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Abstract

This paper presents a framework for the indexing and retrieval of artwork
3D models, allowing global and partial model classification and retrieval.
The first part of the paper deals with database classification based on global
shape descriptors. A search engine “RETIN-3D”, using a SVM classifier cou-
pled with an active learning strategy allows to retrieve categories of similar
objects. In a second part, the classification is improved thanks to a local
description of the models. A new framework for 3D surface segmentation is
proposed. Shape descriptors are adapted to surface regions and kernels on
descriptor bags are used to perform the database classification. Our system is
designed for classifying and retrieving in ancient artwork 3D databases, and
results from this application domain are presented and commented along the
paper.

Keywords: 3D database classification, 3D shape descriptors, 3D surface
segmentation, graph cuts, watersheds, artwork database, RETIN

1. Introduction

3D shape modeling and digitizing have received more and more attention
for a decade, leading to an increasing amount of 3D model warehouses, either
in domain-specific or wide-usage contexts. These 3D model databases require
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new tools for indexing, classifying, and retrieving the objects, in order to
provide the final user an easy access to the models.

Content-based document retrieval (CBDR) has been a very active re-
search field for a few years, and concerns textual documents, images, videos,
and more recently 3D models. Usually CBDR is divided into two different
steps: (i) an off-line step performs the document indexing by computing
descriptors and features that are easily and fast compared, and thus builds
an efficient summary of each document, called a signature; (ii) an on-line
step, in which the user performs a search in the database thanks to a search
engine. By means of signature comparison, the system ranks the database
models according to their similarity to a query given as input. A feedback
loop based on user interaction refines the results.

In this paper, we focus on 3D model indexing and retrieval and present
our search engine “RETIN-3D”. The first interactive 3D model search en-
gines appear on the web around 2001–2002. The Princeton 3D Model Search
Engine, associated to the widely used Princeton Shape Benchmark (PSB),
(http://shape.cs.princeton.edu/benchmark/) allows the user to perform text
queries, 2D sketch queries, and to compare 3D models through some 3D
shape descriptors [1]. The 3D Search Tool from the University of Thes-
saloniki (http://3d-search.iti.gr/3DSearch) is based on the 3D generalized
Radon transform and make comparisons within a 2.000 model database [2];
the results are only based on geometric comparisons, without learning, lead-
ing to some mis-classifications of the database. The European Network of
Excellence Aim@Shape (http://www.aimatshape.net.) presents a geometric
search engine which provides content-based retrieval with different matching
methods (global or local, etc.). The SHREC 3D Shape Retrieval Contests
allowed the comparison of 3D shape descriptors and 3D retrieval methods
thanks to databases associated with ground-truthes [3]. Ohbuchi et al. [4]
proposed a retrieval system based on multiresolution global features, which
retrieves object categories from a single example.

We present here a 3D indexing and retrieval search engine dedicated to
3D artwork model databases. Our aim is to provide user friendly tools for
classification, for content-based indexing, for retrieval, and for vizualization.
These tools are firstly dedicated to historians and archeologists, who will
be able to find, display and compare artworks in a few clicks. One can
also imagine that museum visitors, provided with their PDA, could have the
opportunity to interrogate a database in front of a statue and thus obtain a
lot of additional information.
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In section 2, we address the database classification by mean of global
shape indexing. Unlike CAD models or artificial models that are often used
in 3D model warehouses, artwork models are digitized in a high resolution
(between 30,000 and 300,000 vertices) and do not exhibit regular surfaces.
We compare several global shape descriptors for a classification task. We
introduce the RETIN-3D search engine, which uses these shape descriptors
(§ 2.1) to retrieve similar objects thanks to an active learning strategy (§ 2.2).
Unlike search engines which are asked by textual requests or 2D/3D sketches,
our query consists in a 3D model, and the search engine extracts from the
database a category of models similar in a certain way to the query. The user
leads the search toward the category, by annotating some objects as relevant
or irrelevant for his search (§ 2.3).

Not surprisingly, global shape descriptors are not sufficient to discriminate
objects differing by some specific details. In section 3, we propose to use local
shape descriptors computed on regions of the surface. We introduce a new
scheme for 3D surface segmentation, based on local curvature computation
and watershed cuts (§ 3.1). Shape descriptors are computed for each region
of the surface partition (§ 3.2), and the search engine is adapted to 3D region
descriptor bags (§ 3.3). Partial matching results are shown and explained in
§ 3.4.

Major contributions of this paper are the 3D surface segmentation (§ 3.1)
and the active learning for 3D model classification (§§ 2.2, 3.3), applied to a
database of archeological objects. The database consists of high resolution
models and includes broken or damaged items.

2. Global shape matching

At first, we compared some of the most used global shape features. We
adapted our search engine RETIN [5], which is already used for image and
video retrieval to this new modality.

2.1. Global shape features

The literature provides a lot of various 3D shape descriptors, describing
geometric as well as topological properties of 3D shapes: global shape descrip-
tors [6, 7, 8, 9, 10, 11, 12, 13, 14]; local descriptors [15]; graph based methods
[16, 17, 18]; geometric methods based on 2D views of 3D models [19, 1, 20].
Interested readers can refer to some recent review papers [21, 22, 23, 24] for
more details.
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Before computing shape descriptors for each model of the database, we
perform a spatial alignment preprocessing which aims to put the 3D models
in a canonical coordinate system. The origin of the coordinate system is set
at the center of gravity of the model, and the spatial alignment is achieved
thanks to a principal component analysis transform.

Our 3D models are VRML meshes, featuring 3D vertices V (the model
geometry) and 3D facets (triangles). We implemented most of the global
shape descriptors [5] described above. We briefly describe below the ones
which gave exploitable results for our high resolution models.
Cord histograms: [25] a cord is defined as the vector from a vertex to the
center of the model, and is characterized by three features: (i) the length of
the cord; (ii) its angle with the first principal axis; (iii) its angle with the
second principal axis. We built a descriptor named “Cord2D” based upon
two normalized histograms of the two first features (cf. fig. 1(a)).
Extended Gaussian Images (EGI): the 3D model is projected on a Gaus-
sian sphere, and each point of the sphere is attributed with the total area
of the faces having the same orientation [6]; for each facet of the Gaussian
sphere, of orientation nk:

Pnk
=

Nk
∑

l=1

Al,nk
(1)

where Nk is the number of faces of the model in direction nk and Al,nk
is the

area of the l-th face of orientation nk (cf. fig. 1(b)). The main drawback of
this index is that it is unable to differentiate convex and concave parts of the
objects.
Complex Extended Gaussian Images (CEGI): in order to deal with
this drawback, the CEGI feature [7] describes an object in the complex space
through two attributes: the face orientation, and the distance between the
center of the face and the center of the object. With the same notation as
eq.(1):

Pnk
=

Nk
∑

l=1

Al,nk
eidl,k (2)

where dl,k is the distance between the center of the model and the center of
the face l (this distance is negatively signed if the face is directed towards
the model center, and positively else). The CEGI descriptor is composed of
the module and the phase of Pnk

.
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(a) (b)

Figure 1: Color representation of shape descriptors on a Venus figurine: (a) Cord2D
descriptor; each color represents one cord length (b) EGI descriptor with the corresponding
face orientations.

3D Hough Transform: the 3D Hough feature [8] is an extension of the
Hough transform consisting in accumulating the spherical coordinates (s, θ, φ)
which uniquely define the plane containing a model face. A 3D histogram is
then computed, where each face contributes proportionally to its area.
Spherical harmonic representation: spherical harmonic transforms have
been used to compute shape descriptors based on a voxel representation of
3D models [1]. More recently, spherical harmonic transform has been directly
computed on 3D star-shape triangulated models [26, 27]. We use a descriptor
which is based on the spherical harmonic transform computation using 32
concentric spheres centered in the center of gravity of each object.

2.2. Global shape indexing and retrieval

We present in this paper an extension of our search engine RETIN, which
was originally built for image retrieval. We consider browsing a database or
retrieving a category as a supervised classification problem. The user gives
one or several examples of the objects he is looking for and the system returns
the objects the most similar to these examples. In classification tasks, there
are many ways to form the classes, depending on the user expectations. For
example is he looking for greek vases, for vases with one handle, for vases
with a particular shape or painting? Another problem is to initialize the
search: if the database is large, how extract enough examples?

We have opted for an interactive mining of the database, using the follow-
ing protocol, widely used in image retrieval: the search starts with a single
example of the category, this example belongs or not to the database. The
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system returns the objects the most similar to this example, according to
a similarity measure. Then the system enters into a feedback loop where it
displays some models to the user, the user annotates these models as relevant
or irrelevant for his search and the system progressively builds two classes:
the searched category, which contains all objects annotated as relevant and
another class with all irrelevant objects. Of course in this scheme, only
a small part of the database is annotated, the classification is thus “semi-
supervised”. To achieve such a classification task into two classes with very
few examples, we used Support Vector Machines (SVM) [28], since this is a
robust classification tool, well adapted to the context of noisy, complex and
massive data. The SVM classifier is a linear two-class classifier, whose aim
is to maximize the margin between both classes. It is generally used with
kernel functions in order to deal with complex classes. We used Gaussian
kernels in our experiments.

As the learning is performed with very few examples, RETIN works with
an active learning scheme: the system displays the images (or the objects) the
most likely to move the frontier between the two classes [28]. The extension of
this system to 3D objects — RETIN-3D — includes a user-friendly interface
(fig. 2). The top left part displays the models in 2D, ranked according to
their membership grade to the searched category. The top right part of the
screen displays an object in 3D, with the possibility to turn it and to zoom
it. The “active learning panel” on the bottom of the screen displays the
models that are the closest to the border between both classes: annotating
these models helps to fast build the border, leading to better classification
performances. The classification is performed online and according to the
user expectations, thus giving a great flexibility to the system.

2.3. Global shape classification results

In order to test our system, we used a database of 3D objects – EROS-
3D – provided by the French Museum Center for Research and Restoration
(C2RMF, Le Louvre, Paris). This database now contains about 750 models
of greek vases, terracota gallo-roman figurines, moulds, fragments, etc. (see
fig. 3) and the database is still growing.

We focused on a particular application for historians concerning two
model categories, terracota figurines representing either Mother-Divinity or
Venus (see fig. 4(c) and 3(b)), with three different objectives:

1. extract the two categories from the database;
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Figure 2: RETIN-3D user interface: left, the 3D models are ranked by their classification
rate, top left is the model query; relevant (resp. irrelevant) objects are annotated with
a green (resp. red) mark; at the bottom, the active learning panel. The zoom selected
model (right panel) is colored according to the cord length values at each 3D surface point:
yellow the low values, blue the high. The RETIN-3D interface allow to zoom and rotate
the selected model.

Figure 3: Some objects of the EROS-3D database: figurines, moulds, vases.
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2. separate Venus from Mother Divinity categories;

3. separate each category of Mother Divinities into three sub-categories:
those carrying two children (fig. 4), those carrying one child in her right
arm and those having their child in the left arm (fig. 9(f)).

(a) (b) (c)

Figure 4: Mother-divinity figurines: (a) with a child on left arm; (b) with a child on right
arm; (c) with two children.

In order to evaluate the performances of our algorithm, we built a ground-
truth by manually extracting some categories of the EROS-3D database. We
kept in the Venus and Mother-Divinity categories not only the entire models,
but also damaged statues. For each feature, and for F returned models, pre-
cision P and recall R are computed as follows: R = NOK/T and P = NOK/F
where NOK is the number of correct models found among the F first returned
models, and T is the size of the category. For each query, when F increases,
one P/R curve is obtained. The process is repeated using each model of the
category as query, and curves are averaged leading to one curve for each cate-
gory and feature. We display P/R curves for Mother-Divinity (fig. 5(a)) and
Venus (fig. 5(b)) categories. The solid curves present the results of the initial
classification results with only one example of the searched category and the
dotted curves with active learning, after ten annotations (either relevant or
irrelevant).

The methods needs no parameter apart the number of bins (or classes)
of the histograms. We give here the best results which were obtained for
256 bins for Cord2D (16 cord lengths times 16 angles), 128 orientations for
EGI and for CEGI and 128 spherical coordinates for 3D Hough. Results
with other parameters are displayed in fig. 10. For both categories, the best
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(a)

(b)

Figure 5: Precision/recall diagrams for various shape descriptors: (a) mother-divinity
category; (b) Venus category. Solid curves for initial classification (without annotations),
and dotted curves after ten annotations.
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performances were obtained with the Cord2D features, which seem to better
represent the global shape of the model and particular details. The active
learning process leads to a great improvement of performances: after 10 user
annotations, the system returns about 80% of a category, with less than 10%
of errors.

In order to have a single value, easier to achieve the comparisons, we com-
puted the Mean Average Precision (MAP) value after 25 model annotations;
the MAP value for a given category is the mean value of the integral of the
P/R curve for all queries belonging to this category. Results are displayed in
Table 1.

Venus and Mother All
fragments divinities categories

EGI:1 18 39 40
EGI:2 23 37 47
CEGI:1 20 36 40
CEGI:2 22 39 46
Cord1D 16 38 40
Cord2D 20 35 42

Table 1: Mean Average Precision (in %) for several categories and six descriptors.

The global MAP deeply depends on the categories. The retrieval with
global descriptors is better for the Mother-Divinity category than for the
Venus one. This can be explained by the fact that, in this database, the
Venus category is sparser, including a significant number of damaged models.
Moreover, if global descriptors are able to roughly classify the database,
they are not sufficient for accurate purposes required by art historians. For
example, they are not able to discriminate various categories of Mother-
Divinities, carrying one or two children, with the child in right arm or in
left arm (cf. fig. 4). For such an accurate discrimination, local features are
necessary. This is the aim of the next section.

3. Partial shape matching

Partial shape matching and detection of self-similarities are some of the
most active tasks in the context of 3D mesh indexing and retrieval. For
instance, [29] presents the “saliency” of a region computed from its relative
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size and some curvature measures (curvature value, its variance and changes),
and uses it for partial shape matching and shape alignment. Another recent
work covers the identification of most distinctive parts of an object seen as
a mesh database item: not only the local shape properties of a region are
considered, but also how consistent they are with other instances of the same
class and how different from objects of other classes, leading to a definition
of regions distinctive, not distinctive or in the middle for each mesh of the
database [30, 31]. Some other approaches are based on the decomposition of
3D models and well suits CAD or simple shape objects (see for instance [32]).
For the purpose of 3D shape alignment, Gelfand et al. present the Integral
Volume Descriptor, an invariant local shape descriptor robust to noise and
based on the computation of the intersecting volume of a 3D model with a
3D ball centered on each vertex of the model [33]; these descriptors are then
used to bring two different 3D shapes to coarse alignment.

We opted for a segmentation of the surface of the objects into convex
(or concave) parts. Each surface region can then be described by the same
features as the global shape, but restricted to the region. To compute the
similarity between two models, we used a kernel between “bags” of regions.

3.1. 3D surface segmentation

Since the early work of Mangan and Whitaker [42], semantic-oriented ap-
proaches to mesh segmentation have gained a great interest in the research
community (see, for instance, a comparative study in [43]). The 3D surface
segmentation method adopted here falls into this category. It relies on the
computation of local curvature combined with watershed cuts. The water-
shed cuts, introduced in [44] and [45], constitute a novel framework to solve
the watershed problem. They verify strong mathematical properties which,
as far as we know, are not satisfied by any other discrete watershed definition:

• Consistency. Watershed cuts are equivalently defined by their re-
gions (catchment basins) through a steepest descent property or by the
borders of the regions (the watershed divide) through the drop of wa-
ter principle (i.e. a drop of water falling on the divide must have the
possibility to flow down towards several minima of the function).

• Optimality. Watershed cuts are equivalent to graph cuts obtained by
solving an instance of one of the most studied combinatorial optimiza-
tion problem, namely the minimum spanning tree problem.
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• Efficiency. Watershed cuts can be computed thanks to efficient linear
time algorithms (with respect to the size of the input graph).

According to these properties, the method proposed in this section differs
from the existing approaches based on similar ideas (such as [42, 47, 46]) in
two main aspects. Firstly, the resulting segmentations are proved to be glob-
ally optimal. Secondly, these optimal segmentations are obtained in linear
time. Note also that watershed cuts can be placed in a unifying framework
that includes graph cuts [48] and random walks [49]. In this framework,
watershed cuts can be written as an MRF-like style energy optimization al-
gorithm [50] that allows for computing an exact global multi-labels optimum.
As it is usual in that kind of framework, the quality of the segmentation de-
pends on the detail of the energy definition. In this paper, we propose to
design the energy from local curvature computation and to filter this en-
ergy by using the component tree to obtain a robust energy landscape, well
adapted to obtaining the most significant regions for classification.

3.1.1. Local curvature computation

The normal curvature κn of a surface in some direction is the reciprocal
of the radius of the circle that best approximates a normal slice of surface in
that direction. The normal curvature can be expressed as κn = κ1s

2 + κ2t
2

where κ1 and κ2 are the principal curvatures and (s, t) are the cosine and
sine of the angle between the first principal direction and this direction.

After computation thanks to the Trimesh algorithm [34] on a 3D mesh,
we obtain the values κ1 and κ2 on each vertex of the mesh. These values
increase with the convexity of the surface. They decrease into negative values
on concave zones, getting low absolute values on flat zones. Considering the
combination of the principal curvatures κ1 and κ2 on a surface we have
convex zones when both values are great positive, concave zones when both
are great negative and saddle zones when one value is great positive and the
other great negative, meaning convexity in one direction and concavity in
the other. The flat zones have both values low.

As the curvature map is used to partition the surface by using a watershed
operator, a single scalar function is desired with high values at the boundaries
between the regions that we want to separate. Several approaches can lead
to such a height function by combining values κ1 and κ2. Mainly, the choice
depends on the desired further applications.

The approach we adopted is to use a pseudo-inverse Hinv of the mean
curvature H = (κ1 + κ2)/2, in the form: Hinv = 1

π
(arctan(−H) + π

2
). This
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function has the behavior of the inverse of the mean curvature but takes
always positive values. It gives high values to concave zones and low values
to convex zones. We also consider a max curvature as M = max(κ2

1, κ
2
2), that

gives high values on convex and concave zones. The max curvature has also
high values on zones that are flat in one direction, and convex or concave
in the other. These zones are commonly the edges that divide planes of an
object, as the division between the roof and the doors of a car.

We have used this different treatments of the principal curvatures and,
for the art objects we deal with, the Hinv function is the one with which we
obtained the best results, while the max curvature M gives better results for
manufactured objects.

(a) (b) (c)

Figure 6: Curvature scalar functions: (a) 3D object; (b) max curvature; (c) pseudo-inverse
curvature.

Fig. 6(b) and 6(c) illustrate these two scalar functions for the sculp-
ture 6(a). Small values are black, while large values are white.

3.1.2. Watershed cuts on curvature meshes

Many approaches [35, 36] have been proposed to define and/or compute
the watershed of a vertex-weighted graph corresponding to a grayscale image.
The digital image is seen as a topographic surface: the gray level of a pixel
becomes the elevation of a point, the basins and valleys of the topographic
surface correspond to dark areas, whereas the mountains and crest lines
correspond to light areas.
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In recent papers [44], we investigate watersheds in a framework different
from the one of vertex-weighted graphs: we consider a graph whose edges
are weighted by a cost function. A watershed of a topographic surface may
be thought of as a separating line-set on which a drop of water can flow
down toward several minima. Following this intuitive idea, we introduce the
definition of watershed cuts in edge-weighted graphs [44]. We establish the
consistency (with respect to characterizations of the catchment basins and
dividing lines) of watershed cuts, prove their optimality (in terms of minimum
spanning forests) and propose efficient linear algorithms to compute them. As
far as we know, the framework of edge-weighted graphs is the only generic
discrete framework in which all these properties hold true. In particular,
it is the first framework in which the drop of water principle is used as a
definition for watershed and in which this principle leads to fast algorithms
and an optimality theorem.

Watershed cuts can be extended [37] to simplicial complexes, and espe-
cially meshes. Consider a 3D surface meshM (composed of triangles, sides of
the triangles and points) so that for any side e in M there is exactly one pair
of triangles (g, h) such that e ∈ g and e ∈ h. We build a graph G = (V,E)
with one vertex for each face of M and an edge connecting two vertices if the
corresponding two faces share a side (fig. 7.b).

Figure 7: (a) A triangle mesh. (b) Segmentation on edges of the graph (in bold). (c)
Segmentation on the mesh.

To compute a watershed cut, we need a map on the edges. Let e be any
side of a triangle in M and (x, y) the pair of points such that e = {x, y}. As
described in section 3.1.1, we have computed the curvature values in each
point of the mesh. We denote them as κ1x, κ2x and κ1y, κ2y for the points x
and y respectively. Then we compute for each e in M , the mean of κ1 and
κ2 at x and y: κ1 = (κ1x + κ1y)/2 and κ2 = (κ2x + κ2y)/2. Considering then
the scalar curvature functions explained in section 3.1.1, we then obtain a
map from E into R that we denote by f , and that represents the curvature
between each two adjacent faces of the mesh. With such a map, we can
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compute a watershed cut that leads to a mesh segmentation. The cuts are
thus performed on edges of the mesh, leading to a natural and accurate
segmentation: the borders of the regions are constituted by sides of triangles
of the mesh (in bold in fig. 7.c).

3.1.3. Filtering

In order to classify artwork meshes, we are interested in partitioning a
mesh into its most significant regions. Due to high number of minima, wa-
tershed cut produces strong over segmentation since it associates a region to
each minimum. Hence, we need to filter the map f so that the watershed
cut is guaranteed to produce only the needed regions.

In mathematical morphology, a powerful tool to solve this problem con-
sists of using the component tree of a map (see an illustration in fig. 8a).
The level sets of an edge-weighted graph are the sets of edges whose weights
are below a given threshold. The connected components of the level sets,
thanks to the inclusion relation, can be organized in a tree structure, that
is called the component tree [38], each connected component of any level set
being a node of the tree. This tree, under several variations, has been used
in numerous applications. Various algorithms have been proposed in the lit-
erature for computing the component tree. The fastest one [39], considering
the worst-case complexity, is based on Tarjan’s union-find procedure and is
quasi-linear. This algorithm is also the fastest for real (double) data such as
those given by a curvature map [52].

Using the component tree for image filtering consists in removing from f
the “less significant” lobes, i.e. the “negligible” components of the compo-
nent tree. To make such an idea practicable, it is necessary to quantify the
relative importance of each node of the component tree. We can do that by
computing some attributes for each node. Among the numerous attributes
that can be computed, three are natural: the height, the area, and the vol-
ume (fig. 8b, c and d). The function depicted in black in fig. 8d is the result
of an area filtering (of size 3) applied to the function of fig. 8a.

3.2. Local features

In § 2.1, we demonstrated the use of some different 3D descriptors com-
puted on whole 3D models: Extended Gaussian Images (EGI) and Complex
Extended Gaussian Images (CEGI), as well as Cord1D and Cord2D features.
We also computed for each region a new curvature region histogram, which
is a 2D histogram based on each principal curvature {κ1, κ2} pair. Thus we
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(a) Component tree

h

(b) Height

a

(c) Area

v

(d) Volume (e) Area filtering

Figure 8: Illustration of respectively a component tree (dashed lines), the height, the area
and the volume of a component and an area filtering.

computed these features for each 3D surface region of the model instead of
computing them on the global model. Finally, the set of descriptors available
for each region is as follows: (i) EGI, (ii) CEGI, (iii) Cord1D and Cord2D,
(iv) 2D curvature histograms. EGI and Cord2D features, which are com-
puted in reference to the center of the model, allow to take into account not
only the 3D shape of a region but also its position relatively to the model.

3.3. Surface region bags

We again use our search engine RETIN to perform the classification of
the objects after segmentation into regions. We use local features computed
on regions for the object representation. An object is thus summarized by a
set or “bag” of vectors describing the regions. The SVM classifier can then
be applied through specific kernels.

After the region feature computation, each object i is represented by a
bag Bi = {bri}r of region descriptors bri. bri represents one of the feature
histograms. As the input space is constituted of bags (that is to say of sets
of unordered vectors) of variable size, these bags must be mapped into a
Hilbert space in order to use a linear classifier such as SVM. This can be
achieved thanks to a kernel function. Several kernel functions have been
recently proposed, for example in [40] and modified in [41] by:

K(Bi, Bj) =





∑

bri∈Bi

∑

bsj∈Bj

(k (bri, bsj))
q





1

q
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where k is the minor kernel measuring the similarity between regions (usually
a Gaussian kernel).

3.4. Partial shape matching results

3.4.1. Segmentation results

We display on figure 9 some results of the 3D surface segmentation:
fig. 9(a) is computed on a CAD-design object and is the result of a watershed
cut on a M curvature map; fig. 9(b)–9(d) show the segmentation results for
two industrial CAD models and one model from the Princeton Shape Bench-
mark (each model contains between 100 and 1,500 vertices); fig. 9(e)–9(g) are
the results on three different figurines of the EROS-3D database. For CAD
models such as industrial pieces or chess bishop, the surface segmentation
seems to be accurate, the frontiers clearly separate the different elementary
shapes composing the model. The segmentation algorithm applied to real
3D models allows to identify some specific parts of the models (baby heads,
legs, arms, coiffures) which are characteristic of the figurines. Of course,
as watershed regions have to be closed in any cases, some frontiers must
go through flat areas. These frontiers have no semantic significance. The
volume criterion was used to filter the component tree (minimum volume is
set to 0.5% of each model volume) in the case of archeological objects. The
artificial objects were filtered by mean of the area criterion.

3.4.2. 3D model classification

We computed region features for the whole EROS-3D database. EGI
where computed with 32 (EGI:1) and 128 (EGI:2) bins, CEGI with 64 (CEGI:1)
and 256 (CEGI:2) bins, Cord1D with 384 bins, and Cord2D with 256 bins.
We performed the classification tests using the same protocol as in section 2.
Figure 10 shows the MAP values for various feature vectors, either computed
on the whole model (green bars) or on surface regions (yellow bars).

Figure 10 shows a real improvement of classification performances when
using region attributes, especially EGI and CEGI. Moreover, EGI and CEGI
features give better results than Cord features when computed on regions.
The local computation of EGI and CEGI dramatically improves the recogni-
tion, especially if the category includes full objects, as well as fragments and
moulds (cf. fig. 10(c) — “Venus statue” category contains statues, moulds
and fragments such as heads, trunks, etc.) On the opposite, cord features,
which are computed in reference to the center of the model (which differs
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(d) (e) (f) (g)

Figure 9: Segmentation of (a) an artificial object (chess piece); (b)–(c) two industrial
pieces; (d) a model of the Princeton shape benchmark; (e)–(g) three Mother-Divinities of
the EROS-3D database.
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Figure 10: Comparison of classification results for the EROS-3D database, using EGI,
CEGI, or Cord feature vectors: (a) whole database; (b) mother divinity category; (c)
Venus statue category, including fragments of statue and moulds.
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when considering the whole statue or a fragment) do not lead to better per-
formances.

Figure 11 shows the results using only CEGI features for different specific
categories: the performance gain clearly appears to be larger and significant
when the searched category is specific (mother divinity with only one child) or
when the category contains not only full models but also parts or fragments.
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Figure 11: Comparison of classification results on the EROS-3D database, using CEGI
feature vectors for different categories.

4. Conclusion

We presented in this paper a 3D model search engine dedicated to artwork
3D models. In this framework of high resolution models, we found that among
the most used shape descriptors, a 2D cord histogram (length and angle) is
the most efficient to build rough categories of objects. If a more accurate
discrimination of the objects, concerning only a part of the objects is needed,
we showed that a good solution is to segment the 3D surface.

We proposed a watershed cut algorithm applied on the dual graph of the
3D mesh, leading to a 3D surface segmentation along the max curvature
lines. Shape descriptors are then computed for each surface region of the
segmentation.

The combination of an accurate surface segmentation and local shape de-
scriptors significantly improves the database classification. EGI and CEGI
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descriptors better perform the discrimination of objects only differing by
some details. The final user (a museum curator, for instance) may be partic-
ularly interested in partial shape matching, for example to classify fragments
or to classify objects according to minor details.

The active learning strategy, developed in our search engine RETIN-3D
is thus an important tool for the final user.
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