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Abstract

Let (Mm, g) be a m-dimensional complete Riemannian manifold which satisfies the Sobolev
inequality of dimension n, and on which the volume growth is comparable to the one of Rn for
big balls; if there is no non-zero L2 harmonic 1-form, and the Ricci tensor is in L

n
2
−ε

∩L∞ for
an ε > 0, then we prove a Gaussian estimate on the heat kernel of the Hodge Laplacian acting
on 1-forms. This allows us to prove that, under the same hypotheses, the Riesz transform
d∆−1/2 is bounded on Lp for all 1 < p < ∞. Then, in presence of non-zero L2 harmonic
1-forms, we prove that the Riesz transform is still bounded on Lp for all 1 < p < n, when
n > 3.

1 Introduction and statements of the results

1.1 Riesz transform and heat kernel on differential forms

Since Strichartz raised in 1983 the question whether the Riesz transform d∆−1/2 is bounded on Lp

on a complete non-compact manifold M (see [34]), this problem has attracted a lot of attention.
The litterature is too large to be cited extensively, but we refer the reader to the articles [12],
[11] and [2] for an overview of results in the field, as well as references. There have been several
attempts to extend the classical Calderón-Zygmund theory to the case of manifolds: the Calderón-
Zygmund decomposition argument which, in the case of Rn, yields the L1 → L1

w boundedness of
the Riesz transform (L1

w being the weak L1 space), has been adapted by Coulhon and Duong [11].
Let us begin with some definitions.

Definition 1.1 A Riemannian manifold M has the volume doubling property if there exists a
constant C such that

V (x, 2R) ≤ C V (x,R), ∀x ∈ M, ∀R > 0, (D)

where V (x,R) denotes the volume of the ball B(x,R).

Definition 1.2 Let us denote pt(x, y) the heat kernel of a complete Riemannian manifold M
(which is the kernel of e−t∆). We say that the heat kernel has a Gaussian upper-estimate if
there are some sonstants c and C such that

pt(x, y) ≤
C

V (x, t1/2)
exp

(

−c
d2(x, y)

t

)

, ∀(x, y) ∈ M ×M, ∀t > 0, (G)

where d(x, y) denotes the distance between x and y.
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With these definitions, the result of Coulhon and Duong states that if a complete Riemannian
manifold has the volume doubling property (D) and its heat kernel has satisfies a Gaussian upper-
estimate (G), then the Riesz transform on M is bounded on Lp for every 1 < p ≤ 2.
However, the duality argument which, in the case of Rn, yields in turn that the Riesz transform
is bounded on Lp for 2 ≤ p < ∞, does not apply in general for Riemannian manifolds. It has
been observed that to get boundedness for the range 2 ≤ p < ∞, it is enough to have a Gaussian
estimate for the heat kernel of the Hodge Laplacian acting on differential 1-forms:

Definition 1.3 Let us denote ~∆ the Hodge Laplacian acting on differential 1-forms, and ~pt(x, y)

the kernel of the corresponding heat operator e−t~∆. If x and y are fixed, then ~pt(x, y) is a linear
morphism going from

(

Λ1T ⋆M
)

y
to

(

Λ1T ⋆M
)

x
. We say that a Gaussian estimate holds for

~pt(x, y) if there are some constants C, c such that

||~pt(x, y)|| ≤
C

V (x, t1/2)
exp

(

−c
d2(x, y)

t

)

, ∀(x, y) ∈ M ×M, ∀t > 0, (GF)

where ||.|| is the operator norm.

Then it is a consequence of the work of various authors [12], [2], [31] that if M satisfies the volume
doubling property (D) together with the Gaussian estimate for the heat kernel of the Hodge
Laplacian on 1-forms (GF), then the Riesz transform on M is bounded on Lp for all 2 ≤ p < ∞.
However, the only manifolds for which we know that (GF) holds are those with non-negative Ricci
curvature (see [3] for example). Even outside the context of the Riesz transform problem, it is an
interesting question to understand under which conditions (GF) holds on a complete non-compact
manifold, since for example it implies the following pointwise gradient bound for the heat kernel
on functions (see [12]):

|∇pt(x, y)| ≤
C√

tV (x, t1/2)
exp

(

−c
d2(x, y)

t

)

, ∀(x, y) ∈ M ×M, ∀t > 0,

which is one of the fundamental bounds (proved by Li-Yau in [22]) for manifolds with non-negative
Ricci curvature. In a recent paper, Coulhon and Zhang [15] have tried to extend (GF) to a more
general class of manifolds than those with non-negative Ricci curvature. To explain their result,
we need some notations.
We denote by Ric the Ricci symmetric tensor, and we can decompose it as

Ric = Ric+ − Ric−,

where at a point x of M , (Ric+)x correspond to the positive eigenvalues of Ricx, and (Ric−)x to
the non-positive eigenvalues. We then write V (x) = λ−(x), the lowest negative eigenvalue of Ricx,
with the convention that V (x) = 0 if Ricx ≥ 0. The Bochner formula writes

~∆ = ∆̄ +Ric = ∆̄ +Ric+ −Ric−,

where ∆̄ = ∇⋆∇ is the rough Laplacian. Then, if pVt (x, y) denotes the kernel of e
−t(∆+V ), we have

(see [21])

||~pt(x, y)|| ≤ |pVt (x, y)|, ∀(x, y) ∈ M ×M, ∀t > 0.

Therefore Coulhon and Zhang, in order to bound ||~pt(x, y)||, study the heat kernel of the Schrödinger

operator ∆ + V . However, contrary to ~∆, ∆+ V need not be non-negative. In fact, Coulhon and
Zhang make the stronger assumption of strong positivity of ∆ + V : there is an ε > 0 such that

∫

M

V ϕ2 ≤ (1− ε)

∫

M

|∇ϕ|2, ∀ϕ ∈ C∞
0 (M).

This is the translation at the quadratic forms level of the inequality

∆ + V ≥ ε∆.

The result of Coulhon and Zhang is the following:
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Theorem 1.1 (Coulhon-Zhang, [15])
Let M be a complete Riemannian manifold satisfying (D), (G), the non-collapsing of the volume
of balls of radius 1: for some constant C > 0,

V (x, 1) ≥ C, ∀x ∈ M,

whose negative part of the Ricci curvature is in Lq ∩ L∞ for some 1 ≤ q < ∞. We also assume
that ∆+ V is strongly positive, then there is a constant C such that

||~pt(x, y)|| ≤ min

(

tα

V (x, t1/2)
, 1

)

exp

(

−c
d2(x, y)

t

)

, ∀(x, y) ∈ M ×M, ∀t > 0,

where α is strictly positive and depends explicitely on q and on ε; for example, if q ≥ 2, one can
take

α = (q − 1 + η)(1 − ε),

for all η > 0.

Some comments about this result. First, the estimate that they obtain on ~pt(x, y) differs from the
Gaussian estimate (GF) by a polynomial term in time tα, which comes from the estimate

||e−t(∆+V )||∞,∞ ≤ Ctβ , ∀t > 0,

where β > 0 is related to α. This extra polynomial term does not allow one to prove the bound-
edness of the Riesz transform on any Lp space for 2 ≤ p < ∞. Secondly, the geometric meaning
of the strong positivity of ∆ + V is not clear: to some extend, the strong positivity assumption is
an hypothesis of triviality of the kernel of ∆ + V , yet the kernel of ∆ + V , contray to the one of
~∆, has no clear geometric meaning. It would be more natural to work directly with ~∆, which has
moreover the advantage of being non-negative.
How to get rid of the polynomial term? In the paper [32], B. Simon shows the following result for
Schrödinger operators on R

n:

Theorem 1.2 (B. Simon, [32])
Let V be a potential in L

n
2 ±ε for some ε > 0. We assume that ∆+ V is strongly positive. Then

||e−t(∆+V )||∞,∞ ≤ C, ∀t > 0.

The proof consists in showing that there is a positive function η in L∞, bounded from below by a
positive constant, such that

(∆ + V )η = 0.

We want to show a similar result for the case of generalised Schrödinger operators, that is operators
of the form

L = ∇⋆∇+R,

acting on the sections of a Riemannian vector bundle E → M endowed with a compatible con-
nection ∇, where R is a field of symetric endomorphisms. The main issue is that the proof of B.
Simon cannot be generalized as such, the notion of positivity having no meaning for sections of a
vector bundle.

1.2 Our results

We will consider the class of manifolds satisfying a Sobolev inequality of dimension n:

Definition 1.4 We say that M satisfies a Sobolev inequality of dimension n if there is a constant
C such that

||f || 2n
n−2

≤ C||∇f ||2, ∀f ∈ C∞
0 (M). (Sn)
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Notation: for two positive real function f and g, we write

f ≃ g

if there are some positive constants C1, C2 such that

C1f ≤ g ≤ C2f.

For the class of manifolds satisfying the Sobolev inequality, we extend the result of B. Simon to
generalised Schrödinger operators:

Theorem 1.3 Let M be a complete, non-compact Riemannian manifold, of dimension m. We
assume that M satisfies the Sobolev inequality of dimension n (Sn), and that the volume of big
balls is euclidean of dimension n:

V (x,R) ≃ Rn, ∀x ∈ M, ∀R ≥ 1.

Let E → M be a Riemannian vector bundle, endowed with a compatible connection ∇, and let L
be a generalized Schrödinger operator acting on sections of E:

L = ∇⋆∇+R,

R being a field of symmetric endomorphisms. Assume that L is non-negative, that R− lies in
L

n
2 −ε ∩ L∞ for some ε > 0, and that

KerL2(L) = {0}.
Then the Gaussian estimate holds for e−tL: if Kexp(−tL)(x, y) denotes its kernel, for all δ > 0,
there are two constants C and c such that

||Kexp(−tL)(x, y)|| ≤
C

V (x,
√
t)

exp

(

−c
d2(x, y)

t

)

, ∀(x, y) ∈ M ×M, ∀t > 0.

For the case where L is the Hodge Laplacian acting on 1-forms, we get a boundedness result for
the Riesz transform. Denote by H1(M) the space of L2 harmonic 1-forms. Then we have:

Theorem 1.4 Let M be a complete, non-compact Riemannian manifold, of dimension m. We
assume that M satisfies the Sobolev inequality of dimension n (Sn), and that the volume of big
balls is euclidean of dimension n:

V (x,R) ≃ Rn, ∀x ∈ M, ∀R ≥ 1.

Assume that the negative part of the Ricci curvature is in L
n
2 −ε ∩ L∞ for some ε > 0, and that

H1(M) = {0}.

Then the Gaussian estimate holds for e−t~∆: for all δ > 0, there are two constants C and c such
that

||~pt(x, y)|| ≤
C

V (x,
√
t)

exp

(

−c
d2(x, y)

t

)

, ∀(x, y) ∈ M ×M, ∀t > 0.

Moreover, the Riesz transform on M is bounded on Lp for all 1 < p < ∞.

Remark 1.1 The hypothesis H1(M) = {0} is somewhat optimal to get the boundedness of the
Riesz transform on Lp for 1 < p < ∞, in the class of manifolds considered: it is known that the
Riesz transform on the connected sum of two euclidean spaces R

n#R
n is bounded on Lp if and

only if p ∈ (1, n) (cf [9]). And R
n#R

n satisfies all the hypotheses of Theorem (1.4), except that
H1(Rn#R

n) 6= {0}: indeed, if n ≥ 3, due to the fact that R
n#R

n has two non-parabolic ends,
we can find a non-constant harmonic function h such that ∇h is L2. Then dh is a non-zero, L2

harmonic 1-form.

In the second part of the paper, we adress the following question: what happens for the Riesz
transform if one removes the hypothesis that H1(M) = {0} ? As we see from the example of
R

n#R
n, all that we can hope is the boundedness on Lp for 1 < p < n. And indeed, we will show:
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Theorem 1.5 Let M be a complete, non-compact Riemannian manifold, of dimension m. For an
n > 3, we assume that M satisfies the Sobolev inequality of dimension n (Sn), and that the volume
of big balls is euclidean of dimension n:

V (x,R) ≃ Rn, ∀x ∈ M, ∀R ≥ 1.

Assume also that the negative part of the Ricci curvature is in L
n
2 −ε ∩ L∞ for some ε > 0. Then

the Riesz transform on M is bounded on Lp, for all 1 < p < n.

The strategy of the proof is a perturbation argument. First, we know from our hypotheses and [11]
that the Riesz transform on M is bounded on Lp for all 1 < p ≤ 2. From the proof of Theorem
(1.4), there is a constant η such that if

||Ric−||Ln/2 ≤ η,

then KerL2(~∆) = {0}. Therefore, we take V a smooth, non-negative, compactly supported poten-
tial such that

||(Ric+ V )−||Ln/2 ≤ η,

then we will have (by Theorem (1.3)) a Gaussian estimate for e−t(~∆+V ). We will see that this
implies the boundedness of the Riesz transform with potential d(∆ + V )−1/2 on Lp, for all
n

n−1 < p < n. Furthermore, using a perturbation argument from [8], we will be able to show

that d∆−1/2 − d(∆ + V )−1/2 is bounded on Lp for all n
n−1 < p < n.

We will also study the Lp reduced cohomology: we let H1
p (M) be the first space of Lp reduced

cohomology to be the quotient of {α ∈ Lp : dα = 0} by the closure in Lp of dC∞
0 (M). For the

class of manifold that we consider, we have the following result which sums up our results:

Theorem 1.6 Let M be a complete, non-compact Riemannian manifold, of dimension m. We
assume that M satisfies the Sobolev inequality of dimension n (Sn), and that the volume of big
balls is euclidean of dimension n:

V (x,R) ≃ Rn, ∀x ∈ M, ∀R ≥ 1.

Assume that the negative part of the Ricci curvature is in L
n
2 −ε ∩ L∞ for some ε > 0. Then we

have the following alternative:

1. H1(M), the space of L2 harmonic 1-forms, is trivial. Then for all 1 < p < ∞, the Riesz
transform on M is bounded on Lp, and H1

p (M), the first space of Lp reduced cohomology of
M , is trivial.

2. H1(M) is not trivial. If n > 3, then for all 1 < p < n, the Riesz transform on M is bounded
on Lp and H1

p (M) ≃ H1(M). Moreover, if M has more than one end, for p ≥ n the Riesz
transform on M is not bounded on Lp, and H1

p (M) is not isomorphic to H1(M).

2 Preliminaries

Throughout the text, M will denote a complete non-compact manifold which satisfies the n-

Sobolev inequality: there is a constant C such that

||f || 2n
n−2

≤ C||∇f ||2, ∀f ∈ C∞
0 (M).

We consider an operator L of the form ∇∗∇ + R+ − R−, acting on a Riemannian fiber bundle
E → M , where ∇ is a connection on E → M compatible with the metric, and for p ∈ M , R+(p),
R−(p) are non-negative symmetric endomorphism acting on the fiber Ep. We will say that L is
a generalised Schrödinger operator. Let us denote ∆̄ := ∇∗∇, the ”rough Laplacian”, and
C∞(E) (resp. C∞

0 (E)) the set of smooth sections of E (resp., of smooth sections of E which
coincide with the zero section outside a compact set).
We define H := ∆̄ +R+. We will consider the L2-norm on sections of E:

||ω||22 =

∫

M

|ω|2(p)dvol(p),
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where |ω|(p) is the norm of the evaluation of ω in p. We will denote L2(E), or simply L2 when
there is no confusion possible for the set of sections of E with finite L2 norm.
We have in mind the case of ~∆ = d∗d+ dd∗, the Hodge Laplacian acting on 1-forms, for which we
have the Bochner decomposition:

~∆ = ∆̄ +Ric,

where ∆̄ = ∇∗∇ is the rough Laplacian on 1-forms, and Ric ∈ End(Λ1T ∗M) is canonically
identified – using the metric – with the Ricci tensor.
From classical results in spectral analysis (an obvious adaptation to ∆̄ of Strichartz’s proof that
the Laplacian is self-adjoint on a complete manifold, see Theorem 3.13 in [24]), we know that if
R− is bounded and in L1

loc, then ∆̄ +R+ −R− is essentially self-adjoint on C∞
0 (E).

2.1 Consequences of the Sobolev inequality

Let us denote qH the quadratic form associated to H :

qH(ω) =

∫

M

|∇ω|2 +
∫

M

〈R+ω, ω〉,

and q∆ the quadratic form associated to the usual Laplacian on functions:

q∆(u) =

∫

M

|du|2.

We will see in this section that H = ∆̄+R+ shares with the usual Laplacian acting on functions a
certain amount of functionnal properties. It is due to the following domination property (see [4]):

Proposition 2.1 For every section ω ∈ C∞
0 (E), |ω| is in W 1,2(M) and

qH(ω) ≥ q∆(|ω|).
We say, following Bérard and Besson’s terminology, that ∆ dominates H.

A consequence of this domination is:

Proposition 2.2 For all ω ∈ C∞
0 (E),

|e−tHω| ≤ e−t∆|ω|, ∀t ≥ 0,

and

|H−αω| ≤ ∆−α|ω|, ∀α > 0.

Proof :

The first part comes directly from [4].
The second domination is a consequence of the first one and of the following formulae:

H−α =
1

Γ(α+ 1)

∫ ∞

0

e−tHtα−1dt,

∆−α =
1

Γ(α + 1)

∫ ∞

0

e−t∆tα−1dt.

�

It also yields:

Proposition 2.3 H satisfies the n-Sobolev inequality: there is a constant C such that

||ω||22n
n−2

≤ C〈Hω, ω〉, ∀ω ∈ C∞
0 (E).
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The domination property, together with the fact that e−t∆ is a contraction semigroup on Lp for
all 1 ≤ p ≤ ∞, gives at once that e−tH is also a contraction semigroup on all the Lp spaces.
From the ultracontractivity estimate:

||e−t∆||1,∞ ≤ C

tn/2
, ∀t > 0,

valid since M satisfies a n-Sobolev inequality (see [30]), and the domination of Proposition (2.2),
we deduce that we also have:

||e−tH ||1,∞ ≤ C

tn/2
, ∀t > 0.

By interpolation with ||e−tH ||∞,∞ ≤ 1, we deduce that for all 1 ≤ p ≤ ∞, there exists C such that

||e−tH ||p,∞ ≤ C

tn/2p
, ∀t > 0.

Interpolating with ||e−tH ||p,p ≤ 1, we obtain:

||e−tH ||p,q ≤ C

t
n
2p (1−

p
q )

.

Furthermore, the domination property also yields that e−tH is a contraction semigroup on Lp,
1 ≤ p ≤ ∞, so by Stein’s Theorem (Theorem 1 p.67 in [33]), e−tH is analytic bounded on Lp, for
all 1 < p < ∞. Hence we have proved:

Corollary 2.1 e−tH is a contraction semigroup on Lp, for all 1 ≤ p ≤ ∞.
For all 1 ≤ p ≤ ∞, there exists C such that:

||e−tH ||p,q ≤
C

t
n
2p (1−

p
q )

, ∀t > 0, ∀q > p.

Moreover, e−tH is analytic bounded on Lp with sector of angle π
2

(

1−
∣

∣

∣

2
p − 1

∣

∣

∣

)

, for all 1 < p < ∞.

We recall the following consequences of the analyticity of a semigroup, which come from the
Dunford-Schwarz functionnal calculus (see [27], p.249):

Corollary 2.2 Let e−zA an analytic semigroup on a Banach space X. Then there exists a constant
C such that for all α > 0:

1.

||Aαe−tA|| ≤ C

tα
, ∀t > 0.

2.
||(I + tA)αe−tA|| ≤ C, ∀t > 0.

Furthermore, the domination property also yields that e−tH is a contraction semigroup on Lp,
1 ≤ p ≤ ∞, so by Stein’s Theorem (Theorem 1 p.67 in [33]), e−tH is analytic bounded on Lp, for
all 1 < p < ∞. Thus:

Theorem 2.1 H satisfies the following properties:

1. The mapping properties:
For all α > 0,

H−α/2 : Lp −→ Lq

is bounded whenever 1
q = 1

p − α
n and p < q < ∞ (in particular we must have p < n

α).

2. The Gagliardo-Nirenberg inequalities:
For all s ≥ r > n,

||ω||L∞ ≤ C(n, r, s)||Hω||θr/2||ω||1−θ
s/2 , ∀ω ∈ C∞

0 (E),

where θ = n/s
1−(n/r)+(n/s) .
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Proof :

The mapping properties for H are the consequence of the domination of Proposition (2.2)
and of the mapping properties for ∆, which hold since M satisfies a n-Sobolev inequality (cf [35],
Theorem 1 and [14], Theorem II.4.1). The Gagliardo-Nirenberg inequalities are extracted from [10],
Theorems 1 and 2, given the ultracontractivity of e−tH and its analiticity on Lp for 1 < p < ∞
(Corollary (2.1)).

�

Furthermore, we have the following important fact:

Proposition 2.4 All the results of this section are also valid if we replace H by H +λ with λ > 0
(since H+λ is dominated by ∆, for all λ ≥ 0), and moreover the constants in the Sobolev inequality,
in the Gagliardo-Nirenberg inequality and also the norms of the operators (H + λ)−α : Lp → Lq,
are all bounded independantly of λ.

This will be intensively used later.

2.2 Strong positivity

As in the previous section, denote H := ∆̄ +R+ and

L = ∇⋆∇+R = H −R−.

We assume – as it is the case for the Laplacian on 1-forms – that L is a non-negative operator:

Assumption 1 L is a non-negative operator.

It is equivalent to the following inequality : if ω ∈ C∞
0 (E),

0 ≤ 〈R−ω, ω〉 ≤ 〈Hω, ω〉.
Let us recall the following classical definition:

Definition 2.1 The Hilbert space H1
0 is the completion of C∞

0 (E) for the norm given by the
quadratic form associated to the self-adjoint operator H.

We also recall some of the properties of this space H1
0 associated to H :

Proposition 2.5 1. H1
0 →֒ L

2n
n−2 (E). In particular, it is a space of sections of E → M .

2. H1/2, defined on C∞
0 (E), extends uniquely to a bijective isometry from H1

0 to L2(E).
Thus we can consider H−1/2 : L2(E) → H1

0 .

3. If we consider the operator H1/2 given by the Spectral Theorem - denote it H
1/2
s to avoid

confusion with the one we have just defined from H1
0 to L2 - then Dom(H

1/2
s ) = H1

0 ∩L2(E),

and moreover H1/2 coincide with H
1/2
s on H1

0 ∩ L2(E).

Sketch of proof of Proposition (2.5):
(1) is a consequence of the Sobolev inequality of Proposition (2.3). The Sobolev inequality implies
that H is non-parabolic, and (2) can be obtained by the same method as in [16]. (3) can also be
obtained by the techniques developped in [16] in the context of Schrödinger operators acting on
functions, which adapts to the case of Schrödinger operators acting on sections of a vector bundle.

�

In what follows, we assume that R− ∈ L
n
2 .

Definition 2.2 We say that L is strongly positive if one of the following equivalent – at least
when R− ∈ L

n
2 – conditions is satisfied :
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1. There exists ε > 0 such that:

0 ≤ 〈R−ω, ω〉 ≤ (1− ε)〈Hω, ω〉, ∀ω ∈ C∞
0 (E).

2.
KerH1

0
(L) = {0}.

3. The (non-negative, self-adjoint compact if R− ∈ L
n
2 ) operator A := H−1/2R−H

−1/2 acting
on L2(E) satisfies:

||A||2,2 ≤ (1− ε),

where ε > 0.

Remark 2.1 In general, we have the equivalence between 1) and 3) and the implication 3)⇒2),
under the sole hypothesis that A is self-adjoint (which is the case if R− ∈ L

n
2 , but can be true

under more general conditions). The fact that 2)⇒3) is true as soon as A is self-adjoint compact.

Proof of the equivalence:
We can write:

L = H −R− = H1/2(I −A)H1/2.

First, let us prove that 1) ⇔ 3′), where 3′) is defined to be:

3′) : 〈Au, u〉 ≤ (1 − ε)〈u, u〉, ∀u ∈ L2.

Remark that 3′) is equivalent to 3) when A is self-adjoint. Let ω ∈ C∞
0 (Γ(E)), and set u =

H1/2ω ∈ L2(Γ(E)). Then

〈Au, u〉 ≤ (1 − ε)〈u, u〉 ⇔ 〈H−1/2R−ω,H
1/2ω〉 ≤ (1 − ε)〈H1/2ω,H1/2ω〉

⇔ 〈R−ω, ω〉 ≤ (1− ε)〈Hω, ω〉
Then we show that 3) ⇒ 2). This is a consequence of the following Lemma:

Lemma 2.1 If A is self-adjoint, then

H1/2 : KerH1
0
(L) → KerL2(I −A)

is an isomorphism (and it is of course an isometry).

Proof :

Let u ∈ H1
0 ; we can write u = H−1/2ϕ, where ϕ ∈ L2(Γ(E)). By definition, Lu = 0 means that

for every v ∈ C∞
0 (Γ(E)),

〈u, Lv〉 = 0.

This equality makes sense, because since H satisfies a Sobolev inequality, H1
0 →֒ L1

loc. The Spectral
Theorem then implies, since C∞

0 ⊂ Dom(H), that given v ∈ C∞
0 (Γ(E)) the following equality holds

in L2(Γ(E)):

Hv = H1/2H1/2v.

Hence

Lv = (H −R−)v = H1/2(I −A)H1/2v.

Let w := (I−A)H1/2v; then the preceeding equality shows that w ∈ Dom(H1/2) = H1
0 ∩L2(Γ(E)).

Furthermore, H1/2w = Hv is compactly supported, so we have:

〈u,H1/2w〉 = 〈H1/2u,w〉.

9



Indeed, if u ∈ H1
0 ∩ L2 it is a consequence of Lemma 3.1 in [16], and a limiting argument plus the

fact that H1
0 →֒ L2

loc shows that it is true for all u ∈ H1
0 .

Lu = 0 ⇐⇒ ∀v ∈ C∞
0 , 〈H1/2u, (I −A)H1/2v〉 = 0.

But since H1/2C∞
0 (E) is dense in L2(E), we get, using the fact that A is self-adjoint:

Lu = 0 ⇐⇒ ∀v ∈ L2, 〈H1/2u, (I −A)v〉 = 0

⇐⇒ H1/2u ∈ KerL2(I − A)

�

It remains to prove that 2) ⇒ 3) ; this is a consequence of Lemma (2.1) and of the following
Lemma, which is extracted from Proposition 1.2 in [7]:

Lemma 2.2 Assume R− ∈ L
n
2 . Then A := H−1/2R−H

−1/2 is a non-negative, self-adjoint com-
pact operator on L2(Γ(E)). Moreover,

||A||2,2 ≤ C||R−||n
2
,

where C depends only on the Sobolev constant for H.

�

We will also need the following Lemma, which is an easy consequence of the definition of strong
positivity:

Lemma 2.3 Let H be of the form: H = ∆̄+R+, with R+ non-negative. Let R− ∈ End(Λ1T ∗M)
be symmetric, non-negative, in L

n
2 such that L := H −R− is strongly positive. Then the Sobolev

inequality is valid for L, i.e.

||ω||22n
n−2

≤ C〈Lω, ω〉, ∀ω ∈ C∞
0 (E).

Proof :

By definition of strong positivity,

〈R−ω, ω〉 ≤ (1 − ε)〈Hω, ω〉.
Therefore:

〈Lω, ω〉 = 〈Hω, ω〉 − 〈R−ω, ω〉

≥ (1− (1 − ε))〈Hω, ω〉

≥ εC||ω||22n
n−2

,

where we have used in the last inequality the fact that H satisfies a Sobolev inequality.

�

3 Gaussian upper-bound for the Heat Kernel on 1-forms

3.1 Estimates on the resolvent of the Schrödinger-type operator

In this section, we will show how to obtain bounds on the resolvent of L := ∇∗∇ +R+ −R− =
H −R−. In order to do this, we first have to estimate the resolvent of the operator H = ∆̄+R+.
Recall from Corollary (2.1) that e−tH is a contraction semigroup on Lp, for all 1 ≤ p ≤ ∞. Using
the formula:

(L+ λ)−1 =

∫ ∞

0

e−tLe−tλdt,

we get:
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Proposition 3.1 Let (Mm, g) be an m-dimensional complete Riemannian manifold. Then for all
λ > 0 and for all 1 ≤ p ≤ ∞,

||(H + λ)−1||p,p ≤ 1

λ
.

Remark 3.1 The case p = ∞ is by duality, for (H + λ)−1 is defined on L∞ by duality. Indeed,
for g ∈ L∞, we define (H + λ)−1g so that:

〈(H + λ)−1g, f〉 := 〈g, (H + λ)−1f〉, ∀f ∈ L1

(recall that (L1)′ = L∞). It is then easy to see that ||(H+λ)−1||1,1 ≤ 1
λ implies ||(H+λ)−1||∞,∞ ≤

1
λ .

We now estimate the resolvent of the operator L := ∇∗∇ + R+ − R−; as before, L acts on the
sections of a vector bundle E → M (see the beginning of the Preliminaries for the general context).
The key result is the following:

Theorem 3.1 Let (M, g) be a complete Riemannian manifold which satisfies the Sobolev inequality
of dimension n (Sn), and suppose that R− is in L

n
2 ±ε for some ε > 0. We also assume that L,

acting on the sections of E → M , is strongly positive. Then for all 1 ≤ p ≤ ∞, there exists a
constant C(p) such that

||(L+ λ)−1||p,p ≤ C(p)

λ
, ∀λ > 0.

Proof :

In this proof, we write Lq for Lq(E). Let us denote Hλ := H + λ. So

(L+ λ)−1 = (I − Tλ)
−1H−1

λ ,

where Tλ := H−1
λ R−. If we can prove that (I − Tλ)

−1 is a bounded operator on Lp, with norm
independant of λ, then by Proposition (3.1) we are done. To achieve this, we will show that the
series

∑

n≥0 T
n
λ converges in L(Lp, Lp), uniformly with respect to λ ≥ 0.

The aim of the next two Lemmas is to prove that Tλ acts on all the Lq spaces. We single out the
case q = ∞, for it requires a different ingredient for its proof:

Lemma 3.1 Tλ : L∞ −→ L∞ is bounded as a linear operator, uniformly with respect to λ ≥ 0.

Proof :

We have seen that e−tHλ satisfies the mapping properties and the Gagliardo-Nirenberg in-
equalities of Theorem (2.1) with constants independant of λ ≥ 0. Let u ∈ L∞. We apply the
Gagliardo-Nirenberg inequality for Hλ:

||Tλu||∞ ≤ C||R−u||θn/2+ε||Tλu||1−θ
p , ∀p,

with C independant of λ (see Proposition (2.4)). We have ||R−u||n2 +ε ≤ ||R−||n2 +ε||u||∞. By the

mapping properties of Theorem (2.1), H−1
λ : L

n
2 −ε → Ls for a certain s, with a norm bounded

independantly of λ. So we get:

||Tλu||∞ ≤ C||R−||θn/2+ǫ(||H−1
λ ||n/2−ε,s||R−||n/2−ε)

1−θ||u||∞ ≤ C||u||∞
�

Lemma 3.2 1. For all 1 ≤ β ≤ ∞,

R− : Lβ → L
nβ

n+2β

is bounded.
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2. There exists ν > 0 (small and independant of λ ≥ 0), such that for all β < ∞, and for all
λ ≥ 0,

Tλ : Lβ → Lr ∩ Ls,

where 1
r = max( 1β − ν, 0+)) and 1

s = min( 1β + ν, 1), is bounded uniformly with respect to λ

(here 0+ denotes any positive number).

3. For β = ∞,

Tλ : L∞ → L∞ ∩ Lp

is bounded uniformly with respect to λ, if p big enough.

4. For β large enough,

Tλ : Lβ → Lβ ∩ L∞

is bounded uniformly with respect to λ.

Proof :

If u ∈ Lβ and v ∈ Lγ , then

||uv|| γβ
γ+β

≤ ||u||β ||v||γ .

Therefore, R− : Lβ → Lq is bounded, where 1
q = 1

β + 1
p , for all p ∈ [n2 − ε, n

2 + ε]. Taking p = n
2 ,

we find the first result of the Lemma.
Applying the mapping property (2.1), we deduce that:

H−1
λ R− : Lβ →→ Lr ∩ Ls

is bounded independantly of β, and also uniformly with respect to λ ≥ 0 by Proposition (2.4),
where

1

r
= max

((

2

n+ 2ε
− 2

n

)

+
1

β
, 0+

)

= max

(

1

β
− µ, 0+

)

,

and
1

s
= min

((

2

n− 2ε
− 2

n

)

+
1

β
, 1

)

= min

(

1

β
+ µ′, 1

)

,

hence the second part of the Lemma with ν = min(µ, µ′).

For the case β = ∞, we have s = 1
µ′

= p large, and we already know from Lemma (3.1) that
Tλ send L∞ to L∞.

For the case β large enough: since R− ∈ L
n
2 +ε, if β is large enough and u ∈ Lβ, then R−u ∈ L

n
2 +α

for an α > 0. We apply Gagliardo-Nirenberg’s inequality: for such a β,

||H−1
λ R−u||∞ ≤ C||R−u||θn/2+α||H−1

λ R−u||1−θ
β .

This yields the result.

�

As a corollary of Lemma (3.2), we obtain:

Proposition 3.2 For all 1 ≤ β ≤ ∞ and 1 ≤ α ≤ ∞, there exists an N ∈ N (which depends only
on β and α, and not on λ), such that for all λ ≥ 0,

TN
λ : Lα → Lβ

is bounded uniformly with respect to λ.
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Thus, if we can prove that there is a β ∈ [1,∞] and a µ ∈ (0, 1) such that

||T k
λ ||β,β ≤ C(1 − µ)k, k ∈ N,

with C independant of λ ≥ 0, we will obtain that the series
∑

n≥0 T
n
λ converges in L(Lp, Lp) for

all 1 ≤ p ≤ ∞, uniformly with respect to λ ≥ 0. Indeed, for a fixed p, according to Proposition
(3.2) we can find N such that

Tλ : Lβ → Lp

and

Tλ : Lp → Lβ.

Then, for k ≥ 2N , we decompose T k
λ in

T k
λ = TN

λ TN−2k
λ TN

λ ,

where TN
λ on the right goes from Lp to Lβ, and TN

λ on the left goes from Lβ to Lp., and where
TN−2k
λ acts on Lβ . As a result, if we had

||T k
λ ||β,β ≤ C(1 − µ)k, k ∈ N,

then it would imply that

||T k
λ ||β,β ≤ C(1 − µ)k, k ≥ 2N,

which in turns implies that the series
∑

n≥0 T
n
λ converges in L(Lp, Lp) for all 1 ≤ p ≤ ∞, uniformly

with respect to λ ≥ 0. Therefore, we are left to find β such that

||T k
λ ||β,β ≤ C(1 − µ)k, k ∈ N,

with C independant of λ. It is the purpose of the next Lemma:

Lemma 3.3 Let β := 2n
n−2 . Then ||T k

λ ||β,β ≤ C(1 − µ)k for all k ∈ N with constants C and
0 < µ < 1 independant of λ ≥ 0.

Proof :

We write :

Tλ = H
−1/2
λ [H

−1/2
λ R−H

−1/2
λ ]H

1/2
λ ,

and we define Aλ := H
−1/2
λ R−H

−1/2
λ . Let us define the Hilbert space H1

0,λ to be the closure of
C∞

0 (E) for the norm:

ω 7→
(
∫

M

|∇ω|2 + λ|ω|2
)1/2

= Qλ(ω)
1/2,

where Qλ is the quadratic form associated to the self-adjoint operator Hλ. If λ > 0, it is the
space H1

0 ∩ L2 = Dom(H1/2), but with a different norm. The choice of the norm is made so that

H
1/2
λ : H1

0,λ → L2 is an isometry. Since Aλ : L2 → L2, and given that Tλ = H
−1/2
λ AλH

1/2
λ , we

deduce that :

Tλ : H1
0,λ → H1

0,λ with ||Tλ||H1
0,λ,H

1
0,λ

= ||Aλ||2,2.

But by the equivalence 1) ⇔ 3) in the Definition (2.2), the existence of µ ∈ (0, 1) such that
||Aλ||2,2 ≤ 1− µ is equivalent to:

〈R−ω, ω〉 ≤ (1− µ)〈(Hλ)ω, ω〉, ∀ω ∈ C∞
0 (Γ(E)).

Since 〈(H+λ)ω, ω〉 = 〈Hω, ω〉+λ||ω||22 ≥ 〈Hω, ω〉, we obtain that the existence of some µ ∈ (0, 1)
such that for all λ ≥ 0, ||Aλ||2,2 ≤ 1 − µ is equivalent to the strong positivity of L. There-
fore ||Tλ||H1

0,λ,H
1
0,λ

≤ (1 − µ). Moreover, by the functionnal consequence of Sobolev’s inequality

(Theorem (2.1)),
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H
−1/2
λ : L

2n
n+2 → L2,

with norm bounded independantly of λ ≥ 0 (by Proposition (2.4), and by Lemma (3.2),

R− : L
2n

n−2 → L
2n

n+2 ,

so that, using thatH
−1/2
λ : L2 → H1

0,λ is an isometry and that we can write Tλ = H
−1/2
λ [H

−1/2
λ R−],

we get that

Tλ : Lβ → H1
0,λ,

is bounded with a bound of the norm independant of λ ≥ 0. Furthermore,H1
0,λ →֒ H1

0 is continuous
of norm less than 1, and the Sobolev inequality for H says precisely that:

H1
0 →֒ Lβ

continuously. Therefore, H1
0,λ →֒ Lβ continuously, with a bound of the norm independant of λ.

Then we write T k
λ = T k−1

λ Tλ, with

Tλ : Lβ → H1
0,λ

and

T k−1
λ : H1

0,λ → H1
0,λ →֒ Lβ,

so that we get:

||T k
λ ||β,β ≤ C(1 − µ)k.

�

As a byproduct of the proof (more precisely, of Proposition (3.2) and Lemma (3.3)), we get:

Corollary 3.1

(L+ λ)−1 = (I − Tλ)
−1H−1

λ ,

with (I − Tλ)
−1 : Lp(E) → Lp(E) bounded with a bound of the norm independant of λ, for all

1 ≤ p ≤ ∞.

We could hope to deduce from Theorem (3.1) that e−tL is uniformly bounded on all the Lp

spaces, by an argument similar to the Hille-Yosida Theorem. In particular, the Hille-Yosida-
Phillips Theorem tells us that the bound

||(L+ λ)−k|| ≤ C

λk
, ∀k ∈ N,

with C independant of λ and k, is necessary and sufficient to obtain e−tL uniformly bounded. The
issue here is that applying Theorem (3.1) directly yields:

||(L + λ)−k|| ≤ Ck

λk
, ∀k ∈ N,

i.e. the constant is not independant of k. In fact, applying the method of Theorem (3.1) in a less
näıve way would in fact yield:

||(L+ λ)−k|| ≤ Ck

λk
, ∀k ∈ N,

i.e. the growth of the constant is linear in k and not exponential.
We will use an idea of Sikora to overcome this problem: it is shown in [31] that a Gaussian estimate
for e−tL can be obtained using suitable on-diagonal estimates. Therefore, our goal will be to get
these on-diagonal estimates for e−tL, that is estimates for ||e−tL||2,∞, and to get these we can
try, following Sikora, to get estimates on ||(L+ λ)−k||2,∞. The point is that the bound needed on
||(L+λ)−k||2,∞ need not be independant of k, so Theorem (3.1) should be enough to prove it! We
follow this path in the next section.

Remark 3.2 Of course, at the end, if we succeed in proving the Gaussian estimate for e−tL, e−tL

will be uniformly bounded on all the Lp spaces.
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3.2 On-diagonal upper bounds

The next Proposition is a slight generalisation of Sikora’s idea:

Proposition 3.3 Let X be a measurable metric space. Let L be a self-adjoint, positive unbounded
operator on L2(X) , and let 1 < p < ∞. Assume that the semigroup e−tL is analytic bounded on
Lp(X) (it is necessarily the case if p = 2). The following statements are equivalent:

1. There exists a constant C such that for all t > 0,

||e−tL||p,∞ ≤ C

tn/2p
.

2. For an (for all) α > n/2p, there exists a constant C(p, α) such that

||(L+ λ)−α||p,∞ ≤ C(p, α)λ−α+n/2p, ∀λ > 0.

Proof of Proposition (3.3):
First, notice that

||(L + λ)−α||p,∞ ≤ C(p, α)λ−α+n/2p, ∀λ > 0

can be rewritten as

||(I + tL)−α||p,∞ ≤ C(p, α)t−n/2p, ∀t > 0.

2) ⇒ 1): since e−tL is analytic bounded on Lp, by Proposition (2.2) there is a constant C such
that:

||(I + tL)αe−tL||p,p ≤ C, ∀t > 0.

We then write e−tL = (I + tL)−α
(

(I + tL)αe−tL
)

to obtain the result.

1) ⇒ 2): we have

(L + λ)−α =
1

Γ(α+ 1)

∫ ∞

0

e−λte−tLtα−1dt,

so that

||(L+ λ)−α||p,∞ ≤ 1

Γ(α+ 1)

∫ ∞

0

e−λt||e−tL||p,∞tα−1dt.

Using the hypothesis, we obtain:

||(L+ λ)−α||p,∞ ≤ 1

Γ(α+ 1)

∫ ∞

0

e−λttα−n/2p−1dt =
1

Γ(α+ 1)
λ−α+n/2p

∫ ∞

0

e−uuα−n/2p−1du.

Since α− n/2p > 0, the integral
∫∞
0 e−uuα−n/2p−1du converges, hence the result.

�

We will use both sides of the equivalence. First, we apply this to H (which, by Corollary (2.1),
satisfies ||e−tH ||p,∞ ≤ C

tn/2p and which is analytic bounded on Lp for 1 < p < ∞ by Corollary
(2.1)), to get:

Corollary 3.2 For all 1 ≤ p ≤ ∞ and α > n/2p, there exists a constant C(p, α) such that

||H−α
λ ||p,∞ ≤ C(p, α)λ−α+n/2p, ∀λ > 0.

We now use the other side of the equivalence in Proposition (3.3) (i.e. a bound on the resolvent
implies a bound on the semigroup) to prove the following Theorem, which is our main result in
this section:
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Theorem 3.2 Let (Mn, g) be an complete Riemannian manifold which satisfies the Sobolev in-
equality of dimension n (Sn), and assume that R− is in L

n
2 ±ε for some ε > 0. We also assume

that L := H −R− = ∇∗∇+R+−R−, acting on the sections of a fibre bundle E → M , is strongly
positive. Then we have the following on-diagonal estimate: there is a constant C such that

||e−tL||2,∞ ≤ C

tn/4
, ∀t > 0.

Proof :

In this proof, we write Lq for Lq(E). By Proposition (3.3), it is enough to prove the estimate:

||(L + λ)−N ||2,∞ ≤ CN

λN−n/4
, ∀λ > 0, (1)

for an N > n/4. We use the fact that for all 1 ≤ p ≤ ∞, we have (L + λ)−1 = (I − Tλ)
−1H−1

λ

on Lp, where (I − Tλ)
−1 is bounded on all the Lp spaces, with a bound for the norm independant

of λ ≥ 0 (c.f. Corollary (3.1)). Let k = ⌊n/4⌋ = ⌊ 1
2/

2
n⌋. We will show the estimate (1) forN = k+1.

First case: n
4 /∈ N

We want to show the estimate ||(L + λ)−k−1||2,∞ ≤ C
λ(k+1)−n/4 , ∀λ > 0. Define p > n

2 by:

1

p
=

1

2
− k

2

n
.

By the mapping property (Theorem (2.1)),

H−1
λ : Lr −→ Ls,

1

s
=

1

r
− 2

n
, ∀r <

n

2
,

with a norm bounded independantly of λ. Using the fact that (I −Tλ)
−1 is bounded on all the Lp

spaces, with a bound for the norm independant of λ ≥ 0, we get that

(L+ λ)−k : L2 −→ Lp

is bounded uniformly in λ ≥ 0. Since n
2p < 1, we have by Corollary (3.2):

H−1
λ : Lp −→ L∞,

with
||H−1

λ ||p,∞ ≤ Cλ−1+ n
2p ,

so that:

||(L+ λ)−k−1||2,∞ ≤ C(k)λ−1+ n
2p =

C(k)

λk+1−n/4
,

which is what we need.

Second case: n
4 ∈ N hence k = n

4 . We write H−1
λ = H−α

λ H−1+α, where α ∈ (0, 1). Then by

Proposition (3.1), ||H−1+α
λ ||2,2 ≤ 1

λ1−α , and

H−α
λ : L2 −→ Lq,

1

q
=

1

2
− α

2

n

is bounded with a norm bounded independantly of λ > 0. This time, we define p > n
2 by:

1

p
=

1

2
− (k − 1 + α)

2

n
.

We get:

||(L + λ)−k||2,p ≤ ||(L + λ)−(k−1)||q,p||(I − Tλ)
−1||q,q||H−α

λ ||2,q||H−(1−α)
λ ||2,2 ≤ C

λ1−α
,
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Therefore, using that ||H−1
λ ||p,∞ ≤ Cλ−1+ n

2p and ||(I − Tλ)
−1||∞,∞ ≤ C independant of λ, we

obtain:

||(L+ λ)−k−1||2,∞ ≤ Ck

λ(1−n/2p)+(1−α)
.

But n
2p = n

4 − (k − 1 + α), which yields what we want.

�

3.3 Pointwise estimates of the Heat Kernel on 1-forms

Let us recall the following definition:

Definition 3.1 Let X be a metric measured space, E a Riemannian vector bundle over X, and
L a non-negative self-adjoint operator on L2(E). We say that L satisfies the finite propagation

speed property if for every t > 0,

supp Kcos(t
√
L) ⊂ {(x, y) ∈ X ×X : d(x, y) ≤ t},

where Kcos(t
√
L) denotes the kernel of cos(t

√
L).

A consequence of Sikora’s work (Theorem 4 in [31]) is:

Theorem 3.3 Let X be a metric measured space whose measure is doubling, and E a Riemannian
vector boundle over X. If the following on-diagonal estimate holds:

||e−tL||2,∞ ≤ C

tn/4
, ∀t > 0,

with L non-negative self-adjoint operator on L2(E), satisfying the finite speed propagation, then
there is a Gaussian-type estimate for e−tL: for every δ > 0, there is a constant C such that

||Kexp(−tL)(x, y)|| ≤
C

tn/2
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0,

where Kexp(−tL) denotes the kernel of e−tL.

It is shown the following fact in the appendix of [23], p.388-389:

Proposition 3.4 Let M be a complete Riemannian manifold, E a Riemannian vector bundle over
M , and L an operator of the type:

L := ∇⋆∇+R,

such that L is non-negative self-adjoint on L2(E). Then L satisfies the finite propagation speed
property.

Therefore, we have shown the follwing result, consequence of Theorems (3.3) and (3.2) :

Theorem 3.4 Let M be a complete Riemannian manifold satisfying the Sobolev inequality of
dimension n (Sn), E a Riemannian vector bundle over M , and L an operator of the type:

L := ∇⋆∇+R+ −R−,

such that L is self-adjoint on L2(E). We assume that R− ∈ L
n
2 ±ε, for some ε > 0, and that L is

strongly positive. Then for every δ > 0, there is a constant C such that

||Kexp(−tL)(x, y)|| ≤
C

tn/2
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0,
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The bound that we obtain is not exactly what is usually called a Gaussian estimate for e−tL;
indeed, a Gaussian estimate for e−tL is a bound of the following type:

||Kexp(−tL)(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

The problem comes from the term V (x, t1/2), which may not behave like t−n/2. Indeed, when M
satisfies a Sobolev inequality of dimension n, we only have the lower bound (proved in [5] and [1]):

V (x,R) ≥ CRn, ∀R > 0, ∀x ∈ M,

which implies by the way that n ≥ dim(M). For example the Heisenberg group H1 is a manifold
of dimension 3 which satisfies a 4-Sobolev inequality but whose volume of geodesic balls satisfies:

V (x,R) ≈ R3 if R ≤ 1,

and

V (x,R) ≈ R4 if R ≥ 1.

Definition 3.2 Let M be a complete Riemannian manifold of dimension m, which satisfies a
n-Sobolev inequality. We say that the volume growth of M is compatible with the Sobolev

dimension if there is a constant C such that:

V (x,R) ≤ CRn, ∀x ∈ M, ∀R ≥ 1.

Definition 3.3 We say that M satisfies a relative Faber-Krahn inequality of exponent n
if there is a constant C such that for every x ∈ M and R > 0, and every non-empty subset
Ω ⊂ B(x,R),

λ1(Ω) ≥
C

R2

( |B(x,R)|
|Ω|

)2/n

,

where λ1(Ω) is the first eigenvalue of ∆ on Ω with Dirichlet boundary conditions.

It is proved in [19] that the relative Faber-Krahn inequality is equivalent to the volume doubling
property (D) together with the Gaussian upper bound of the heat kernel (G):

pt(x, y) ≤
C

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M.

We have the following property, which is not new but whose proof is given for the reader’s conve-
nience:

Proposition 3.5 Let M be a complete Riemannian manifold of dimension m, which satisfies a
Sobolev inequality of dimension n (Sn), and whose Ricci curvature is bounded from below. If the
volume growth of M is compatible with the Sobolev dimension, then M satisfies a relative Faber-
Krahn inequality of exponent n.

Proof :

Let us explain first why the relative Faber-Krahn inequality holds for balls of small radius.
Saloff-Coste has shown in [29] the following Sobolev inequality: if the Ricci curvature of M is
bounded from below by−K ≤ 0, then for all ball B of radius R,

||f ||22n
n−2

≤ eC(1+
√
KR) R2

V (R)2/n
||df ||2 + eC(1+

√
KR) 1

V (R)2/n
||f ||2, ∀f ∈ C∞

0 (B) (2)

For balls of radius smaller than 1, (2) rewrites

||f ||22n
n−2

≤ C
R2

V (R)2/n
||df ||2 + C

1

V (R)2/n
||f ||2, ∀f ∈ C∞

0 (B).
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Moreover, for balls of radius smaller than 1, we have the following inequality for the first eigenvalue
af the Laplacian with Dirichlet boundary conditions, consequence of Cheng’s comparison Theorem:

λ1(B) ≤ CR2,

therefore we obtain that for every ball of radius R ≤ 1,

||f ||22n
n−2

≤ C
R2

V (R)2/n
||df ||2, ∀f ∈ C∞

0 (B).

From the work of Carron [5], this is equivalent to the relative Faber-Krahn inequality for balls of
radius smaller than 1.

For balls of radius greater than 1: again, according to [5], since M satisfies a Sobolev inequaity of
dimension n (Sn), M satisfies a Faber-Krahn inequality of exponent n, that is for every open set
Ω ⊂ M ,

λ1(Ω) ≥
C

|Ω| 2
n

.

If Ω ⊂ B(x,R) with R ≥ 1, we have, using the hypothesis that the volume of balls of radius greater
than 1 is euclidean of dimension n:

λ1(Ω) ≥
C

|Ω| 2
n

≥ C

R2

( |B(x,R)|
|Ω|

)
2
n

.

�

Example 3.1 The Heisenberg group H1 satisfies a relative Faber-Krahn inequality of exponent
4; in fact, it even satisfies the scaled Poincaré inequalities and the Doubling Property, which is
equivalent (by the work of Grigor’yan [18] and Saloff-Coste [28]) to the conjunction of a Gaussian
upper and lower bound for the heat kernel.

Every manifold with Ric ≥ 0 (or more generally, with Ric ≥ 0 outside a compact set, finite
first Betti number, only one end, and satisfying a condition called (RCA), see [20]) satisfies the
scaled Poincaré inequalities, and thus a relative Faber-Krahn inequality of exponent dim(M).

Taking into account what we have obtained in Theorem (3.2), we get one of the main results of
our paper:

Theorem 3.5 Let (M, g) be a complete Riemannian manifold which satisfies the Sobolev inequality
of dimension n (Sn), and E a Riemannian vector bundle over M . Let L a generalised Schrödinger
operator:

L := ∇⋆∇+R+ −R−,

acting on the sections of E. We assume that R− is in L
n
2 −ε ∩ L∞ for some ε > 0, and that L

is strongly positive. We also assume that the volume growth of M is compatible with the Sobolev
dimension. Then the Gaussian estimate holds for e−tL: for every δ > 0, there is a constant C
such that

||Kexp(−tL)(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀(x, y) ∈ M ×M, ∀t > 0.

Proof :

By Theorem (3.4),

||Kexp(−tL)(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀(x, y) ∈ M ×M, ∀t ≥ 1.

Since M satisfies a relative Faber-Krahn inequality,
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pt(x, y) ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀(x, y) ∈ M ×M, ∀t > 0.

But since R− is bounded from below, this implies the Gaussian estimate for e−tL for small times:

||Kexp(−tL)(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀(x, y) ∈ M ×M, ∀t ≤ 1.

Indeed, this comes from the fact that we have the domination (proved in [21]) :

||Kexp(−tL)(x, y)|| ≤ e−t(∆−C)(x, y)

if R− ≤ C.

�

We will see in Proposition (4.2) that in fact, under the assumptions of Theorem (3.5),

KerL2(L) = KerH1
0
(L).

Using this and the definition of strong positivity, we get:

Corollary 3.3 Let (M, g) be a complete Riemannian manifold which satisfies the Sobolev inequal-
ity of dimension n (Sn), and E a Riemannian vector bundle over M . Let L be a generalised
Schrödinger operator:

L := ∇⋆∇+R+ −R−,

acting on the sections of E, such that L is non-negative on L2(E). We assume that R− is in
L

n
2 −ε∩L∞ for some ε > 0, that the volume growth of M is compatible with the Sobolev dimension,

and that

KerL2(L) = {0}.
Then the Gaussian estimate holds for e−tL: for every δ > 0, there is a constant C such that

||Kexp(−tL)(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

4 Applications

The Gaussian estimate on the Heat Kernel on 1-forms has a certain number of consequences, which
we decribe now.

4.1 Estimates on the gradient of the Heat kernel on functions and scaled

Poincaré inequalities

We recall a classical definition:

Definition 4.1 We say that M satisfies the scaled Poincaré inequalities if there exists a con-
stant C such that for every ball B = B(x, r) and for every function f with f, ∇f locally square
integrable,

∫

B

|f − fB|2 ≤ Cr2
∫

B

|∇f |2.

Coulhon and Duong (p. 1728-1751 in [12]) have noticed that a Gaussian estimate on the heat
kernel on 1-forms –in fact, a Gaussian estimate on the heat kernel on exact 1-forms is enough–
leads to the following estimate for the gradient of the heat kernel on functions:

|∇xpt(x, y)| ≤
C√

tV (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M,
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which, when the on-diagonal Gaussian lower bound for the heat kernel on functions pt(x, x) ≥
C

V (x,
√
t)

and the volume doubling property (D) hold, yields the Gaussian lower bound for the Heat

Kernel on functions:

pt(x, y) ≥
C

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M.

In addition, if M satisfies a Sobolev inequality of dimension n (Sn) and if the volume growth of
M is compatible with the Sobolev dimension, we know from Proposition (3.5) that M satisfies a
relative Faber-Krahn inequality of exponent n, and this implies by the work of Grigor’yan ([19])
that we have the corresponding upper-bound for the heat kernel on functions:

pt(x, y) ≤
C

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M

But we know from the work of Saloff-Coste and Grigor’yan ([28] and [18]) that the two-sided
Gaussian estimates for the Heat Kernel on functions are equivalent to the conjonction of the scaled
Poincaré inequalities and the volume doubling property (D).
Thus we have proved the following theorem, which extends similar results for manifolds with
non-negative Ricci curvature:

Theorem 4.1 Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies
the Sobolev inequality of dimension n (Sn), and whose negative part of the Ricci tensor Ric− is
in L

n
2 ±ε for some ε > 0. We assume that there is no non-zero L2 harmonic 1-form on M , that

the volume growth of M is compatible with the Sobolev dimension, and that the Ricci curvature is
bounded from below. Then we have the following estimates on the heat kernel on functions:

|∇xpt(x, y)| ≤
C√

tV (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M,

c

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

≤ pt(x, y) ≤
C

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M,

and on M the scaled Poincaré inequalities hold.

4.2 Boundedness of the Riesz transform

In [31], Sikora shows that when a Gaussian estimate holds for a semigroup e−tH , where H is a
self-adjoint operator, then for every local operator A such that AL−α is bounded on L2, α > 0,
then AL−α is bounded on Lp for all 1 < p ≤ 2. Given this, we obtain the following corollaries,
which are consequences of Theorem 10 in [31] (or Theorem 5.5 in Coulhon-Duong [12], or the main
result of [2]), and of Theorem (3.5):

Corollary 4.1 Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies
the Sobolev inequality of dimension n (Sn), and whose negative part of the Ricci tensor Ric− is in
L

n
2 ±ε for some ε > 0. We assume that . We also assume that there is no non-zero L2 harmonic

1-form on M , that the volume growth of M is compatible with the Sobolev dimension, and that the
Ricci curvature is bounded from below. Then the Riesz transform d∆−1/2 is bounded on Lp, for all
1 < p < ∞.

Corollary 4.2 Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies
the Sobolev inequality of dimension n (Sn), and whose negative part of the Ricci tensor Ric− is
in L

n
2 ±ε for an ε > 0. We assume that the volume growth of M is compatible with the Sobolev

dimension, and that the Ricci curvature is bounded from below. If V is a non-negative potential such

that L := ~∆+ V is strongly positive, then d⋆
(

~∆+ V
)−1/2

is bounded on Lp for every 1 < p ≤ 2.
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4.3 Lp reduced cohomology

Definition 4.2 The first space of Lp reduced cohomology, denoted H1
p (M), is the quotient of

{α ∈ Lp(Λ1T ⋆M) : dα = 0} by the closure in Lp of the space of exact forms dC∞
0 (M).

Let us recall the following result, from[9]:

Proposition 4.1 Let p ≥ 2. Let M be a complete non-compact Riemannian manifold, satisfying
the Sobolev inequality of dimension n (Sn), and whose volume growth is compatible with the Sobolev
dimension. Assume that on M the Riesz transform is bounded on Lp. Then H1

p (M) has the
following interpretation:

H1
p (M) ≃ {ω ∈ Lp(Λ1T ⋆M) : dω = d⋆ω = 0} (3)

As a consequence, H1(M), the space of L2 harmonic forms, injects into H1
p (M).

In particular, this implies that H1
p (M) is a space of harmonic forms:

H1
p (M) ⊂ {ω ∈ Lp(Λ1T ⋆M) : ~∆ω = 0}.

Under the hypotheses of Proposition (4.1), every L2 harmonic form is in L∞, therefore in Lp for
every p ≥ 2. And furthermore,

Proposition 4.2 Let M be a complete, non-compact manifold, satisfying the Sobolev inequality of
dimension n (Sn), and whose volume growth is compatible with the Sobolev dimension. Let E be a
Riemannian vector bundle over M , endowed with a compatible connection ∇, and L a generalised
Schrödinger operator:

L = ∇⋆∇+R,

acting on the sections of E. We assume that R− is in L
n
2 ±ε for some ε > 0. Let p ≥ 2. Then

every section ω of E, which lies in Lp and satisfies Lω = 0, is in L1 ∩ L∞ (so in particular is in
L2).

In particular, for L the Hodge-DeRham Laplacian on 1-forms:

Corollary 4.3 Let p ≥ 2. Let M be a complete non-compact Riemannian manifold, satisfying the
Sobolev inequality of dimension n (Sn), and whose volume growth is compatible with the Sobolev
dimension. Assume that the negative part of the Ricci curvature is in L

n
2 ±ε for some ε > 0, and

that the Riesz transform on M is bounded on Lp. Then

Hp
1 (M) = H1(M).

Remark 4.1 This improves a result of Carron [6], according to which if M satisfies the Sobolev
inequality of dimension n, and if the negative part of the Ricci curvature is in Ln/2 for n > 4, then
every Lp harmonic form, for p = 2n

n−2 , is in L2.

Proof :

Let ω a section of E in Lp, such that Lω = 0: that is

(∆̄ +R+)ω −R−ω = 0.

Let H := ∆̄ +R+.

Lemma 4.1 The following formula holds in Lp:

ω = −H−1R−ω (4)
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Proof :

Let η := −H−1R−ω, then η ∈ Lp since according to Lemma (3.2), we have H−1R− ∈
L(Lp, Lp), and furthermore

H(ω − η) = 0.

By Kato’s inequality,

∆|ω − η| ≤ 0,

i.e. |ω − η| is sub-harmonic. But according to Yau [36], there is no non-constant Lp non-negative
sub-harmonic functions on a complete manifold. M being of infinite volume by the volume growth
assumption, the only constant function in Lp is the zero function. So we deduce that ω = η.

�

End of the proof of Proposition (4.2) : If we let T := H−1R−, then by Proposition (3.2) there is
an N ∈ N such that TNω ∈ L1 ∩ L∞. But by (4),

ω = TNω,

which shows that ω ∈ L1 ∩ L∞.

�

5 Boundedness of the Riesz transform in the range 1 < p < n

As announced in the introduction, we now remove the hypothesis of strong positivity. We are
mainly inspired by the perturbation technique developped by Carron in [8]. This section is devoted
to the proof of the following result:

Theorem 5.1 Assume n > 3.
Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the n-Sobolev in-
equality, and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. We also assume

that the Ricci curvature is bounded from below, and that the volume growth of M is compatible with
the Sobolev dimension.
Then for every 1 < p < n, the Riesz transform is bounded on Lp on M .

The hypotheses that we have made imply (by Proposition (3.5)) that M satisfies the relative Faber-
Krahn inequality of exponent n, which is equivalent to the conjunction of the volume doubling
property (D) and of the Gaussian upper-estimate on pt (G), and we know by [11] that all this
imply that the Riesz transform on M is bounded on Lp for all 1 < p ≤ 2. What we prove below is
that the Riesz transform is bounded on Lp for every n

n−1 < p < n, which is thus enough to get the
result. The proof is by a perturbation argument: using ideas of [8], we will show that if V ∈ C∞

0

is non-negative, then d(∆ + V )−1/2 − d∆−1/2 is bounded on Lp for n
n−1 < p < n. Then we will

prove that if V is chosen such that ~∆ + V be strongly positive, d(∆ + V )−1/2 is bounded on Lp

for n
n−1 < p < n. Finally, the following Lemma will conclude the proof of Theorem (5.1):

Lemma 5.1 Let (M, g) be a complete Riemannian manifold which satisfies the n-Sobolev inequal-
ity, and whose negative part of the Ricci tensor is in Ln/2. Then we can find a non-negative
potential V ∈ C∞

0 such that ~∆+ V is strongly positive.

Proof of Lemma (5.1):

If we write ~∆+V = (∆̄+W+)−W− = H−W−, and A := H−1/2W−H
−1/2, then by the definition

of strong positivity, ~∆+V is strongly positive if and only if ||A||2,2 < 1. Moreover, by Lemma (2.2),
we have ||A||2,2 ≤ C||W−||n/2, where C is independant of the chosen potential V ≤ 0. Therefore,

it is enough to take V such that ||(V −Ric−)−||n2 < 1
C , which is possible since Ric− ∈ Ln/2.

�
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5.1 A perturbation result

Our aim here is to prove:

Theorem 5.2 Assume n > 3. Let (Mm, g) be an m-dimensional complete Riemannian manifold
which satisfies the Sobolev inequality of dimension n (Sn), and whose Ricci curvature is bounded
from below. Let V ∈ C∞

0 be a non-negative potential. Then for every n
n−1 < p < n, d(∆+V )−1/2−

d∆−1/2 is bounded on Lp on M .

The proof is an adaptation of the proof in [8]. To adapt these ideas to the case of Schrödinger
operator with non-negative potential, we will need some preliminary results. First, we recall an
elliptic regularity result:

Proposition 5.1 Let V ∈ C∞
0 be non-negative, and let Ω be a smooth, open, relatively compact

subset. Let ∆D be the Laplacian with Dirichlet conditions on Ω. Then the Riesz transforms

d(∆D + V )−1/2 and d∆
−1/2
D are bounded on Lp for 1 < p < ∞.

We also recall the next Lemma and its proof from [8] :

Lemma 5.2 Let (M, g) be a complete Riemannian manifold with Ricci curvature bounded from
below, and V ∈ C∞

0 be a non-negative potential. Then for all 1 < p < ∞, there is a constant C
such that

||df ||p ≤ C(||∆f ||p + ||f ||p), ∀f ∈ C∞
0 (M),

and

||df ||p ≤ C(||(∆ + V )f ||p + ||f ||p), ∀f ∈ C∞
0 (M).

Proof :

By Theorem 4.1 in [3], the local Riesz transform is bounded on the Lp for 1 < p < ∞, i.e. we
have the following inequality for a ≥ 0 sufficently large:

||df ||p ≤ C(||∆1/2f ||p + a||f ||p), ∀f ∈ C∞
0 (M).

We then use the fact that for all 1 < p < ∞, there exists a constant C such that:

||∆1/2f ||p ≤ C
√

||∆f ||p||f ||p ≤ C

2
(||∆f ||p + ||f ||p).

A proof of this inequality can be found in [13].
For the case with a potential, we have ||(∆ + V )f ||p + a||f ||p ≥ ||∆f ||p − ||V ||∞||f ||p + a||f ||p.
Taking a > ||V ||∞, we get the result.

�

Proof of Theorem (5.2): Let p ∈ ( n
n−1 , n). We follow the proof of Carron in [8]. We define

L0 := ∆ + V , L1 := ∆; we take K1 smooth, compact containing the support of V , and K2, K3

smooth, compact such that K1 ⊂⊂ K2 ⊂⊂ K3. We also denote Ω := M \ K1. Let (ρ0, ρ1) a
partition of unity such that suppρ0 ⊂ Ω and suppρ1 ⊂ K2. We also take φ0 and φ1 to be C∞

non-negative functions such that suppφ0 ⊂ Ω, suppφ1 ⊂ K3 and such that φiρi = ρi. Moreover,
we assume that φ1|K2 = 1.
We define H0 := ∆ + V with Dirichlet boundary conditions on K3, and H1 := ∆ with Dirichlet
boundary conditions on K3. Then, following Carron, we construct parametrices for e−t

√
L1 and

e−t
√
L0 : the one for e−t

√
L1 is defined by

E1
t (u) := φ1e

−t
√
H1(ρ1u) + φ0e

−t
√
L1(ρ0u),

and the one for e−t
√
L0 is defined by

E0
t (u) := φ1e

−t
√
H0(ρ1u) + φ0e

−t
√
L1(ρ0u).
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Let us note that for e−t
√
L0 , we approximate by e−t

√
L1 outside the compact K3, and not by

e−t
√
L0 . Let us also remark that E1

0(u) = E0
0(u) = u, as it should. We then have:

e−t
√
Li(u) = Ei

t(u)−Gi

[

(− ∂2

∂t2
+ Li)E

i
t(u)

]

,

where Gi is the Green operator on R+ × M with Dirichlet boundary condition, associated to

− ∂2

∂t2 + Li.
Next we have to show that the error term can be well-controled. We compute:

(− ∂2

∂t2
+ L1)E

1
t (u) = [L1, φ0]e

−t
√
L1(ρ0u) + [L1, φ1]e

−t
√
H1(ρ1u),

and

(− ∂2

∂t2
+ L0)E

0
t (u) = [L0, φ1]e

−t
√
H0(ρ1u) + [L1, φ0]e

−t
√
L1(ρ0u) + (L0 − L1)φ0e

−t
√
L1(ρ0u).

But L0 − L1 = V is supported in K1, therefore (L0 − L1)φ0e
−t

√
L1(ρ0u) = 0. Moreover, we have

[∆ + V, φi] = [∆, φi], therefore [L0, φi]e
−t

√
H0(ρiu) = (∆φi)(e

−t
√
H0(ρiu)) − 2〈dφi,∇e−tH0(ρiu)〉.

Define Si
t(u) := (− ∂2

∂t2 + Li)E
i
t(u). We get:

S1
t (u) = [∆, φ0]e

−t
√
L1(ρ0u) + [∆, φ1]e

−t
√
H1(ρ1u),

and

S0
t (u) = [∆, φ0]e

−t
√
L1(ρ0u) + [∆, φ1]e

−t
√
H0(ρ1u).

Lemma 2.4 in [8] implies:

||[∆, φ0]e
−t

√
∆(ρ0u)||1 + ||[∆, φ0]e

−t
√
∆(ρ0u)||p ≤ C

(1 + t)n/p
.

Furthermore, if f1(u) := [∆, φ1]e
−t

√
H1(ρ1u) = (∆φ1)e

−t
√
H1(ρ1u)− 2〈dφ1,∇e−tH1(ρ1u)〉,

and f0(u) := [∆, φ1]e
−t

√
H0(ρ1u) = (∆φ1)e

−t
√
H0(ρ1u) − 2〈dφ1,∇e−tH0(ρ1u)〉, we have as in

[8]:

||fi(u)||1 + ||fi(u)||p ≤ C

(1 + t)n/p
||u||p, ∀t > 0.

Indeed, if we denote pDi (t, x, y) the heat kernel of Hi, then for F1, F2 disjoint compact subsets,

lim
t→0

pDi (t, ., .)|F1×F2 = 0 in C1

(cf [17] Lemma 3.2 and [25], Proposition 5.3). But by our hypotheses, the supports of ρ1 and
of ∆φ1 are compact and disjoints, as are the ones of ρ1 and dφ1. Therefore the kernels of the
operators Si(t) := [∆, φ1]e

−t
√
Hiρ1 are uniformly bounded as t → 0. So we get:

||Si(t)||p,∞ ≤ C, ∀t ∈ [0, 1].

Now, the operators Hi have a spectral gap, so ||e−t
√
Hi ||2,2 ≤ e−ct, where c > 0. If v ∈ W 1,2(K3)

is a non-negative solution of ∂v
∂t +(∆+V )v = 0, then ∂v

∂t +∆v ≤ 0, and therefore by the parabolic

maximum principle, v attains its maximum on {t = 0} ∪ ∂K3. If we take v := e−t(∆D+V )1, which
is zero on ∂K3 for t > 0, we get:

∫

K3

pi(t, x, y)dy ≤ 1, ∀x ∈ K3,

and therefore ||e−tHi ||∞,∞ ≤ 1. By duality, it is true also on L1, and by the subordination identity
we have:

||e−t
√
Hi ||1,1 + ||e−t

√
Hi ||∞,∞ ≤ C.
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Interpolating this with the L2 bound, we get that

||e−t
√
Hi ||p,p ≤ Ce−ct,

for 1 < p < ∞, where the constants C and c depend on p. Then we write for t ≥ 1:

||Si(t)u||∞ ≤ ||[∆, φ1]e
− 1

2

√
Hi ||Lp→L∞ ||e−(t−1/2)

√
Hiρ1u||Lp ≤ Ce−ct||u||p.

Here we have used that the heat kernels pDi (12 , ., .) are C∞. Thus we have proved:

Lemma 5.3

||Si
t(u)||1 + ||Si

t(u)||p ≤ C

(1 + t)n/p
||u||p, ∀t > 0.

The error term, when we approximate e−t
√
Li by the above parametrix is Gi(S

i
t(u)). We cannot

control it directly, but the main argument of [8] shows that when we integrate the error term, we
can control it well: more precisely, given the result of Lemma (5.3), we have the following Lemma
that sums up Carron’s result:

Lemma 5.4 Assume n > 3. Let (gi(u))(x) :=
∫∞
0

(Gi(S
i
t(u)))(t, x)dt. Then for any n

n−1 < p < n,
there is a constant C such that for all u ∈ Lp,

||Li(gi(u))||p + ||gi(u)||p ≤ C||u||p.

Applying Lemma (5.4), we deduce that

||d(gi(u))||p ≤ C||u||p.
We can now finish the proof of Theorem (5.2). We use the formula

L
−1/2
i = c

∫ ∞

0

e−t
√
Lidt,

to get:

L
−1/2
i u = φ1H

−1/2
i ρ1u+ φ0L

−1/2
1 ρ0u− cgi(u).

Therefore:

dL
−1/2
1 u− dL

−1/2
0 u =

(

d(φ1H
−1/2
1 ρ1u)− d(φ1H

−1/2
0 ρ1u)

)

+ c
(

dg0(u)− dg1(u)
)

.

(here is where we use the fact that we have taken for parametrices e−t
√
L1 for both operators

outside a compact set). Write d(φ1H
−1/2
i ρ1u) = (dφ1)H

−1/2
i ρ1u + φ1dH

−1/2
i ρ1u. (dφ1)H

−1/2
i ρ1

has a smooth kernel with compact support, therefore is bounded on Lp. Applying Proposition

(5.1), we get that φ1dH
−1/2
i ρ1 is bounded on Lp, hence we have the result.

�

5.2 Boundedness of d(∆ + V )−1/2

We now show:

Theorem 5.3 Assume n > 3. Let (Mm, g) be an m-dimensional complete Riemannian manifold
which satisfies the Sobolev inequality of dimension n (Sn), and whose negative part of the Ricci
tensor is in L

n
2 −ε∩L∞ for some ε > 0. We also assume that the volume growth of M is compatible

with the Sobolev dimension. Let V ∈ C∞
0 be non-negative, such that ~∆ + V is strongly positive.

Then the Riesz transform d(∆ + V )−1/2 is bounded on Lp for every 1 < p < n.

We first show a preliminary result:

Lemma 5.5 (~∆+ V )−1/2d is bounded on Lp for every 2 ≤ p < ∞.

Proof :

It is a direct consequence of Corollary (4.2), by taking duals.
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Proof of Theorem (5.3): First, let us note that we can restrict ourselves to the case n
n−1 < p < n.

Indeed, for 1 < p < 2, since the hypotheses that we have made imply the Faber-Krahn inequality,
and given the domination e−t(∆+V ) ≤ e−t∆, we have a Gaussian upper bound for e−t(∆+V ). Thus
the result of [11] shows that d(∆+V )−1/2 is bounded on Lp for every 1 < p ≤ 2. So let p ∈ ( n

n−1 , n).

The problem to get from Lemma (5.5) the boundedness of the Riesz transform d(∆ + V )−1/2 is

that it is not true that d(∆ + V )−1/2 = (~∆+ V )−1/2d anymore. To circumvent this difficutly, we
use again the method of [8]. We will use the following:

Lemma 5.6 For 1 ≤ r ≤ s ≤ ∞, we have the existence of a constant C such that:

||e−t(~∆+V )||Lr→Ls ≤ C

t
n
2 ( 1

r−
1
s )
.

We postpone the proof of Lemma (5.6) until the end of this section. Let E be the vector bundle
of basis M × R+, whose fiber in (t, p) is Λ1T ∗

pM . Let G be the operator (the ”Green operator”)
acting on sections of E, whose kernel is given by

G(σ, s, x, y) =

∫ ∞

0

[

e−
(σ−s)2

4t − e−
(σ+s)2

4t

√
4πt

]

~pt
V (x, y)dt,

where ~pt
V is the kernel of e−t(~∆+V ). We can see that G satisfies:

(

− ∂2

∂σ2
+ (~∆x + V )

)

G = I,

and that G(σ, s, x, y) is finite if x 6= y and σ 6= s (here we use the estimate |pVt (x, y)| ≤ C
tn/2 , given

by Theorem (3.2) and Corollary (??)). We want to write, as in the proof of Theorem (5.2), for
u ∈ C∞

0 (M):

e−t
√

~∆+V du = de−t
√
∆+V u−G

((

− ∂2

∂t2
+ (~∆+ V )

)

de−t
√
∆+V u

)

. (5)

Now, we justify formula (5) and in passing we show some estimates that will be used later. We
compute:

(

− ∂2

∂t2 + (~∆+ V )
)

de−t
√
∆+V u = −d(∆ + V )e−t

√
∆+V u+ (~∆+ V )de−t

√
∆+V u

= −
(

e−t
√
∆+V u

)

(dV ).

We have:

||e−t
√
∆+V ||Lp→L∞ ≤ C

tn/2p
, ∀t > 0,

and

||e−t
√
∆+V ||Lp→Lp ≤ 1, ∀t > 0.

(this comes from the domination e−t(∆+V ) ≤ e−t∆).

Thus if we denote f :=
(

− ∂2

∂t2 + (~∆+ V )
)

de−t
√
∆+V u, we have:

Lemma 5.7

||f(t, .)||1 + ||f(t, .)||p ≤ C

(1 + t)n/p
||u||p.

Now we show:

Lemma 5.8 ||G(f)(t, .)||2 is bounded uniformly with respect to t > 0, and

lim
t→0

||G(f)(t, .)||2 = 0.
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Proof of Lemma (5.8):

Denote Ks(t, σ) :=
e−

(σ−t)2

4s −e−
(σ+t)2

4s√
4πs

, and Ht(x, y) the kernel of e−tL.

G(f)(t, x) =
∫

G(σ, t, x, y)f(σ, y)dσdy

=
∫

M

∫∞
0

∫∞
0 Ks(t, σ)Hs(x, y)f(σ, y) dsdσdy

=
∫∞
0

∫∞
0 Ks(t, σ)

(∫

M Hs(x, y)f(σ, y) dy
)

dsdσ

=
∫∞
0

∫∞
0

Ks(t, σ) e
−s

√
L(x) dsdσ

Consequently,

||G(f)(t, .)||2 ≤
∫ ∞

0

∫ ∞

0

Ks(t, σ) ||e−s
√
Lf(σ, .)||2 dsdσ.

But we have

||e−s
√
Lf(σ, .)||2 ≤ min

(

1
sn/4 ||f(σ, .)||1, ||f(σ, .)||2

)

≤ C||u||2 min
(

1
sn/4

1
(1+σ)n/2 ,

1
(1+σ)n/2

)

Therefore,

||G(f)(t, .)||2 ≤ C||u||2
∫∞
0

1
(1+σ)n/2

(

∫ 1

0
e−

(σ−t)2

4s −e−
(σ+t)2

4s√
s

ds +

∫∞
1

e−
(σ−t)2

4s −e−
(σ+t)2

4s

s
n
4

+ 1
2

ds

)

dσ

Since n ≥ 3, the three integrals
∫∞
0

dσ
(1+σ)n/2 ,

∫ 1

0
ds√
s
and

∫∞
1

ds

s
n
4

+1
2
converge, and this yields imme-

diately the fact that ||G(f)(t, .)||2 is bounded uniformly with respect to t > 0. Furthermore, we
can apply the Dominated Convergence Theorem to conclude that limt→0 ||G(f)(t, .)||2 = 0.

�

Therefore, letting

ϕ(t, .) := e−t
√

~∆+V du− de−t
√
∆+V u+G

((

− ∂2

∂t2
+ (~∆+ V )

)

de−t
√
∆+V u

)

,

ϕ(t, .) satisfies:

(

− ∂2

∂t2
+ (~∆+ V )

)

ϕ = 0, (6)

and

L2 − lim
t→0

ϕ(t, .) = 0. (7)

This last assertion uses that L2 − limt→0 e
−t
√

~∆+V du = L2 − limt→0 de
−t

√
∆+V u = du. To justify

L2− limt→0 de
−t

√
∆+V u = du, we can say that by the Spectral Theorem ((c) in Theorem VIII.5 in

[26]),
√
∆+ V e−t

√
∆+V u converges in L2 for u ∈ C∞

0 (M); since V ≥ 0, the Riesz transform with

potential d(∆ + V )−1/2 is bounded on L2, we deduce that de−t
√
∆+V u converges in L2, and the

limit is necessarily du.
Furthermore, ϕ(t, .) is bounded in L2 uniformly with respect to t > 0: to show this, it is enough

to prove that de−t
√
∆+V u is uniformly bounded in L2, when u is a smooth, compactly supported

fixed function. We write

de−t
√
∆+V u = d (∆ + V )−1/2 √∆+ V e−t

√
∆+V u,

and using the L2 boundedness of d (∆ + V )
−1/2

and the analyticity on L2 of e−t
√
∆+V , we get
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||de−t
√
∆+V u||2 ≤ C

t
, ∀t > 0.

Thus it remains to show that de−t
√
∆+V u is bounded in L2 when t goes to 0. But this follows from

the fact that

L2 − lim
t→0

de−t
√
∆+V u = du,

which we have already proved. Consequently, ϕ(t, .) is uniformly bounded in L2. Using this, to-

gether with (6) and (7), and applying the Spectral Theorem to ~∆+V , we deduce that ϕ ≡ 0. This
proves the formula (5).

Letting (g(u))(x) :=
∫∞
0

(G(f))(t, x)dt, we have by integration of formula (5):

(~∆+ V )−1/2du = d(∆ + V )−1/2u− cg.

By Lemma (5.7) and Lemma (5.6), we have as in [8]:

||g||p ≤ C||u||p.
Applying Lemma (5.5), we conclude that d(∆ + V )−1/2 is bounded on Lp.

�

Proof of Lemma (5.6):

Let us denote L := ~∆+V . If we can prove that ||e−tL||∞,∞ ≤ C, ||e−tL||1,1 ≤ C and ||e−tL||1,∞ ≤
C

tn/2 , then by standard interpolation arguments we are done. The fact that ||e−tL||∞,∞ ≤ C

comes from the Gaussian estimate on e−tL, which holds by Theorem (3.5), plus the fact that
1

V (x,
√
t)

∫

M e−c
d2(x,y)

t dy is bounded uniformly in x ∈ M and t > 0. Then by duality ||e−tL||1,1 ≤ C.

Moreover, by Theorem (3.2) we also have the estimate:

|e−tL||2,∞ ≤ C

tn/4
, ∀t > 0.

By duality, we deduce

|e−tL||1,2 ≤ C

tn/4
, ∀t > 0,

and by composition

|e−tL||1,∞ ≤ ||e−tL||1,2||e−tL||2,∞ ≤ C2

tn/2
, ∀t > 0.

�
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tions. Potential Anal., 1. no. 4.

[11] Coulhon, T.; Duong, X.T. Riesz Transforms for 1 ≤ p ≤ 2. Trans. Amer. Math. Soc., 351.
no.3.

[12] Coulhon, T.; Duong, X.T. Riesz Transform and Related Inequalities on Noncompact Rieman-
nian Manifolds. Communications on Pure and Applied Mathematics, LVI:0001–0024, 2003.

[13] Coulhon, T.; Russ, E.; Tardivel-Nachef, V. Sobolev Algebras on Lie groups and Riemannian
manifolds. Amer. J. Math., 123:283–342, 2001.

[14] Coulhon, T.; Saloff-Coste, L.; Varopoulos, N. Analysis and geometry on groups. Cambridge
University Press, 1993.

[15] Coulhon, T.; Zhang, Q. Large Time behavior of Heat Kernel on Forms. J. Diff. Geometry,
77. no.3.

[16] Devyver, B. Finiteness of the Morse Index for Schrödinger Operators. Preprint.

[17] Dodziuk, J. Maximum Principle for Parabolic Inequalities and the Heat Flow on Open Man-
ifolds. Indiana Univ. Math. J., 32:703–716, 1983. no. 5.

[18] Grigor’yan, A. The heat equation on non-compact Riemannian manifolds. Matem. Sbornik,
182:55–87, 1991. Engl. Transl. Math. USSR Sb., 72, 1992, 47-77.

[19] Grigor’yan, A. Heat Kernel Upper Bounds On A Complete Non-compact Manifold. Revista
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