the

generalized (qmζδ)-eigenspace of Fδ on bH•
c(Y,Λ) is torsion-free.

This assumption concerns only the "minimal" eigenvalues, that is the eigenval-

ues of Fδ on the cohomology of X in middle degree. Unfortunately, we will not be

able to prove it in its full generality for the variety Y, but only for the variety X

(see Proposition 2.12).

We have investigated in [13] the consequences of a stronger assumption, con-

cerning all the eigenvalues of Fδ:

(S) The Λ-modules bHi
c(Y,Λ) are torsion-free.

Such an assumption is known to be valid for groups with Fq-rank 1 (since the cor-

responding Deligne-Lusztig variety is a irreducible affine curve) and for groups

of type An [2]. The purpose of this paper is to prove that it is actually valid for

any quasi-simple group (including E7 and E8 if Conjecture (HLM) holds) as soon

as p is a good prime number (see Theorem 3.9). As a byproduct, we obtain a

proof of the geometric version of Broué’s conjecture in the Coxeter case when p
is good for G. We also deduce the planar embedding of Brauer trees for groups

of type 2G2 and F4.

2.2 Torsion and cuspidality

Let I ⊂∆ be a φ-stable subset of simple roots. We denote by PI the standard

parabolic subgroup, by UI its unipotent radical and by LI its standard Levi

complement. The corresponding Weyl group is the subgroup WI of W generated

by the simple reflexions in I. All these groups are F-stable. One obtains a

Coxeter element cI of (WI ,F) by removing in c the reflexions associated to the

simple roots which are not in I. Written with the Borel subgroup BI =B∩LI of

LI , the Deligne-Lusztig variety XI associated to cI is by definition
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XI = XLI (cI ) =
{
gBI ∈LI /BI

∣∣ g−1F(g) ∈BI cIBI
}
.

Recall that the Harish-Chandra induction and restriction functors are de-

fined over any coefficient ring O between (K ,Λ, k) by

and

RG
L I

: OL I-mod −→ OG-mod

N 7−→ O[G/UI]⊗OL I N
∗RG

L I
: OG-mod −→ OL I-mod

M 7−→ MUI .

By the results in [22], the restriction of the cohomology of X can be expressed

in terms of the cohomology of smaller Coxeter varieties, leading to an inductive

approach for studying the torsion. Given the assumptions made on ℓ in Section

2.1, we can prove the following:

Proposition 2.1. If I is a proper φ-stable subset of ∆, then the groups Hi
c(XI ,Λ)

are torsion-free.

Proof. By induction on the cardinality of I, the case I =∅ being trivial. Assume

that I is non-empty, and let J be any maximal proper F-stable subset of I. By

[22, Corollary 2.10] there exists an isomorphism of varieties (UJ ∩LI)\XI ≃XJ ×
Gm which yields the following isomorphism of Λ-modules

∗R
L I
LJ

(
Hi

c(XI ,Λ)
)
≃ Hi−1

c (XJ ,Λ)⊕Hi−2
c (XJ ,Λ).

Consequently, the restriction to LJ of H•
c(XI ,Λ)tor is a torsion submodule of

H•
c(XJ ,Λ) and hence it is zero by assumption. In other words, any torsion sub-

module of H•
c(XI ,Λ)tor is a cuspidal ΛL I-module.

Let r I = |I/φ| be the number of φ-orbits in I. Following [22], we can define

a smooth compactification XI of XI . It has a filtration by closed L I-subvarieties

XI = Dr I (I) ⊃ Dr I−1(I) ⊃ ·· · ⊃ D0(I) = L I /BI such that each pair (Da(I),Da−1(I))

leads to the following long exact sequences of kL I-modules:

· · · −→
⊕

J⊂I φ-stable

|J/φ|=a

R
L I
LJ

(
Hi

c(XJ , k)
)
−→ Hi(Da(I), k) −→ Hi(Da−1(I), k) −→ ···

Since kL I is a semi-simple algebra, we are in the following situation:

• any cuspidal composition factor of a kL I-module M is actually a direct

summand of M. Therefore we can naturally define the cuspidal part Mcusp

of M as the sum of all cuspidal submodules;

• if J 6= I then an induced module R
L I
LJ

(M) has a zero cuspidal part;

• by Poincaré duality (see Theorem 1.5) Hi(XI , k) is isomorphic to the k-dual

of the kL I-module H2r I−i(XI , k).

Consequently, we can argue as in [22] and use the following isomorphisms :

Hi
c(XI , k)cusp ≃ Hi(XI , k)cusp ≃ H2r I−i(XI , k)∗cusp ≃ H

2r I−i
c (XI , k)∗cusp

to deduce that Hi
c(XI , k) has a zero cuspidal part whenever i > r I .
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Finally, Hi
c(XI ,Λ)tor ⊗Λ k is a cuspidal submodule of Hi

c(XI ,Λ)⊗Λ k which is

also a submodule of Hi
c(XI , k) by the universal coefficient theorem (see Theorem

1.1). Therefore it must be zero if i 6= r I and Hi
c(XI ,Λ) is torsion-free. Note that

the cohomology group in middle degree is also torsion-free since XI is an irre-

ducible affine variety: we have indeed H
r I−1
c (XI , k) = 0 so that H

r I
c (XI ,Λ)tor = 0

by the universal coefficient theorem.

Remark 2.2. We have actually shown that the cohomology of a Deligne-Lusztig

variety associated to a Coxeter element is torsion-free whenever ℓ does not di-

vide the order of the corresponding finite reductive group. One can conjecture

that this should hold for any Deligne-Lusztig variety. Note that the assump-

tion on ℓ is crucial, otherwise an induced module can have cuspidal composition

factors. For example if ℓ divides Φh(q), then RG
T (k) = k[G/B] has at least one

cuspidal composition factor − denoted by S0 in [13].

As an immediate consequence of Proposition 2.1 and the isomorphism in [22,

Corollary 2.10], we obtain:

Corollary 2.3. The torsion part of any group Hi
c(X,Λ) is a cuspidal ΛG-module.

We can therefore reduce the problem of finding the torsion in the cohomology

of X to the problem of finding where cuspidal composition factors can occur in the

kG-modules Hi
c(X, k). This is the general approach that we shall use through-

out this paper. It is justified by the fact that if we assume that the modules

Hi
c(X,Λ) are torsion-free and that Conjecture (HLM) holds, then by [13] cuspidal

composition factors can occur only in Hr
c(X, k).

2.3 Reduction: from Y to X

In this section we shall give conditions on X ensuring that the principal part

of the cohomology of Y is torsion-free. Unlike Y, the variety X has a smooth

compactification (the compactification of Y constructed in [3] is only rationally

smooth in general). Therefore we can use duality theorems to study precise con-

centration properties of cuspidal modules in the cohomology of X (see Sections

2.4 and 3.1). We will not only restrict the cohomology of Y to the principal block

b of ΛG but also to the principal block b′ of ΛTcF . This is not a strong restriction

since the complexes bRΓc(Y,Λ) and bRΓc(Y,Λ)b′ are conjecturally isomorphic in

K b(ΛG-Mod). Note that this is already the case when the coefficient ring is K
(see [6, Theorem 5.24]). By Proposition 1.3 we have

RΓc(Y,Λ)b′ ≃ RΓc(Y,Λ)⊗ΛTℓ′ Λ ≃ RΓc(Y/Tℓ′ ,Λ)

where Tℓ′ is the ℓ′-component of the abelian group TcF . The quotient variety

Y/Tℓ′ will be denoted by Yℓ.

From now on, we shall work exclusively with Yℓ instead of Y . This will not

have any incidence on the results we have deduced from (W) and (S) in [13]. We

start by proving an analog of [22, Corollary 2.10] for the variety Yℓ:
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Proposition 2.4. Let I be a maximal proper φ-stable subset of ∆. Then there
exists an isomorphism of Λ-modules

Hi
c(UI\Yℓ,Λ) ≃ ∗RG

L I

(
Hi

c(Yℓ,Λ)
)
≃ Hi−1

c (XI ,Λ)⊕Hi−2
c (XI ,Λ).

Proof. Recall that the isomorphism UI\X≃XI ×Gm constructed in [22] is not G-

equivariant. We can check that it is nevertheless VI-equivariant, where VI =U∩
LI is a maximal unipotent subgroup of LI . We argue as in [2]: the isomorphism

cannot be lifted up to Yℓ but only to an abelian covering of this variety. Let

Y◦ be the preimage in Y of a connected component of U\Y. It is stable by the

action of U but not necessarily by the action of TcF which permutes transitively

the connected components of U\Y (since U\Y/TcF ≃ U\X is connected). If we

denote by H the stabilizer of the component U\Y◦ in TcF , we have the following

VI × (TcF )op-equivariant isomorphism

UI\Y◦×H TcF ≃ UI\Y. (2.5)

By Abhyankar’s lemma, we can now lift the Galois covering U\Y◦ −→ U\X ≃
(Gm)r up to a covering ̟ : (Gm)r −→ (Gm)r with Galois group

∏
µmi . Details of

this construction are given in [2] and [12]. We define the variety Ỹ using the

following diagram in which all the squares are cartesian:

Ỹ (Gm)r

UI\Y◦ U\Y◦

UI\X U\X ≃ (Gm)r

̟ /N

/
∏
µmi

π◦ /H π◦ /H

/N

(2.6)

Under the isomorphism UI\X ≃ XI ×Gm the map UI\X −→ (Gm)r decomposes

into πI × idGm where πI : XI −→ VI\XI ≃ (Gm)r−1 is the quotient map associated

to XI . In particular, we can form the following fiber product

ỸI (Gm)r−1

XI (Gm)r−1

/ ∏
i 6= j

µmi

/ ∏
i 6= j

µmi

πI
(2.7)

in order to decompose the variety Ỹ into a product Ỹ ≃ ỸI ×Gm which is compat-

ible with the group decomposition
∏
µmi ≃

(∏
i 6= j µmi

)
×µm j .

Recall from [2] that the cohomology of Gm endowed with the action of µm can

be represented by a complex concentrated in degrees 1 and 2:

0−→Λµm
ζ−1−→Λµm −→ 0
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where ζ is any primitive m-th root of 1. Such a complex will be denoted by

Z(µm)[−1] so that the cohomology of Z(µm) vanishes outside the degrees 0 and

1. As in [2, Section 3.3.2], we shall write ZTcF (µm) for Z(µm)⊗Λµm ΛTcF .

Using Proposition 1.3, we can now express the previous constructions in co-

homological terms. Equation 2.5 together with Diagram 2.6 leads to

RΓc(UI\Y,Λ) ≃ RΓc(UI\Y◦,Λ)
L
⊗ΛH ΛTcF

≃ RΓc(Ỹ,Λ)
L
⊗Λ

∏
µmi

ΛTcF

Using the isomorphism Ỹ ≃ ỸI ×Gm and the notation that we have introduced,

it can be written as

RΓc(UI\Y,Λ) ≃
(
RΓc(ỸI ,Λ)

L
⊗Λ

∏
i 6= j

µmi
ΛTcF

)
L
⊗
ΛTcF

(
RΓc(Gm,Λ)

L
⊗Λµm j

ΛTcF
)

≃
(
RΓc(ỸI ,Λ)

L
⊗Λ

∏
i 6= j

µmi
ΛTcF

)
L
⊗
ΛTcF ZTcF (µm j )[−1]

(2.8)

in the derived category Db(Mod-ΛTcF ).

In general, the cohomology groups of the complex ZTcF (µm j) are endowed

with a non-trivial action of TcF since the map µm j −→TcF is not surjective. One

can actually compute explicitly the image of this map: by [2, Proposition 3.5] it is

precisely the group Nc(Yc,cI ) (see [1, Section 4.4.2] for the definition). Therefore

we obtain

H0(ZTcF (µm j ))=H1(ZTcF (µm j )) ≃ Λ
[
TcF /Nc(Yc,cI )

]
.

By [1, Proposition 4.4], the quotient TcF /Nc(Yc,cI ) is isomorphic to TcI F /NcI (Yc,cI )

which has order prime to ℓ. In particular, the image of the map µm j −→ TcF

contains the ℓ-Sylow subgroup of TcF and the map µm j −→ TcF /Tℓ′ is definitely

onto. Since ZTcF (µm j ) fits into the following distinguished triangle in Db(ΛTcF -

Mod)

Λ
[
TcF /Nc(Yc,cI )

]
−→ ZTcF (µm j)−→Λ

[
TcF /Nc(Yc,cI )

]
[−1] 

we deduce that the coinvariants under Tℓ have a relatively simple shape

Λ−→ ZTcF (µm j )
L
⊗ΛTℓ′ Λ−→Λ[−1] (2.9)

Together with the expression of RΓc(ỸI ,Λ)
L
⊗Λ

∏
i 6= j

µmi
ΛTcF given in Formula 2.8,

this triangle yields

RΓc(ỸI ,Λ)
L
⊗Λ

∏
i 6= j

µmi
Λ[−1]−→RΓc(UI\Yℓ,Λ)−→RΓc(ỸI ,Λ)

L
⊗Λ

∏
i 6= j

µmi
Λ[−2] 

and then simply

RΓc(XI ,Λ)[−1]−→RΓc(UI\Yℓ,Λ)−→RΓc(XI ,Λ)[−2] 

by definition of ỸI .
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We claim that the connecting maps Hi−2
c (XI ,Λ) −→ Hi

c(XI ,Λ) coming form

the long exact sequence associated to the previous triangle are actually zero.

Since the triangle 2.9 splits over K , the scalar extension of these morphisms are

zero. But by Proposition 2.1 the modules Hi
c(XI ,Λ) are torsion-free, so that the

connecting morphisms are indeed zero over Λ. Consequently, we obtain short

exact sequences

0−→Hi−1
c (XI ,Λ)−→Hi

c(Yℓ,Λ)UI −→Hi−2
c (XI ,Λ)−→ 0

which finishes the proof.

Corollary 2.10. The torsion part of any cohomology group Hi
c(Yℓ,Λ) is a cuspi-

dal ΛG-module.

As a consequence, the assumption (S) holds for Yℓ if every cuspidal module in

the block occurs in the cohomology group in middle degree only. By construction

of Yℓ, it is actually sufficient to consider the cohomology of X:

Corollary 2.11. Assume that one of the following holds:

(1) The cohomology of X over Λ is torsion-free and Conjecture (HLM) holds.

(2) Cuspidal composition factors occur in Hi
c(X, k) for i = r only.

Then the cohomology of Yℓ over Λ is torsion-free.

Proof. We have already mentioned at the end of Section 2.2 that assertions (1)

and (2) are equivalent. Denote by πℓ : Yℓ −→ X the quotient map by the ℓ-Sylow

subgroup of TcF . The push-forward of the constant sheaf kYℓ
on Yℓ is obtained

from successive extensions of constant sheaves kX:

(πℓ)∗(kYℓ
) ≃

kX

kX
...

kX

·

In the derived category, the complex RΓc(Yℓ, k) = RΓc(X, (πℓ)∗(kYℓ
)) can also be

obtained from extensions of RΓc(X, k)’s. In other words, there exists a family of

complexes RΓc(Yℓ, k) = C0,C1, . . . ,Cn = RΓc(X, k) that fit into the following dis-

tinguished triangles in Db(kG-Mod-kTℓ):

C i+1 −→ C i −→RΓc(X, k) 

If we apply the functor RHom•
kG(P,−) to each of these triangles, we can de-

duce that the complexes RHom•
kG(P,C i) are concentrated in degree r whenever

RHom•
kG(P,Cn) is. Taking P to be the projective cover of any cuspidal kG-

module, we conclude that cuspidal composition factors of the cohomology of Yℓ

can only occur in middle degree.
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2.4 On the assumption (W) for X

We give here a proof of the analog of the assumption (W) for the Deligne-

Lusztig variety X, using the smooth compactification X constructed in [10].

Proposition 2.12. If λ is an eigenvalue of Fδ on Hr
c(X,K ), then the Λ-modules

Hi
c(X,Λ)(λ) are all torsion-free.

Proof. In the line with [22], we shall denote by D = Dr−1(∆) the complement of

X in X. Let I be a φ-stable subset of ∆. By [22, Section 7], the generalized (λ)-

eigenspaces of Fδ on Hi
c(XI ,K ) are zero whenever i 6= |I/φ|. By Proposition 2.1,

this remains true for cohomology groups with coefficients in k. From the long

exact sequences

· · · −→
⊕

I φ-stable
|I/φ|=a

RG
L I

(
Hi

c(XI , k)
)
−→Hi

c(Da(∆), k)−→Hi
c(Da−1(∆), k)−→ ··· (2.13)

we deduce that Hi
c(D, k)(λ) is zero if i ≥ r. Consequently, for all i > r we have

Hi
c(X, k)(λ) ≃ Hi(X, k)(λ).

The eigenvalue µ= q2rλ−1 is a "maximal" eigenvalue of Fδ and as such does

not occur in the cohomology of the varieties XI for proper subsets I. From the

previous long exact sequences we deduce that the generalized µ̄-eigenspace of Fδ

on Hi
c(D, k) is always zero. Since X is a smooth variety, we can apply Poincaré

duality (see Thereom 1.5) in order to obtain the following isomorphisms:

Hi
c(X, k)(λ) ≃ Hi(X, k)(λ) ≃

(
H2r−i(X, k)(µ)

)∗ ≃
(
H2r−i

c (X, k)(µ)

)∗
.

Since X is an irreducible affine variety, the cohomology of X vanishes outside the

degrees r, . . . ,2r. This proves that Hi
c(X, k)(λ) = 0 whenever i > r, and the result

follows from the universal coefficient theorem.

Remark 2.14. One cannot deduce that the assumption (W) holds for Yℓ using

this result. The method that we used in the proof of Corollary 2.11 does not

preserve the generalized eigenspaces of Fδ.

Note however that Bonnafé and Rouquier have constructed in [3] a compacti-

fication Yℓ of Yℓ such that YℓrYℓ ≃XrX. This compactification is only rationally

smooth in general, but if it happened to be k-smooth, the previous method would

extend to Yℓ and finish the proof of the conjecture of Hiss-Lübeck-Malle.

3 Cuspidal composition factors in H•
c(X,k)

We have reduced the proof of the assumption (S) to showing that the kG-

modules Hi
c(X, k) have no cuspidal composition factors unless i = r. In other

words, the cohomology of RHom•
kG

(
PL,RΓc(X, k)

)
should vanish outside the de-

gree r whenever L is cuspidal.
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Throughout this section and unless otherwise specified, we shall alway as-

sume that Conjecture (HLM) holds for (G,F) (which is known to be true ex-

cept for the groups of type E7 or E8). In that case, the above result can be

deduced from the characteristic zero case if we can show that the cohomology of

RHom•
ΛG

(
PL,RΓc(X,Λ)

)
is torsion-free. Indeed, the irreducible unipotent com-

ponents of [PL] are the characters χmζ
’s, and they occur in the cohomology of X

in middle degree only. We shall divide the proof according to the depth of χmζ
: if

χmζ
is cuspidal, we prove that the contribution of PL to the cohomology of X and

its compactification X are the same. In the case where χmζ
is not cuspidal, it is

induced from the cohomology of a smaller Coxeter variety and we show that PL

can be computed in terms of this cohomology, which we know to be torsion-free.

3.1 Harish-Chandra series of length 1

We start by dealing with the case of cuspidal kG-modules that occur as ℓ-

reductions of cuspidal unipotent characters. By Conjecture (HLM), these corre-

spond to subtrees of the Brauer tree of the form

χexc χ
L

where χ is a cuspidal unipotent character and L is the unique composition factor

of the ℓ-reduction of χ. By [22, Proposition 4.3], the character χ occurs only in

the cohomology of X in middle degree. The following is a modular analog of this

result.

Proposition 3.1. Assume that Conjecture (HLM) holds for (G,F). Let χ be a
cuspidal character of G occurring in Hr

c(X,K ). The ℓ-reduction of χ gives a unique
simple cuspidal kG-module and it occurs as a composition factor of Hi

c(X, k) for
i = r only.

Proof. We keep the notation used in the course of the proof of Proposition 2.12:

D is the complement of X in the compactification X. Recall that the cohomology

of D can be computed in terms of induced characters afforded by the cohomology

of smaller Coxeter varieties. Since χ is cuspidal, we can therefore use the long

exact sequences 2.13 to show that χ does not occur in H•
c(D,K ).

Denote by L the unique composition factor of the ℓ-reduction of χ. By Con-

jecture (HLM), L does not appear in the ℓ-reduction of any other unipotent char-

acter of the block. Therefore, using Proposition 2.1 and the long exact sequences

2.13 again, we deduce that L cannot occur as a composition factor of H•
c(D, k). In

particular, if we denote by PL ∈ kG-mod the projective cover of L then

HomkG
(
PL,Hi

c(X, k)
)
≃ HomkG

(
PL,Hi

c(X, k)
)
.

Moreover, since duality preserve cuspidality, the same argument applies for the

dual of the cohomology of D. Subsequently, using Poincaré duality, we obtain
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HomkG
(
PL,Hi

c(X, k)
)
≃ HomkG

(
PL,H2r−i

c (X, k)∗
)
≃ HomkG

(
PL,H2r−i

c (X, k)∗
)
.

Now the cohomology of the irreducible affine variety X vanishes outside the de-

grees r, . . . ,2r. It follows that HomkG
(
PL,Hi

c(X, k)
)
= 0 whenever i > r.

3.2 Inducing nilpotent orbits

We now turn to the case of cuspidal kG-modules occurring as composition fac-

tors of the ℓ-reduction of a non-cuspidal unipotent character. If we assume that

Conjecture (HLM) holds, then by the results of [13] the situation corresponds to

branches of the following form:

χexc χmζL
χmζ+1 χMζ−1 χMζ

where mζ < Mζ.

At the level of characters, χmζ
is obtain by inducing a cuspidal unipotent

character occurring in the cohomology of a smaller Coxeter variety XI . Un-

fortunately, the projective cover PL of L cannot be constructed the same way.

However, it turns out to be a direct summand of a generalized Gelfand-Graev

module attached to some unipotent class induced from LI . The purpose of this

section is to show that for these specific classes, the contribution of the gener-

alized Gelfand-Graev module in the cohomology of X can be obtained from the

cohomology of XI .

Throughout this section and unless otherwise specified, we shall always as-

sume that p is a good prime number. This restriction is necessary for using the

results in Section 1.3 on nilpotent orbits.

3.2.1. Induction of orbits. Recall that for any nilpotent LI-orbit OI in lI , there

exists a unique nilpotent G-orbit O such that O ∩ (OI +uI) is dense in OI +uI

where uI = LieUI [25]. The orbit O is called the induction of OI from LI to G

and will be denoted by IndG
LI

OI . Note that it is clearly F-stable whenever OI is.

In our situation, the special nilpotent orbit associated to χmζ
turns out to be the

induction of the orbit associated to the corresponding cuspidal character:

Lemma 3.2. Let I ⊂∆ be a φ-stable subset of simple roots and χI be a cuspidal
character occurring in H

r I
c (XI ,K ). If χ is the (unique) irreducible component of

RG
L I

(χI) occuring in Hr
c(X,K ) then

O(χ) = IndG
LI

O(χI).

Proof. Let E ∈ IrrW (resp. E I ∈ IrrWI) be the unique special representation such

that the Alvis-Curtis dual DG(χ) (resp. DL I (χI)) has a non-zero scalar product

with the almost character RE (resp. RE I ). Then by definition E (resp. E I) is the

image of (O(χ),1) (resp. (O(χI),1)) under the Springer correspondence (see [24,

Section 11] or Section 1.3). We claim that E is the unique special component of
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JW
WI

E I . Using [11, Theorem 8.11] and [], it is easy to check that E is a component

of IndW
WI

E I since
〈
RResW

WI
E ;χI

〉
L I

=
〈
RE ;RG

L I
(χI)

〉
G ≥

〈
RE ;χ∗〉

G > 0.

where χ∗ is the irreducible character of G such that DG(χ) = ±χ∗ (note that

χ∗
I = χI since χI is cuspidal).

Recall that the irreducible components of RG
L I

(χI) are labelled by the irre-

ducible characters of the normalizer of χI in WI . Now by the observation made

in [22, Section 7.8], the character χ∗ correspond to the trivial character of the

normalizer of χI in NW (WI)/WI (whereas χ corresponds to the signature). In

particular, aχ∗ = aχI . This forces E to be a component of JW
WI

E I and the result

follows from [25, Theorem 3.5].

3.2.2. Good representatives. In general, there is no easy way to deduce the

weighted Dynkin diagram of IndG
LI

OI from the diagram of OI. However, for the

specific orbits we are interested in, one can observe (see Table 1) that they are

obtained by adding the weight 2 to any simple root in ∆rI. Using the particular

shape of these diagrams we can find nice representatives of the induced orbit:

Lemma 3.3. Let O be an F-stable nilpotent G-orbit with weighted Dynkin di-
agram d. Let I be a φ-stable subset of ∆ and denote by J the complement set.
Assume that

(i) the restriction of d to I is the weighted Dynkin diagram of a nilpotent LI-
orbit OI;

(ii) for all γ ∈ J, d(γ)= 2. In other words, the restriction of d to J is the weighted
Dynkin diagram of the regular nilpotent LJ-orbit;

(iii) if d′ is any connected component of the restriction of d to J, then d′ is
connected to d|I as follows:

0 0

α1 α2

drd′

0 2

αn β

d′

where all the roots adjacent to α1 are in the set {γ ∈ I |d(γ) > 0}∪ {α2,β}. In
particular, sαi acts trivially on any other connected component of d|J .

Then O is the induction of OI. Moreover, any nilpotent element N ∈OF is conju-
gated by G to an element NI +NJ where NI ∈OI ∩u(2) and NJ ∈ uI is such that
the projection of NJ to g(2) is a regular nilpotent element of lJ .

Proof. We keep the notation introduced in Section 1.3. The Lie algebra u(2) is

the subalgebra of u = LieU generated by the vectors eγ for d(γ) ≥ 2. Note that

the assumption (ii) forces uI ⊂ u(2). We can therefore consider the subvariety

Z =OI ∩u(2)+uI of u(2). We claim that Z is stable by the action of the parabolic

group Pd = 〈T,Uγ |d(γ)≥ 0〉. Indeed,
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− uI is stable by the action of PI and Pd ⊂PI by (ii);

− OI ∩u(2) is stable by Ld ⊂LI and LI ∩U1;

− for all x ∈ lI ∩u, we have UI · x ∈ x+uI and therefore UI · (OI ∩u(2)) ⊂ Z.

Now, by (i) the variety Z is dense in u(2). In particular, it must contain the

unique Pd-orbit which is dense in u(2) so that we have

O∩u(2) ⊂ OI ∩u(2)+uI.

We deduce that any element of OF is conjugated by G to an element NI + NJ

with NI ∈OI ∩u(2) and NJ ∈ uI .

For simplicity, we assume that F acts trivially on d, although this assump-

tion is actually unnecessary. Let π : u(2)−→ g(2) be the canonical projection. The

image of NJ by π involves the vectors eβ for β ∈ J but also some of the eα+β for

α∈ I such that d(α)= 0. By the assumption (iii), the contribution of a connected

component d′ of d|J to the element π(NJ ) can be written

n∑

i=1

λieαi+···+αn+β+µeβ+ linear combination of some eγ’s with γ ∈ J

If one the λi ’s is non-zero, then by applying sαn · · · sαi we can assume that µ 6= 0.

In that case, we can conjugate π(NJ) by
∏

i uαi+···+αn(±λi/µ) to get rid of the λi ’s.

Moreover, the assumption (iii) ensures that none of these operations affects the

contribution to π(NJ ) of any other connected component of d|J . Consequently,

NJ is conjugated by Ld ⊂ L I to a element N ′
J such that π(N ′

J ) ∈ lJ .

It remains to show that π(N ′
J ) is regular as an element of lI . Let γ ∈ J. If eγ

has a zero coefficient in π(N ′
J) then so has any element in Ld ·π(N ′

J ) since π(N ′
J )

involves only simple roots. Now, the property of Pd ·(NI +N ′
J) to be dense in u(2)

forces Ld ·π(N ′
J ) to be dense in uI ∩g(2). As a consequence, the coefficient of all

the eγ’s for γ ∈ J must be non-zero and therefore π(N ′
J ) is regular.

Remark 3.4. The properties (i) and (ii) are not sufficient for finding such rep-

resentatives. For example, the subregular orbit in type A3 corresponds to the

diagram
2 0

α β γ

2

and hence is the induction of the trivial orbit in lβ. However, any element of

the form xeα + yeγ + zeα+β+γ is contained in an orbit strictly smaller than the

subregular.

Table 1 lists the special orbits O(χI) associated to non-trivial cuspidal unipo-

tent characters χI occuring in the cohomology of XI (first three columns), to-

gether with the orbits that are induced from it (last three columns). We have

omitted the cuspidal characters of groups of maximal semi-simple rank for obvi-

ous reasons, but also the cuspidal character of type 2B2 since it corresponds to

the case of a bad prime. Following [8, Chapter 13], we have labelled the orbits

by appropriate combinatorial objects:
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• Type An: partitions λ of n+1.

• Type Bn with p 6= 2: pairs of partitions (α,β) with 2|α|+ |β| = 2n+1 such

that all parts of β are odd and distinct.

• Type Cn with p 6= 2: pairs of partitions (α,β) with |α|+ |β| = n such that all

parts of β are distinct.

• Type Dn with p 6= 2: pairs of partitions (α,β) with 2|α|+ |β| = 2n such that

all parts of β are odd and distinct.

Using the table one can readily check that all of the induced orbits satisfy the

assumptions of Lemma 3.3. More generally, it is likely to be the case for any

cuspidal orbit (in the sense of [16]).

3.2.3. Generalized Gelfand-Graev modules in RΓc(X). Using the above spe-

cific representatives, we shall now compute the contribution of the corresponding

generalized Gelfand-Graev module in the cohomology of X.

Proposition 3.5. Let O be an F-stable nilpotent G-orbit in g with weighted
Dynkin diagram d. Let I ⊂ ∆ be a φ-stable set of simple roots satisfying the
assumptions of Lemma 3.3. Then for all N ∈ OF ∩u(2), we have the following
isomorphism in Db(Λ-Mod):

RHom•
ΛG

(
ΓN ,RΓc(X,Λ)

)
≃RHom•

ΛL I

(
ΓprlI

(N),RΓc(XI ,Λ)
)
[r I − r].

Proof. We denote by J the complement set of I in ∆. Recall that the generalized

Gelfand-Graev representation does not depend on the Pd-orbit of N. Since Pd ⊂
PI, we can assume using Lemma 3.3 that N = NI +NJ with NI ∈ OI ∩u(2) and

NJ ∈ uI is such that the image of NJ in g(2) is a regular element of lJ .

The generalized Gelfand-Graev representation is a projective module ob-

tained by inducing a one-dimensional module ΛN from U1.5 to G, where U1.5

acts on ΛN via a linear character ϕ̃N . Note that by construction, ϕ̃NI is the re-

striction of ϕ̃N to the group U1.5 ∩L I. The unipotent subgroup V = UI ∩UJ is

a normal subgroup of U, and the quotient V\U is isomorphic to VI ×VJ as an

algebraic group (recall that VI = U∩LI and VJ = U∩LJ ). We shall denote by

πV the composition of this isomorphism with the canonical projection U։V\U.

By Remark 1.6 and the particular shape of NJ , it is clear that the restriction of

ϕ̃N to V is trivial. Moreover, the induced linear character on V\U1.5 decomposes

into ϕ̃NI ⊠ψ where ψ is a regular character of VJ (see [2, Definition 2.1.1]).

Let us study the geometric counterpart of this decomposition. By [22, Theo-

rem 2.6], there exists a U-equivariant isomorphism of varieties

X ≃
{
u ∈U

∣∣ u−1F(u)∈
∏

α∈I
uα(Gm)

∏

β∈J
uβ(Gm)

}
.

The method used in [12, Proposition 1.2] to describe the quotient of B by the

group D(U)F extends to any unipotent normal subgroup of B instead of D(U)

(see [14, Section 2.3.2] for more details). Using the isomorphism V\U≃VI ×VJ ,

we can therefore realize the quotient of the Deligne-Lusztig variety by V as:
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V\X ≃



(ū,v1,v2) ∈U×VI ×VJ

∣∣∣∣∣∣

πV(ū)= v−1
1 F(v1)v−1

2 F(v2)

ū ∈
∏

α∈I
uα(Gm)

∏

β∈J
uβ(Gm)



 .

This can be rephrased in the following VI ×VJ-equivariant isomorphism:

V\X ≃ XLI (cI)×XLJ (cJ) ≃ XI ×XJ . (3.6)

Denote by eN (resp. eNI , resp. eNJ ) the idempotent of ΛU1.5 corresponding

to ϕ̃N (resp. to ϕ̃NI , resp. to ψ). By adjunction, we obtain in the derived category

Db(Λ-Mod):

RHom•
ΛG

(
ΓN ,RΓc(X,Λ)

)
≃ RHom•

ΛG

(
IndG

U1.5
ΛN ,RΓc(X,Λ)

)

≃ RHom•
ΛU1.5

(
ΛN ,RΓc(X,Λ)

)

RHom•
ΛG

(
ΓN ,RΓc(X,Λ)

)
≃ eNRΓc(X,Λ).

Now the restriction of ϕ̃N to V is trivial and hence eN must act as zero on any

non-trivial ΛV -module. Using Proposition 1.3 together with Formula 3.6, we

obtain

eNRΓc(X,Λ) ≃ eNRΓc(V\X,Λ) ≃ eNI RΓc(XI ,Λ)⊗ eNJ RΓc(XJ ,Λ).

We use [2, Theorem 3.10] to conclude: since ψ is a regular character of VJ , the

complex eNJ RΓc(XJ ,Λ) is quasi-isomorphic to Λ[−rJ ] where rJ = r − r I is the

dimension of XJ .

The main consequence of this proposition is the following: if I is a proper sub-

set of ∆ then the cohomology of the complex RHom•
ΛG

(
ΓN ,RΓc(X,Λ)

)
is torsion-

free. Together with Theorem 1.7 it gives:

Corollary 3.7. Assume that Conjecture (HLM) holds. Assume moreover that p
is a good prime number so that Theorem 1.7 holds. Let L be the unique simple
cuspidal kG-module that occur in any ℓ-reduction of χmζ

. Then L occurs as a
composition factor of Hi

c(X, k) for i = r only.

Proof. By [22], there exists a φ-stable subset I of ∆ and an irreducible cuspidal

component χI of H
r I
c (XI ,K ) such that χmζ

is a component of RG
L I

(χI). By Lemma

3.2, the special nilpotent orbit O(χmζ
) is induced from the orbit associated to χI .

Moreover, we can check in Table 1 that it satisfies the assumptions of Lemma 3.3.

Therefore, for any N ∈ O(χmζ
)F the complex RHom•

ΛG

(
ΓN ,RΓc(X,Λ)

)
is torsion-

free by the above proposition.

Since p is assumed to be good for G, Theorem 1.7 ensures that there exists a

nilpotent element N ∈O(χmζ
)F such that

• χmζ
is an irreducible component of [ΓN ] ;

• for all i = mζ + 1, . . . , Mζ, the character χi does not occur in [ΓN] (using

the observation made in [22, Section 7.8] one can check for example that

aχi < aχmζ
).
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We deduce that the projective cover PL of L in ΛG-mod is a direct summand of

the projective module ΓN . Indeed, it has character [PL]= χexc+χmζ
and any other

projective indecomposable module that involves χmζ
must also involve χmζ+1.

In particular, the cohomology of RHom•
ΛG

(
PL,RΓc(X,Λ)

)
is also torsion-free and

hence vanishes outside the degree r by [22, Proposition 4.3].

Remark 3.8. The particular case where χmζ
= StG and I =∅ has been already

solved in [2]. It corresponds to the regular orbit, which is induced from the trivial

T-orbit. in that case, the generalized Gelfand-Graev representation is an usual

Gelfand-Graev module and no restriction on p is needed.

3.3 Main results

We now have all the ingredients for proving that there is no torsion in the co-

homology of Yℓ. Recall that we have shown that the torsion part of the cohomol-

ogy is necessarily a cuspidal ΛG-module (see Corollary 2.10). By the universal

coefficient theorem, it is therefore sufficient to prove that the module Hi
c(Yℓ, k)

has no cuspidal composition factors if i > r. By Corollary 2.11, this property

holds whenever it holds for the Deligne-Lusztig X. In the framework of derived

categories, we are then reduced to show that for any cuspidal kG-module L lying

in the block, the complex

RHom•
ΛG

(
PL,RΓc(X, k)

)

is quasi-isomorphic to a complex concentrated in degree r. If L happens to be a

composition factor of the ℓ-reduction of a cuspidal unipotent character, then by

Proposition 3.1 it cannot occur outside the cohomology in middle degree. Corol-

lary 3.7 deals with the case where L is a composition factor of the ℓ-reduction of

an induced character, but we have to assume that both Theorem 1.7 and Conjec-

ture (HLM) hold. This excludes only the Ree groups of type 2F4 but gives some

conditions in other types. Here is the precise result that we obtain:

Theorem 3.9. Let G be a quasi-simple group. According to the type of (G,F), we
make the following assumptions:

• An, 2An, B2, 2B2, D4, 2Dn, 3D4, G2 and 2G2: no restriction on p.

• Bn, Cn, Dn, E6, 2E6 and F4: p is good.

• E7 and E8: p is good and Conjecture (HLM) holds.

Then in the set-up of Section 2.1, the Λ-modules bHi
c(Yℓ,Λ) are torsion-free.

Remark 3.10. As mentioned in Remark 1.8, Lusztig has a general proof of The-

orem 1.7 when p is a good prime number but he has not published it. However,

the results in [24] and [20] include the case of large characteristic and the case

of split groups of type An, En, F4 and G2.

We deduce from [13, Theorem 4.12] that in any of the above cases, the geo-

metric version of Broué’s conjecture holds. This extends significantly the previ-

ous results of Puig [28] (for ℓ |q−1), Rouquier [29] (for ℓ |φh(q) and r = 1) and

Bonnafé-Rouquier [2] (for ℓ |φh(q) and (G,F) of type An).
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Theorem 3.11. Let (G,F) be a quasi-simple group satisfying the assumptions of
Theorem 3.9 and c be a Coxeter element of (W ,F). Let ℓ be a prime number not
dividing the order of WF and satisfying one of the two following assumptions,
depending on the type of (G,F):

• "non-twisted" cases: ℓ divides Φh(q);

• "twisted" cases: ℓ divides the order of Tc.

Then the complex bRΓc(Y(ċ),Λ)b′ induces a splendid and perverse equivalence
between the principal ℓ-blocks bΛG and b′

ΛNG(Tc)

Using [13, Theorem 4.14] we also deduce the planar embedding of the Brauer

tree of the principal ℓ-block for groups of type 2G2 and F4 with p 6= 2,3 (compare

with [17] and [18]).

Theorem 3.12. (i) Assume that ℓ is odd and divides q2 − q
p

3+ 1. Then the
planar embedded Brauer tree of the principal ℓ-block of the Ree group 2G2(q2) is

StG 1G

2G2[ξ]

2G2[ξ]

2G2[i]

2G2[−i]

where i= ξ3 and ξ is the unique 12th root of unity in Λ
× congruent to q modulo ℓ.

(ii) Assume that ℓ 6= 2,3 and divides q4 − q2 +1. Assume moreover that p 6= 2,3.
Then the planar embedded Brauer tree of the principal ℓ-block of the simple
group of type F4(q) is

StG φ4,13 φ′′
6,6 φ4,1 1GB2,1 B2,r B2,ε

F4[i]

F4[−i]

F4[θ]

F4[θ2]

where θ (resp. i) is the unique third (resp. fourth) root of unity in Λ
× congruent

to q4 (resp. q3) modulo ℓ.
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Table 1: Induced orbits

Type Weighted Dynkin diagram Label Type Weighted Dynkin diagram Label

2A2
1 1

[1,2] 2A2n
1 12 2

[1,2n]

2A5

1 1 0 1 1
[1,2,3]

2A2n+1
1 1 0 1 12 2

[1,2,2n−1]

2E6

1 1 0 1 1

2

D5(a1)

B2
0

<
2

[1] ; [3]

Bn
0

<
2 2 2

[1] ; [2n−1]

Cn
2

>
0 2 2

[] ; [1, n−1]

D4

0

0
2 0

[1,3] ; []

Dn

0

0
2 0 2

[1] ; [3,2n−5]

En

2 0 2 0 2

0

En(a3)
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Table 1: Induced orbits (continued)

Type Weighted Dynkin diagram Label Type Weighted Dynkin diagram Label

E6

0 0 2 0 0

0

D4(a1)

E7

0 0 2 0 0 2

2

E7(a5)

E8

0 0 2 0 0 2 2

0

E8(b5)

E7

1 0 1 0 1 0

0

A4 + A1 E8

1 0 1 0 1 0 2

0

E6(a1)+ A1
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