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Abstract. In ruin theory, the univariate model may be found too restrictive to describe accu-
rately the complex evolution of the reserves of an insurance company. In the case where the
company is composed of multiple lines of business, we compute asymptotics of finite-time ruin
probabilities. Capital transfers between lines are partially allowed. When claim amounts are
regularly varying distributed, several forms of dependence between the lines are considered.
We also study the optimal allocation of a large global initial reserve in order to minimize the
asymptotic ruin probability.

Keywords: Multivariate finite-time ruin probabilities; multivariate regular variation; capital
transfer; optimal allocation.

1 Introduction
This paper deals with an insurance company with multiple lines of business. Each line is
assumed to be exposed to catastrophic risks like earthquakes, floods or terrorist attacks. Such
risks may affect several lines of the company at the same time, so dependence between the lines
is considered. Each line may correspond to a business in a specific country or to a type of policy
offered by the company. Capital transfers between the lines are strictly regulated. Nevertheless,
we assume here that a piece of the amount of each line is allowed to recover losses of an another
one.
Our study is done in a finite-time framework. Actually, insurance regulation is based on 1-year
time horizon in the standard formula, and on finite-time horizon usually comprised between 1
and 10 years in internal models.

Suppose now that the company owns a global initial reserve to share between the lines. Due to
the specific risk exposition of each line, the choice of the allocation may have a huge impact of
its solvency. In Loisel (2005) and Biard et al. (2010), this optimal allocation problem is concerned
with the minimization of the expected time-integrated negative part of a risk process. In this
paper, we focus on the finite-time multivariate ruin probability for our minimization problem.
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In risk theory, multivariate context has been studied scarcely compared to the univariate one.
For the univariate setting, the reader is referred e.g. to the comprehensive books by Rolski
et al. (1999), Asmussen and Albrecher (2010), Goovaerts et al. (2001) and the references therein.
Concerning the multivariate setting, light-tailed case is studied in Collamore (1996, 2002) and a
discrete approach is investigated in Picard et al. (2003). In this paper, we are concerned by the
heavy-tailed case, studied previously by Hult and Lindskog (2006b,a).

The paper is organized as follows. In Section 2, we present the framework of the paper and we
define the quantities under interest. Section 3 deals with the computation of the asymptotics of
the multivariate finite-time ruin probability in context of dependence and Section 4 investigates
optimal allocation problems.

2 Framework
Throughout the paper, vectors are denoted by bold letters. For example, x =

(
x(1), . . . , x(d)

)
∈ Rd.

Moreover, we define 0 = (0, . . . , 0), 1 = (1, . . . , 1), ei the unit vector whose ith component is equal
to 1 and for 1 ≤ k ≤ d − 1, 1k =

∑k
i=1 ei.

2.1 Multivariate Regular Variation
In order to describe losses of catastrophic risks, we choose the heavy-tailed class of regularly
varying random variables. The typical example of these kinds of random variables is the Pareto
distribution. This random variable class well describes catastrophic risks in the sense that, in
the case of large initial reserve, the ruin of the company may be only caused by one big loss.

Definition 2.1 A function L on (0,∞) is slowly varying at∞ if

lim
u→∞

L(tu)
L(u)

= 1, for every t > 0.

We write L ∈ R0.

Definition 2.2 (Univariate Regular Variation) AR-random variable X is regularly varying if there
exists α > 0, such that

lim
u→∞

P(X > tu)
P(X > u)

= t−α, for every t > 0,

or equivalently if,
P(X > u) = u−αL(u),

for some L ∈ R0.
We write X ∈ R−α.

Definition 2.3 (Multivariate Regular Variation) An Rd-valued random vector

X = (X(1), . . . ,X(d))

with unbounded support is regularly varying if there exists a nonzero Radon measure µ defined onB(R
d
)

with µ(R
d
\ {0}) = 0 such that

lim
u→∞

P (X ∈ uA)
P(|X| > u)

= µ(A), (2.1)
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for every Borel set A ∈ Rd bounded away from 0 (i.e. 0 < Ā) with µ(∂A) = 0.

We can also use an equivalent definition using the spectral measure.
An Rd-valued random vector

X = (X(1), . . . ,X(d))

with unbounded support is regularly varying if there exists an α > 0 and a probability measure σ on the
unit sphere Sd−1 = {x : |x| = 1} such that

lim
u→∞

P (|X| > xu,X/|X| ∈ S)
P(|X| > u)

= x−ασ(S) , (2.2)

for every x > 0 and Borel sets S ⊂ Sd−1. The probability measure σ is called the spectral measure of X.

As a consequence, we have for every u > 0 and Borel set A ∈ Rd bounded away from 0

µ(uA) = u−αµ(A) .

We write X ∈ MR−α,µ.

For a general presentation of heavy-tailed theory, the reader is referred e.g. to the book of
Resnick (2007).

2.2 The model
To describe the reserve of an insurance company with d lines of business, we consider a
multivariate risk process (Rt)t≥0. Denote by u > 0 the global initial reserve and by a ∈ (0, 1)d the
vector which describes the part of u which is allocated to each branch. As a consequence, we
have a(1) + . . . + a(d) = 1. The premium rates are captured in c ∈ (0,∞)d. The aggregate claim
amount process (St)t≥0 is assumed to be a multivariate Poisson process, that is to say

St =

N(t)∑
i=1

Xi ,

where N(t) is a Poisson process with parameter λ > 0 and (Xi)i≥1 is a Rd
+-valued independent

and identically distributed sequence. We note by X their common distribution.
Hence, we have, for t ≥ 0,

Rt = ua + ct −
N(t)∑
i=1

Xi . (2.3)

Throughout this paper, X will be regularly varying for some α > 1 and measure µ.

2.3 Multivariate finite-time ruin probability
In the univariate setting, the finite-time ruin probability is defined as, for u,T > 0,

ψ(u,T) = P (∃t ∈ [0,T] ,Rt < 0|R0 = u) = P

sup
[0,T]

(St − ct) > u

 .
In the multivariate case, there is not a unique definition. For example in Cai and Li (2005, 2007),
we can find several definitions, depending on the interest. For u,T > 0 let us define
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• the probability that the sum of the line reserves becomes negative before T,

ψsum(u,T) = P

sup
[0,T]


d∑

j=1

(S( j)
t − c( j)t)

 > u

 ; (2.4)

• the probability that all the line reserves become negative before T,

ψand(u,T) = P

 d⋂
j=1

sup
[0,T]

(S( j)
t − c( j)t) > a( j)u


 ; (2.5)

• the probability that one of the line reserve becomes negative before T,

ψor(u,T) = P

 d⋃
j=1

sup
[0,T]

(S( j)
t − c( j)(t)) > a( j)u


 ; (2.6)

• and the probability that all the line reserves are negative at a given time before T,

ψsim(u,T) = P
(
∃t ∈ [0,T] ,∀ j ∈ [1, d] ,R( j)

t < 0
)
. (2.7)

Here, we investigate the definition proposed by Hult and Lindskog (2006a). For β ∈ [0, 1], let

Fβ =

x : β
d∑

k=1

(
x(k)
∨ 0

)
< −

d∑
k=1

(
x(k)
∧ 0

) , (2.8)

where ∨ = min and ∧ = max. For T > 0, we define the multivariate finite-time ruin probability
ψd,β(u,T) as the probability that the risk reserve process Rt hits Fβ at some time t before T.
Explicitly, for u,T > 0, we have

ψd,β(u,T) = P
(
∃t ∈ [0,T], Rt ∈ Fβ

)
. (2.9)

Remark 2.4 The ruin set Fβ corresponds to the possibility to transfer from positive line a fraction
β ∈ [0, 1] to cover a negative position of another line. For β = 0, no transfer is allowed and ψd,0 = ψor
and for β = 1, transfer is allowed without restrictions and ψd,1 = ψsum.

In Figure 1, the set Fβ is represented for β =0, 1/2 and 1 in the the two-dimensional case.

The following result, from Hult and Lindskog (2006a), gives the asymptotic of the finite-time
multivariate ruin probability for a large initial reserve.

Proposition 2.5 (Hult and Lindskog (2006a)) For a risk process (Rt)t≥0 given by (2.3) with a com-
mon distribution X ∈ MR−α,µ for some α > 1 and measure µ, we have, for T > 0 and large u,

ψd,β(u,T) ∼ (λT)µ(a − Fβ)P (|X| > u) . (2.10)

This result is the base of our computations. Actually, after giving the assumptions on the
dependence structure between claim amount of each line, we can exhibit µ and then get the
asymptotic ruin probability. The following lemma gives µ(a − Fβ) for some basic forms of X.
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Figure 1: Fβ for β=0, 1/2 and 1 in two dimensions

Lemma 2.6 Let X be a positive random variable which is regularly varying with some α > 1.

• Case 1) If for some 1 ≤ j ≤ d, X = Xe j, then X ∈ MR−α,µ for some measure µ and we have

µ(a − Fβ) =
(
β + a( j)(1 − β)

)−α
. (2.11)

• Case 2) If, for some 1 ≤ k ≤ d ,X = X1k, then X ∈ MR−α,µ for some measure µ and we have

µ(d−11 − Fβ) =

(
d−1

(
β(d − k)

k
+ 1

)
|1k|

)−α
. (2.12)

• Case 3) If X = X1, then X ∈ MR−α,µ for some measure µ and we have

µ(a − Fβ) =

∑k∗
i=1 a(i:d) + β

∑d
i=k∗+1 a(i:d)

k∗ + β(d − k∗)
|1|

−α , (2.13)

where for 1 ≤ i ≤ d, a(i:d) is the ith larger component of a and

k∗ = inf

k ∈ [1, d − 1] : a(k+1:d) >

∑k
i=1 a(i:d) + β

∑d
i=k+1 a(i:d)

k + β(d − k)

 .

Proof. Let A = a − Fβ. We have

A =

x : β
d∑

i=1

(
(a(i)
− x(i)) ∨ 0

)
< −

d∑
i=1

(
(a(i)
− x(i)) ∧ 0

) .

• Case 1) Let X = Xe j for some 1 ≤ j ≤ d. Since X ∈ R−α, there exists a function L ∈ R0 such
that P(X > u) = u−αL(u). Moreover, from Karamata’s Theorem (see e.g. Embrechts
et al. (1997), Theorem A3.6 p 567 ), we have for large u, ∂

∂u P(X > u) ∼ −αu−α−1L(u).
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Let B ⊂ Rd be a Borel set bounded away from 0. We have

lim
u→∞

(
P(|Xe j| > u)

)−1
P
(
Xe j ∈ uB

)
= lim

u→∞
(P(X > u))−1 P

(
u−1Xe j ∈ B

)
= lim

u→∞

(
u−αL(u)

)−1
∫

1B(re j)dFu−1X(r)

= lim
u→∞

(
u−αL(u)

)−1
∫

1B(re j)dFX(ru)

= lim
u→∞

(
u−αL(u)

)−1
∫

1B(re j)uα(ur)−α−1L(ur)dr

=

∫
1B(re j)αr−α−1dr .

Hence, we have X ∈ MR−α,µ with µ defined for all Borel set B ⊂ Rd bounded away
from 0 as

µ(B) =

∫
1B(re j)αr−α−1dr .

Since we have

re j ∈ A⇔ β
∑

1≤i≤d
i, j

a(i) < −(a( j)
− r)

⇔ r > a( j)(1 − β) + β .

the first result follows.

• Case 2) In this case, using the same way, we obtain that X ∈ MR−α,µ with µ defined for all
Borel set B ⊂ Rd bounded away from 0 as

µ(B) =

∫
1B(r1k/|1k|)αr−α−1dr ,

and since a = d−11,

r1k/|1k| ∈ A⇔ β(d − k)d−1 < −k(d−1
− r/|1k|)

⇔ r > d−1
(
β(d − k)

k
+ 1

)
|1k| ,

and the second result follows.

• Case 3) In this case we get that X ∈ MR−α,µ with µ defined for all Borel set B ⊂ Rd bounded
away from 0 as

µ(B) =

∫
1B(r1/|1|)αr−α−1dr .

It remains to find {r : r1/|1| ∈ A}.

r1/|1| ∈ A⇔ β
d∑

i=1

(
(a(i)
− r/|1|) ∨ 0

)
< −

d∑
i=1

(
(a(i)
− |1|) ∧ 0

)
.
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Denote by a(k:d) the kth larger component of a. Let 1 ≤ k ≤ d − 1 and assume that
a(k:d)

≤ r/|1| < a(k+1:d). Then

r1/|1| ∈ A⇔ β
d∑

i=k+1

a(i:d)
− β(d − k)r/|1| < −

k∑
i=1

a(i:d) + kr/|1|

⇔ r/|1| >
∑k

i=1 a(i:d) + β
∑d

i=k+1 a(i:d)

k + β(d − k)
.

Let K =
{
k ∈ [1, d − 1] : a(k+1:d) >

∑k
i=1 a(i:d)+β

∑d
i=k+1 a(i:d)

k+β(d−k)

}
. K is lower bounded by 1 and

d− 1 ∈ K (since a(d:d) > 1/d), so there exists a K-minimal element denoted by k∗. Thus,

r1/|1| ∈ A⇔ r/|1| >
∑k∗

i=1 a(i:d) + β
∑d

i=k∗+1 a(i:d)

k∗ + β(d − k∗)

and the third result follows.

�

3 Computation of ruin probabilities in the presence of
dependence

3.1 A simple model of dependence
In this Subsection, we investigate a simple model of dependence between the lines of business.
For each claim occurrence, we allow the claim amount of a branch either be independent of
the others or equal to a common random variable. This model is inspired by Biard et al. (2008)
who have introduced a model of dependence between claim amounts in univariate setting.
Explicitly, the distribution of X = (X1, ...,Xd) is such that, for 1 ≤ j ≤ d,

X( j) = I( j)W(0) + (1 − I( j))W( j),

where,

• (W( j))0≤ j≤d is an i.i.d. non-negative random vector with common distribution W ∈ R−α,
for some α > 1,

• and (I( j))1≤ j≤d is a vector of independent Bernoulli random variables with same parameter
p ∈ [0, 1], and independent from (W( j))0≤ j≤d.

Let F be the c.d.f. of W.
Note that dependence is only measured through the parameter p.
Here, we assume that a = d−11.

Lemma 3.1 Let X1 ∈ MR−α,µ1 for some α > 0 and some Radon measure µ1. Let X2 ∈ MR−α,µ2 for
same α > 0 and some Radon measure µ2. Moreover we assume that, for some function L ∈ R−α, there
exists c1, c2 > 0 such that, for large u

P (|X1| > u) ∼ c1u−αL(u) ,
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and
P (|X2| > u) ∼ c2u−αL(u) .

If X1 and X2 are independent, then X1 + X2 ∈ MR
(
−α,

c1
c1+c2

µ1+
c2

c1+c2
µ2

).
Proof. Let A ∈ Rd be a Borel set bounded away from 0 For i = 1, 2, Xi ∈ MR−α,µi , so from
Definition 2.3

lim
u→∞

P (Xi ∈ uA)
P(|Xi| > u)

= µi(A) . (3.1)

Since P (|Xi| > u) ∼ ciu−αL(u),

lim
u→∞

uαL̃(u)P (Xi ∈ uA) = ciµi(A) ,

with L̃ = 1/L ∈ R0. So from Hult and Lindskog (2006b) Proposition A.1,

lim
u→∞

uαL̃(u)P (X1 + X2 ∈ uA) = c1µ1(A) + c2µ2(A) .

By independence and regular variation,

P (|X1 + X2| > u) ∼ P (|X1| > u) + P (|X2| > u) ∼ (c1 + c2)u−αL(u) .

Hence,

lim
u→∞

P (X1 + X2 ∈ uA)
P(|X1 + X1| > u)

=
c1

c1 + c2
µ1(A) +

c2

c1 + c2
µ2(A) ,

and the result follows.
�

Proposition 3.2 Under the assumptions of this subsection, we have, for T > 0 and large u,

ψd,β(u,T) ∼
{
(1 − p)dd

(
(d − 1)β + 1

)−α +

d∑
k=1

(
d
k

)
pk(1 − p)d−k

[((
d − k

k

)
β + 1

)−α
+ (d − k)

(
(d − 1)β + 1

)−α] dα(λT)F(u).

Proof. Since W ∈ R−α, there exists slowly varying function L such that, for u > 0, P(W > u) =
u−αL(u).

By construction X is composed of a sum of random variables of the form

X∆ =


W(0)

∑
i∈∆

ei

 +
∑

i∈{1,...,d}\∆

[
W(i)ei

]1{∩i∈∆{I(i)=1}
⋃
∪i∈{1,...,d}\∆{I(i)=0}}

for some subset ∆ of {1, . . . , d}. For all subset ∆ of {1, . . . , d}, P(|X∆| > u) ∼ c∆u−αL(u) for some
constant c∆.
Thus, from Lemma 3.1 X ∈MR−α,µ with , for all Borel set B ∈ Rd bounded away from 0 ,

µ(B) = lim
u→∞

P(X ∈ uB)
P(|X| > u)

.
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For k = 1, . . . , d − 1, let

X(k) = W(0)1k +

d∑
i=k+1

W(i)ei.

Let X(0) =
∑d

i=1 W(i)ei and X(d) = W(0)1.
Let A = d−11 − Fβ. Note that the set A = d−11 − Fβ is symmetric in each direction.
Denote by M the random variable which counts the number of random variables equal to W(0)

in X. We have, for large u,

µ(A)P (|X| > u) ∼ P (X ∈ uA)

∼

d∑
k=0

P(M = k)P (X ∈ uA|M = k)

∼

d∑
k=0

(
d
k

)
pk(1 − p)d−kP

(
X(k)
∈ uA

)
(A is symmetric in each direction),

∼

d∑
k=0

(
d
k

)
pk(1 − p)d−k

P
(
X(k)
∈ uA

)
P
(
|X(k)| > u

) P
(
|X(k)
| > u

)
.

Since for k = 1, . . . , d − 1, P
(
|W(0)1k| > u

)
∼ |1k|

αP(W > u) and for i = 1, . . . , d, P
(
|W(i)ei| > u

)
∼

P(W > u), we have, from Lemma 3.1, for k = 1, . . . , d − 1, X(k)
∈ MR−α,µk with, for all Borel set

B ∈ Rd bounded away from 0

µk(B) =
|1k|

αµ̃0,k(B) + (d − k)µ̃1(B)
|1k|

α + (d − k)
,

where,

• from Lemma 2.6 Case 2,

µ̃0,k(B) = lim
u→∞

P (W1k ∈ uB)
P (|W1k| > u)

,

and

µ̃0,k(A) =

(
d−1

(
β(d − k)

k
+ 1

)
|1k|

)−α
,

• and, from Lemma 2.6 Case 1 with a(1) = d−1,

µ̃1(B) = lim
u→∞

P (We1 ∈ uB)
P (|We1| > u)

,

and
µ̃1(A) =

(
β + d−1(1 − β)

)−α
.

Moreover, we have, for all Borel set B ∈ Rd bounded away from 0
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•
µ0(B) = µ̃1(B) ,

so
µ0(A) =

(
β + d−1(1 − β)

)−α
,

• and from Lemma 2.6 Case 2 with k = d,

µd(B) = µ̃0,d(B) = lim
u→∞

P (W1 ∈ uB)
P (|W1| > u)

,

so
µd(A) = dα|1|−α .

Moreover, by independence and regular variation, we have for large u, for 1 ≤ k ≤ d − 1,

P
(∣∣∣X(k)

∣∣∣ > u
)
∼ (|1k|

α + (d − k)) F(u) ,

and
P
(∣∣∣X(d)

∣∣∣ > u
)
∼ |1|αF(u) ,

and
P
(∣∣∣X(0)

∣∣∣ > u
)
∼ dF(u) .

Thus, we get

µ(A)P (|X| > u) ∼
d∑

k=0

(
d
k

)
pk(1 − p)d−kµk(A)P

(
|X(k)
| > u

)
.

Moreover, since from Proposition 2.5, we have for T > 0 and large u

ψd,β(u,T) ∼ (λT)µ(d−11 − Fβ)P (|X| > u) ,

we get the result.
�

Corollary 3.3 When no transfer is allowed (β = 0), we get, for large u and T > 0,

ψd,0(u,T) ∼

d(1 − p)d +

d∑
k=1

(
d
k

)
pk(1 − p)d−k(d − k + 1)

 dα(λT)F(u) .

This result corresponds to ψor (2.6).

Corollary 3.4 When transfer is allowed without restriction (β = 1), we get, for large u and T > 0,

ψd,1(u,T) ∼

 d∑
k=0

(
d
k

)
pk(1 − p)d−k [kα + (d − k)]

 (λT)F(u) .

This result corresponds to ψsum (2.4).

10



3.2 A Poisson shock model
In the Subsection, we study a classical Poisson shock model; when a claim occurs, it may affect
either one specific line of business or all the lines. Explicitly, let X be a non-negative random
variable which is regularly varying with some α > 1. For 1 ≤ j ≤ d, we assume that the specific
claims of the business line j arrive at the jump times of a Poisson process (N j

t )t≥0 with intensity
λ( j). Let X j

k be the kth specific claim amount of line j. Assume that, for 1 ≤ j ≤ d and k ≥ 1,

(X j
k)k≥1 is an i.i.d. sequence with common distribution X. Thus, the specific aggregate claim

amount process of the line j is, for t ≥ 0,

S j
t =

N j
t∑

k=1

X j
k .

We assume that the claims which affect all the lines of business arrive at the jump times of a
Poisson process (N0

t )t≥0 with intensity λ(0). Let X0
k = X0

k1 be the vector of the kth claim amounts
of this kind. We assume again that (X0

k)k≥1 is an i.i.d. sequence with common distribution X.
Here, for simplification, we have assumed that all the lines of business pay the same amount
for a common claim. Thus, the common aggregate claim amount process is, for t ≥ 0,

S0
t =

N0
t∑

k=1

X0
k .

We also assume that all (N j
t )t≥0 and (X j

k)k≥1, j ∈ {0, . . . , d} are independent. From the compound
Poisson process properties, we are able to get a risk process of the type of (2.3), since we can
write

St =

N0
t∑

k=1

X0
k +

d∑
j=1

N j
t∑

k=1

X j
ke j =

Nt∑
k=1

Xk ,

where N(t) =
∑d

j=0 N j
t is a Poisson process with intensity λ = λ(0) + λ(1) + . . . + λ(d), and Xk =

X0
kδ0(ξk) +

∑d
j=1 X j

ke jδ j(ξk) with, (ξk)k≥1 an i.i.d. sequence of random variables independent of

all others random variables and with P(ξk = j) = λ( j)/λ for k ≥ 1 and 0 ≤ j ≤ d.

Proposition 3.5 Under the above assumptions, we have, for T > 0 and large u,

ψd,β(u,T) ∼

λ(0)


∑k∗

j=1 a( j:d) + β
∑d

j=k∗+1 a( j:d)

k∗ + β(d − k∗)


−α

+

d∑
j=1

λ( j)
[
β + a( j)(1 − β)

]−α TF(u) ,

where for 1 ≤ j ≤ d, a( j:d) is jth larger component of a and

k∗ = inf

k ∈ [1, d − 1] : a(k+1:d) >

∑k
j=1 a( j:d) + β

∑d
j=k+1 a( j:d)

k + β(d − k)

 .

Proof. From Proposition 2.5, we have for T > 0 and large u

ψd,β(u,T) ∼ (λT)µ(a − Fβ)P (|X| > u) .

11



Let A = a − Fβ.
From Hult and Lindskog (2006a), Section 4, we have

P (|X| > u) ∼
(
λ(0)

λ
(|1|α − 1) + 1

)
P(X > u) ,

and

µ(A) =
λ(0)
|1|αµ0(A) +

∑d
j=1 λ

( j)µ j(A)

λ(0) (|1|α − 1) + λ

where
µ0(A) = lim

u→∞

P(X1 ∈ uA)
P(|X1| > u)

,

and, for 1 ≤ j ≤ d,

µ j(A) = lim
u→∞

P(Xe j ∈ uA)
P(|Xe j| > u)

.

We get the result using 2.6, Case 1 and Case 3.
�

Corollary 3.6 When no transfer is allowed (β = 0), we get, for large u and T > 0,

ψd,0(u,T) ∼

λ(0)
[
min
1≤ j≤d
{a( j)
}

]−α
+

d∑
j=1

λ( j)
[
a( j)

]−α TF(u) .

This result corresponds to ψor (2.6).

Corollary 3.7 When transfer is allowed without restriction (β = 1), we get, for large u and T > 0,

ψd,1(u,T) ∼
{
λ(0)(dα − 1) + 1

}
TF(u) .

This result corresponds to ψsum (2.4).

4 Optimal allocation problems
Throughout this Section, we assume β = 0. So we write ψd,β=0 = ψd. This case corresponds to
the probability that at least one of the line business becomes negative before T without money
transfer.

In this section, we suppose that the company owns a global initial reserve u to allocate to
the d lines of business in order to minimize its finite-time ruin probability. Explicitly, we have
the following optimal problem : min

a∈(0,1)d
ψd(u,T) ,

under the constraint a(1) + . . . + a(d) = 1 .
(4.1)
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Here, we are going to minimize the asymptotics of ψd(u,T) we denote by ψ̃d(u,T). Thus the
problem (4.1) becomes :  min

a∈(0,1)d
ψ̃d(u,T) ,

under the constraint a(1) + . . . + a(d) = 1 .
(4.2)

We investigate the following cases.

• Case 1 : the company is composed of d lines of business and they are mutually independent;
explicitly, the model is the Subsection 3.2 one with λ(0) = 0.

• Case 2 : the company is composed of two lines of business and their dependence structure is
described by the Poisson shock model of Subsection 3.2.

• Case 3 : the company is composed of three lines of business, one is independent from the
others and the two others are dependent via the Poisson shock model of Subsection
3.2.

4.1 Case 1
In this Subsection, we start with the model of Subsection 3.2 wherein λ(0) is assumed to be equal
to zero. That is to say that X is composed with d mutually independent random variables, so
the business lines are mutually independent too.

Proposition 4.1 Under the above assumptions, we have for T > 0 and large u,

ψd(u,T) ∼


d∑

j=1

λ( j)
[
a( j)

]−α TF(u) .

Proof. Take λ(0) = 0 in Corollary 3.6.
�

The following proposition gives the optimal allocation of our optimization problem (4.2).

Proposition 4.2 Under the assumptions of the Subsection 4.1, the solution of (4.2) is, for all 1 ≤ i ≤ d,

a(i)∗ =

 λ(i)
1
α+1∑d

j=1 λ
( j)

1
α+1

 .

Proof. Let g : a ∈ (0, 1)d
7→ g(a) =

∑d
i=1 λ

(i)
[
a(i)

]−α
. g is a continuous, differentiable and strictly

convex function on (0, 1)d. Using the method of Lagrange multipliers, we find one a∗ which
minimizes g on {(a(1), . . . , a(d)) ∈ (0, 1)d , a(1) + . . .+ a(d) = 1}. Since g is strictly convex, on the non
empty open convex set Ω = {a(1) + . . . + a(d) = 1} this minimum is unique.
�

In Figure 2, for d = 2, we represent, a(1) and a(2) as a function of λ(1)/λ (λ(1)/λ varies from 0
to 1). Both cases α = 2 and α = 5 are plotted. As expected, we allow a larger part of the initial
reserve to the riskier line of business. We can also note that when α is increasing, then initial
reserves become more similar.
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Figure 2: Optimal solution of the Case 1 for d = 2
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4.2 Case 2
In this Subsection, we investigate the two dimensional case wherein the dependence structure
is described by the model of Subsection 3.2. Let a ∈ (0, 1) such that a(1) = a and a(2) = 1 − a.

Proposition 4.3 Under the above assumptions, we have for T > 0 and large u,

ψ2(u,T) ∼
{
λ(0) [min(a; 1 − a)]−α + λ(1)a−α + λ(2)(1 − a)−α

}
TF(u) .

Proof. Take d = 2 in Corollary 3.6.
�

Proposition 4.4 Under the assumptions of the Subsection 4.2, the solution of (4.2) is

a∗ =



1
2 if λ(0) > |λ(1)

− λ(2)
| ,

λ(1)
1
α+1

λ(1)
1
α+1 +(λ(0)+λ(2))

1
α+1

if λ(0)
≤ λ(1)

− λ(2) ,

(λ(0)+λ(1))
1
α+1

(λ(0)+λ(1))
1
α+1 +λ(2)

1
α+1

if λ(0)
≤ λ(2)

− λ(1) .

Proof. Let, for 0 < a ≤ 1/2

g1(a) = (λ(0) + λ(1))a−α + λ(2)[1 − a]−α ,

and for 1/2 ≥ a < 1
g2(a) = (λ(0) + λ(2)) [1 − a]−α + λ(1)a−α .

g1 (resp. g2) is differentiable and strictly convex on (0, 1/2) (resp. (1/2, 1)). Moreover g1(1/2) =
g2(1/2) for all a1 ∈ (0, 1/2) and a2 ∈ (1/2, 1); g′(a1) < g′(a2). Let

g(a) =

g1(a) 0 < x ≤ 1/2
g2(a) 1/2 < a < 1

.

Thus, g is continuous on (0, 1) and g′ is strictly increasing on (0, 1/2) ∪ (1/2, 1). So, g is strictly
convex on (0, 1). As a consequence, on the non empty open convex set (0, 1), there exists a
unique a∗ which minimizes g. Since g(0) = g(1) = +∞, we have

a∗ =


arg min

(0,1/2)
g1 if g′1(1/2) > 0 ,

arg min
(1/2,1)

g2 if g′2(1/2) < 0 ,

1/2 if g′1(1/2) < 0 and g′2(1/2) > 0 ,

that is to say

a∗ =


a∗1 / g′1(a∗1) = 0 if g′1(1/2) > 0 ,
a∗2 / g′2(a∗2) = 0 if g′2(1/2) < 0 ,
1/2 if g′1(1/2) < 0 and g′2(1/2) > 0 .

Since arg min g = arg min ψ̃2,β, we get the result.
�

In Figures 3, 4 and 5, for d = 2, we represent, a(1) and a(2) as a function of λ(1)/λ (we fix λ(0) and
λ(1)/λ varies from 0 to 1 − λ(0)). in the three figures, both cases α = 2 and α = 5 are plotted.
Figures 3, 4, and 5 represent respectively cases λ(0) = 0.1, λ(0) = 0.3 and λ(0) = 0.5.
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Figure 3: Optimal solution of the Case 2 for d = 2 and λ(0) = 0.1

Remark 4.5 There are three different forms of the optimal allocation in Proposition 4.4.

• When λ(0) is large, or when the two lines of business are very similar, we allocate half of the reserve
to each line. Actually, both high positive dependence and close parameters conduce to a similar
behavior of the two processes. We can observe this behavior on the figures. In Figures 3, 4, we
observe a plateau when λ(1) is closed to λ(2) and this plateau becomes wider when λ(0), so the
dependence, increases. When the dependence is too high, as in Figure 5, we only observe a plateau.

• When λ(1) is large, compared to λ(0) and λ(2), the optimal solution is the same as in the case where
the two lines of business are independent and where λ(2) is switched with λ(2) + λ(0), and, as
expected, we allocate more to the first line of business. In Figures 3, 4, it corresponds to the part
after the plateau. We have also the symmetric case, when λ(2) is large compared to λ(0) and λ(1),
which is corresponds to the part before the plateau in Figures 3, 4.

We can also note that an increase of α conduces to a decrease of the difference between the two reserves.

4.3 Case 3
In this Subsection, we assume that the insurance company has three lines of business, two
dependent through the common shock model of Subsection 3.2, and one independent from the
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Figure 4: Optimal solution of the Case 2 for d = 2 and λ(0) = 0.3
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Figure 5: Optimal solution of the Case 2 for d = 2 and λ(0) = 0.5
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two others. Explicitly, we have (with a simple adaptation of the Subsection 3.2 model) :

St =

N(t)∑
k=1

Xk ,

where N(t) is a Poisson process with intensity λ = λ(0) + λ(1) + λ(2) + λ(3), and Xk = X0
k12δ0(ξk) +∑3

i=1 Xi
keiδi(ξk) with,

• λi > 0 , 0 ≤ i ≤ 3 ,

• for 0 ≤ i ≤ 3, (Xi
k)k≥1 is an i.i.d sequence with common distribution X ∈ R−α,

• and with all (Xi
k)k≥1, 0 ≤ i ≤ 3 independent and independent from N(t),

• (ξk)k≥1 an i.i.d. sequence of random variables independent of all others random variables
and with P(ξk = i) = λ(i)/λ for k ≥ 1 and 0 ≤ i ≤ 3.

Denote by ψ3̃ the ruin probability associated with the above model.

Proposition 4.6 Under the above assumptions, we have, for T > 0 and large u,

ψ3̃(u,T) ∼
{
λ(0)

[
min(a(1); a(2))

]−α
+ λ(1)a(1)−α + λ(2)a(2)−α + λ(3)a(3)−α

}
TF(u) .

Proof. Let A = a − Fβ.
We have, for large u

P(|X| > u) ∼
λ(0)

λ
P(|X012| > u) +

3∑
i=1

λ(i)

λ
P(|Xiei| > u) ∼

(
λ(0)

λ
(|12|

α
− 1) + 1

)
P(X > u) .

Moreover X ∈ MR−α,µ with

µ(A) =
λ(0)
|12|

αµ(1,2)(A) +
∑3

i=1 λ
(i)µi(A)

λ(0)(|12|α − 1) + λ
,

where
µ(1,2)(A) = lim

u→∞

P(X12 ∈ uA)
P(|X12| > u)

,

and, for 1 ≤ j ≤ d,

µ j(A) = lim
u→∞

P(Xe j ∈ uA)
P(|Xe j| > u)

.

We get the result using 2.6, Case 2 and Case 3.
�

Proposition 4.7 Under the assumptions of Subsection 4.3, the solution of (4.2) is as follows.

• If λ(0) > |λ(1)
− λ(2)

|, then
a(1)∗ = a(2)∗ = 1

2
(2α(λ(0)+λ(1)+λ(2)))

1
α+1

(2α(λ(0)+λ(1)+λ(2)))
1
α+1 +λ(3)

1
α+1

,

a(3)∗ = λ(3)
1
α+1

(2α(λ(0)+λ(1)))
1
α+1 +λ(3)

1
α+1

.
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• If λ(0)
≤ λ(1)

− λ(2), then 

a(1)∗ = λ(1)
1
α+1

λ(1)
1
α+1 +(λ(0)+λ(2))

1
α+1 +λ(3)

1
α+1

,

a(2)∗ =
(λ(0)+λ(2))

1
α+1

λ(1)
1
α+1 +(λ(0)+λ(2))

1
α+1 +λ(3)

1
α+1

,

a(3)∗ = λ(3)
1
α+1

λ(1)
1
α+1 +(λ(0)+λ(2))

1
α+1 +λ(3)

1
α+1

.

• If λ(0)
≤ λ(2)

− λ(1), then 

a(1)∗ =
(λ(0)+λ(1))

1
α+1

(λ(0)+λ(1))
1
α+1 +λ(2)

1
α+1 +λ(3)

1
α+1

,

a(2)∗ = λ(2)
1
α+1

(λ(0)+λ(1))
1
α+1 +λ(2)

1
α+1 +λ(3)

1
α+1

,

a(3)∗ = λ(3)
1
α+1

(λ(0)+λ(1))
1
α+1 +λ(2)

1
α+1 +λ(3)

1
α+1

.

Proof. Fix a(3)
∈ (0, 1). Let, for a(1)

∈ (0, 1 − a3),

g1(a(1)) = λ(0) min(a(1), 1 − a(3)
− a(1))−α + λ(1)a(1)−α + λ(2)(1 − a(3)

− a(2))−α + λ(3)a(3)−α .

Using the same way as in the proof of Proposition 4.4, we get a(1)∗ = g3(a3) = arg min
(0,1)

g1. Then

a(3)∗ = arg min
(0,1)

g3 and we get the result.

�
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