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1 INTRODUCTION 
 
Maintenance is a key in ensuring the efficient use of 
equipment as well as efficient production process. If 
machines often break down or operate in bad condi-
tion, this may cause lower product quality, increas-
ing energy consumption, delivery delay, lost custom-
ers, contract penalties, and reduced revenue. 
Therefore, the maintenance now is not simply over-
come the failures, that have become the process to 
predict, prevent loss at management level. Managers 
need to analyze all relevant information to assess the 
profitability of equipment, to give reasonable in-
vestment decision, and to consider the possibility of 
saving charges. In particular, high spare parts inven-
tory is one important factor causing increased main-
tenance costs. However, lack of inventory increases 
machine downtime due to waiting time when no 
spare parts needed in stock. Hence, consideration of 
spare parts inventory problems is essential task of 
managers. 

 There is an intensive research to study the differ-
ent aspects of spare parts inventory problems such 
as: management issues (methods of organizing and 
reducing spares), multi-echelon problems, age-based 
replacement, repairable spare parts, problems involv-
ing obsolescence and special application (Kennedy 
et al. 2002). As the author’s comment, spare parts 
inventories totally differ from other manufacturing 
inventories. Its function is to assist a maintenance 
staff in keeping equipment in operating condition. 
The close relation between spare parts inventories 
and maintenance was discussed in several articles. 
Kabir & Al-Olayan. 1996 study a joint optimization 
of age based replacement and spare parts inventory 

policy (S, s). Consider a block replacement strategy, 
Vaughan. 2005 utilize a dynamic programming to 
solve the spare parts ordering problem while Sarker 
& Haque. 2000, Chelbi & Aït-Kadi. 2001 present 
management policies for a manufacturing system, 
aiming to optimize the maintenance strategy with 
continuous review spare items inventory jointly. 
Sheu & Chien. 2004 and Chien. 2009 extend the 
problem by studying also minimal repair at minor 
failure while Destombes et al. 2006 consider repair 
capacity of degraded/ failed units after they was re-
placed by spare parts. However, all the above models 
are constructed on assumption that the same vintage 
of technology will be utilized throughout the plan-
ning horizon. They do not allow us to take into ac-
count the appearance of new technology with lower 
operating and maintenance costs, smaller failure 
rates, higher quality and output rates. This informa-
tion is important for managers to decide the re-
placement investment plan. On the other side, the 
models devoted to the spare parts inventory problem 
involving obsolescence are generally based on the 
observations of the economical performance of the 
maintenance process 

These reasons motivate us to develop an appro-
priate model to meet the management’s require-
ments: optimization of maintenance cost, simulta-
neously, updating information on the technological 
development, and consider the impact of spare parts 
inventory levels to make reasonable investment de-
cisions.  

 
This paper is structured as follows: In Section 2, a 

related literature is presented to motivate the present 
work. Section 3 is devoted to the mathematical for-
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mulation. In Section 4, the performance of our mod-
el is discussed through numerical examples. Finally, 
a conclusion and future work are discussed in Sec-
tion 5. 

We formulate a discrete time non-stationary Mar-
kov Decision Process to determine the optimal ac-
tion policy. The set of decisions that made as a func-
tion of the state of the asset itself, the technological 
environment, and the current spare parts inventory 
are:  to do nothing, imperfectly/ perfectly repair, or 
replace the asset. The similar model with non-
stationary technological appearance’s probability in 
time was proposed by Nair (1995, 1997). However, 
in these papers, the author only considers replace-
ment problem, and not examining the impact of in-
ventory levels as our model. On the other hand, un-
like Hopp & Nair (1994) reviewing unique 
challenger, we study a technological sequence.  

To model sequential technological evolution, we 
combine the geometric model and uncertain appari-
tion model of technology. The geometric technologi-
cal evolution model is presented by Borgonovo et al. 
(2000), Smith et al. (2003), Karsak & Tolga (1998), 
Hritoneko & Yatsenko (2007, 2008a, b), Bethuyne 
(2002). But except Borgonovo et al. (2000), the rest 
study the problem without parametric degradation. 
They utilize the geometric model to form the cost 
functions in vintage equipment or in time. Unlike 
these articles, we present technology change by the 
improvement of the expected deterioration rate. 
Moreover, our profit or maintenance cost functions 
are only dependent on degradation state. As the ex-
pected degradation rate of equipments is improved 
over technology generation, accrued profit and main-
tenance cost will be dependent on technology gener-
ation.  

In addition, we also consider non-stationary like-
lihood of new technology’s apparition over time. 
Thereby, we overcome the disadvantages of the 
geometric model proposed by Borgonovo et al. 
(2000). In that article, the failure rate decreases ex-
ponentially over time, i.e. at any time, a machine can 
be replaced by new one which operates better with 
its reliability parameters determined at that time. In 
reality, this assumption is unreasonable because 
technical characteristics of the equipment cannot al-
ways be changed over time. It changes only at the 
concurrent instant of a new technological generation. 
Recall that Nair (1995, 1997) also considers the non-
stationary probability of the appearance of new tech-
nologies. But in his model, Nair focuses on the prob-
lem of capital investment decisions due to technolo-
gical change rather than physical deterioration of 
equipment. To simplify its exposition, he also does 
not consider salvage values while we establish the 
reasonable salvage value function which depends on 
its mean residual life and the purchase price of iden-
tical technology at this time. 

2 MODEL FORMULATION 

3.1 Problem generalization 

Consider a reparable machine which is accompanied 
by a cargo of n0 spare parts. They are utilized for the 
maintenance process of the machine and are not sold 
separately in the market, i.e, we cannot replenish the 
spare parts store when it is empty. This is common 
assumption for special spare parts of machine be-
cause it can be difficult and costly to find original 
and compatible spares to replace degraded units. 
Spare parts inventory level is a function of the 
choice of maintenance action: imperfect and perfect 
maintenance.  

The machine that operates continuously from the 
new state, X = 0 is characterized by its expected de-
terioration rate. In the failure state, denoted m, the 
machine continues to operate but unprofitably. To 
reveal the deterioration and the spare parts inventory 
level, periodic inspections are performed. The inter-
inspection interval, τ, defines the decision epochs.  

We assume that only one new technology can ap-

pear in a decision interval, τ. We introduce 1
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k

ip , the 

non stationary probability that technology k+1 ap-

pears in the interval τ given the latest available tech-

nology at decision epoch i is k. The difference in the 

technological generations is modeled by an im-

provement factors on the expected instantaneous de-

terioration rates and the accrued profit within a deci-

sion period.  
Let (x, k, j, s) be the system state at the beginning 

of the i
th

 decision epoch with s spare parts stocked 
for maintenance process of the machine having dete-
rioration level x. That machine belongs among the 
technological generation j while the latest available 
technology in the market is k, k ≥ j. Then, the main-
tenance decisions are restricted to: 

1) Do nothing (DN): The machine continues to 
deteriorate until next decision epoch and gene-
rates a profit gj(x). Note that gj(x) is the expected 
profit within a period when the deterioration state 
at the beginning of that period is x and the utilized 
technology is j. The spare parts inventory level is 
not change, so the holding cost within this period 
is scs with cs is the holding cost per spare part unit 
in a decision period.   
2) Imperfect maintenance (IM) which allows to 
restore the machine in a given deterioration level, 
max(0, x-d) where d models the maintenance effi-
ciency. An imperfect maintenance cost, cM is in-
curred and a spare part is utilized to replace the 
degraded unit, so the spare part inventory level is 
reduce by one unit: s - 1. As we assume that the 
maintenance time is negligible, then, in the next 
decision interval, the machine deteriorates from 
the level max(0, x-d) and generates a profit 
g(max(0, x-d)).  



3) Perfect maintenance (PM) which allows to re-

store the machine in the initial deterioration level 

X = 0, so the expected profit within next decision 

interval is g(0). This action requires n(x) spare 

parts that depend on the deterioration state of the 

machine. Simultaneously, a perfect maintenance 

cost cPM is incurred (cPM > cM).  

 Note that as we assume the spare parts are just 

supplied when we buy a new machine, hence we 

can only execute maintenance actions if and only 

if there are sufficient numbers of spare parts in 

store. 

4) Replace (R) the machine by the available tech-

nology h in the market (j ≤ h ≤ k). The replace-

ment time is also negligible. A cargo of n0 spare 

parts is supplied with the new machine. We as-

sume the spares are only compatible with the same 

generation machine, hence, after replacement, the 

spare parts inventory level is n0 if we decide to re-

place by new-generation machine and equals n0 + 

st in the case of replacement by same-generation 

machine. The cost of such a replacement is given 

by the difference between the purchase price of 

the new machine ci,h and the salvage value bi,j,k(x). 

Note that the purchase price of new technological 

machine can be estimated as the deterioration 

rates. This is realistic in case where the technical 

parameters and specifications of future designs 

may be know beforehand. We use an increasing 

function of technology and decreasing over time 

to define the purchase price. The salvage value is 

proportional to the purchase price of technology j 

at this time, decreasing in the remaining lifetime 

and greatly reduces in the obsolete case. In the i
th

 

decision period after the replacement, the new 

machine generates a profit gh(0).  
 In case of failure, the do nothing action is still al-
lowed but the profit in the next decision epoch is as-
sumed to be negative g(m) < 0.    

2.2 Decision criteria formulation 

In this paper, we use a non-stationary MDP formula-

tion to find the optimal maintenance-replacement 

policy to maximize the expected discounted value-

to-go over the finite horizon time denoted by V
π
(w) 

with w is the state of system. If the last decision pe-

riod is N, at decision epoch N+1, we do not make 

any decision and the maximum expected discounted 

value-to-go from the decision epoch N+1 over the 

infinite horizon is VN+1(w) = 0 ( Ss : state space 

of system).    
Let Vi(x,k,j,s) denote the maximum expected dis-

counted value from the decision epoch i, (k ≤ i) to 
the last epoch N. Then, V1(w) = V

π
(w). 
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where DNi, IMi, PMi, Ri are alternately choice to do 
nothing, to imperfectly maintain, to perfectly main-
tain and to replace at decision epoch i

th
. We have: 
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 λ: discount factor;  λ   [0, 1]. 

2.3 Transition probabilities 

To compute the transition probabilities, we propose 
to discretize the deterioration state of machine as fol-
lows. Let z denote the discrete deterioration state at 
the beginning of the current decision period. z is the 
first value of NX discrete intervals of length l on [0, 
ζ] (which ζ is the failure threshold of the machine). 
That is to say, if the deterioration state (x) at the be-
ginning of current decision period belongs to the in-
tervals ([0, l[, [l, 2l[, [2l, 3l[, ..., [(NX -1)l, ζ[), we 
approximate x by z {0, l, 2l, 3l ... (NX-1)l} and 
when the deterioration state (x) at the beginning of 
current decision period is exceed the failure thre-
shold (x ≥ ζ), we use m to present failure state of the 
machine. The deterioration state of the machine (x) 
is approximated by z, z   {0, l, 2l, 3l ... (NX-1)l, m}. 
Then, after preventive maintenance, the deterioration 
state is reduced by a determined amount of deteriora-
tion units d. The transition probability is: 
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where x’  {z, z+l, …, (NX-1)l, ζ}; k’ {k, k+1} 

 Recall that the deterioration state of the machine 

at the next decision epoch depends only on its dete-

rioration state at the current epoch decision and the 

technological generation of this machine, denoted by 

pj(x’|x); and '

1

k

ip   is the appearance probability of the 



next technological generation (k+1) at the next deci-

sion epoch (i+1) with k’ = k+1 or inversely, it is the 

non appearing probability with k’= k. 
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with z, z’  {0, l, 2l, 3l … (NX-1)l} and fj(y) is the 
probability density function of the deterioration 
process of the machine’s generation j

th
 within the 

decision period τ. Similarly, 

dyyfxmp
z
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3 NUMERICAL EXAMPLES 
 
In this section, we present numerical examples to il-
lustrate the performance of our model. 
 

3.1 Input parameters 

4.1.1 The appearance probability of new technology 

We define the appearance probability of new tech-
nology k+1 at decision epoch i+1, given the latest 
available technology at decision epoch i is k, as a 
time increasing function:  

 )1(1

1

kik

ip 

                   (8) 

δ is the factor that reflects the non-appearance prob-

ability of next generation (k+1) at next decision 

epoch (i+1) when the latest available technology at 

the current epoch i is k and k   i. The smaller δ is, 

the greater appearance probability is. And ε is the 

factor characterized the increasing rate of the ap-

pearance probability of new technology over time; 

ie. if the technological generation k+1 is not appear 

at decision epoch i+1, then it can appear at the next 

decision epoch (i+2) with probability 1 - δε given the 

appearance probability of (k+1) at (i+1) is 1 - δ. We 

have: δ, ε  [0, 1].  

     

4.1.2 Deterioration process 

We consider the machine whose degradation process 
is modeled by the Gamma distribution: Gamma 
processes are often used to model the equipment’s 
degradation (Van der Weide et al. 2007, Van Noort-
wijk. 2009). 
 In any decision period, the increments of deteri-
oration Xj(i + 1) – Xj(i) are independent, identical, 
and follow the stationary Gamma distribution with 
shape parameter αjτ (recall that τ is length of a deci-
sion period) and scale parameter β. The probability 
density function of the deterioration process of the 
machine’s generation j in decision period τ is: 
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where β is a constant and a discussion for the im-

provement of αj is given in the next paragraph. 

 

4.1.3 Impacts of the technological evolution 

As we have assumed, the technological evolution 
aims to improve degradation characteristics, and 
specifically the expected degradation rate. In case of 
stationary gamma processes, this expected degrada-
tion rate is directly proportional to the shape parame-
ter αj. We model the impact of the technological 
evolution with the following decreasing exponential 
geometric function: 

bae j

j   )1(                (10) 

where κ, a, b are constants;  j ≥ 1. 
Due to technological development, the deteriora-

tion rate of the machine is improved. It is convergent 
to the critical value, b, but the deterioration could 
not be excluded. We choose arbitrarily κ, a, b such 
as values in Table 1.  

Additionally, under technological evolution, the 
purchase price of a new machine is assumed to be 
decreasing over time and normally increasing over 
technological generation: 

11

1,1,

 ki
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where c1,1 is the purchase price of the first of tech-
nological generation at the first decision epoch; v is a 
constant, characterizing the decrease of purchase 
price over time (v ≤ 1) and u is constant, characteriz-
ing the change of the purchase price over technolo-
gical generation. We choose arbitrarily c1,1, v, u such 
as values in Table 1,  then ci,k is given in Table 2. 

We assume the salvage value is a function of the 
current purchase price of this technology at this deci-
sion epoch, and the Mean Residual Lifetime (MRL). 
According to the degradation assumptions, if x is the 
observed state, we define the MRL(x) as the expected 
number of decision epoch from the current decision 
epoch until the failure. In case of stationary gamma 
processes, the mean deterioration rate on a decision 
epoch is constant and equals to αjτ/β. Hence, we 
have: 

)(  )( xxMRL
j
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Then, we propose the following function for the sal-

vage value,  x  [0, ζ] 
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h, r are constant.  

4.1.4 The profit and maintenance cost function 

We know that the machine will operate less effi-
ciently when its deterioration state is greater. There-
fore, the expected accrued profit function in a deci-
sion period τ is decreasing by deterioration state and 
the greater the deterioration state is, the faster the 
decreases of the profit function is. To reflect this na-
ture, we use a decreasing concave function of deteri-
oration state x to characterize the accrued profit.  

)exp()(
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                      (14) 

 x  [0, ζ]; g0, rg are constant. 
 On the contrary, the greater the deterioration state 
is, the faster the increase of the maintenance cost 
function is. Therefore, we use an increasing convex 
maintenance cost function.    

)exp()(
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 x  [0, ζ]; c0, rc are constant. 

 

Table 1. The input parameters for the Example 1 

Appearance prob-
ability 

δ ε    

0.8 0.96    

Profit & Discount 
factor 

g0 rg λ   

213.2 1.2 0.8   

Maintenance & 
Failure threshold  

d c0 rC ζ  

1.4 3.322 0.178 20  

Deterioration 
process 

β a b κ NX 

2.22 3 0.4 0.4 100 

Salvage value & 
Purchase price 

h r c1,1 v u 

0.8 0.4 100 0.98 1.05  
 

Table 2. The purchase price for the Example 1 of the technolo-

gy k at decision epoch i, N = 5. 

i ci,1 ci,2 ci,3 ci,4 ci,5 

1 100     

2 98 102.9    

3 96.04 100.84 105.88   

4 94.12 98.83 103.77 108.95  

5 92.24 96.85 101.69 106.78 112.11 

 

3.2 Analysis from numerical experiments 

4.2.1 Basic properties of the optimal policy. 

The optimal policy for the Example 1 is given in Ta-
ble 3. For each decision epoch i, with the used tech-
nology j, given the generation k is the latest available 
technology, the decision matrix defines the optimal 

maintenance decision according to the current dete-
rioration x: Do nothing if x  [x1, x2), maintain if x  
[x2, x3) and replace with the new technology if x  
[x3, x4]. 

 Table 3. The optimal policy in Example 1, N = 5 

i k,  j Do Nothing 

[x1,   x2) 

Maintenance 

[x2 ,   x3) 

Replacement 

[x3,   x4] 

1 1, 1  [0,  1.5) [1.5,  7.5) [7.5,   20] 

2 1, 1  [0,  2.3) [2.3,  7.7) [7.7,   20] 

2, 1 

2, 2 

 [0,  2.3) 

 [0,  2.9)  

[2.3,  8.3) 

[2.9 , 7.7) 

[8.3,   20]  

[7.7,   20]  

3 1, 1  [0,  3.7) [3.7,  8.3) [8.3,   20]  

2, 1 

2, 2 

 [0,  3.7) 

 [0,  4.3) 

[3.7,  9.1) 

[4.3,  8.3) 

[9.1,   20] 

[8.3,   20]  

3, 1 

3, 2 

3, 3 

 [0,  3.7) 

 [0,  4.3) 

 [0,  4.5) 

[3.7,  9.9) 

[4.3,  9.1) 

[4.5,  8.5) 

[9.9,   20]  

[9.1,   20]  

[8.5,   20]  

4 1, 1  [0,  5.9) [5.9,  9.5) [9.5,   20]  

2, 1 

2, 2 

 [0,  5.9) 

 [0,   6.1) 

[5.9, 10.5) 

[6.1,  9.3) 

[10.5, 20] 

[9.3,   20]  

3, 1 

3, 2 

3, 3 

 [0,  5.9) 

 [0,  6.1) 

 [0,  6.3) 

[5.9,  11.3) 

[6.1,  10.3) 

[6.3,   9.3) 

[11.3, 20]  

[10.3, 20] 

[9.3,   20] 

4, 1 

4, 2 

4, 3 

4, 4 

 [0,  5.9) 

 [0,  6.1) 

 [0,  6.3) 

 [0,  6.5) 

[5.9,  11.9) 

[6.1,   11.1) 

[6.3,   10.3) 

[6.5,     9.7)  

[11.9,  20]  

[11.1,  20] 

[10.3,  20]  

[9.7,    20]  

5 1, 1  [0, 10.1) [10.1, 12.9) [12.9,  20]  

2, 1 

2, 2 

 [0, 10.1) 

 [0, 10.1) 

[10.1, 13.7) 

[10.1, 11.7) 

[13.7,  20]  

[11.7,  20] 

3, 1 

3, 2 

3, 3 

 [0,  10.1) 

 [0,  10.1) 

[0,   10.1) 

[10.1, 14.5) 

[10.1, 12.9) 

[10.1, 11.5) 

[14.5,  20] 

 [12.9, 20]  

[11.5,  20]  

4, 1 

4, 2 

4, 3 

4, 4 

 [0,  10.1) 

 [0,  10.1) 

 [0,  10.1) 

 [0,  10.1) 

[10.1, 15.3) 

[10.1, 13.7) 

[10.1, 12.5) 

[10.1, 11.5) 

[15.3,  20]  

[13.7,  20] 

[12.5,  20]  

[11.5,  20]  

  5, 1 

  5, 2 

  5, 3 

  5, 4 

  5, 5 

  [0,  10.1) 

[0,  10.1) 

[0,  10.1) 

[0,  10.1) 

[0,  10.1) 

[10.1, 15.9) 

[10.1, 14.5) 

[10.1, 13.3) 

[10.1, 12.5) 

[10.1, 11.7) 

[15.9,  20] 

[14.5,  20] 

 [13.3, 20] 

 [12.5, 20]  

[11.7,  20]  

 
 
We find that the optimal policy for Example 1, 

given in Table 3 has some basic properties: 
1) The maintenance threshold (x2), i.e. the first 
time where the optimal policy prescribes to main-
tain across deterioration state x, depends only on 
the technological generation of the used machine 
j. Consider, for example, at decision epoch i = 3, 
the used technology j = 1, for which the optimal 
policy prescribes maintenance from the deteriora-
tion state x2 = 3.7 despite the latest available 
technology k = 1, 2, or 3. Moreover, the greater 
the used technology is, the higher the threshold is, 



because deterioration rate is improved under 
technological development. For example, at i = 3, 
k = 3, this threshold is: x2 = 3.7; 4.3; 4.5 for the 
used technology j = 1, 2, 3 respectively.  
2) The replacement threshold (x3) is non-
decreasing in the difference between the latest 
available technology and the used technology be-
cause the purchase price is increasing over tech-
nological generation. For example, at decision 
epoch i = 3, when the latest available technology 
is k = 3, the replacement threshold is 9.9; 9.1; 8.5 
for the technology used is j = 1, 2, 3 respectively. 
Certainly, this threshold depends also on used 
technological generation (j). It is non-decreasing 
in the used technology j. For example, at the deci-
sion epoch i = 3, when the used technology (j) is 
also the latest technology available (k), the re-
placement threshold is 8.3; 8.3; 8.5 for j = k = 1, 
2, 3 respectively. 
These properties are maintained even if the finite 

horizon N is large enough. Consider, Example 2 with 
the input parameters as Example 1: the optimal poli-
cy for the first three decision epochs in planning ho-
rizon N = 20 is given in Table 4. 
 

Table 4. The optimal policy for the first three decision epochs 

in planning horizon N = 20.  

i k,  j Do Nothing 

[x1,   x2) 

Maintenance 

[x2 ,   x3) 

Replacement 

[x3,   x4] 

1 1, 1  [0, 1.5) [1.5,  7.3) [7.3,  20] 

2 1, 1  [0, 1.5) [1.5,  7.1) [7.1,  20] 

2, 1 

2, 2 

 [0, 1.5) 

 [0, 1.7) 

[1.5,  7.3) 

[1.7,  7.1) 

[7.3,  20]  

[7.1,  20]  

3 1, 1  [0, 1.5) [1.5,  7.1) [7.1,  20]  

2, 1 

2, 2 

 [0, 1.5)  

 [0, 1.7) 

[1.5   7.1) 

[1.7,  7.1) 

[7.1,  20]  

[7.1,  20]  

3, 1 

3, 2 

3, 3 

 [0, 1.5) 

 [0, 1.7) 

 [0, 1.9) 

[1.5,  7.5) 

[1.7,  7.5) 

[1.9,  7.3) 

[7.5,  20]  

[7.5,  20]  

[7.3,  20]  

 

4.2.2 Influence of the technological improvement pa-

rameter on the optimal policy 

Recall that technological development is characte-
rized by the improvement of the deterioration rate 
and the change of the purchase price ci,k. Now, we 
consider the influence of these parameters on the op-
timal maintenance-replacement policy. 

Note that the characterization of purchase price is 
represented by equation: ci,k = c1,1v

i-1
u

k-1
 where u is 

parameter that reflects directly the change of pur-
chase price under technological development. When 
u > 1, the purchase price is increasing in technologi-
cal generation, inversely, u < 1 this is the case where 
the technological improvement contributes to reduce 
the purchase price, and u = 1 is the case where the 
technological change does not influent on the pur-
chase price.  

As illustrated by the numerical examples in plan-
ning horizon N = 20, with u = 0.95, 1 and 1.05, con-
sider the first three decision epochs (Table 5), we 
find that at the first decision epoch, the smaller u is, 
the higher the replacement threshold (x3) is. x3 = 7.7; 
7.5; 7.3 respectively. The firm tends to keep the ma-
chine used for waiting the appearing of new technol-
ogy. In the case where the new technology was 
available on the market, the firm tends to replace 
earlier when u is smaller. For example, at decision 
epoch i = 2, given j = 1 and k = 2, the replacement 
threshold is 7.3, 6.9, 6.5 for u = 1.05, 1, 0.95 respec-
tively.  

Specially, in the obsolete case, when the firms 
decide to replace early, the optimal policy can be 
non-monotone with respect to the DN and DM 
across deterioration x for given k, j. For example, 
with u = 0.95, at decision epoch i = 2, for k = 2, j = 
1, the optimal policy prescribes do nothing until x = 
2.5, maintain from x = 2.5 to 4.7 and then do noth-
ing again at x = 4.7 until 6.5 (Table 6). 

 

Table 5. The replacement threshold for the first three decision 

epochs in planning horizon N = 20 with u = 0.95; 1; 1.05 

i k,  j u = 0.95 u = 1 u = 1.05 

1 1, 1 7.7 7.5 7.3 

2 1, 1 7.7 7.5  7.1 

2, 1 

2, 2 

6.5 

7.1 

6.9 

7.1 

7.3 

7.1 

3 1, 1 7.7 7.5 7.1 

2, 1 

2, 2 

6.5 

7.1 

6.9 

7.1 

7.1 

7.1 

3, 1 

3, 2 

3, 3 

5.5 

6.1 

6.7 

6.5 

6.5 

6.9 

7.5 

7.5 

7.3 

 

Table 6. The optimal policy for the first three decision epochs 

in the planning horizon N = 20 with u = 0.95 

i k,  j Do Nothing Maintenance Replacement 

1 1, 1  [0,   1.5) [1.5,  7.7) [7.7,  20] 

2 1, 1  [0,   1.5) [1.5,  7.7) [7.7,  20] 

2, 1 

 

2, 2 

 [0,   2.5) 

[4.7,  6.5) 

 [0,    1.9) 

[2.5,  4.7) 

 

[1.9,  7.1) 

 

[6.5,  20]  

[7.1,  20]  

3 1, 1  [0,    1.5) [1.5,  7.7) [7.7,  20]  

2, 1 

 

2, 2 

 [0,    3.1) 

 [4.1, 6.5) 

 [0,    1.9) 

 [6.9, 7.1) 

[3.1,  4.1) 

 

[1.9,  6.9) 

 

[6.5,  20]  

 

[7.1,  20]  

3, 1 

3, 2 

3, 3 

 [0,    5.5) 

 [0,    6.1) 

[0,    2.1) 

------------- 

------------- 

[2.1,     6.7) 

[5.5,  20]  

[6. 1, 20]  

[6.7,  20]  

 

Now, we will consider how the improvement of 
the deterioration rate influences the optimal policy. 
Recall that the shape parameter of stationary Gamma 



function of deterioration process is represented by 
the decreasing exponential geometric function (equa-
tion 10); where κ characterizes directly the im-
provement of the deterioration rate.  

We implement numerical examples in planning 
horizon N = 20 with κ = 0.4, 1, 1.5 and obtain the 
results in Table 7. We find that when j = k, the re-
placement threshold is non decreasing in κ. Special-
ly, at the first decision epoch, the replacement thre-
shold is increasing in κ, because the firms tend to 
replace later for waiting the new technology when 
the improvement of deterioration rate is more effi-
cient (κ is increasing). Consider, at i = 1, the shape 
parameter of the first technological generation is the 
same as in the case where κ = 0.4, 1, 1.5, then, the 
replacement threshold is 7.3, 7.5, 7.7, respectively. 
The case where the obsolete problem appears (j < k) 
is more complex. The replacement threshold is non-
monotonic in κ. For example, at i = 3, the replace-
ment threshold is decreasing in κ, for (k = 2, j = 1) 
or for (k = 3, j = 1), but it is increasing in κ for (k = 
3, j = 2).  

Moreover, this parameter (κ) influences also on 
the maintenance policy such as: the increase of the 
maintenance threshold (x2) in j > 1 and the appearing 
of the non-monotone property with respect to the 
DN and DM across deterioration x for given k, j. As 
illustrated by Table 8, with κ = 1.5, at decision 
epoch i = 2, for k = 2, j = 1, the optimal policy pre-
scribes do nothing until x2 = 1.5, maintain from x = 
1.5 to 5.9 and then do nothing again from x = 5.9 to 
6.3. 

 

Table 7. The dependence of the replacement threshold on κ in 

planning horizon N = 20 

i k,  j κ = 0.4 κ =1 κ =1.5 

1 1, 1 7.3 7.5 7.7 

2 1, 1 7.1 7.5  7.5 

2, 1 

2, 2 

7.3 

7.1 

6.5 

7.3 

6.3 

7.3 

3 1, 1 7.1 7.3 7.5 

2, 1 

2, 2 

7.1 

7.1 

6.5 

7.1 

6.3 

7.3 

3, 1 

3, 2 

3, 3 

7.5 

7.5 

7.3 

6.9 

7.7 

7.5 

6.7 

7.9 

7.5 

 

Table 8. The optimal policy for the first three decision epochs 

in the planning horizon N = 20 with κ = 1.5 

i k,  j Do Nothing Maintenance Replacement 

1 1, 1  [0,   1.5) [1.5,  7.7) [7.7,  20] 

2 1, 1  [0,   1.5) [1.5,  7.5) [7.5,  20] 

2, 1 

 

2, 2 

 [0,   1.5) 

[5.9, 6.3) 

 [0,    2.1) 

[1.5,  5.9) 

 

[2.1,  7.3) 

 

[6.3,  20]  

[7.3,  20]  

3 1, 1  [0,    1.5) [1.5,  7.5) [7.5,  20]  

2, 1 

 

2, 2 

 [0,    1.5) 

 [5.9, 6.3) 

 [0,    2.1)           

[1.5,  5.9) 

 

[2.1,  7.3) 

 

[6.3,  20]  

[7.3,  20]  

3, 1 

3, 2 

3, 3 

 [0,    1.5) 

 [0,    2.1) 

[0,     2.1) 

[1.5,  6.7) 

[2.1,  7.9) 

[2.1,  7.5) 

[6.7,  20]  

[7.9,  20]  

[7.5,  20]  

4 CONCLUSION 

In this paper, we proposed a model that allows us to 
consider both the investment and the maintenance 
problem of the stochastic deterioration system under 
the technological development. It determines the 
maintenance strategy from the operator’s point of 
view, based on parametric performance of system. In 
addition, it allows the manager to take into account 
the necessary information of technology change to 
decide the best time for replacement investment of 
equipment as well as to consider the impact of tech-
nological evolution on the maintenance strategies.     

We have considered a lot of assumptions and pa-
rameters in our model to tackle the complexity of the 
decision environment for the maintenance managers. 
We have assumed that technological evolution is 
stochastic and the impact of a new technology can be 
measured not only from an economical point of view 
but also on the system deterioration performance. 
This high number of parameters is also due to our 
choice of integrating a quite well-advanced mainten-
ance strategy (condition-based repair and replace-
ment policy) to ensure the “local” optimality, i.e. in-
dependently on the technical change opportunity, in 
the strategic decision context.  

We then used stochastic dynamic programming 
(i.e., discrete non-stationary Markov decision 
process) to solve for the optimal maintenance and 
replacement policy of the equipment as a function of 
performance and cost. And finally, we presented 
numerical examples to illustrate the performance of 
our model and to consider the influence of the para-
meters characterized the technological development 
on the optimal maintenance-replacement policy.  

Some proposed assumptions can be seen as limita-
tions of our model. The uncertainty in the technolo-
gical evolution, e.g., is just considered in the time of 
appearance of a new generation but the associated 
purchase cost and the deterioration improvement are 
deterministic. In fact, these can be stochastic and dif-
ficult to capture.  

The future work could reflect the stochastic cha-
racterization of these parameters. Furthermore, the 
stochastic efficiency of the imperfect maintenance 
action could also be included in our model or the 
conception of technology horizon N such that the 
initial optimal decision would be invariant even if 
more than N technologies wear to appear in future, 
could be consider .  
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